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Abstract 

How do regions develop and evolve along their productive and technological path is a central 
question. Within an evolutionary perspective, a given region is likely to develop new 
technologies closer to its pre-existing specialization. We adopt the approach of Hidalgo et al. 
(2007) to map the regional European technology/knowledge space to investigate the pattern 
and the evolution of regional specialisation in the most innovative EU countries. These 
dynamics depend on the interaction of three factors: (i) localised technological change, (ii) 
endogenous processes of knowledge recombination, and (iii) exogenous technological 
paradigm shifts while accounting for spatial and technological spillovers. Our paper maps 
the technological trajectories of 198 EU regions over the period 1986-2010 by using data on 
121 patent sectors at the NUTS2 level for the 11 most innovative European countries, plus 
Switzerland and Norway. The results show that regional technological specialization is mainly 
shaped by localised technological change and exogenous technological paradigm shifts, 
whereas recombinant innovation contributes to a lower extent and that these effects largely 
depends on the increasing, decreasing or stable regional dynamics.  
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1. Introduction 

The technological and productive specialization of regions has always been a 
relevant issue from both a theoretical and empirical viewpoint. While globalisation 
and the ICT revolution have radically transformed the geography of production, in 
contrast to some early claims about “the Death of Distance” and “the World is Flat” 
(Cairncross, 1997 and Friedman, 2005), they have also spurred the importance of 
regional specialisation as a relative advantage in an increasingly competitive global 
arena. 

The question of how regions develop and evolve along their productive and 
technological path is central in many scientific fields from international economics 
to economic geography, from public policy to regional science. Within an 
Evolutionary Economic Geography perspective (Boschma and Frenken 2006, 
2011), we know that a region is most likely to develop new technologies and new 
industries closer to its previous technological and productive specialization. In other 
words, the current production structure sets the spectrum of prospects and limits to 
potential changes and developments: diversification mainly occurs by either using or 
recombining regional pre-existing competencies and know-how. 

Recent progresses in the literature introduce other important notions and 
measures to analyse and possibly predict economic diversification in countries and 
regions. Hidalgo (2021) offers a rich and updated review, based on two main 
streams: the literature on relatedness focused on the evolution of specialisation 
(Boschma, 2017) and the literature on complexity centred on economic growth 
patterns (Balland and Rigby, 2017). 

We follow mainly the former avenue of research by building on the 
conceptual blocks laid by Hausmann and Klinger (2007) who conceived an original 
methodology to map the evolution of industrial specialisation at the world level. 
Hidalgo et al. (2007) apply this methodology at the country level by using trade data 
to connect pairs of activities in terms of relatedness and estimate the affinity between 
locations and activities. Many other studies have moved along this path by applying 
this methodology at the regional level by using different data, territorial units and 
geographical settings. According to these studies, regions tend to diversify into new 
industries (Neffke et al. 2011; Boschma et al., 2012; Essleztbichler 2015; Xiao et al., 
2018, Guo et al., 2018), new technologies (Colombelli et al., 2014, Kogler et al., 2013; 
Rigby 2015) and new occupations (Farinha et al. 2019), related to their present set 
of skills and capabilities. 

However, according to Boschma (2021) and Pinheiro et al (2021), 
relatedness is only a part of the story since economic industrial dynamics are often 
a combination of related and unrelated diversification. The former is relatively more 
frequent, but the latter is, nevertheless, important and most notably essential to 
avoid regional economic lock-in. 

In our analysis, we try to embody these two views by proposing a novel 
approach, which revisits, within a encompassing framework, three established 
concepts of the literature on the economics of innovation and technological change: 
(i) the notion of “localised technological change” conceived by Atkinson and Stiglitz 
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(1969), (ii) the idea of “recombinant growth” developed by Weitzman (1998), and 
iii) the concept of “exogenous innovation” invented by Kalecki (1954). According 
to this encompassing framework, incremental innovations develop along the lines 
of past technological “related” trajectories by causing local changes in the shape of 
isoquants rather than global shifts in their position. At the same time, new 
“unrelated” technologies may emerge from the recombination of existing 
technological knowledge, skills and capabilities. Finally, exogenous innovations 
determined by R&D efforts developed elsewhere might influence the technological 
specialization of a region. 

We move along this stream of literature by trailing the study of Kogler et al. 
(2017) on the European knowledge space. In particular, our main aim is to 
investigate the evolution of European regional specialisation over more than two 
decades, from the middle eighties up to the complete outbreak of the economic 
crisis. We conceive the technological dynamics of a region as the outcome of the 
interaction of two endogenous - internal to each region - processes, i.e. localised 
technological change and recombinant innovation, together with an exogenous one, 
i.e. the shifts of the overall technological frontier. In other words, we acknowledge 
that cases1, are not islands and that the technological evolution of a region cannot be 
entirely described by endogenous processes. It depends also on the interaction of 
some external factors such as the exogenous paradigm shifts of the global 
technological frontier. Moreover, we consider that there might also be proximity 
effects among external factors due to the interaction across regions in either the 
geographic or the technological dimension (De Dominicis et al., 2013 and Paci et 
al., 2014). 

The main original and innovative contributions of the paper are threefold. 
First, we attempt to discriminate between technological changes, which happen 
because of either endogenous (local) or exogenous (global) shifts. Secondly, we 
propose a new way to operationalise the concept of relatedness/unrelatedness 
through the concepts of degree and betweenness centrality indexes derived from 
social network analysis (SNA) applied to European Maximum Spanning Trees 
(MST). Thirdly, by applying the Correlated Random Effects (CRE) estimation 
approach (Wooldridge, 2005 and 2010) to ordered logit panel models, we can exploit 
both the within and the between variation in our data and thus provide a more 
reliable estimation of the effects on regional technological specialization exerted by 
the main explanatory variables considered in our analysis. 

The analysis is based on patent data for 121 International Patent 
Classification (IPC) classes for 198 European NUTS2 regions observed over the 
period 1986-2010. The main results show that regional technological specialization 
is mainly shaped by localised technological change and exogenous technological 
paradigm shifts, whereas processes of recombinant innovation contribute to a lower 
extent. Moreover, results point out that, once accounting for spatial and 
technological spillovers and transition dynamics, it is the between variation which 

 
1 In this paper, we refer to a “case” as a shortcut for the combination of a specific 
technological sector within a given region. 
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plays a major role. When we split the sample to focus specifically on cases recording 
either increasing, stable, or decreasing specializations, previous results are confirmed 
and new evidence emerges. For stable cases, our exogenous variables exert their 
greater influence when a region has not developed any technological sector, followed 
by the case in which its technological comparative advantage records values around 
one. When technological specialization is increasing over time, the largest effect is 
found for the very specialised cases. Finally, when specialization decreases, the 
largest influence is recorded in the lowest possible state, showing the role of 
contiguous IPC classes in avoiding the total disappearance of a given class in the 
spectrum of the technological specialization of a region. 

The paper is organised as follows. The next section connects this analysis 
to the established literature in the field, section three describes how the European 
technological space is mapped by applying SNA to MST, derived from technological 
interrelatedness matrices; some stylised facts of the European technological space 
are then presented, along with its regional evolution over time. The fourth section 
introduces the main explanatory variables, while the fifth section presents the 
estimation strategy. The empirical analysis results are presented and discussed in 
section six. Concluding remarks and future research agenda are in the final section. 
 

2. Literature review 

The prevalent model of technological change used in empirical analyses – the 
Knowledge Production Function (KPF, Griliches, 1979) – assumes that the most 
significant source of knowledge, besides human capital and skilled labour, is public 
and private R&D. This empirical model has been applied at different levels of 
economic systems: from the micro level of plants and firms to the macro level of 
industries, regions and nations. Nonetheless, the mechanical idea of knowledge 
creation with the indirect assumption of almost perfect plasticity of the innovative 
structure of a region – a linear production process where R&D is the input and 
innovation is the output – is not entirely satisfactory. Even Griliches himself, in his 
conclusion, acknowledges that “We need more research on … how to conceptualise 
and estimate the technological distance between firms and industries and the 
associated notions of externalities and spillovers in research” (Griliches, 1979, p. 43). 

We, therefore, go beyond the classical KPF approach to rediscover three 
established theoretical contributions: localised technological change (Atkinson and 
Stiglitz, 1969), recombinant growth (Weitzman 1998) and exogenous innovation 
(Kalecki, 1954). Our basic analytical framework grafts these theoretical contributions 
and instruments them through the use of SNA applied to MSTs within the current 
literature of evolutionary economic geography (Boschma and Frenken, 2011). 
According to this encompassing framework, incremental innovations develop along 
the lines of past technological “related” trajectories by causing local changes in the 
shape of isoquants rather than global shifts in their position. At the same time, new 
“unrelated” technologies may emerge either from the recombination of locally 
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available existing skills and capabilities or the adoption of exogenously created 
technological knowledge. 

A practical solution for the operationalization of these two propositions is 
borrowed by Hidalgo et al. (2007), who describe technology as based on the current 
competencies of countries and regions and centre their approach on the notion of 
“technological proximity” and the representation of the technological frontier 
through a MST. Hidalgo and Hausmann (2008) use a persuasive metaphor for their 
methodology: products are trees, and forests compose the economic structure of 
countries; firms are, instead, monkeys that live on different trees and exploit those 
products. Growth and specialization dynamics can be described as the movement 
of firms from a poorer part of the forest to more prosperous parts of the forest, 
where trees bear more fruits and develop faster. This metaphor is essential to 
appreciate the concept of interrelatedness: “if this forest is heterogeneous, with 
some dense areas and other more-deserted ones, and if monkeys can jump only 
limited distances, then monkeys may be unable to move through the forest.” (Shaw, 
2010, p. 8). 

Consequently, the composition and the relative density of a forest, that is, the 
economic structure of a country/region, is crucial in determining the orientation and 
the pace of development of countries/regions in the short and long run. Hidalgo et 
al. (2007) employ this method to show that rich countries specialize in more densely 
connected parts of the product space while developing countries mainly develop 
products in the more peripheral and isolated areas. As a result, rich countries have 
more opportunities to sustain economic growth in the end, thanks to a fruitful 
process of structural change and to their diffused absorptive capacities. In other 
words, the probability of success for a region entering a new economic activity 
depends on geographical closeness and the cognitive and technological proximity 
between the new activity and a region’s prior activities. Furthermore, Boschma 
(2005) asserts that relatedness and proximity are crucial in favouring changes, not 
only in the geographic and technological space. Other dimensions may prove 
essential, such as social, organisational and institutional proximity as potentially 
favouring factors for knowledge spillovers. 

These concepts have been mostly applied in the literature at the regional level 
since technological knowledge has a tacit nature and can be strongly associated with 
local capabilities, institutional settings and social capital (Lawson, 1999; Breschi, 
2000, Maggioni, 2002; Greunz, 2003; Moreno et al., 2005). Regions may, therefore, 
accumulate specific competencies and intangible assets, which provide spatially and 
cognitively bounded learning opportunities for local firms. In other words, this 
seems the ideal geographical setting for analysing the evolution of the regional 
technological system as the result of a set of local factors. This belief was also at the 
base of some studies which apply the metaphor of trees and monkeys to the impact 
of technological relatedness on regions within a single country2.  

 
2 Earlier works focus on regional economic growth. Boschma and Iammarino (2009) and Boschma et 

al. (2012) show that relatedness is an essential component in raising the opportunities to grow in 

provinces in Italy and in Spain, respectively. Neffke et al. (2011) is more directly oriented to the issue 
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The first study by Boschma et al. (2015) investigates, thanks to US Patent and 
Trademark Office (USPTO) patents, the role of technological relatedness in pushing 
and orienteering technological change in 366 US cities (MSA) from 1981 to 2010. 
They find that technological relatedness may play a crucial role by increasing a new 
technology's entry probability and decreasing existing technology's exit probability. 
They use two different methods to build the relatedness indicator. The primary 
method follows the usual product space framework proposed by Hidalgo et al. 
(2007), where two technologies are considered related if they have a revealed 
technological advantage within the same US city. The second method, used to test 
the robustness of the results, is based on Hall et al. (2001) patent classification and 
a normalised co-occurrence analysis. 

Kogler et al., (2013) have a similar objective and methodology. They base their 
measure of relatedness utilising co-classification information contained in patent 
documents. They show that over time, patents increasingly cluster within technology 
classes close to one another in the technology space. They also reveal considerable 
heterogeneity in measures of technological specialisation across US metropolitan 
areas. In general, smaller cities tend to display higher levels of knowledge relatedness, 
often because a small number of firms with a limited range of technological know-
how controls the invention process. Larger cities generate more broadly dispersed 
knowledge across the US knowledge space.  

Rigby (2015) studies the evolution of knowledge space again in the same sample 
of 366 MSA from 1975 to 2005. Technological relatedness is now based on patent 
citations, and it is given by the probability that a patent in class j will cite a patent in 
class i. The analysis shows that the average relatedness between US patents in thirty 
years has almost doubled since patents are increasingly concentrating in fewer 
technology classes, which are becoming more proximate (or related). Regarding the 
determinant of entries and exits of cities from patent classes, the expansion of the 
knowledge core depends on the proximity of new technological possibilities to the 
set of existing specialisations. Most interestingly, estimations show that other 
dimensions of proximity, other than the technological one, play a role: diversification 
is also influenced by the knowledge available in socially closer locations, where social 
proximity is measured in terms of co-inventors links.3 

 
of industrial branching within regions. They study products entry and exit in 70 regions in Sweden by 

looking at employment data and measuring technological relatedness thanks to an original dataset on 

product co-occurrences in plants. 
3 US Metropolitan areas are also at the center of Essletzbichler (2015) analysis, even though the 

relatedness measure is based on input-output linkages between industries rather than patent or products 

co-occurences. Nonetheless, results confirm that technological relatedness is positively related to 

previous industry portfolio membership and industry entry and negatively related to industry exit. The 

latest contribution on the US case is by Farinha et al. (2019) who unpack relatedness to distinguish 

between three mechanisms: complementarity (interdependent tasks), similarity (sharing similar skills) 

and local synergy (based on pure co-location). They assess their impact on the evolution of the 

occupational structure of 389 US Metropolitan Statistical Areas (MSA) for the period 2005–2016. They 

find, as expected, that new jobs are related to existing ones, while those ones disappearing are more 

unrelated to a city’s jobs’ portfolio. They find that all three relatedness dimensions matter, but local 

synergy shows the largest impact on entry and exit of jobs in US cities. 
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Another parallel avenue of research focused on the EU. This focus started with 
Kogler et al. (2017), who use patent co-classification data to measure the proximity 
between all pairs of IPC categories to map and track the evolution of knowledge 
space from 1981 to 2005 in 213 NUTS2 regions of EU15. They find that, as in the 
US, in Europe knowledge specialisation has increased significantly over time. They 
also show that entry, exit and selection processes over space and time are influenced 
not only by the proximity to the knowledge core of the region but also by knowledge 
spillovers from neighbouring regions. 

Similarly, Xiao et al. (2018), by using employment data from the Orbis database 
across 173 European regions during the period 2004–2012, show that the probability 
of a new industry specialisation in a region is positively associated with its relatedness 
to the region’s current industries. Moreover, they prove that the influence of 
relatedness on the probability of new industrial specialisations depends on the 
innovation capacity of a region: relatedness is more relevant in weaker regions in 
terms of innovation capacity. This result implies that more vulnerable regions are 
more inertial, whilst most innovative areas are more able to break their technological 
path, that is, their potential lock-in. 

These pioneering works on relatedness were later enriched by widening the 
scope of analysis to complexity in EU regions, thanks to Rigby et al. (2021). They 
contribute by mapping the trajectories of EU city-regions in a smart specialisation 
space from 1981 to 2015. They use panel models to show that employment and 
GDP grow faster in cities that build capabilities in complex new technologies close 
to their existing knowledge cores while abandoning less complex, unrelated 
technologies. 

Lately, along the same research avenue, Pinheiro et al. (2022) use data on 
industries and patents to analyse the diversification patterns of 283 regions in 32 
European countries over the past 15 years. Only the most economically advanced 
regions could diversify into highly complex activities. These regions tend to focus 
on related high-complex activities, while lagging regions focus on related low-
complex activities, creating a spatial inequality feedback loop. This pattern creates a 
wicked problem for innovation policy: the strategy needed to improve the 
innovativeness of the European knowledge system might disproportionately benefit 
already developed regions and foster disparities.  

In this contribution, we consider the technological relatedness within regions 
controlling for the possibility that spillovers may come from both geographical and 
technological proximity. In addition, we contribute to the empirical literature on 
technological diversification in Europe by assessing how specialization at the 
regional level is driven by the two internal factors of localised technological change 
and recombinant innovation, as well as by exogenous shifts of the technological 
frontier. As described in section 4, all three factors are operationalized in a novel 
way as they are directly derived from the European knowledge space obtained by 
applying SNA derived indexes to the MST method as in Hidalgo et al. (2007). 
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3. The European knowledge space 

To investigate the pattern and the evolution of the technological specialisation of 
the EU regions we start by depicting the most salient traits of the European 
knowledge space obtained using the MST method. To construct the MSTs, which 
refers to the period 1986-2010, we follow the approach proposed by Hidalgo et al. 
(2007), based on the notion of co-specialization. 

MSTs are built by using data on the number of patent applications filed at 
the European Patent Office (EPO) classified by priority year and by inventor’s 
region for 198 NUTS2 regions in Europe (EU13), belonging to the most innovative 
countries in Europe (see table A1 in the Appendix), recording 97% of total 
European patents in the period 1986-2010. 

Since patenting activity at the regional level is quite erratic over time, we 
smooth the patent variable by computing five-year period averages. Therefore, our 
analysis is articulated in 5 five-year periods4. 
To deal with the sectoral dimension of technological interrelatedness, we focus on 
121 IPC classes at the second hierarchal level. 

To describe the technological interrelatedness between IPC classes for EU13 
regions, we start from the “innovation space”, a notion similar to the “product 
space” as defined by Hidalgo et al. (2007). The “innovation space” is, in principle, a 
connectivity matrix, which shows how closely interrelated is a sector, that is an IPC 
class, with another one. In our study, it is a 121x121 matrix whose rows and columns 
represent IPC classes and each off-diagonal cell represents two measures of 
technological connectivity between a given pair of IPC classes. 

This matrix can be interpreted as a network, where each node is an IPC class 
and each link measures the relatedness between two IPC classes. 

More specifically, the CO-SPecialization (CO-SP) approach is implemented 
using the Hidalgo et al. (2007) MST method, which relies on conditional 
probabilities of a region being specialized in IPC class i given that the same region 
is also specialized in IPC class j. Regional specialization in a given IPC class is 
measured in terms of Revealed Technological Advantage (RTA). This is computed 
as the proportion of a region’s patents (pat) in a given IPC class i in period t, divided 
by the proportion of European patents in the same IPC class in the same period. 
Formally: 
 

!"#!"
# =

%&'!"
#

∑ %&'!"
#$

!
∑ %&'!"

#%"
∑ ∑ %&'!"

#$
!%"

													 

 
where i = 1,…, I = 121 IPC, r = 1,…, R = 198 regions, t = 1,…, T = 5 five-year 
periods. 

 
4 Time intervals are as follows: 1986-90 (T1), 1991-95 (T2), 1996-2000 (T3), 2001-05 (T4), 
2006-10 (T5). 



9 
 

Given the conditional probabilities *+!"#!"# ,!"#&"# - and *+!"#&"# ,!"#!"# - of a 
region being specialized at time t in IPC class i given that the same region is also 
specialized in IPC class j and vice versa, each element of the CO-SP connectivity 
matrix at time t, !"_$%!"

#  is equal to: 

 
./_1%!&

# = 2345*+!"#!"
# ,!"#&"

# -, *+!"#&"
# ,!"#!"

# -7 
 

Since the CO-SP matrix is very dense and links values are very heterogeneous, 
we decided to focus our analysis only on key technological relations underlying the 
European technological space. To do so, following Hidalgo et al. (2007), for each 
interval of time, we identified a European MST, whose nodes are 121 IPC classes 
and links include exclusively the most relevant technological interrelation between a 
couple of IPC classes. 

The procedure to create the MSTs is iterative and starts with the identification 
of the maximum link value in each connectivity network. Once the maximum value 
has been selected, we establish a link between that couplet of IPC classes or nodes. 
Secondly, by focusing on the identified dyad, we search for a further node to be 
connected to that dyad in order to form a triad. The link is identified by searching 
for the maximum value of all links attached to one of the two nodes of the dyad. 
The procedure is iteratively repeated by adding nodes (i.e. IPC classes) and links until 
all IPC classes are included in the MST (which, by definition is a minimally dense 
network of N nodes and N-1 links). The final MST structure for the initial and the 
last time period (T1: 1986-1990 and T5: 2005-2010) is depicted in Figure 1. 

 

FIGURE 1 HERE 

 
By looking at the temporal evolution of the CO-SP MSTs from 1986 to 

2010 it is evident that significant changes in the MST structure have occurred. Thus, 
looking for a standardized measure of correlations between different networks we 
resolved in using the Quadratic Assignment Procedure (QAP), to calculate the 
extent to which the pattern of links in one period is correlated with the pattern in 
another period. Standard correlation is not appropriate for dyadic data because such 
data are not independent of each other. QAP controls for the non-independence of 
the cases using several random permutations of rows and columns of the original 
matrix through a Monte Carlo procedure, thus it allows to rule out spurious 
correlations (Krackhardt, 1988). Table A2 in the Appendix shows relatively low level 
of association across time: all QAP correlation coefficients (in the range 0.17-0.25) 
are significant and indicate positive autocorrelation, whose strength tends to 
decrease as the lag length increases. The reduction in the correlation values may be 
interpreted as a sign of the incremental nature of technological change, as time 
passes the technological frontiers keeps modifying based on the previous one. 

For robustness purposes, we also compute the European knowledge space 
by applying a method similar to the one proposed by Engelsman and Van Raan 
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(1992). According to this approach, “two technology classes are considered to be 
technologically related if they occur frequently together as technology classification 
codes on the same patent” (p. 6). Thus, each element of the CO-CLassification (CO-
CL) connectivity matrix (ccij) is computed for each period as the number of EU13 
patents in which a given couplet of IPC classes i, j is jointly occurring.  CO-SP 
adjacency matrix will be used to define regressors as in section 4.2. 

 

4. Variables description 

As stated in the introduction, the main aim of this study is to explain the evolution 
of the technological specialization of the European regions as a function of localized 
technological change (LTC), recombinant innovation (RI), and exogenous 
technological innovation (ETC), while accounting at the same time for technological 
and spatial spillovers. We carry out the empirical analysis along two perspectives: a 
“static” one, detected with the dependent variable named 8!"#!"# , aimed at capturing 
the determinants of the state of the art of technological specialisation, and a 
“dynamic” one aimed at identifying the main drivers of changes and evolution in the 
innovation process, i.e. the factors leading to increasing or decreasing levels of 
specialisation. In the next sub-sections, we describe the dependent variable and then 
we focus on the main explanatory variables5. 

 

4.1 The dependent variable 

Since our measure of relative specialisation is given by RTA, as defined in section 3, 
which is a continuous variable, in a static perspective we define five possible ordered 
categories that we use to characterize patterns of technological specialisation of 
European regions and we name the variable &'()!$

# . Thus, similarly to Guevara et 
al. (2016), we discretize the original continuous variable '()!$

#  to deal with the 
pronounced asymmetry of its distribution (asymmetry value is equal to 23.335 and 
kurtosis is equal to 1214.631). These five states are: 
 
1. Inactive  if !"#!"# = 0 

2. Very Unspecialised if 0 < !"#!"
# ≤ 0.5 

3. Unspecialised if 0.5 < !"#!"
# ≤ 1 

4. Specialised  if 1 < !"#!"
# ≤ 1.5 

5. Very Specialised if !"#!"# > 1.5 

The distribution of the resulting dependent variable, &'()!$
# , describing the 

technological specialization of European regions, is depicted in Figure 2. 
Throughout the period analysed, Inactive cases counts for nearly 28% of the total, 

 
5 A complete description of all variables, along with basic descriptive statistics, is reported in 
Table A3 in the Appendix. 
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Very Unspecialised cases are 23.5%, Unspecialised cases reach 19.1%, Specialised cases are 
10.5%, Very Specialised cases are 18.9%.  

 
FIGURE 2 and 3 HERE 

During the period under consideration, the technological specialisation of 
regions records significant variation, thus we investigate the specialisation dynamics 
of European regions, by identifying three groups:  

1. Stable Specialization Dynamics, if the value of SRTA%& remains in the same state in 
both t and t+1. 

2. Increased Specialization Dynamics, if the value of 8!"#!" records an upward shift in 
the states from t to t+1.  

3. Decreased Specialization Dynamics, if the value of 8!"#!" records a downward shift 
in the states from t to t+1. 

Figure 3 shows the distribution of the three groups according to this taxonomy. 
Interestingly, most cases can be classified as stable (51.9%), while the increased 
dynamic group (24.8) is slightly larger than the decreased dynamic one (23.3). These 
figures show a substantial stability of the technological specialisation of the 
European regions with a marginal but significant bias towards an increased 
specialization. 

TABLE 1 HERE 

Panel A of Table 1 reports a matrix with the absolute numbers for the three 
groups of cases: no change cases are on the main diagonal (stable specialization), 
forward changes in above-diagonal cells (increased dynamic) and backward changes 
in below-diagonal cells changes (decreased dynamic). Panel B of Table 1 presents 
data disaggregated by the number of forward or backward steps, whereas Panel C 
reports the percentage values of each of 5 states in each of the 3 groups. While the 
inactive and the very unspecialised cases mostly display stable dynamic, the very 
specialised cases witness an increased dynamic and the inactive and very 
unspecialised display a decreased dynamic. As shown in panel C, while stable 
dynamic show all 5 ordered states, for the other two groups, there are only 4 possible 
ordered states (i.e. from very unspecialised to very specialized state for the increased 
dynamic; from inactive to the specialized state for the decreased dynamic). 

In synthesis, in the first part of the econometric analysis, we assess the role 
of localized technological change, recombinant innovation, and exogenous 
technological shift in explaining the outcomes of the dependent variable represented 
by the five ordered states of specialization; while in the second part, the analysis is 
carried out by 3 groups of cases, i.e. stable, increased and decreased dynamics.  

 
4.2 The explanatory variables 

As anticipated in the Introduction, technological specialization is the result of both 
related and unrelated diversification processes, as well as changes in the European 
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technological frontier, exogenous to any single region. In our analysis, we measure 
relatedness, unrelatedness and exogeneity by making use of the notion of “localised 
technological change” (Atkinson and Stiglitz, 1969), the concept of “recombinant 
growth” (Weitzman, 1998), and the notion of exogenous innovation (Kalecki, 1954) 
through the development of three original indexes based on the application of the 
principles of the SNA to MSTs. All explanatory variables are computed on the basis 
of the CO-SP MST described in Section 3. In what follows we provide a detailed 
description of the procedure used to construct each variable. 
 

Localized Technological Change (LTC) 

LTC is the variable implementing Atkinson and Stiglitz’s claim that “the 
different points on the [production possibilities] curve represent different processes 
of production and associated with each of these processes there will be certain 
technical knowledge specific to that technique. Indeed, both supporters and critics 
of the neoclassical theory seem to have missed one of the most important points of 
the activity analysis (Mrs Robinson’s blueprint) approach: that if one brings about a 
technological improvement in one of the blueprints this may have little or no effect 
on the other blueprints. If the effect of technological advance is to improve one 
technique of production but no other techniques of producing the same product, 
then the resulting change in the production function is represented by an outward 
movement at one point and not a general shift. In reality, we should expect that a 
given technical advance would give rise to some spillovers and that several 
techniques would be affected” (Atkinson and Stiglitz, 1969, p. 573). 

To operationalise the direct “effects of technological advance”, we exploited 
the concept of adjacency, and the related degree centralization index, derived from 
SNA. 

Given a set of nodes N = {n1, n2, …, n121}, there are several paths, with different 
lengths, connecting a given pair of nodes. The shortest path between two nodes i 
and j is named geodesic distance and is denoted as gij. If gij = 1, nodes are adjacent, 
indicating that there exists a direct link between them, otherwise if gij > 1, nodes are 
not directly linked and the number indicates the smallest length connecting them. 
Hence, to detect the direct, or local, technological effects we used the concept of 
adjacency of nodes. In this case, the local neighborhood is defined as gij = 1. 
Therefore, LTC is obtained by computing per each IPC class, each region, and time 
the summation of RTA of nodes directly adjacent to the MSTs. Formally: 
 

@"A!"
# = B!"#&"

# |(E!& = 1,F8"#)

'()

&*)
 

 

In synthesis, LTC explains the technological specialization of a region, in a given 
IPC class, in terms of the technological specialization of the same region in related 
(adjacent) technologies.  
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Recombinant Innovation (RI) 

RI is the variable implementing Weitzman’s claims that “[In the knowledge 
production function approach] ‘New ideas’ are simply taken to be some exogenously 
determined function of ‘research effort’ in the spirit of a humdrum conventional 
relationship between inputs and outputs. Essentially, this approach represents a 
theory of knowledge production that tries to do an end run around describing the 
creative act that produces the new ideas. If new ideas are postulated to be a function 
of something – for example, research effort – then what is the nature of the 
functional relationship? Is the production of knowledge a process that can be 
modelled by analogy with fishing new ponds or discovering new oil reserves? It 
seems to me that something fundamentally different is involved here. When research 
effort is applied, new ideas arise out of existing ideas in some kind of cumulative 
interactive process that intuitively seems somewhat different from prospecting for 
petroleum. To me, the research process has at its centre a sort of pattern-fitting or 
combinatoric feel. The core of the analytical structure is a theory of innovation based 
on an analogy with the development of new cultivated varieties by an agricultural 
research station. ‘Recombinant innovation’ refers to the way that old ideas can be 
reconfigured in new ways to make new ideas” (Weitzman, 1998, p. 332-333). 

In order to operationalise the concept of new - possibly complex - 
recombination of old knowledge we adapted, from SNA, the concept of betweenness 
centrality, i.e. an analytical measure of the strategic role played by a node when lying 
between the geodesic paths connecting other nodes in the network (Freeman, 1979) 
and compute the RI variable according to a three-step procedure.  

Firstly, for each case (!"#!") in any period we distinguish, within the network 
N, those nodes exhibiting a value of !"#!"# ≥ 1	from	those	having	a	!"#!"# < 1. 

Secondly, we compute the number of times a node i is lying on the geodesic 
paths linking nodes j and k whose !"#!"# ≥ 1. 

Finally, we weighted each value by a constant value, (I − 1) × (I − 2) × 2 (i.e. 
28560) to normalize each value for the European MST average. Formally:  
 

!M!"
# = B

E&+(4!)
(I − 1) × (I − 2) × 2

'()

&,!
|!"#&"

# , !"#+"
# > 1,F8"#) 

 
In synthesis, RI explains the technological specialization of a region, in a given IPC 
class, in terms of its strategic positioning within the MST. In other words, the 
technological specialization of a region in a given IPC class depends on the extent 
of potential combination of locally established specializations in unrelated 
technologies (i.e. on its bridging or gatekeeping role of that given IPS).  

 
 
Exogenous Technological Change (ETC) 
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All previous variables are computed considering the structure of the MST and 
RTA with reference to the same period. However, in such a way we are unable to 
disentangle, for each region, !"#!", the effects played by its previous technological 
structure from those arising from exogenous changes in the European 
“technological frontier” which, by definition, are an exogenous phenomenon from 
the regional viewpoint. We attributed the original intuition of this concept to 
Michael Kalecki who wrote “The intensity of the technical progress of a society and 
its path of economic development is governed by the extent of such major 
exogenous innovation. A ceiling on the rate of growth of capital accumulation is 
determined by the level of adoption of the major technology within any particular 
economy” (Kalecki, 1954, p. 175). 

For this reason, we compute ETC as a variable similar to LTC, but with a 
relevant difference: while in the LTC variable, the RTA and the MST are 
contemporaneous, in computing the ETC variable the MST is one period ahead 
(t+1) with respect to the value of the RTA (t). In this way, we are able to see whether 
past specialization of previously distant IPC sectors, which became technologically 
proximate in the subsequent period, played a role in determining the relative 
specialization in a specific IPC class in a given region. Being used in conjunction 
with LTC, which accounts for the effects driven by past MST, this variable can 
account for the effect of exogenous technological change in shaping a region’s 
technological specialization. Formally: 
 

N"A!"
# = B!"#&"

# |(E!& = 1,F8"#-))

'()
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where it can be noted that while ETC refers to time t, the MST on which it is built 
refers to time t+1.  
 
In synthesis, ETC explains the technological specialization of a region, in a given 
IPC class, in terms of the current exogenous shifts and changes in the European 
MST6.  

 
Proximity factors 
In this study we assess the role of LTC, RI and ETC by also accounting for proximity 
factors along both the geographic and the technological dimensions. 

The geographic matrix (='()) is computed as the inverse of the distance matrix 
between centroids of each region in the sample. The technological matrix (=#(*# ) is 
computed on the basis of socio-cognitive data. Each element of the =#(*#  matrix 
measures co-inventorships for couplets of regions. Different from the geographic 
matrix, it changes over time. Following Kelejian and Prucha (2010), both matrices 
are maximum eigenvalue normalized. The variables accounting for proximity in the 

 
6 For robustness purposes, the variables LTC, RI and ETC are also constructed from 

the MST computed for each period from the CO-CL connectivity matrix. 
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geography and technological domains are then obtained by pre-multiplying the main 
explanatory variables (LTC, RI, ETC) by each of the normalized weight matrices 
(='()+  and =#(*

#,+). 
 
 

5. Econometric models and methodological issues 

We model the dependent variable, 8!"#!"# , by means of ordered response models. 
According to Cameron and Trivedi (2009), ordered outcomes arise sequentially as a 
latent variable (spec) crosses increasingly higher thresholds as a function of 
explanatory variables (X) and controls: 
 

1%O.!"
# = P!" + R!"

# S + ./4'T/U1 + V!"
#  

 
In our analysis, the X matrix contains the main explanatory variables (LTC, RI, 
ETC). In the case of a 5 ordered states model, we have 
 
8!"#!"

# = W	if		X+() < 1%O.!"
# ≤ X+  with k = 1 = Inactive, 2 = Very Unspecialised, 

…, K = 5 = Very Specialized. 
 
*(8!"#!"

# = W) = *(X+() < 1%O.!"
# ≤ X+) = *+X+() < P!" + R!"

# S + ./4'T/U1 +
>-./ ≤ X+-  (1) 
 
*(8!"#!"

# = W) = Y[X+ − (P!" + R!"
# S + ./4'T/U1)]

− Y[X+() − (P!" + R!"
# S + ./4'T/U1)] 

 
where F is the cumulative distribution function of the error term. We specify F as 
the cumulative logistic function, which yields the panel-ordered logit model. 

Among the controls, we include the variables ='()+ ?!$
# 	and	=#(*+ ?!$

#  to account 
for proximity factors along the geographic and the technological dimension, 
respectively. We also include dummies to account for the fact that the focal case can 
be the result of a forward or backward transition between states or a case of no-
change with respect to the previous period. This way, we account for possible 
dynamics effects which could affect the role played by the main explanatory 
variables. 

Time dummies and countries dummy are also included to account for macro 
shocks and national institutional features. 

Finally, to attenuate the potential problem of endogeneity, which could arise 
because of possible simultaneity, all the explanatory variables are included in the 
model with a one-period lag. Given that such lag refers to the average over the 
previous five years, it is supposed to be sufficiently long to break the correlation 
between the error term and each of the regressors. 

Following Wooldridge (2005, 2010), we estimate the panel logit-ordered 
models adopting the Correlated Random Effects (CRE) approach, which can be 
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seen as a unifying framework encompassing both the fixed (FE) and the random 
effects (RE) estimation approaches. The framework was first proposed by Mundlak 
(1978) and modified by Chamberlain (1980, 1982). It handles the correlation 
between the unobserved case effect,	A!$ , and	the	time −
varying	regressors.More	specifically, A!$ 	is modelled as a function of the time-
averages (I̅!$ 	K	?L!$ ,='()+ ?LLLLLLLL!$ ,=#(*

#,+?LLLLLLLL
!$) of all time-varying exogenous variables:  

 

A!$ = N + I̅!$P0 + Q!$ 

where Q!$ has zero mean and is assumed to be uncorrelated with the regressors. 
Therefore, model (1) can be reformulated as:  

*(8!"#!"
# = W) = +X+() < N+ R!"# S + I\-.P1 + ./4'T/U1 + Q-. + V!"

# ≤ X+- (2) 
 

The RE estimator can be used to consistently estimate all the coefficients. It 
yields the fixed effect estimates for S,while	P1 = Rb2 −
Rb34, where	Rb2	is	the	between	estimator. Setting	P5 = 0	(W	 =
	1, 2, 3)	results	in	inconsistent	estimates	of	R, which is the problem of adopting 
the RE approach without accounting for the correlation between the individual 
effects and the regressors. On the other hand, if the FE estimator is adopted only 
the within variation is exploited while the between variation is discarded.7 The CRE 
approach is to be preferred as it yields consistent estimators while (as is the case for 
the RE estimator) accounting in an efficient way for both the within and the between 
variation. 

 

6. Empirical analysis 

The main results of the econometric analysis are reported in four tables, Tables 2-5. 
As mentioned above, our empirical estimation procedure is built along a bipartite 
perspective: a static and a dynamic one. Tables 2 and 3 display the results of the 
static perspective, whereas Tables 4 and 5 show the results of the dynamic 
perspective. 

In the first two columns of Table 2, we present two different model 
specifications of the static perspective – without and with geographical and spatial 
spillover effects – of our baseline regression model. The explanatory variables 
included are obtained from the CO-SP European knowledge space. The third 
column replicates the second specification on a different European knowledge space 
obtained from the CO-CL matrix, for robustness checks. Average marginal effects 

 
7 Bell and Jones (2015) argue that a variable that has a hierarchical structure can be 
decomposed in its between and within components, c!# = c!

. + c!#
/ , which can have 

different effects on the dependent variable. 
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for specification of the second column of Table 2 are reported in Table 3. Table 4 
presents the results of the dynamic perspective for the three different groups as 
described in section 4.1, i.e. stable, decreased or increased specialization dynamics; Table 
5 reports the average marginal effects for each model reported in Table 4. 

 
TABLES 2-5 HERE 

 
Turning to the results in Table 2, it is worth emphasizing that, thanks to the 

CRE approach, for each explanatory variable we are able to distinguish two types of 
effects, the within and the between effects. As the former refer to the effect due to 
a change in a given variable from one period to the following, this could be 
interpreted as short-run effects. On the contrary, the between effects, which are 
obtained by exploiting the cross-section variation in the data, could be interpreted 
as long-run effects. It is important to remark that the coefficients reported in Table 
2 for the time averages of LTS, RI and ETC are the difference between the between 
and the within effects (net-between coefficients), as explained in the previous section.  

All the models in Table 2 were estimated by including transition dummies to 
account for the fact that a case (region-IPC class observation) can be the result of a 
forward or a backward transition dynamics, the reference case is the no-change case. 
More specifically, we include three forward transition dummies (for 1 step, 2 steps 
and 3+4 steps ahead transitions) and three backward transition dummies (for 1 step, 
2 steps and 3+4 steps backward transitions). Therefore, the effects of the main 
explanatory variables are not influenced by transition dynamics. 

Focusing on the first two models of Table 2 all the coefficients of the 
explanatory variables exhibit the expected positive sign, this implies that when a 
given variable increases the probability of being in the inactive or very unspecialised state 
decreases, whereas the probability of being in the unspecialised specialized, specialized or 
very specialized state increases (see Table 3). When controls for geographical and 
technological spillovers arising from interregional flows of scientific and 
technological knowledge are included (second column), the magnitude of the 
coefficients remains stable, but the time average of the ETC variable turns out to be 
not significant. In general, the within coefficients are much lower when compared 
to the net-between coefficients. Focusing on the second model, LTC exhibits a 
coefficient of 0.0221, whereas its time average a coefficient of 0.2832; in the case of 
RI both coefficients are much lower, 0.0016 and 0.0177; for ETC the coefficients 
are 0.0033 and 0.0405. This finding indicates that cross-section variation plays a 
major role in explain the overall variation in the outcome variable. The coefficients 
of the transition dummies, all highly significant, exhibit the expected signs and have 
a very sizeable magnitude compared to the coefficients of the explanatory variables. 
This indicates the importance of accounting for the past states of the local 
technological cases analysed.8 

 
8 As for the spatial and technological spillovers (not shown in detail in Table 2), the time 
average associated with LTC display positive and significant coefficients, while the 
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Results based on the Co-Classification approach to map the European 
knowledge space, and displayed in column 3 are overall comparable to the ones 
reported for model 2. One noticeable exception is that in model 3 RI is not 
significant, whereas the opposite is the case for the time average of ETC. 

In Table 3, we report the average marginal effects for our preferred model, 
model 2 of Table 2. The within average marginal effects are lower in size with respect 
to the net-between ones. For all the variables, the negative effect on the probability 
of being in the Inactive state is larger in size with respect to the one exerted on the 
probability of being on the Very unspecialised state. For the other three states, the 
positive marginal effects exhibit a nonlinear behaviour, the larger effect is for the 
Unspecialised state, followed by the one for the Very specialized state, and the lowest 
positive effect is for the Specialized state. This indicates that the explanatory variables 
play a crucial role when regions are building their technological comparative 
advantage, i.e. when their RTA in a given IPC class is in the range from 0.5 to 1. A 
relevant effect is then played to reinforce specialization when RTA>1.5. For all the 
explanatory variables, it is worth emphasizing that in absolute terms the largest effect 
is found for the Inactive (RTA=0) state. Being the effect negative, this indicates that 
all the variables included in our analysis play their major role in activating the process 
of specialization (RTA switches to positive values) at the local level. Comparing the 
effects across the three main variables, we find that the most effective one is LTC, 
followed by ETC. The smallest effects are associated with RI. This latter finding 
indicates how more complicated is for a region to gain and develop RTA in an IPC 
class when this is the result of the complex process of recombining in a successful 
way existing knowledge and ideas. 

Overall, the results presented in Tables 2 and 3 provide sound evidence that 
the current technological specialisation of a region in a specific IPC class depends 
on the specialization of that region in contiguous IPC patent classes (LTC), on the 
crucial positioning (or betweenness) of a given IPC class as bridge a/o gatekeeper 
between other different technological specialization of the region (RI), and on the 
exogenous evolution of the European technological frontier (ETC). 

In Table 4 we present the results for the three subsamples corresponding to the 
groups of stable, increased or decreased specialization dynamics. Average marginal 
effects are reported in Table 5. For the stable specialization dynamics, which 
represents almost 52% of the overall cases, the estimated coefficients are 
qualitatively similar to those obtained for the second model of Table 2: the within 
coefficients display a comparable magnitude, whereas the coefficients of the time 
average terms for LTC and RI are larger; the ETC time average is again not 
significant at conventional levels. For the increased specialization dynamics subsample 
(which accounts for 25% of the cases) we find that only the time average variable 

 
coefficient for RI and ETI display often negative values. This result can be interpreted as 
evidence of the role played by tacit knowledge which can easily transferred across contiguous 
IPC classes but cannot be transferred over longer geographic and technological distances (as 
expressed by both weight matrices). 
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coefficients turn out to be significant. On the contrary, for the decreased dynamics 
subsample (23% of the cases) both within and between variations are relevant, 
although not all the coefficients are significant. More specifically, LTC exhibits a 
positive and significant coefficient only for its time average term, while both 
coefficients of RI are positive and significant. ETC does not seem to play any 
significant role (the within coefficient is significant at the 11%). 

Focusing on the average marginal effects for the stable dynamic specialization 
group (Table 5), we find that when a given variable increases the probability of being 
in the first state (inactive) decreases, whereas the probability of being in all the other 
four states increases. In absolute terms and for all the variables, the largest effects 
are found for the inactive cases. The positive effects follow a nonlinear pattern, the 
largest effect is found for unspecialized cases, followed by very unspecialised, very 
specialized and specialized cases. As for the relative role played by the different 
variables, the most effective ones are the time averages of LTC and RI, followed by 
the within counterparts of LTC, ETC and RI. 

A different picture emerges for the increased dynamic group, positive changes in 
the explanatory variables cause a decrease in the probability of being in the very 
unspecialised or in the unspecialized states. At the same time, such changes determine 
an increase in the probability of being in specialized or very specialized states. Only the 
average marginal effects of the time average variables are significant, pointing that 
only cross-section variation matters for positive transitions into higher states of 
technological comparative advantage. LTC is confirmed as the most effective 
variable, followed by ETC and RI. For all variables, the largest marginal effects are 
found for the very specialized cases.  

The results for the decreased specialization dynamic group are mixed. For the RI 
variable, both the within and the net-between marginal effects are significant, for 
LTC only the marginal effect associated with the time average is significant, whereas 
ETC turns out to be not relevant. Again, time average variables’ marginal effects are 
found to be larger than the within ones, with LTC being more effective than RI. The 
largest effects are found for the inactive state, showing the role of contiguous IPC 
classes in avoiding the total disappearance of a given characteristic in the spectrum 
of the technological specialization of a region. Taken all together, the results point 
to the fact that, in general, external forces act as re-enforcer of an internal process 
(of specialization or de-specialization). Such a process derives from the history of an 
IPC class in a given region and there is only a limited range of values (of the RTA 
specialization index) in which they may determine the “upward” or “downward” 
evolution of a region in that IPC class. 

Overall, our analysis has provided stimulating insights on the determinants of 
technological specialization of the European regions and how their effects change 
over time when taking into proper account the role of geographic and technological 
connectivity among regions, as well as transition dynamics. 
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7. Conclusions 

The technological and productive specialization of regions has always been a 
relevant issue both from a theoretical and empirical viewpoint. We contribute to the 
current debate by offering a novel empirical analysis focused on 198 most innovative 
European regions. Data on patents classified in 121 IPC sectors observed over the 
period 1986-2010 are used to map the European knowledge space based on 
conditional co-specialisations of regions in the same IPC Classes (as in Hidalgo et 
al., 2007). Thanks to this representation of the knowledge space, we investigate the 
evolution of the specialization process, measured in terms of the sector-region 
revealed technological advantage. The analysis is carried out within a novel 
approach, which we propose as a unifying framework that encompasses the three 
theoretical contributions of “localised technological change” (Atkinson and Stiglitz, 
1969), “recombinant growth” (Weitzman, 1998) and exogenous innovation (Kalecki, 
1954) within a SNA derived analytical framework.  

Our empirical analysis, carried out by estimating panel-ordered logit spatial 
models, has provided convincing evidence of the role played by localised 
technological change, knowledge recombination, exogenous technological shifts, 
and spillovers arising from both geographic and technological regional proximity. 

The main results show that regional technological specialization is mainly 
shaped by localised technological change and exogenous technological paradigm 
shifts, whereas processes of recombinant innovation contribute to a lower extent. 
Moreover, results also point out that, once accounting for spatial and technological 
spillovers and transition dynamics, it is the between-variation effect which plays a 
major role. When we split the sample to focus specifically on different specialization 
dynamics, results from the static analysis are confirmed but new evidence emerges, 
too. For stable cases, our independent variables exert their greater influence when a 
region has not developed any technological sector, followed by the case in which its 
RTA records values around 1. When the technological specialization is increasing 
over time the largest effects of independent variables is found for very specialised 
cases. Finally, when specialization decreases, the largest influence of independent 
variables is recorded with the lowest possible state, showing the role of contiguous 
IPC classes in avoiding the total disappearance of a given class in the spectrum of 
the technological specialization of a region. 

Based on these results, future research may further deepen the 
understanding of the evolution of regional technological specialization by focusing 
on specific homogenous sub-groups of regions in order to investigate how 
specialization might have driven their current socio-economic performance and 
reinforced historical regional innovation divides. 
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FIGURES AND TABLES 

Figure 1 – MST of the European knowledge space 

 

T1: 1986-1990 
 

 

T5: 2005-2010 

Legend: A: Human Necessities (15 IPC classes at second hierarchy level); B: Performing operations; 

transporting (36); C: Chemistry; metallurgy (20); D: Textiles; paper (8); E: Fixed constructions (7); F: 

Mechanical engineering; lighting; heating; weapons; blasting (17); G: Physics (13); H: Electricity (5). 
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Figure 2 Distribution of SRTA among 5 specialisation states, all periods 

 

 

Figure 3: Distribution of RCA groups, all periods 
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Table 1 - Distribution of RTA among the 5 static states and the 3 evolutive 

categories 

 
Panel C 

 

  

Absent Traces Not Specialized Specialized Very Specialized Total

Absent 19499 3515 1985 1170 3058 29227

Traces 2483 11403 4853 1319 1133 21191

Not Specialized 1421 4942 6604 2575 1913 17455

Specialized 869 1452 2739 2494 2271 9825

Very Specialized 2522 1249 2132 2521 9710 18134

Total 26794 22561 18313 10079 18085 95832

1 step 2 steps 3 steps 4 steps

no change 49710

forward change 23792 13214 5217 2303 3058

backward change 22330 12685 5005 2118 2522

Absent Traces Not Specialized Specialized Very Specialized

Absent 39.23                       26.60                       38.05                       50.80                         100.00                     

Traces 19.57                       22.94                       36.73                       25.28                         49.20                       

Not Specialized 28.39                       38.96                       13.29                       19.49                         36.67                       

Specialized 41.03                       29.01                       21.59                       5.02                           17.19                       

Very Specialized 100.00                     58.97                       42.60                       19.87                         19.53                       

Note Panel C reports the percentages of cases with respect to the corresponding category.

Panel A

Panel B

Panel C

For instance the percentange in the first cell (39.23) is the proportion of cases that remained in the Absent state in two 
subsequent periods with respect to the total of no change cases. The percentage 19.57 (second upper left cell) is the 
proportion of cases that moved from Traces to Absent with respect to all 1 step backward changes.

time t+1

time t

time t+1

time t
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Table 2 - Correlated Random Effect Ordered Logit models for RTA states 

 

 

  

Co-specialization Co-classification
Localized technological change (LTC) 0.0229 *** 0.0221 *** 0.0187 ***

(0.0057) (0.0057) (0.0048)
Recombinant Innovation (RI) 0.0005 *** 0.0016 *** 0.0005 ***

(0.0001) (0.0002) (0.0002)
Exogenous technological change (ETC) 0.0029 ** 0.0033 *** 0.0010

(0.0012) (0.0013) (0.0015)
LTC - time average 0.3269 *** 0.2832 *** 0.1975 ***

(0.0482) (0.0446) (0.0291)
RI - time average 0.0139 *** 0.0177 *** 0.0041 ***

(0.0010) (0.0015) (0.0012)
ETC - time average 0.0524 * 0.0405 0.0443 **

(0.0312) (0.0276) (0.0188)
Dummies for transitions
1 step forward 1.9147 *** 1.9137 *** 1.9173 ***

(0.0336) (0.0335) (0.0341)
2 steps forward 4.0409 *** 4.0554 *** 4.0530 ***

(0.0789) (0.0793) (0.0785)
3 or 4 steps forward 8.6777 *** 8.7057 *** 8.7147 ***

(0.1980) (0.1981) (0.1984)
1 step backward -0.8578 *** -0.8636 *** -0.8433 ***

(0.0552) (0.0549) (0.0553)
2 steps backward -1.4111 *** -1.4070 *** -1.3675 ***

(0.0854) (0.0846) (0.0855)
3 or 4 steps backward -4.3674 *** -4.3284 *** -4.3307 ***

-0.1345 (0.1339) (0.1356)
Geographic spillovers no yes yes
Technological spillovers no yes yes

Pseudo Log-Likelihood -101462 -100894 -102642

Time period: 1985-2010; observations refer to five-year averages. Number of observatin 95832
All models include time dummies and country dummies
All explanatory variables are lagged one period
Standard errors are reported in parenthesis and clustered at the region level
Level of significance: *** 1%, ** 5%, * 10%

(1) (2) (3)
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Table 3 - Average marginal effects computed for model 2 in Table 2 

 

 

 

  

states

Inactive Very unspecialised Unspecialised Specialized Very specialized

Model 2
Localized technological change (LTC) -0.002070 *** -0.000524 ** 0.001163 *** 0.000609 *** 0.000823 ***
Recombinant Innovation (RI) -0.000146 *** -0.000037 *** 0.000082 *** 0.000043 *** 0.000058 ***
Exogenous technological change (ETC) -0.000311 ** -0.000079 ** 0.000174 ** 0.000091 ** 0.000124 **
LTC - time average -0.026516 *** -0.006715 *** 0.014892 *** 0.007794 *** 0.010545 ***
RI - time average -0.001659 *** -0.000420 *** 0.000932 *** 0.000488 *** 0.000660 ***
ETC - time average -0.003796 -0.000961 0.002132 0.001116 0.001510

Level of significance: *** 1%, ** 5%, * 10%
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Table 4 - Correlated Random Effect Ordered Logit models - no-change and 

transition subsamples 

 

 

 

 

  

stable dynamic emerged dynamic declined dynamic
RTA states

Localized technological change (LTC) 0.0220 *** -0.0156 -0.0041
(0.0060) (0.0114) (0.0078)

Recombinant Innovation (RI) 0.0020 *** 0.0002 0.0009 ***

(0.0003) (0.0003) (0.0003)
Exogenous technological change (ETC) 0.0028 * -0.0089 0.0073 11%

(0.0017) (0.0065) (0.0046)
LTC - time average 0.5236 *** 0.2287 *** 0.1207 ***

(0.1201) (0.0219) (0.0203)
RI - time average 0.0343 *** 0.0022 *** 0.0083 ***

(0.0044) (0.0005) (0.0007)
ETC - time average 0.0856 0.0906 *** 0.0091

(0.0978) (0.0136) (0.0144)
Geographic spillovers yes yes yes
Technological spillovers yes yes yes

Pseudo Log-Likelihood -46968.231 -30943.981 -27356.390
Observations 49710 23792 22330
Time period: 1985-2010; observations refer to five-year averages. 
All models include period fixed effects and country dummies
All explanatory variables are lagged one period
Standard errors are reported in parenthesis and clustered at the region level
Level of significance: *** 1%, ** 5%, * 10%

1-5 2-5 1-4
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Table 5 - Average marginal effects computed for Table 4 models 

 

 

 

  

states
Inactive Very unspecialised Unspecialised Specialized Very specialized

Stable Specialisation Dynamics
Localized technological change (LTC) -0.002154 *** 0.000658 ** 0.000739 *** 0.000223 *** 0.000534 ***
Recombinant Innovation (RI) -0.000196 *** 0.000060 ** 0.000067 *** 0.000020 *** 0.000049 ***
Exogenous technological change (ETC) -0.000272 * 0.000083 0.000093 * 0.000028 * 0.000067 *
LTC - time average -0.051277 *** 0.015674 ** 0.017584 *** 0.005302 *** 0.012718 ***
RI - time average -0.003356 *** 0.001026 ** 0.001151 *** 0.000347 *** 0.000832 ***
ETC - time average -0.008386 0.002563 0.002876 0.000867 0.002080

Increasded Specialisation Dynamics
Localized technological change (LTC) 0.001703 0.001921 -0.000380 -0.003244
Recombinant Innovation (RI) -0.000026 -0.000029 0.000006 0.000049
Exogenous technological change (ETC) 0.000971 0.001095 -0.000217 -0.001850
LTC - time average -0.024914 *** -0.028098 *** 0.005554 *** 0.047458 ***
RI - time average -0.000245 *** -0.000276 *** 0.000055 *** 0.000466 ***
ETC - time average -0.009869 *** -0.011131 *** 0.002200 *** 0.018800 ***

Decreased Specialisation Dynamics
Localized technological change (LTC) 0.000797 -0.000085 -0.000433 -0.000279
Recombinant Innovation (RI) -0.000180 *** 0.000019 *** 0.000098 *** 0.000063 ***
Exogenous technological change (ETC) -0.001433 0.000152 0.000780 0.000502
LTC - time average -0.023631 *** 0.002506 *** 0.012853 *** 0.008272 ***
RI - time average -0.001626 *** 0.000172 *** 0.000884 *** 0.000569 ***
ETC - time average -0.001772 0.000188 0.000964 0.000620

Level of significance: *** 1%, ** 5%, * 10%
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APPENDIX 

Table A1 - Countries and regions 

 

 

 

 

Table A2 - QAP correlations for CO-SP MST 

 T1 T2 T3 T4 T5 
T1 1.000     

T2 0.220 1.000    

T3 0.220 0.246 1.000   

T4 0.170 0.187 0.246 1.000  

T5 0.170 0.170 0.212 0.212 1.000 
Note: All coefficients are statistically significant at 1%.  

 

Legend: time intervals are as follows: 1986-90 (T1), 1991-95 (T2), 1996-2000 (T3), 2001-05 (T4), 2006-

10 (T5). 

  

Country Regions EU
Austria 9
Belgium 11
Switzerland 7 no
Germany 38
Denmark 5
Finland 5
France 22
Italy 21
The Netherlands 12
Norway 7 no
Spain 16
Sweden 8
United Kingdom 37
Total 198
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Table A3 - Variable definitions and descriptive statistics 

 

 

 

Variable Definition mean st. dev. min max

Revealed Technological Advantage (RTA)
Proportion of a region’s patents in a given IPC class divided by the proportion of 
European patents in the same IPC class.*

1.083 3.013 0 261.5294

Localized technological change (LTC)
Sum of the RTA values of contiguous sectors in the European Maximum Spanning 
Tree

2.135 4.166 0 261.529

Recombinant Innovation (RI)
Betweenness centrality index in the European  MST. The index is computed only for 
IPCs with RTA>1

40.943 97.593 0 1430.000

Exogenous technological change - (ETC)
Sum of the RTA values at time t-1  of contiguous sectors in the European Maximum 
Spanning Tree at time t   che è quello della dipendente RTA t

2.180 5.688 0 760.428

W
n
geo * LTC 1.280 1.001 0.077 26.174

W
n
geo * RI 25.842 54.304 0 918.000

W
n
geo * ETC 1.295 1.018 0.068 20.856

W
n,t

tec * LTC 0.414 0.788 0 16.115

W
n,t

tec * RI 10.364 40.615 0 1190.000

W
n,t

tec * ETC 0.414 0.783 0.000 16.332

The primary source of the data is the European Patent Office (EPO).

* Europe refers to the countries included in the analysis: Austria, Belgium, Denmark, Germany, Spain, Finland, France, Italy, Netherlands, Sweden, United Kingdom, Switzerland and Norway

Number of observations: 119790=121 IPC classes * 198 NUTS2 regions * 5 periods (time periods are 5 year-averages over the 1986-2010 years)

Geographical lags of the explanatory variables based on geographic proximity. The 

matrix W
n

geo is the inverse distance matrix, maximum eigenvalue normalized

Socio-cognitive lags of the explanatory variables based on technological proximity. 

The matrix W
n,t

tec is the regional co-inventorship matrix, maximum eigenvalue 

normalized


