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Abstract

Spatial income inequality in cities is assessed by looking at the distribution of in-
come across individuals and their neighbors. Two new Gini-type spatial inequality
indices are introduced: the first index measures the average degree of income in-
equality within individual neighborhoods; the second index measures the inequality
of average incomes among individual neighborhoods. Connections with geostatistics
are investigated and the asymptotic distributions of these indices are derived. A rich
income database from the U.S. census is used to establish new stylized facts about
the patterns of spatial inequality in the 50 largest American cities during the last 35
years. Four different types of city are identified, according to the level of inequality
between and within individual neighborhoods. Inequality within the neighborhood
is shown to be associated with lifelong economic and health expectations of urban
residents.
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1 Introduction

The growing debate on the spatial dimension of income inequality in the U.S. has made

it clear that not all cities are equal (Chetty, Hendren, Kline and Saez 2014). Income

inequality in some cities has skyrocketed in the last decades, while remaining relatively

low in others. For instance, the Gini index of disposable equivalent household income

in New York City in 2014 is over 0.5, while it is below 0.4 in other major cities such

as Washington, DC. The differences of income inequality across major U.S. cities can

be explained by the distribution of skills and human capital across the cities (Glaeser,

Resseger and Tobio 2009, Moretti 2013), as well as by the composition of local amenities

(Albouy 2016). Important consequences arise for local policies, for targeting program

participation based on location and for designing the federal redistribution of resources

(Sampson 2008, Reardon and Bischoff 2011).

What this picture fails to show is that not all places in the same city are made equally

unequal. Contributions at the frontier of economics, sociology and urban geography have

recognized that inequality at the local level, i.e. measured among close neighbors, is

generally not representative of citywide inequality in U.S. cities. Many factors contribute

in determining sorting in the urban space on the basis of income (de Bartolome and

Ross 2003, Brueckner, Thisse and Zenou 1999). Different spatial distributions of incomes

may therefore arise from similar citywide inequality levels. This paper focuses on spatial

inequality measurement.

The features of spatial inequality at the urban level are usually described in terms

of differences in incomes within and between neighborhoods, identified by the adminis-

trative partition of the urban space (Shorrocks and Wan 2005, Dawkins 2007, Wheeler

and La Jeunesse 2008, Kim and Jargowsky 2009). Evaluations based on this approach,

however, put the administrative neighborhood and not the individual, who is responsible

for localization decisions, at the center. The geography of incomes can be better taken
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Figure 1: Spatial distribution of incomes (vertical spikes) among the poor P , and the rich
R in three linear cities.
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RP P
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into account by adopting the notion of the individual neighborhood, corresponding to the

set of neighbors living within a certain distance of the individual, thereby placed at the

center of his own neighborhood.1

In this paper, the features of inequality at the urban level are assessed by studying

how incomes are distributed within and across individual neighborhoods. More precisely,

inequality within an individual neighborhood arises when the income of an individual dif-

fers from the income of her neighbors, while inequality between individual neighborhoods

arises when the average incomes in the neighborhoods vary across individuals. We argue

that both dimensions should be considered to evaluate the size and features of spatial

inequality. This point can be motivated with an intuitive example, based on the spatial

distributions of incomes in three hypothetical cities, shown in Figure 1.

Consider first the two stylized cities City A and City B. There are three people living

in each city, two poor (P ) and one rich person (R). The two cities display the same overall

income inequality, but differ in the way people are located in the urban space: in City

A the poor persons are close neighbors and the rich person is isolated, while in City B a

1Galster (2001) and Clark, Anderson, Östh and Malmberg (2015) develop this notion in geographic
analysis. On the one hand, individual neighborhoods capture the relevant space where factors such as
the housing market, amenities, preferences and social interactions (Schelling 1969) combine to shape
the sorting of high income and low income people across the city. On the other hand, the individual
neighborhood is the relevant space in which neighbors may produce external effects on individual incomes
(Durlauf 2004, Sampson 2008, Ludwig, Duncan, Gennetian, Katz, Kessler, Kling and Sanbonmatsu 2013,
Chetty, Hendren and Katz 2016).
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poor person lives near the rich one, and the other poor person is isolated. To evaluate

spatial inequality, we first identify individual neighborhoods by drawing circles of given

diameter around each individual, and then we study the income distribution within and

among individual neighborhoods. The size (or equivalently, the degree of inclusiveness)

of the individual neighborhood can vary. When the size is not too large2, the average

degree of inequality (captured by the extent of income differences) within the individual

neighborhoods is smaller in City A than in City B. This occurs because the rich person

in City A lives isolated compared to the other two persons, who are equally poor.

Conversely, when the size of the individual neighborhood is not too large, the inequality

between average incomes observed in each individual neighborhood of City B is smaller

than the inequality observed in City A. This occurs because people with different incomes

(P and R) live nearby each other in City B, implying that some income inequality is

averaged out when computing average incomes at the individual neighborhood level.

In this framework, a movement of people across locations of a city might give rise to

changes in spatial inequality that are not trivial, although citywide income distribution

would not be affected by this displacement. For instance, if individuals R and P living

at the extremes of City A exchange their location, the resulting spatial distribution of

incomes would be that of City B. This movement may well represent the implications of

gentrification that have occurred in the last decades across all major American cities: an

increasing degree of inequality within individual neighborhoods follows from the decision

of rich people, previously isolated in wealthy suburbs, to move towards a more densely

populated area of the city and price out the poor people, who are thus marginalized.

Spatial inequality can also be affected by income movements. Consider now City C in

2In the two linear cities shown in Figure 1, individual neighborhoods are delimited by intervals cen-
tered on each individual. When the interval is small enough to include just one individual, there is
no inequality within the neighborhood and inequality between neighborhoods coincides with citywide
inequality. When each individual’s neighborhood is large enough to comprise the remaining two indi-
viduals, inequality within each individual neighborhood coincides with citywide inequality, and average
incomes across individual neighborhoods coincide. All in-between cases, where individual neighborhoods
are not ”too large”, occur when there is at least one individual neighborhood comprising two individuals.
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Figure 1. This hypothetical city represents the spatial distribution of R and P people

after a rich-to-poor transfer of income has eliminated income differences between the two

individuals located at the outskirts of the city. Arguably, this transfer reduces citywide

inequality, irrespective of whether the initial distribution is that of City A or of City

B. It also turns out that spatial inequality between individual neighborhoods is reduced

by the transfer. The implications for spatial inequality within individual neighborhoods,

however, are ambiguous. Spatial inequality would have been reduced by the transfer if

the starting configuration were as in City B, whereas it would have been increased if the

starting configuration were as in City A. This highlights that even rich-to-poor income

transfer might give rise to divergent patterns of spatial inequality when the location of

the population is taken into account.

In more realistic settings, it is not straightforward to identify the patterns of spatial

inequality when people, incomes, or both change at once. The aim of this paper is

to model and to measure spatial inequality using individual neighborhoods as primitive

information, and to assess its patterns and implications. The first contribution is on

the measurement side. In Section 2, we introduce two new spatial inequality measures,

the Gini Individual Neighborhood Inequality (GINI) indices, that explicitly account for

the urban geography of incomes. The GINI-within index measures the average level of

income inequality within individual neighborhoods. The GINI-between index, on the

other hand, measures the inequality in average incomes across individual neighborhoods.

In Section 2.2 the statistical foundations of the GINI indices are established by showing

relations with geostatistics. A methodological appendix develops innovative asymptotic

results based on stationarity assumptions common in this literature. The advantages of

the GINI indices are discussed, and differences with alternative measurement frameworks,

such as those involving within-between decomposition techniques and income segregation

indices, are highlighted.

The second contribution of this paper demonstrates the empirical relevance of the
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methodology utilizing GINI indices. In Section 3 the pattern of spatial inequality across

the 50 most populated American cities is assessed by making use of a rich income database

constructed from U.S. census data spanning almost four decades. We compute the values

of GINI indices at any meaningful distance threshold (from zero to the size of the city).

Very strong resemblances in patterns of spatial inequality among the 50 cities are docu-

mented, with high levels of within neighborhood inequality steadily increasing over time.

We also report a stable pattern of spatial inequality between individual neighborhoods,

which had a peak in the 90s and subsequently declined over the following 25 years. While

the latter finding matches evidence discussed in other contributions, the first finding is

new in the literature and deserves further investigation.

Changes in spatial inequality are difficult to evaluate on purely normative grounds.

For instance, when negative externalities arise from deprivation and envy (Luttmer 2005),

within neighborhood inequality probably is the relevant dimension to look at to capture

these externalities. A policy aiming to mitigate the incidence of these externalities should

focus on decreasing within inequalities, for instance by implementing local redistribution

or by increasing the distance between rich and poor people. On this premise, the spatial

distribution of incomes in City A should be preferred to that of City B, despite the same

citywide inequality. However, the proximity among people of different social status might

raise ambitions and generate opportunities for the poor and also benefit the wealthy (Ellen,

Mertens Horn and O’ Regan 2013). In this case, the spatial distribution in Cities B should

be preferred. Evaluations become even more complex when looking at the implications of

neighborhood inequality on lifelong individual outcomes. Section 3.4 shows that opposite

traits of individual neighborhood inequality are associated with improvements in children’s

income prospects (Chetty and Hendren 2016) and adult health outcomes (Chetty, Stepner,

Abraham, Lin, Scuderi, Turner, Bergeron and Cutler 2016) for people growing up and

living in major American cities. These empirical correlations turn out to be robust with

respect to the most relevant confounding factors. Section 4 concludes summarizing the
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results.

2 Spatial inequality measurement

2.1 The GINI indices

Given a population of n ≥ 3 individuals, indexed by i = 1, ..., n, let yi ∈ R+ be the income

of individual i and y = (y1, y2, ..., yn) the income vector with average µ > 0. Information

on the income distribution is assumed to come with information about the location of

each income recipient in the urban space. 3 For any individual, neighbors are identified

as the group of people located at most as far as d distance units from this individual.

The Euclidian spatial distance is used to determine the extent of the neighborhood.4 The

set of neighbors located within a distance d from individual i is designated as di, such

that j ∈ di if the distance between individuals i and j is less than or equal to d. The

symbol nid is used for the cardinality of di, that is the number of people living within a

range d from i (including i). The average income of individual i’s neighborhood of length

d, capturing the neighborhood’s affluence, is µid =
∑

j∈di
yj

nid
.

A popular measure of inequality is the Gini index, defined as G(y) = 1
2n2µ

∑
i

∑
j |yj−

yi|. The Gini Individual Neighborhood Inequality within index, indicated by GINIW , is

now introduced to assess the implications of spatial distance among agents on inequality.

It measures the average degree of relative income inequality within individual neighbor-

hoods. The GINI-within index is inspired by Pyatt (1976), who provides a probabilistic

interpretation of the Gini inequality index. According to Pyatt, the Gini index can be

seen as the expected gain accruing to a randomly chosen individual from the income dis-

tribution if her income is replaced with the income of another individual randomly drawn

from the same distribution. The GINI-within index assumes that income comparisons

3For the sake of simplicity, we refer to the income-location distribution of individuals on the city map
as an income distribution.

4For a discussion of the use of multidimensional notions of distance, see Conley and Topa (2002).

7



are carried over exclusively within individual neighborhoods of a given size. For each

individual i, the average distance between i’s income and the income of her neighbors is

computed and then this quantity is scaled by the neighborhood average income. As a

consequence, this quantity ranges over the unit interval. We get:

∆i(y, d) =
1

µid

∑
j∈di

|yi−yj|
nid

.

Notice that, given the relevant notion of individual neighborhood parametrized by d,

there are 1/nid chances of drawing a neighbor from i′s neighborhood with whom i can

compare her income. This probability changes across individuals, reflecting the population

density of individual neighborhoods. The GINI-within index averages the normalized

mean income gaps ∆i across the whole population:

GINIW (y, d) =
1

2

n∑
i=1

1

n
∆i(y, d).

The GINIW index hence captures the overall degree of inequality that would be ob-

served if income comparisons were limited only to neighbors located at a distance smaller

than d. The index is bounded, with GINIW (y, d) ∈ [0, 1] for any y and d. Moreover,

GINIW (y, d) = 0 if and only if all incomes within individual neighborhoods of size d

are equal. Notice that this cannot exclude inequalities among people located at a dis-

tance larger than d. Additionally, GINIW (y, d) can take on values that are either larger

or smaller than G(y).5 When d reaches the size of the city, spatial inequality ends up

coinciding with overall inequality, that is GINIW (y,∞) = G(y).

The GINI-within index captures a relative concept of inequality, since income distances

5Consider, for instance, the following distribution of incomes among four individuals:
($0, $0, $1000, $2000). The Gini inequality index of this income distribution is 0.77. Suppose these
individuals are distributed in space such that each poor individual live close to a rich individual, while
the two pairs are far apart one from the other. Then, spatial inequality within the neighborhoods is
maximal (i.e., GINIW (., d) = 1 for d small) and larger than citywide inequality.
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within each neighborhood are divided by the neighborhood average income. This implies

that even if inequality in relatively small neighborhoods approaches citywide inequality

the distribution of incomes within the individual neighborhood does not necessarily re-

semble that of the city as a whole. In fact, individual neighborhood average incomes might

substantially differ across individuals. Inequality between average incomes across individ-

ual neighborhoods can be valued by the Gini index for the vector (µ1d, . . . , µnd). The

elements of this vector depend upon individuals’ locations and proximity. For instance,

if a high-income person lives near to many low-income people, her income contributes to

rising the mean income not only in the high-income person neighborhood, but also in the

individual neighborhoods of all her low-income neighbors. However, if the high-income

person is located at an isolated point on the urban map, her income does not generate any

positive effect on other people’s average neighborhood income, provided that the notion

of individual neighborhood is sufficiently exclusive. This means that the average value of

the vector (µ1d, .., µnd), designated µd, generally differs from µ. The between dimension

of spatial inequality is captured by the Gini Individual Neighborhood Inequality between

index, GINIB, defined as:

GINIB(y,d) =
1

2n2µd

∑
i

∑
j

|µid − µjd|.

As expected, GINIB(y, d) ∈ [0, 1] for any y and d. The index is equal to G(y) at a

zero-distance and whenever all incomes within each individual neighborhood of length d

are equal. GINIB converges to zero when d approaches the size of the city.

A simple and insightful picture of within and between spatial inequality patterns can

be drawn by computing GINI indices for different values of d and plotting their values on a

graph against d (on the horizontal axis). The curve interpolating these points is called the

spatial inequality curve, generated by either the GINI-within or the GINI-between index.

More precisely, the curve derived from GINIB takes the value of the overall Gini index
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when each individual is considered as isolated (that is, when d = 0) and approaches 0 when

each individual neighborhood spans the whole city. The curve originated by GINIW can

exhibit a less predictable shape. First, it can locally decrease or increase in d according to

the spatial distribution of incomes. Second, when each individual neighborhood is large

enough to include the whole population of the city, then GINIW (y, d) approaches G(y).

Third, the graph of GINIW (y, d) can be flat, meaning that incomes are randomized across

locations and the spatial component of inequality is irrelevant. Fourth, the curve could

increase with d, indicating that individuals with similar incomes tend to sort themselves

in the city. The shape of the spatial inequality curves also suggests the degree to which

citywide income inequality can be correctly inferred from randomly sampling individuals

from the city.6

For a given size of the individual neighborhood, spatial inequality comparisons can be

carried over by looking at the level of the GINI-within or between index at the correspond-

ing distance value. Each of these evaluations generates a complete ranking of the income

distributions, although these rankings may contradict each others. Comparisons of spatial

inequality curves allow evaluations that are robust vis-à-vis the size of the neighborhood.

We propose to use these curves to carry over robust spatial inequality assessments.

The GINI indices capture the association between the degree of inequality in incomes

and the distribution of these incomes in a geographic space. In the following section we

establish connections between the GINI indices and the way in which spatial association

is treated in geostatistics literature (Cressie 1991).

6When the role played by space is negligible, i.e. the spatial inequality curves are rather flat, any
random sample of individuals taken from a given point in the space is representative of overall inequality.
When space is relevant and people locations are stratified according to income, then a sample of neighbors
randomly drawn could underestimate the level of citywide inequality.
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2.2 Connections with geostatistics

A spatial income distribution can be represented by the data generating process {Ys :

s ∈ S}. This process is a collection of random variables Ys located over the random

field S, which serves as a model of the relevant urban space. The process is distributed

as FS , the joint distribution function combining information on the marginal income

distributions in each location and the degree of spatial dependence of incomes on S.

Through geolocalization, it is possible to compute the distance “||.||” between locations

s, v ∈ S. Let ||s− v|| ≤ d indicate that the distance between the two locations is smaller

than d, or equivalently v ∈ ds. The cardinality of the set of locations ds is nds , while

n is the total number of locations. The observed income distribution y is a particular

realization of the process, where only one income observation i occurs in a given location

s.

Consider first the GINI-within index of the spatial process FS . It can be written in

terms of first order moments of the random variables Ys as follows:7

GINIW (FS , d) =
∑
s

∑
v∈ds

1

2nnds

E[|Ys − Yv|]
E[Yv]

.

The degree of spatial dependence represented by FS enters in the GINIW formula through

the expectation terms conditional on S. Consider first the case displaying no spatial

dependence in incomes, that is, the random variables Ys and Yv are i.i.d. for any s, v ∈

S. One direct implication is that GINIW (FS , d) = E[|Ys−Yv |]
E[Yv ]

, which coincides with the

definition of the standard Gini inequality coefficient (see for instance Muliere and Scarsini

1989).

If, instead, spatial dependence is at stake, then the expectation E[|Ys − Yv|] varies

across locations and cannot be identified and estimated from the observation of just one

7Biondi and Qeadan (2008) use a related estimator to assess dependency across time in paleorecords
observed in a given location.
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data point in each location. It is standard in geostatistics to rely on assumptions about the

stationarity of FS (Cressie and Hawkins 1980, Cressie 1991). The first assumption is that

the random variables Ys have stationary expectations over the random field, i.e., E[Yv] = µ

for any v. The second assumption is that the spatial dependence in incomes between two

locations s and v only depends on the distance between the two locations, ||s − v||, and

not on their position in the random field. Here, we consider radial distance measures for

simplicity, so that ||s − v|| = d. This gives E[(Ys − Yv)2] = 2γ(||s − v||) = 2γ(d), where

the function 2γ is the variogram of the distribution FS (Matheron 1963).

The variogram captures the implications of spatial association for income variability in

the data. Thus, the function 2γ(d) is informative of the correlation between two random

variables that are exactly d distance units away one from one other. The slope of the

graph of the variogram function displays the extent to which spatial association affects

the joint variability of the elements of the process. Generally, 2γ(d)→ 0 as d approaches

0, indicating that random variables that are very close in space tend to be strongly

spatially correlated and variability in incomes at the very local scale is small. Conversely,

2γ(d) → 2σ2 when d is sufficiently large, indicating spatial independence between two

random variables Ys and Yv far apart on the random field. Variability in incomes that are

very far apart in space tend to correctly estimate citywide income inequality.

Together, the two assumptions listed above depict a form of intrinsic stationarity of

the data generating process (Cressie and Hawkins 1980, Cressie 1991, Chilès and Delfiner

2012). If, additionally, Ys is assumed to be Gaussian with mean µ and variance σ2, ∀s ∈ S,

it is possible to show that the GINI within index is a function of the variogram:

GINIW (FS , d) =
∑
s

∑
v∈ds

1√
π

1

nnds

√
γ(||s− v||)

µ
.

With some additional algebra, it is also possible to show that the GINI-between index

is a function of the variogram under stationarity and the Gaussian assumptions. Both
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GINI-within and between indices can hence be described as averages, taken over the space

of distances between locations, of distance-sensitive coefficients of variation. All results

are formally derived in the appendix.

The possibility of expressing the GINI indices as transformations of the variogram

leads to two considerations. The first is that the GINI indices measure spatial inequality

as a direct expression of the spatial dependence in the data generating process, represented

under stationarity assumptions by the variogram, without imposing external normative

hypotheses about the interactions between incomes, income inequality and space. The

second consideration is that the empirical counterpart of the variogram sets the basis for

estimating asymptotic standard errors of the GINI indices. These results are used to test

hypothesis on the extent and dynamics of spatial inequality.

2.3 Testing hypotheses about spatial inequality

The empirical estimators of the GINI spatial inequality curves (presented in the appendix)

can be used to test hypotheses about the shape and dynamics of spatial inequality. (i) By

contrasting the level of spatial inequality measured by the GINI curves at a given distance

d with the overall level of inequality captured by the Gini index, it is possible to assess if,

and to what extent, average income inequality experienced within a neighborhood of size

d is different from the level of inequality in the city. (ii) Moreover, by contrasting the level

of the GINI curves at d and at d′ > d, it is possible to state if, by how much, and at which

speed, local inequality converges with citywide inequality. (iii) Lastly, by comparing the

levels of the GINI curves at distance d registered in different periods within the same city,

it is possible to reach conclusions about the dynamics of spatial inequality.8

In the appendix, distribution free, non-parametric estimators for the GINI indices are

8One is compelled to conclude in favor of spatial inequality only if there is strong evidence against the
null hypothesis that the level of the GINI curve at d is the same as the Gini inequality index, and that
the level of spatial inequality captured by the GINI curves does not change with d. When comparing two
GINI (either between or within) curves, a strong increase or reduction in spatial inequality cannot be
rejected if there is strong evidence against the null hypothesis that the two curves coincide at every d.
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estimated in a general setting where sample information about the process FS is available.9

Under the intrinsic stationarity and the Gaussian assumptions, asymptotically valid stan-

dard errors for the GINI-within and GINI-between estimators are also derived. The GINI

index estimators sampling distribution is asymptotically normal10, with standard errors

defined as averages of variogram functions of the process. The convergence result allows

hypotheses about spatial inequality to be tested via standard t-statistics. For instance,

in the empirical investigation carried over in Section 3 on 10-year U.S. census data and

repeated surveys, standard error estimators account for issues related to data reporting

(which come in form of summary tables for each element of a very fine spatial partition

of U.S. urban territories).11 Before moving to the empirical section, the novelties and

advantages of the methods proposed above are compared with the existing literature on

spatial inequality measurement.

2.4 Discussion

The inequality literature largely agrees that relative inequality indices should satisfy at

least four normatively relevant properties (Atkinson 1970): (i) invariance with respect to

population replication; (ii) invariance to the measurement scale; (iii) anonymity, that is,

invariance to any permutation of the incomes across the income recipients; (iv) the Pigou-

Dalton principle, implying that every rich-to-poor income transfer should not increase

inequality. While properties (i) and (ii) have desirable implications for the measurement of

9The GINI-between index estimator can be computed as a plug-in estimator as in Binder and Kovacevic
(1995) and Bhattacharya (2007), provided individual neighborhood averages are properly estimated. On
the contrary, the GINI-within estimator involves comparisons of individual income realizations.

10Standard errors for GINI indices are derived using results for ratio-measures estimators (see
Hoeffding 1948, Goodman and Hartley 1958, Tin 1965, Xu 2007, Davidson 2009) under intrinsic sta-
tionarity and normality (Cressie and Hawkins 1980, Cressie 1985). The latter assumption does not
immediately translate into normality of the GINI estimators, which are highly non-linear functions of the
underlying stochastic process. Rather, on this assumption, we can show that the GINI estimators are
linear in the variogram, implying asymptotic normality.

11A Stata routine implementing the GINI-between and -within indices and curves, along with their
standard error estimators, is available on the authors web-pages.
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spatial inequality and are satisfied by the GINI indices,12 anonymity strongly conflicts with

the idea that location matters in spatial inequality evaluations.13 Consider, for instance,

the income distribution in Figure 1 in the Introduction. The spatial configuration of

incomes in City B can be obtained from that in City A by permuting the incomes of the

individuals living at the margins of the city. Anonymity, which judges City A and City

B as equal from a citywide inequality perspective, does not extend to spatial inequality,

which rises in the within dimension and decreases in the between dimension.

In spatial inequality assessments, hence, anonymity should be relaxed as much as

possible. One way to do so, predominant in the literature, is to associate the spatial

dimension of inequality with the magnitude of inequality between neighborhoods, defined

on the ground of a partition of the city into administrative areas, such as urban blocks,

census tracts, etc., and comprising all people living in them (see Shorrocks and Wan 2005).

Some authors focus on a particular aspect of spatial inequality, called income segregation

(by analogy with racial segregation), which is insensitive to the overall income distribution

in the city (rich and poor groups are defined on the basis of the ranks of individuals in the

overall population). In this spirit, Kim and Jargowsky (2009) suggested breaking down

overall inequality in the components associated to within and between neighborhoods

variability in incomes, and to assess spatial segregation as the share of citywide inequality

due to the between component. Reardon and Bischoff (2011) focus instead on the degree

of disproportionality of rich and poor individuals across neighborhoods.14

The above approaches retain anonymity at two levels: first, among individuals living in

the same neighborhood; second, in terms of average incomes across neighborhoods. These

12Direct implications of these properties are that populations of different size and different average
incomes can be made comparable. Replication invariance, in particular, guarantees that replacing single
individuals by equally-sized groups in given locations does not affect spatial inequality. Both proper-
ties are satisfied by the GINI indices by standardizing income gaps by individual neighborhood-specific
population counts and average incomes.

13Anonymity would not be a concern if incomes and locations were both permuted across individuals.
Rather, we refer to anonymity as permutations of incomes alone.

14Segregation involves assessing the degree to which heterogeneity in incomes within the (individual)
neighborhood is dissimilar from citywide income heterogeneity, see Andreoli and Zoli (2014).
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measures put the emphasis on the neighborhood as the unit of analysis, and are hence

subject to the Modifiable Areal Units Problem (MAUP, see Openshaw 1983, Wong 2009),

which arises from “scaling” and “zonation” issues. To overcome the scaling issue, some

authors have proposed assessing inequality between neighborhoods at different scales

of aggregation of the initial partition (Hardman and Ioannides 2004, Shorrocks and

Wan 2005, Wheeler and La Jeunesse 2008). With a less refined partition of the urban

space, the size of the neighborhood increases and extends anonymity to a larger number

of people within the neighborhood. To avoid the zonation issues, Dawkins (2007) has

proposed measures that account for the dependence of income segregation on the spatial

arrangement of administrative neighborhoods.

The approach based on the GINI indices differs from this literature in using individual

neighborhoods as primitives. In fact, individual neighborhoods do not derive from a

partition of the urban space, but can display some degree of overlapping: the fact that

individual k is in the neighborhood of individual i and of individual j does not imply that

i and j are also neighbors. This logic discards anonymity within individual neighborhoods

regardless of their size (permuting the incomes of any two neighbors might have substantial

implications for other individual neighborhoods) and proves robust in relation to the issue

of zonation. Furthermore, considering individual neighborhoods of different size, the

degree of inclusiveness of individual neighborhoods can increase without strengthening

anonymity within the neighborhoods.

Anonymity (also called symmetry) is a necessary condition for Schur-convexity, a

mathematical property satisfied by all inequality indices consistent with the Pigou-Dalton

transfer principle (see Marshall and Olkin 1979, p.54). By weakening anonymity, both

rich-to-poor redistribution and relocation policies switching the position of poor and rich

people across the city (without affecting citywide inequality) may give rise to unpre-

dictable implications for spatial inequality. The effects of these policies largely depend on

the relative density and proximity of poor and rich people across neighborhoods. Further,
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Within inequality
Low GINIW High GINIW

Between inequality High GINIB Polarized city Unstable city
Low GINIB Even city Mixed city

Table 1: Taxonomy of cities by spatial inequality.

they might also affect household sorting over time (Durlauf 2004).

Contrary to standard practice in the literature, which breaks down citywide inequality

into a within and between component, the GINI indices capture two distinct aspects of

spatial inequality: the average inequality within individual neighborhoods and the degree

of inequality in average incomes between individual neighborhoods. These two aspects

are not necessarily interwinded, for any selected neighborhood size. Consequently, our

methodology offers one additional degree of freedom compared to to traditional between-

within decomposition techniques, where a high degree of within inequality mechanically

involves low between inequality and vice-versa, for given citywide inequality. Building on

these arguments, cities can be classified according to between and within dimensions of

spatial inequality. Table 6 highlights four types of cities.

Low levels of the GINI-between and within indices mean that inequality within in-

dividual neighborhoods is low and that neighborhoods resemble each other in terms of

income composition. This setting mirrors the homogeneous social structure of an “even

city” characterized by relatively low citywide income inequality and strong income mix-

ing (for a broader discussion of the Just City, see Fainstein 2010). In some situations,

low GINI-between index values can be paired with high levels of the GINI-within index.

This case identifies cities with mixed neighborhoods comprising people with different in-

comes (hence citywide inequality) who are evenly spread across the urban space. The

“mixed city” model is a recurrent typology widely discussed in the urban planning liter-

ature (Sarkissian 1976) that can be conceptualized both as the outcome of gentrification

processes (Lees 2008), and a stimulus for socio-economic opportunities for the residents
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(Musterd and Andersson 2005, Manley, van Ham and Doherty 2012).

High levels of the GINI-between index occur in presence of citywide inequality and

spatial sorting patterns that separate poor from rich people across the urban space. The

image of a “divided city” provided in the recent Habitat (2016) report (chapter 4) and

anticipated in van Kempen (2007) evokes the implicit social tensions in the urban fabric

arising because of strong differences in incomes across neighborhoods. We further distin-

guish two cases within the “divided city” typology. The first typology of cities, where

high values of the GINI-between index are paired with low levels of the GINI-within in-

dex, is that of a “polarized city” with rich and poor people separated both in income

and spatial dimensions.15 The second type, the “unstable city”, displays high levels of

both GINI within and between indices. In this case, high income heterogeneity within

the neighborhood suggests that dimensions other than income (such as ethnicity) play a

significant role (Boal 2010, Scholar 2006, Deaton and Lubotsky 2003) and might amplify

the implications of income inequality in the sorting process.

In the following section the extent of these traits of spatial inequality and their effects

on individual outcomes are investigated. The case of Chicago, IL, serves to illustrate the

spatial dimension of inequality in a large U.S. metropolitan area. We also provide stylized

facts about patterns of spatial inequality across the 50 largest U.S. cities, and study its

consequences.

15Duclos, Esteban and Ray (2004) describe polarization through the concept of alienation between
groups, here captured by the size of the individual neighborhood in relation to a relevant attribute, such
as income. Alienation is stronger when groups are more homogeneous and cohesive (i.e., the lowest is
inequality within the individual neighborhood) and more diverse (i.e., there is a high degree of inequality
between neighborhoods).
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3 Spatial inequality in U.S. cities: 1980-2014

3.1 Data

We use information on incomes distributions within U.S. cities over four decades, drawing

on the census files of the U.S. Census Bureau for 1980, 1990 and 2000. Information about

population counts, income levels and family composition at a very fine spatial grid was

taken from the decennial census Summary Tape File 3A.16 Due to anonymization issues,

the STF 3A data are given in the form of statistical tables representative at the block

group level, the finest available statistical partition of the American territory. After 2000,

the statistics on the STF 3A files have been replaced with survey-based evidence from the

American Community Survey (ACS), which runs annually since 2005 on representative

samples of the U.S. resident population. We focus on the 2010-2014 5-years Estimates ACS

module. Sampling rates in ACS vary independently at the census block level according

to 2010 census population counts, covering on average 2% of the U.S. population over

the 2010/14 period. As far as we know, ACS 2010/14 wave has not yet been used for

empirical analysis of urban inequality.

The units of analysis are households with one or more income recipients. The focus

is on gross household income distribution. There are two available sources of information

that can be used to model the income distribution at the block group level. The first set

of tables shows aggregate income at the block group level. The second set of tables shows

instead counts of households per income interval at the block group level.17 There are 17

income intervals in the census 1980, 25 in the census 1990 and 16 in the census 2000 and in

the ACS. In all cases, the highest income bracket is not top-coded. We use a methodology

16The Census STF 3A provides cross-sectional data for all U.S. States and their subareas in hierarchical
sequence down to the block group level (the finest urban space partition available in the census). The
geography of the block group partition changes over the decades to keep track with demographic changes
within the Counties of each State.

17The ACS estimates of population counts should be interpreted as average measures across the 2010-
2014 time frame. The survey runs over a five years period to guarantee the representativeness of income
and demographic estimates at the block group level.
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based on Pareto distribution fitting as in Nielsen and Alderson (1997), to convert tables of

household counts across income intervals into a vector of representative incomes for each

income interval, along with the associated vector of households frequencies corresponding

to these incomes.18 Estimates of incomes and household frequencies vary across block

groups, implying strong heterogeneity within the city in block-group specific household

gross income distributions.

The STF 3A files and the ACS also provide tables of household counts by size (scoring

from 1 to 7 or more household members) for each block group. To draw conclusions about

the distribution of income across block groups that differ in households demographics, we

construct equivalence scales that are representative at the block group level (the square

root of average household composition in the block group level, obtained from households

counts information). We can hence convert the representative incomes at the block group

level into the corresponding equivalized incomes by scaling the estimated reference income

values by the block group-specific equivalence scale.19

Income reference levels, population frequencies associated to these levels and equiv-

alence scales are estimated separately for each block group of a city in each census and

ACS year considered in the study. All block groups are georeferenced, and measures of

distance between the block groups centroids can therefore be constructed. All income ob-

servations within the same block group are assumed to occur on its centroid. To identify

the relevant urban space, defining the extension of a city, we resort to the Census defini-

18The procedure consists in fitting by regression methods a Pareto distribution to data about population
shares and income interval thresholds to estimate average incomes within each interval. For income
intervals below the median, the estimated average income is the midpoint of the interval. For other
intervals, estimates are derived by fitting a Pareto distribution under the constraint that estimated
average income at the block-group level should coincide with the observed average income in the data.
Estimated medians for top income intervals are used as reference incomes, and empirical population
counts as weights. For an alternative estimation method based on the log-normality assumption see
Wheeler and La Jeunesse (2008). Estimation methods based on GMM and quantile fitting are as in
Quandt (1966).

19In most cases, it turns out that the reference income category associated with an income interval is
simply the midpoint of the interval. For the top income interval, the reference value is adjusted so that
the average estimated income coincides with data provided by the Census.
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tion of a Metropolitan Statistical Area based on the 1980 Census definition.20 For each

city-year pair we therefore obtain an income database consisting of strings of incomes and

frequency weights at each geocoded location on the map. Thus, weighted variants of the

GINI index estimators can be used to evaluate facts about spatial inequality at various

distance scales.

3.2 Spatial inequality in Chicago, IL

The extent of the Chicago metro area, based on 1980 definition of Chicago primary

MSA, comprises Cook County, Du Page County and McHenry County surface.21 Table

2 provides summary information of the household population and the respective income

distribution in Chicago.22 Average equivalent household income increased fourfold over

1980-2014 in nominal terms, corresponding to a 73% increase in real terms. Table 2 shows

that the top 10% to bottom 10% income ratio sharply increased from 11.53 in 2000 to

almost 13.5 in the 2010/2014 period, indicating increased dispersion at the tails of the

distribution. The relative gap between the low income (bottom 20%) and high income

households (top 20%) has increased at a constant yet lower pace. The citywide Gini index

increased from 0.43 to 0.48 over the same period.

GINI-within and -between indices are computed for 1980, 1990, 2000 and 2010/2014

waves to assess the evolution of equivalent household income across individual neighbor-

hoods. At distance zero up to approximately 0.2 miles, the GINI-within index captures

20The U.S. counties defining the Chicago metropolitan area in 1980 can be found at this link:
http://www.census.gov/population/metro/files/lists/historical/80mfips.txt. The 1980 Census definition
of MSA guarantees comparability of estimates across urban areas that are expanding or shrinking over
the 35 years considered in this study.

21For some of the block groups of 1980 Census it is not possible to establish geocoded references. Hence,
these units cannot be included in the index computation and might have an impact on the estimation of
the GINI patterns. Reardon and Bischoff (2011) and other contributions have demonstrated, however,
that the impact of this kind of missing information is negligible on overall trends of inequality within the
100 largest U.S. Commuting Zones.

22Throughout the four decades considered in this study, the block group partition of Chicago has
become finer, with the number of block groups increasing 1000 units. This change keeps track of the
demographic boom in Chicago, implying a roughly stable demographic composition in each block group
(around 1100 households on average).
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City Year # Blocks Hh/block Eq. scale Equivalent household income
Mean 20% 80% Gini 90%/10%

Chicago (IL) 1980 3756 1122 1.630 13794 5798 20602 0.434 11.351
1990 4444 1217 2.029 21859 9132 32316 0.461 11.903
2000 4691 1173 1.625 41193 16076 61667 0.473 11.533

2010/14 4763 1060 1.575 55710 20022 89856 0.486 13.452

Table 2: The household equivalent gross income distribution in Chicago, IL

the average inequality in estimated income levels within block groups. Data confirm sub-

stantial income inequality within block groups in 200023, with the Gini index fluctuating

between 0.2 to above 0.6, and standing at 0.4 when averaging across Chicago’s block

groups. This explains the relatively high intercept of the GINI-within curves shown in

Figure 2.(a). Estimates for small size individual neighborhoods, however, are probably

biased by the approximations used to estimate block-group level income distributions.

Inequality slightly decreases as the neighborhood size reaches two miles and then quickly

rises to reach its city-wide level when the size of the neighborhood is larger than 20

miles. Comparing the GINI-within curves of the different decades, within neighborhood

inequality appears to increase over time, for any size of the neighborhood.

GINI-between curves from 1980 to 2010/14 are plotted in Figure 2.(b). For individual

neighborhoods of narrow size (in many cases coinciding with the spatial dimension of the

block group), the GINI-between index values are generally smaller than 0.3. As expected,

between neighborhood inequality decreases with the size of the neighborhood, but in a

very smooth manner. For neighborhoods smaller than two miles, the GINI-between index

is generally larger than 0.25. It decreases to 0.1 only for neighborhoods of at least 16 miles

range. Overall, this pattern is robust across Census years. Contrasting the GINI-between

curves over the last three decades, it can be noted that between inequality is on the rise

up to 1990, decreases in 2000 and stabilizes thereafter.

Are these patterns statistically significant? To answer this question, we first compute

23For this year block group level estimates of inequality are collected in the census tables.
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Figure 2: Spatial GINI indices of income inequality for Chicago (IL), 1980, 1990, 2000
and 2010/14

(a) GINI within (b) GINI between

Note: Authors processing of U.S. Census and ACS data.

empirical estimators of the variograms based on geolocalized income data, and then derive

standard errors and confidence intervals of the GINI-within and between indices at pre-

selected distance abscissae. Confidence bounds are drawn for each spatial inequality

curve, and dominance relations across spatial inequality curves are tested making use

of t-statistics at selected distance ranges.24 Overall, we find evidence of the following

patterns of spatial inequality in Chicago: i) for neighborhoods of small size (below 2

miles), the GINI-within index ranges from 0.41 in 1980 to 0.45 in 2010/2014, and increases

slightly with the size of the neighborhood; ii) the GINI-between index decreases smoothly

with neighborhood size and reaches 0.1 only for relatively large (more than 10 miles)

neighborhoods, hence indicating persistence of inequality across the urban space; iii) the

GINI-within index is constantly on the rise over the period considered at any distance

24To do so, we compute all pairwise differences in GINI-within or between spatial inequality curves
across all the decades under analysis. These differences, measured at pre-determined distance abscissae
(along with the associated confidence bounds), are then plotted on a graph. If the horizontal line passing
from the origin of the graph (indicating the null hypothesis of no differences in spatial inequality at every
distance threshold) falls within these bounds, we conclude that the gap in the spatial inequality curves
under scrutiny are not significant at standard confidence levels. For a detailed description of results, see
online appendix B.
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threshold, although there is little statistical evidence supporting these changes; iv) the

GINI-between index is on the rise during 1980-1990, it slightly (yet significatively) declined

in 2000 and has remaind stable thereafter. The changes we describe are robust over the

entire domain of the neighborhood size parameter.

The spatial inequality patterns described above could be explained, on the one hand,

by the changes in the citywide income distribution observed over the part 35 years. As

shown in Table 2, the citywide Gini index of gross equivalent household income in Chicago

was on the rise over the period and relative income gaps between the top and bottom

income quintile grew considerably, while the top-to-bottom income decile ratio remained

stable over 1980-2000 and increased afterward. If the spatial arrangement of households

were completely random, the income distribution observed within any individual neigh-

borhood would reflect the citywide income distribution, and the distributional changes

in the citywide distribution would spread evenly over the urban space. However, this

scenario would be inconsistent with patterns of the GINI-between index curve, which

should rather be flat. One alternative explanation relies on the fact that households are

stratified in space according to their incomes, with clusters of rich, medium class and poor

households. This spatial configuration would give rise to substantial inequality within in-

dividual neighborhood of average size, if clusters are evenly distributed across the urban

space.

The explanations provided above reinforce each others. In fact, changes in citywide

inequality between 1980 and 2000 were driven by divergent growth of income along the

income distribution, with rich and poor people moving far apart. This distributional

change might produce effects that are consistent with patterns of between individual

neighborhood inequality, which was on the rise until the Nineties, if, on average, high

income households get richer in those neighborhoods where high income households are

over-represented and where middle class households’ income grew at a slower pace.

Since 2000, income inequality between individual neighborhoods has fallen despite
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growing citywide inequality, suggesting a role for changes in the spatial distribution of

rich and poor households in Chicago. Spatial inequality between neighborhoods decreases

when rich households move closer to the middle class households, pricing out poor house-

holds from neighborhoods historically occupied by the poor, who are then obliged to move

farther away. This change could generate increasing inequality within individual neigh-

borhoods, leveraging on the increasing disparity in incomes between rich households and

the rest, and simultaneously could reduce inequality between individual neighborhoods,

since the income mix within the neighborhood would be averaged out when constructing

inequality comparisons between neighborhoods. This configuration could reflect the sort-

ing of rich household (who got richer compared to poor households) which increasingly

relocate in close proximity to middle-class and poor households, thus reducing inequali-

ties across different locations on the city map and simultaneously raising inequality within

individual neighborhoods.25

The patterns of the GINI-within and between indices provide robust empirical evi-

dence of the consequences of local and citywide income distribution of recent waves of

gentrification in major US cities documented in Ehrenhalt (2012). This phenomenon -the

movement of wealthy, skilled people from suburbia to inner city- is referred to as the

Great Inversion and is accompanied by the reconcentration of income poverty in suburbs,

far away from central business districts and from the wealthy and the middle-class house-

holds (Kneebone 2016). The two demographic phenomena seem to have dominated the

dynamics of urban evolution in major U.S. cities (including Chicago) since 2000. The

GINI-between indices consistently show that spatial inequality has decreased (irrespec-

tively of the underlying individual neighborhood size) despite the increasing divide of top

and bottom deciles of Chicago income distribution after 2000.

25Oversimplifying, this type of change in the spatial distribution of households and incomes can be
intuitively associated with the gentrification process exemplified in Figure 1, where a rich and isolated
person in City A moves towards the densely populated area of the city, forcing the poor to relocate
elsewhere (as in City B).
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Figure 3: GINI within for 50 largest U.S. metro areas

(a) Census 1980 (b) Census 1990

(c) Census 2000 (d) ACS 2010/2014

Note: Authors processing of U.S. Census and ACS data.

In what follows, new comparative evidence of the patterns of spatial inequality across

U.S. metropolitan area is provided by extending the analysis of spatial inequality to the

50 largest US metropolitan areas (as of 2014).
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Figure 4: GINI between for 50 largest U.S. metro areas

(a) Census 1980 (b) Census 1990

(c) Census 2000 (d) ACS 2010/2014

Note: Authors processing of U.S. census and ACS data.

3.3 Stylized facts about spatial inequality in U.S. cities

Figures 3 and 4 show spatial inequality curves for the years 1980, 1990, 2000 and 2010/2014.

There are 50 curves in each plot, one for each city.26 The patterns of the curves shown

in the figures indicate three basic facts. First, spatial inequality within and between in-

26Data on demographic size of the 50 largest U.S. MSA are from the Census Bureau and can be down-
loaded from: http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk.
The list of cities, ordered by their size, can be found in table 6 in the online appendix C. We stick
to the 1980 Census definition of metropolitan statistical areas for each of these cities to define the rele-
vant urban space. In this way, within-city patterns of spatial inequality can be meaningfully compared
across decades.
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dividual neighborhoods was larger in 2010/2014 than in 1980, at every distance abscissa.

Second, the patterns of spatial inequality displayed by the between and within curves of

the 50 largest U.S. cities are similar to those recorded for Chicago. The GINI within index

is high even for small distances and rapidly converges to the citywide level of inequality.

The GINI between index fluctuates around 0.3 and smoothly converges to zero for sub-

stantially large (more than 15 miles) individual neighborhoods. The bold dark curves

in the figure represent a fifth degree polynomial fit of the relation between the values of

GINI within and between indices and the neighborhood size. The shape of this curve is

remarkably consistent with spatial inequality curves identified for each city.

The third and final fact is that there is substantial heterogeneity in the levels of

spatial inequality across the 50 cities. This heterogeneity is substantial and differs from

heterogeneity in citywide inequality observed across the 50 cities when the neighborhood

size is larger than 10 miles. For individual neighborhoods of larger size, heterogeneity

in individual neighborhood inequality turns out to have only an “intercept” dimension,

meaning that the degree of heterogeneity around the common trend is uniform across the

distance spectrum over which GINI indices are calculated, while the distance gradient on

spatial inequality is similar across cities when individual neighborhoods are not too small.

The intercept dimension of heterogeneity may be explained by differences in fundamentals

across cities, such as the distribution of skills across local labor markets (Baum-Snow

and Pavan 2013, Moretti 2013), rather than by city-specific characteristics that might

have relevant implications for the sorting patterns of low and high income households.

Differences in gradients may represent city specific spatial patterns in the distribution of

rich and poor households. We associate shrinking heterogeneity of city-specific spatial

inequality patterns around the common trend with convergence in fundamentals across

the cities.

The dynamic of spatial inequality identified for Chicago reflects a general trend of

spatial inequality across major U.S. metro areas. Figure 5 sets out polynomial fits of spa-
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Figure 5: Spatial inequality in major U.S. metro areas (average), 1980, 1990, 2000 and
2010/14

(a) GINI within (b) GINI between

Note: Authors processing on U.S. census and ACS data. Year-specific polynomial fittings of GINIW
and GINIB across 50 largest U.S. metro areas.

tial inequality curves for the 50 largest cities generated by the GINI within and between

indices for 1980, 1990, 2000 and 2010/2014. Average trends confirm the stylized facts

about spatial inequality: spatial inequality within individual neighborhoods of the aver-

age American metro area is high even in small-scale neighborhoods and has been on the

rise over the last 35 years. On the other hand, the spatial inequality curve generated by

the GINI between index of the average American metro area converges to zero smoothly.

Inequality between individual neighborhoods increased in 1990 and stagnated afterwards.

The results support the previous findings of Wheeler and La Jeunesse (2008), while em-

ploying a completely different methodology. Wheeler and La Jeunesse (2008) considered

two different exogenous spatial partitions of US metropolitan areas and reported high and

persistent levels of spatial inequality within block groups. They also pointed out that the

major changes over 1980-2000 were driven by the between component of inequality. This

is reflected in the pattern of the GINI between index.

We find slight evidence of correlation between spatial GINI indices across the 50 cities,
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Figure 6: Taxonomy of major U.S. metro areas, census 2000

Note: Authors processing on 2000 U.S. census data. Spatial inequality at the city level is obtained by
averaging the GINI indices values over the distance spectrum with uniform weighting across distance
levels. The maximum distance is set to 20 miles. Metro areas are grouped according to the GINI indices
levels. High/low GINI values are computed with respect to the a polynomial fitting of GINIW and
GINIB values across 50 largest U.S. metro areas.

suggesting that the two indices probably capture different features of cross sectional spatial

inequality. The 50 metro areas are then grouped accordingly to the taxonomy induced

by average degree of spatial inequality in year 2000, which serve as benchmark. Figure

6 displays the arrangement of cities across the four categories. The 10 largest American

cities can be categorized in three groups. Detroit, for instance, is a polarized city, with

relatively low inequality within the individual neighborhood and high inequality between

neighborhoods. Los Angeles, New York and Chicago, on the contrary, are classified as

unstable cities by our taxonomy based on average trends of spatial inequality. Among the

largest cities, San Francisco and Miami fall into the mixed cities category. None of the 10

largest U.S. cities fits in the even city typology.

The spatial inequality measured by GINI within and between indices as compared
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with citywide income distribution. Spatial inequality, either within or between individ-

ual neighborhoods, displays some positive association with citywide inequality, although

evidence is less conclusive in 2000 and in more recent ACS waves. Furthermore, spatial

inequality is not associated with citywide affluence (captured by the average household

income in the city).27 We conclude that the GINI indices capture separate aspects of

inequality that, on the one hand, are rather stable across larger metropolitan areas in the

U.S., but, on the other hand, cannot be anticipated from the sole knowledge of citywide

income distribution features.

3.4 Income inequality in American neighborhoods and its long-

term consequences

The unequal spatial distribution of high and low incomes across the urban space affects the

long-term prospects of urban residents in different ways. While spatial inequality within

individual neighborhood seems to be relevant for those mechanisms describing how the

place where one grew up or lives has implications for one’s lifelong achievements, spatial

inequality between individual neighborhoods is more associated with sorting motivations.

Here, we are interested in the potential effects of the neighborhood on future outcomes

rather than on sorting implications. For this reason, we focus on the within neighborhood

aspect of spatial inequality. Recent literature has highlighted that inequality at the very

local scale seems to play a key role in two important outcomes: prospects for upward

mobility of the children raised in poor families and life expectancy of poor adults.

Chetty et al. (2014) have documented substantial heterogeneity in income mobility

prospects across American commuting zones. Chetty and Hendren (2016) argue that the

geography of mobility can be associated with the characteristics of the neighborhood where

people grew up. They exploit quasi-experimental approximations to identify and estimate

27See the Online Appendix for an in-depth discussion of these correlations.
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the causal effect of growing up in a neighborhood on income prospects in adulthood.28

Chetty and Hendren (2016) find that the geographic heterogeneity of upward mobility for

the most disadvantaged children poorly correlates with citywide income inequality at the

moment of the move. There are, however, many potential mechanisms explaining how

the socioeconomic composition of the neighborhood experienced when young, rather than

characteristics of the city as a whole, affects future mobility prospects. Some mechanisms

have to do with social interactions among neighbors, others with environmental and in-

stitutional factors (see for instance Leventhal and Brooks-Gunn (2000) and the document

by the Shonkoff and Phillips (2000), Ch. 12). The extent to which these mechanisms pro-

duce effects is, however, probably related to the consequences of the social composition of

the neighborhood as reflected in the degree of income heterogeneity observed on the very

small geographic scale rather than at the citywide level. It is however unclear whether

the implications of these mechanisms are dampened or reinforced by the degree of income

inequality in the individual neighborhood. It therefore seems reasonable to investigate

the association between spatial inequality within individual neighborhoods in the place

of destination and the geography of neighborhood effects on the mobility prospects of

children from disadvantaged families. In line with Chetty and Hendren (2016) identifica-

tion strategy, we propose using the GINI-within index to measure the average degree of

income inequality that children of moving families face in the city of destination.

It has been suggested in the literature that the implications of the neighborhood of

residence extend to individual health outcomes, such as life expectancy. Chetty, Stepner,

Abraham, Lin, Scuderi, Turner, Bergeron and Cutler (2016) use administrative data on

incomes and mortality rates that are representative for the U.S. population for the period

2001-2014, to recover patterns of life expectancy of high and low income people across

28Chetty and Hendren (2016) disentangle the causal effect from implications related to the sorting of
people with different income prospects across commuting zones by exploiting the different times at which
families move across commuting zones. They measure upward mobility by the fraction of the difference
in earnings of children living in the commuting zone of destination compared to earning of children who
did not move from the commuting zone of departure, that a child would obtain by moving in early age.
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U.S. commuting zones. They found sharp differences in life expectancy between low and

high income individuals, irrespective of gender. While life expectancy does not signifi-

cantly vary across commuting zones for high income individuals, geography is a strong

predictor of longevity for the poor. The authors found positive associations between life

expectancy estimates and differences in healthy lifestyle, education and affluence across

U.S. commuting zones. Based on this evidence, it can be conjectured that low income

people benefit from the presence of more educated and affluent neighbors, who might

serve as role models for a healthy lifestyle and consumption (Manley et al. 2012).

Figure 7 shows the association between income inequality within individual neighbor-

hoods of small size (less than 2 miles) and the long-term implications of the neighborhood

of residence across major U.S. MSAs. Panel (a) displays empirical correlations between

causal neighborhood effects estimated in Chetty and Hendren (2016) and GINI-within

indices for the sample of cities included in this study. The GINI-within index for gross

household equivalent income in 2000 is used to measure spatial inequality in the city of

destination at the moment the parents move.29 We find significant evidence of a negative

association of causal neighborhood effects with within spatial inequality in parental in-

comes in neighborhoods of size no larger than two miles.30 The negative relation suggests

the existence of a Great Gatsby curve (Corak 2013) at the individual neighborhood level,

with cities where low-income parents experience on average less unequal income compo-

sition in the close neighborhood these being also cities where their children have larger

upward mobility prospects.

29Causal neighborhood effects in Chetty and Hendren (2016) are estimated by the percentage gain
(or loss) in income at age 26 attributed to spending one more additional year during childhood in a
given commuting zone. These estimates refer to children born 1980-88 whose parents moved to another
commuting zone in 1996-2012, i.e., when the children was nine or older. Spatial income inequality in
2000 is used to represent the average composition of a neighborhood at the moment of the move.

30This evidence suggests that neighborhood effects on children of poor families are also negatively
associated with the degree of inequality between parental individual neighborhoods. This correlation
might capture the implications of negative externalities of neighbors’ income on child performance. Poor
parents that move to cities with a high GINI-b index are more likely to be located in poor areas of the
city, with negative external effects due to the economic status of the local community.
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Indep. var.: Neighborhood effects Life expectancy of the poor
(1) (2) (3) (4) (5) (6) (7) (8)

GINI within -2.727** -2.709** -2.139** -1.964** 33.567** 33.912** 19.129** 10.989
(0.60) (0.60) (0.67) (0.82) (6.63) (6.35) (6.61) (7.08)

% Black -0.002 -0.005** -0.004 -0.047** -0.000 0.006
(0.00) (0.00) (0.00) (0.02) (0.02) (0.02)

% Hispanic -0.004** -0.005** 0.015 -0.002
(0.00) (0.00) (0.01) (0.01)

% Asian 0.004 0.006* 0.132** 0.135**
(0.00) (0.00) (0.03) (0.03)

Ethnic segregation: dissimilarity of Whites wrt:
- Blacks 0.000 -0.025

(0.00) (0.02)
- Hispanics 0.002 0.074**

(0.00) (0.02)
- Asians -0.005 0.001

(0.00) (0.03)
Constant 1.116** 1.143** 0.971** 0.963** 63.035** 63.550** 68.049** 69.431**

(0.26) (0.26) (0.26) (0.27) (2.84) (2.72) (2.58) (2.39)
R-squared 0.310 0.334 0.468 0.494 0.358 0.424 0.607 0.709
N 48 48 48 48 48 48 48 48

Table 3: Spatial inequality within the neighborhood and lifelong individual outcomes
across U.S. cities.
Note: Authors processing of U.S. Census data. Dependent variables are defined as in Figure 7. Data
on ethnic composition within MSA and dissimilarity index values for Whites with respect to Blacks,
Hispanics and Asians are taken from the Diversity and Disparities website hosted by Brown University,
Residential Segregation page (see https://s4.ad.brown.edu/projects/diversity/Data/Download1.htm). Sig-
nificance levels: ∗ = 10% and ∗∗ = 5%.

The link between spatial inequality within individual neighborhoods and life expectancy

estimates is also explored. Panels (b) of Figure 7 display correlation between the longevity

at age 40 for low income males (from Chetty, Stepner, Abraham, Lin, Scuderi, Turner,

Bergeron and Cutler 2016) and the GINI-within index values in the selected sample of

cities. The values of GINI-within in year 2000 are used to measure inequality in the

neighborhood experienced by the population for which more reliable longevity estimates

are available. We find evidence of a positive association of spatial inequality within the

neighborhood and longevity of poor, long-term residents.

The correlations visualized in Figure 7 are robust and their sign and significance re-

main after controlling for relevant features of the citywide income distribution. There is
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a concern in the U.S. that differences in income inequalities registered within the cities

might mask implications of racial composition in the city, as well as racial segregation

within the city. Deaton and Lubotsky (2003), for instance, highlight that the positive

association between citywide income inequality and urban mortality found in the liter-

ature is confounded by the effects of racial composition and racial segregation. Table

3 shows partial effects of spatial inequality on upward mobility prospects and life ex-

pectancy estimates after controlling for the ethnic composition of the city and the degree

of segregation (measured by the dissimilarity index) of the white population compared to

blacks, latinos and asians. Controlling for ethnic size and composition in the cities does

not affect the sign and the significance of the spatial inequality effects on upward mobility

prospects. The sign and significance of the spatial inequality coefficient on life expectancy

regression also survives after controlling for citywide racial composition. There is a loss

of statical power when controlling also for racial segregation, although the magnitude of

the coefficient of spatial inequality remains sizable.

Results in Figure 7 suggest that inequality within the individual neighborhood might

be a relevant policy target if the objective is to improve the income prospects of young

people or the life expectancy of poor residents. However, within neighborhood inequality

has opposite effects on people of different age. For children of poor parents who move

from one place to another, less inequality within the neighborhood of destination tends

to be associated with positive and large upward mobility gains, while a more unequal

neighborhood tends to depress upward mobility prospects. This association seems to re-

flect the prevalence of social interaction mechanisms, such as social contagion or collective

socialization among peers. Contagion has positive implications for the future economic

prospects of children exposed to an advantageous context, the effect being stronger if the

local social structure is more cohesive. Income inequality, measured at the moment of the

move, might capture aspects of cohesiveness within the neighborhood that are relevant for

children mobility prospects of children. In places characterized by lower within individual
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neighborhood inequality, children of poor parents who decide to move across commuting

zones end up in neighborhoods that are on average more cohesive, hence expect stronger

positive neighborhood effects. The effect attenuates as the expected degree of inequality

within the neighborhood rises.

The implications of spatial inequality for life expectancy prospects of poor long-term

residents are reversed. A mixed social environment within individual neighborhoods seems

to increase the life expectancy of poor residents, possibly by offering a wide range of

opportunities and role models. Some institutional mechanisms (stigmatization of bad

behaviors, balanced presence of local market actors) seem to be more effective in hetero-

geneous communities. Similarly, positive aspirations, attitudes and behavior might arise

from a limited exposure to neighbors with similar income profiles.

4 Concluding remarks

We study spatial inequality at the urban level from the perspective of the individual. From

the methodological side, information about the income distribution in the neighborhood

surrounding each individual is exploited to derive new spatial inequality measures con-

nected to the Gini index. We investigate spatial inequality patterns in the 50 largest

U.S. cities from 1980 to 2014 and we establish six stylized facts about spatial inequality:

i) inequality within individual neighborhoods is high also for individual neighborhoods

of small size; ii) inequality between individual neighborhoods is also high and decreases

smoothly with the size of the individual neighborhood; iii) spatial inequality has risen

over the last four decades reflecting the trends of the “Great Inversion” (Ehrenhalt 2012);

iv) spatial inequality is poorly associated with citywide average income and inequality; vi)

American cities can be classified into four distinct groups, on the basis of the values of the

within and between GINI indices; v) spatial inequality within individual neighborhoods

matters for upward mobility prospects of young people and for life expectancy of poor
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residents in America’s cities.
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Online Appendix

A Standard errors and confidence bounds for spatial

inequality measures

A.1 Setting

Let S denote a random field. The spatial process {Ys : s = 1, . . . , n} with s ∈ S is defined
on the random field and is jointly distributed as FS . Suppose data come equally spaced
on a grid, so that for any two points s, v ∈ S such that ||v − s|| = h we write v = s + h.
The process distributed as FS is said to display intrinsic (second-order) stationarity if
E[Ys] = µ, V ar[Ys] = σ2 and Cov[Ys, Yv] = c(h) when the covariance function is isotropic
and v = s+h. Under these circumstances, we denote V ar[Ys+h−Ys] = E[(Ys+h−Ys)2] =
2σ2 − 2c(h) = 2γ(h), the variogram of the process at distance lag h.

Noticing that E[Ys+h · Ys] = σ2− γ(h) + µ2, we can derive a simple formulation of the
covariance between differences in random variables, notably Cov[(Ys+h1 − Ys), (Yv+h2 −
Yv)] = γ(s − v + h1) + γ(s − v − h2) − γ(s − v) − γ(s − v + h1 − h2) as in Cressie
and Hawkins (1980). This assumption holds, in particular, if the spatial data occur on
a transect. Denote s − v = h where h indicates that the random variables are located
within a distance lag of h units. We can hence write Cov[(Ys+h1 − Ys), (Yv+h2 − Yv)] =
γ(|h + min{h1, h2}|) + γ(|h − max{h1, h2}|) − γ(|h|) − γ(|h − |h1 − h2||), which yields
the formula above when h1 > h2. We adopt the convention that γ(−h) = γ(h) in what
follows.

We now introduce one additional distributional assumption. Assume that Ys is gaus-
sian with mean µ and variance σ2. The random variable (Ys+h−Ys) is also gaussian with
variance 2γ(h), which implies |Ys+h− Ys| is folded-normal distributed (Leone, Nelson and
Nottingham 1961), with expectation E[|Ys+h − Ys|] =

√
2/πV ar[Ys+h − Ys] = 2

√
γ(h)/π

and variance V ar[|Ys+h − Ys|] = (1− 2/π)2γ(h).

A.2 GINI indices and the variogram

Under the assumptions listed above, we now show that the GINI indices of spatial inequal-
ity in the population can be written as explicit functions of the variogram. We maintain
the assumption that the spatial random process is defined on a transect, and occurs at
equally spaced lags. For given d, we can thus partition the distance spectrum [0, d] into
Bd intervals of fixed size d/Bd. Each interval is denoted by the index b with b = 1, . . . , Bd.
Abusing notation, we denote with dbi the set of locations at interval b (and thus distant
b · d/Bd) within the range d from location si. The cardinality of this set is ndbi

≤ ndi
≤ n.
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Under these assumptions, the GINI within index rewrites

GINIW (FS , d) =
∑
i

∑
j∈di

1

2nndi

E[|Ysj
− Ysi

|]
µ

=
∑
i

∑
j∈di

1

2nndi

√
4γ(||sj − si||)/π

µ

=
∑
i

1

n

Bd∑
b=1

ndbi

ndi

∑
j∈dbi

1

2nddi

√
4γ(si + b− si)/π

µ

=
1

2

Bd∑
b=1

(∑
i

ndbi

nndi

)√
4γ(b)/π

µ
. (1)

The GINI within index is an average of a concave transformation of the (semi)variogram
function, weighted by the average density of locations at given distance lag b on the
transect. This average is then normalized by the average income, to produce a scale-
invariant measure of inequality. The index can be also conceptualized as a coefficient
of variation, where the standard deviation is replaced by a measure of dispersion that
accounts for the spatial dependence of the underlying process.

Similarly, the spatial GINI between index can also be written as a function of the
variogram. The result holds under the assumption that the process Ys is gaussian, as

above, which implies that µsid = 1
ndi+1

(
Ysi

+
∑

j∈di
Ysj

)
is also gaussian under the in-

trinsic stationarity assumption, with expectation E[µsid] = µ for any i. From this, it
follows that the difference in random variables |µsid − µs`d| occurring in two locations si
and s` is a folded-normal distributed random variable with expectation E[|µsid− µs`d|] =√

2/π V ar[µsid − µs`d]. The variance term can be decomposed as follows:

V ar[µsid − µs`d] = V ar[µsid] + V ar[µs`d]− 2Cov[µsid; µs`d]. (2)
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Developing the variance and covariance terms we obtain:

V ar[µsid] = V ar

[
1

ndi + 1

(
Ysi

+
∑
j∈di

Ysj

)]

=
1

(ndi + 1)2

∑
j∈di∪{i}

∑
k∈di∪{i}

E[Ysj
Ysk

]− µ2

=
1

(ndi + 1)2

∑
j∈di∪{i}

∑
k∈di∪{i}

c(||sj − sk||) (3)

=

Bd∑
b=1

∑
j∈dbi

1

ndi + 1

Bd∑
b′=1

∑
k∈db′i

1

ndi + 1
c(|si + b− (si + b′)|) (4)

= σ2 −
Bd∑
b=1

Bd∑
b′=1

ndbi
ndb′i

(ndi + 1)2
γ(b− b′), (5)

where (3) follows from the definition of the covariogram, (4) is a consequence of the
assumption that the process can be represented on a transect and, for simplicity, it is
assumed that the set of location at b = 1 is d1i ∪ {i} with cardinality ndbi

+ 1, as it
includes location si, while (5) follows from the definition of the variogram. Similarly, the
covariance term in (2) can be manipulated to obtain the following:

Cov[µsid; µs`d] =
∑
j∈di

∑
k∈d`

1

(ndi
+ 1)(nd`

+ 1)
E[YjYk]− µ2

= σ2 −
Bd∑
b=1

Bd∑
b′=1

ndbi
ndb′`

(ndi
+ 1)(nd`

+ 1)
γ(si − s` + |b− b′|), (6)

where the assumption that the process can be represented on a transect allows to write
the variogram as a function of si − s`. Plugging (5) and (6) into (2), and by denoting
i− ` = m to recall that the gap between si and sj is m, with m positive integer such that
m ≤ B with B being the maximal distance between any two locations on the transect,
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we obtain

V ar[µsid − µs`d] =

Bd∑
b=1

Bd∑
b′=1

2
ndbi

ndb′`

(ndi
+ 1)(nd`

+ 1)
γ(si − s` + |b− b′|)−

−
Bd∑
b=1

Bd∑
b′=1

(
ndbi

ndb′i

n2
di

+
ndb`

ndb′`

n2
d`

)
γ(b− b′)

=

Bd∑
b=1

Bd∑
b′=1

2
ndbi

ndb′ i+m

(ndi
+ 1)(ndi+m

+ 1)
γ(m+ |b− b′|)−

−
Bd∑
b=1

Bd∑
b′=1

(
ndbi

ndb′i

n2
di

+
ndb i+m

ndb′ i+m

n2
di+m

)
γ(b− b′)

= V (γ, i,m). (7)

Variogram models usually adopted in the empirical literature guarantee that V (γ, i,m) >
0. Using the notation (7), we derive an alternative formulation of the GINI between index:

GINIB(FS , d) =
1

2

∑
i

∑
`6=i

1

n(n− 1)

E[|µsid − µs`d|]
µ

=
1

2

∑
i

1

n

B∑
m=1

∑
`∈nbi

1

(n− 1)

E[|µsid − µs`d|]
µ

=
1

2

B∑
m=1

(∑
i

1
n

nbi

(n−1)

√
2V (γ, i,m)/π

)
µ

. (8)

Under stationarity assumptions about the spatial process, we can show that the GINI be-
tween index of spatial inequality can be written as an average of coefficients of variations,
each discounted by a weight controlling for the spatial dependency of the process.

Formulations of the GINI within and between indices in (1) and (8) clarify the role of
spatial dependence on the measurement of spatial inequality. Spatial dependence can be
modeled via the variogram. Standard errors and confidence intervals of the GINI indices
can be calculated accordingly.

A.3 Standard errors for the spatial GINI within index

In this section, we derive confidence interval bounds for the GINI within index under
three key assumptions: that the underling spatial process is stationary, that the spatial
process occurs on a transect at equally spaced points, and the gaussian assumption. This
allows to build confidence intervals for the empirical GINI within index estimator of the
form ˆGINIW (y, d) ± zαSEW d, where zα is the standardized normal critical value for
confidence level α and SEW d is the standard error of the GINI within estimator. For a
given empirical income distribution, the confidence interval changes as a function of the
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distance parameter selected. Hence, we can use the confidence interval estimator to trace
confidence bounds for the GINI within curve. Null hypothesis of dominance or equality
for the GINI within curves can be formulated by using confidence bounds as the rejection
region and by defining null hypothesis at each distance point separately (alike to statistical
tests for strong forms of stochastic dominance relations, as in Bishop, Chakraborti and
Thistle 1989, Dardanoni and Forcina 1999).

Asymptotic standard errors (SE in brief) are derived for the weighted GINI within
index. We assume that the random field S is limited to n locations. We index these loca-
tions for simplicity by i such that i = 1, . . . , n. The spatial process is then a collection of
n random variables {Yi : i = 1, . . . , n} that are spatially correlated. The joint distribution
of the process is F . Each location is associated with a weight wi ≥ 0 with w =

∑
iwi,

which might reflect the underling population density at a given location. These weights
are assumed to be non-stochastic. We also assume intrinsic stationarity as before. The
first implication is that, asymptotically, the random variable µid =

∑
j∈di∪{i}

wj∑
j∈di∪{i} wj

Yj

is equivalent in expectation to µ̃ =
∑

i
wi∑
i wi
Yi, i.e., E[µ̃] = µ. The second implication

is that the spatial correlation exhibited by F is stationary in the distance d and can be
represented through the variogram of F , denoted 2γ(d).

An asymptotically equivalent version of the weighted GINI within index of the process
distributed as F where individual neighborhood have size d is

GINIW (F, d) =
1

2µ

n∑
i=1

∑
j∈di

wiwj
2w

∑
j∈di

wj
|Yi − Yj| =

1

2µ
∆W d. (9)

The GINI within index can thus be expressed as a ratio of two random variables. Asymp-
totic SE for ratios of random variables have been developed in Goodman and Hartley
(1958) and Tin (1965). Related results have also been derived from the theory of U-
statistics pioneered in Hoeffding (1948) and adopted to derive asymptotic SE for the Gini
coefficient of inequality under simple and complex random sampling by Xu (2007) and
Davidson (2009). Based on these results, we derive the asymptotic variance of the GINI
within index in (9):

V ar [GINIW (F, d)] =
1

4nµ2
V ar[∆W d] +

(GINIW (F, d))2

nµ2
V ar[µ̃]−

GINIW (F, d)

nµ2
Cov[∆W d, µ̃] +O(n−2), (10)

where the asymptotic SE is SEW d =
√
V ar [GINIW (F, d)] at any d.

The variance and covariance terms in (10) are shown to be relate to the variogram. To
obtain this result, we have to introduce two additional assumptions. The first assumption
is that the process distributed as F occurs on a transect, as explained before. We use
scalars m, b,′ and so on to identify equally spaced points on the transect. Second, we
assume that Yi is gaussian with expectation µ and variance σ2, ∀i. These assumptions
are taken from Cressie and Hawkins (1980). Under these assumptions, the variance of µ̃
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writes

V ar[µ̃] =
∑
i

wi
w

∑
j

wj
w
E[YiYj]− µ2

=
∑
i

wi
w

B∑
m=1

∑
j∈dmi

wj

w

∑
j∈dmi

wj∑
j∈dmi

wj
c(||si − sj||) (11)

=
B∑

m=1

(∑
i

wi
w

∑
j∈dmi

wj

w
c(|m|)

)
(12)

= σ2 −
B∑

m=1

ω(m)γ(m), (13)

where (13) is obtained from (12) by renaming the weight score, which satisfies
∑B

m=1 ω(m) =
1, and by using the definition of the variogram.

The second variance component of (10) can be written as follows:

V ar[∆W d] =
n∑
i=1

∑
j∈di

wiwj
w
∑

j∈di
wj

n∑
`=1

∑
k∈d`

w`wk
w
∑

k∈d`
wk
E[|Yi − Yj||Y` − Yk|]

−

(∑
i

wi
w

∑
j∈di

wj∑
j∈di

wj
E[|Yj − Yi|]

)2

.

The first component of V ar[∆W d] cannot be further simplified, as the absolute value op-
erator enters the expectation term in multiplicative way. Under the gaussian assumption,
the expectation can be nevertheless simulated. This can be done acknowledging that the
random vector (Yj, Yi, Yk, Y`) is normally distributed with expectations (µ, µ, µ, µ) and
variance-covariance matrix Cov[(Yj, Yi, Yk, Y`)] given by:

Cov[(Yj, Yi, Yk, Y`)] =


σ2 c(||sj − si||) c(||sj − sk||) c(||sj − s`||)

σ2 c(||si − sk||) c(||si − s`||)
σ2 c(||sk − s`||)

σ2

 .

Data occur on a transect at equally spaced points, where sj = si + b and sk = s` + b′

for the positive integers b ≤ Bd and b′ ≤ Bd. We take the convention that b′ > b and
we further assume that there is a positive gap m, with m ≤ B between points si and s`.
Using this notation, we can express the variance-covariance matrix as a function of the
variogram

Cov[(Yj, Yi, Yk, Y`)] =


σ2 σ2 − γ(b) σ2 − γ(m− |b′ − b|) σ2 − γ(m+ min{b′, b})

σ2 σ2 − γ(m−max{b′, b}) σ2 − γ(m)
σ2 σ2 − γ(b′)

σ2

 .
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The expectation E[|Yi − Yj||Y` − Yk|] can be simulated from a large number S (say,
S = 10, 000) of independent draws (y1s, y2s, y3s, y4s), with s = 1, . . . , S, from the random
vector (Yj, Yi, Yk, Y`). The simulated expectation is a function of the variogram parameters
m, b, b′ and d and of σ2. It is denoted θW (m, b, b′, d, σ2) and estimated as follows:

θW (m, b, b′, d, σ2) =
1

S

S∑
s=1

|y2s − y1s| · |y4s − y3s|.

With some algebra, and using the fact that E[|Y` − Yi|] = 2
√
γ(m)/π for locations ` and

i at distance m ≤ B one from each other, it is then possible to write the term V ar[∆W d]
as follows:

V ar[∆W d] =
B∑

m=1

Bd∑
b=1

Bd∑
b′=1

ω(m, b, b′, d)θW (m, b, b′, d, σ2)

−4

(
Bd∑
m

ω(m, d)
√
γ(m)/π

)2

. (14)

In the formula, ω(m, b, b′, d) =
∑

i
wi

w

∑
j∈dbi

wj∑
j∈di

wj

∑
`∈dmi

w`

w

∑
k∈db′`

wk∑
k∈d`

wk
while ω(m, d) =∑

i
wi

w

∑
j∈dmi

wj∑
j∈di

wj
are calculated as before.

The third component of (10) is the covariance term. It also depends on the variogram.
The result relies on the following equivalence, when the process is define on the transect
and i and j are separated by b units of spacing while i and ` are separated by m unit of
spacing:

E[|Yj − Yi|Y`] = E[|YjY` − YiY`|] = E[YjY`]− E[YiY`]− 2E[min{YjY` − YiY`, 0}]
= c(||sj − s`||) + µ2 − c(||si − s`||)− µ2 − 2E[min{YjY` − YiY`, 0}]
= γ(m)− γ(m− b)− 2E[min{YjY` − YiY`, 0}]. (15)

The expectation E[min{YjY` − YiY`, 0}] is non-liner in the underlying random variables.
Under the gaussian hypothesis it can be nevertheless simulated from a large number
S (say, S = 10, 000) of independent draws (y1s, y2s, y3s), with s = 1, . . . , S, from the
random vector (Yj, Yi, Y`) which is normally distributed with expectations (µ, µ, µ) and
variance-covariance matrix Cov[(Yj, Yi, Y`)]. As the process occurs on the transect, the
variance-covariance matrix writes

Cov[(Yj, Yi, Y`)] =

 σ2 σ2 − γ(b) σ2 − γ(m)
σ2 σ2 − γ(m− b)

σ2


for given m, b and d. The resulting simulated expectation is denoted φW (m, b, d, σ2) and
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computed as follows:

φW (m, b, d, σ2) =
1

S

S∑
s=1

min{y2sy3s − y1sy3s, 0}.

Based on this result, we develop the covariance term in (10) as follows:

Cov[∆W d, µ̃] =
∑
i

wi
w

∑
j∈di

wj∑
j∈di

wj

∑
`

w`
w
E[|Yj − Yi|Y`]

−µ
∑
i

wi
w

∑
j∈di

wj∑
j∈di

wj
E[|Yj − Yi|]

=
B∑

m=1

Bd∑
b=1

ω(m, b, d)
[
γ(m)− γ(m− b)− 2φW (m, b, d, σ2)

]
−2µ

Bd∑
m=1

ω(m, d)
√
γ(m)/π. (16)

The weights in (16) coincide respectively with ω(m, b, d) =
∑

i
wi

w

∑
`∈dmi

w`

w

∑
j∈dbi

wj∑
j∈di

wj

and ω(m, d) =
∑

i
wi

w

∑
j∈dmi

wj∑
j∈di

wj
. The variogram appears in the second term of (16)

is it was the case in (14).
A consistent estimator for the SE, denoted ŜEW d, can be obtained by plugging into

(10) the empirical counterparts of the variogram and the lag-dependent weights, using
the formulas in (13), (14) and (16). These estimators are discussed in section A.5.

A.4 Standard errors for the spatial GINI between index

Estimation of confidence interval bounds ˆGINIB(y, d) ± zαSEB d for the GINI between
index are obtained under the same assumptions outlined in the previous section. As
before, we assume that the spatial process {Ys : s ∈ S} is limited to n locations. We
index these locations for simplicity by i such that i = 1, . . . , n. The spatial process is then
a collection of n random variables {Yi : i = 1, . . . , n} that are spatially correlated. The
joint distribution of the process is F . Each location is associated with a weight wi ≥ 0
with w =

∑
iwi. These weights are assumed to be non-stochastic.

Under stationary assumptions, the neighborhood averages µid =
∑

j∈di∪{i}
wj∑

j∈di∪{i} wj
Yj

and µd =
∑

i
wi

w
µid are equivalent in distribution to µ̃, and hence µ̃ can be used to assess

V ar[µd], as V ar[µd] = V ar[µ̃]. Similar conclusions cannot be drawn for measures of linear
association involving µd.

An asymptotically equivalent version of the weighted GINI within index of the process
distributed as F where individual neighborhood have size d is

GINIW (F, d) =
1

2µ

n∑
i=1

n∑
j=1

wiwj
w2
|µid − µjd| =

1

2µ
∆B d. (17)
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We use results on variance estimators for ratios to derive the SE of (17):

V ar [GINIB(F, d)] =
1

4nµ2
V ar[∆B d] +

(GINIB(F, d))2

nµ2
V ar[µ̃]−

−GINIB(F, d)

nµ2
Cov[∆B d, µd] +O(n−2), (18)

where the asymptotic SE is SEB d =
√
V ar [GINIB(F, d)] at any d.

The variance and covariance terms in (18) are shown to be related to the variogram. To
obtain this result, we have to introduce two additional assumptions. The first assumption
is that the process distributed as F occurs on a transect, as explained before. We use
scalars m, b, b′ and so on to identify equally spaced points on the transect. Second, we
assume that Yi is gaussian with expectation µ and variance σ2, ∀i.

The variance V ar[µ̃], which represents the population estimator for µ, is given as in
(12).

The second variance component in (18) can be written as follows:

V ar[∆B d] =
∑
i

∑
j

wiwj
w2

∑
`

∑
k

w`wk
w2

E[|µid − µjd||µ`d − µkd|]

−

(∑
i

wi
w

∑
j

wj
w
E[|µjd − µid|]

)2

. (19)

The first component of V ar[∆B d] cannot be further simplified as the absolute value oper-
ator enters the expectation term in multiplicative way. Under the gaussian assumption,
the expectation can be nevertheless simulated. This can be done acknowledging that the
random vector (µjd, µid, µkd, µ`d) is normally distributed with expectations (µ, µ, µ, µ) and
variance-covariance matrix C of size 4× 4. The cells in the matrix C are indexed accord-
ingly to vector (µjd, µid, µkd, µ`d), so that element C12 is used, for instance, to indicate the
covariance between the random variables µjd and µid. The sample occurs on a transect.
We use scalars b and b′ to denote a well defined distance gap between any location indexed
by {j, i, k, `} and any other location that is b or b′ units away from it, within a distance
range d. We use scalars m to indicate the gap between i and `, so that ` = i + m; we
use m′ to indicate the gap between i and j, so that j = i+m′ and we use m′′ to indicate
the gap between k and `, so that ` = k + m′′. Based on this notation, we can construct
a weighted analog of (6) to explicitly write the elements of C as transformations of the
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variogram. This gives:

C11 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω1(b, d)ω1(b
′, d)γ(b− b′),

C22 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω2(b, d)ω2(b
′, d)γ(b− b′),

C33 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω3(b, d)ω3(b
′, d)γ(b− b′),

C44 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω4(b, d)ω4(b
′, d)γ(b− b′),

C12 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω1(b, d)ω2(b
′, d)γ(m′ + |b− b′|),

C13 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω1(b, d)ω3(b
′, d)γ(m+ |b− b′|),

C14 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω1(b, d)ω4(b
′, d)γ(m+ |b− b′|),

C23 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω2(b, d)ω3(b
′, d)γ(m+ |b− b′|),

C24 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω2(b, d)ω4(b
′, d)γ(m+ |b− b′|),

C34 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω3(b, d)ω4(b
′, d)γ(m′′ + |b− b′|),

where we denote, for instance, ω1(b, d) =
∑

j
wj

w

∑
j′∈db j

wj′∑
j′∈dj

wj′
and similarly for the

other elements.
The expectation E[|µjd−µid||µkd−µ`d|] can be simulated from a large number S (say,

S = 10, 000) of independent draws (ȳ1s, ȳ2s, ȳ3s, ȳ4s), with s = 1, . . . , S, of the random
vector (µjd, µid, µkd, µ`d). The simulated expectation will be a function of the variogram
parameters m, m′, m′′ and d and of σ2. It is denoted θB(m,m′,m′′, d, σ2) and estimated
as follows:

θB(m,m′,m′′, d, σ2) =
1

S

S∑
s=1

|ȳ2s − ȳ1s| · |ȳ4s − ȳ3s|.

The summations in V ar[∆B d] run over four indices i, j, k, `. These can be equivalently
represented through summations at given distance lags m,m′,m′′. For instance, we write
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∑
i
wi

w

∑
j
wj

w
=
∑B

m′=1

∑
i
wi

w

∑
j∈dm′i

wj

w
to indicate that i and j are separated by a lag

of m′ units on the transect. Repeating this for each of the three pairs of indices i, j and
`, k and i, ` we end up with three summations over m′, m′′ and m respectively, where the
aggregate weight is denoted

ω(m,m′,m′′, d) =
∑
i

wi
w

∑
j∈dm′i

wj
w
·
∑
`

w`
w

∑
k∈dm′′`

wk
w
·
∑
i

wi
w

∑
`∈dmi

w`
w
.

Hence, the first term of the V ar[∆B d],
∑

i

∑
j
wiwj

w2

∑
`

∑
k
w`wk

w2 E[|µid − µjd||µ`d − µkd|],
can be written as follows:

B∑
m=1

B∑
m′=1

B∑
m′′=1

ω(m,m′,m′′, d)θB(m,m′,m′′, d, σ2). (20)

As of the second term of V ar[∆B d], we make use of the gaussian assumption and the
variogram properties to express the square of the expectation as a weighted analog of (8),
that is

V ar[∆B d] = E

[∑
i

∑
j

wiwj
w2
|µid − µjd|

]2

=

(∑
i

∑
j

wiwj
w2

E[|µid − µjd|]

)2

=

(∑
i

∑
j

wiwj
w2

√
V ar[|µid − µjd|]

√
2

π

)2

=
2

π

(∑
i

wi
w

B∑
m′=1

∑
j∈dmi

wj

w

∑
j∈dmi

wj∑
j∈dmi

wj

√
V ar[|µid − µjd|]

)2

=
2

π

(
B∑

m′=1

∑
i

∑
j∈dmi

ωij(m, d)
√
V ar[|µid − µjd|]

)2

(21)

where

V ar[|µid − µjd|] =

Bd∑
b=1

Bd∑
b′=1

2ωij(b, b
′, d)γ(m− |b− b′|)− (ωi(b, b

′, d) + ωj(b, b
′, d))γ(b− b′).

Both weighting schemes in (20) and in (21) cannot be easily estimated in reasonable
computation time: they involve multiple loops across the observed locations, so that the
length of estimation increases exponentially with the density of the spatial structure. In
section A.5 we discuss estimators of the weights ωij(m,m

′,m′′, d), ωij(m, d), ωij(b, b
′, d),

ωi(b, b
′, d) and ωj(b, b

′, d) that are feasible, and provide the empirical estimator of the
variance V ar[∆B d].
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The third component of (18) is the covariance term Cov[∆B d, µd]. The indices i, j, `
identify three locations and the average income in the respective neighborhoods, repre-
sented by the vector (µid, µjd, µ`d). Under normality and stationarity assumptions, we can
write the covariance term as follows

Cov[∆B d, µd] = Cov[
∑
i

∑
j

wiwj
w2
|µid − µjd|,

∑
`

w`
w
µ`d]

=
∑
`

w`
w
Cov[

∑
i

∑
j

wiwj
w2
|µid − µjd|, µ`d]

=
∑
`

w`
w

∑
i

∑
j

wiwj
w2

E[|µid − µjd|µ`d]−

−
∑
`

w`
w
E[µ`d]

∑
i

∑
j

wiwj
w2

E[|µid − µjd|]

=
∑
`

w`
w

∑
i

∑
j

wiwj
w2

E[|µid − µjd|µ`d]−

−
√

2

π
µ
∑
i

∑
j

wiwj
w2

√
V ar[µid − µjd]. (22)

The first term of (22) is the expectation of a non-linear function of convex combinations of
normally distributed random variables. Under the gaussian hypothesis, the expectation
E[|µid−µjd|µ`d] can be nevertheless simulated from a large number S (say, S = 10, 000) of
independent draws (ȳ1s, ȳ2s, ȳ3s) with s = 1, . . . , S from the random vector (µid, µjd, µ`d)
which is normally distributed with expectations (µ, µ, µ) and variance-covariance matrix
C of size 3×3. Let use scalars b and b′ to denote a well defined distance gap between any
observation indexed by {i, j, `} and any other observation that is b or b′ units away from
it, within a distance boundary d. We use scalars m′ to indicate the gap between i and j,
so that j = i + m′; we use m′′ to indicate the gap between i and `, so that ` = i + m′′.
Based on this notation, we obtain a convenient formulation for the covariances of mean
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neighborhood incomes that are weighted analog of (6), thus giving:

C11 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω1(b, d)ω1(b
′, d)γ(b− b′),

C22 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω2(b, d)ω2(b
′, d)γ(b− b′),

C33 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω3(b, d)ω3(b
′, d)γ(b− b′),

C12 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω1(m
′ + b, d)ω2(b

′, d)γ(m′ + |b− b′|),

C13 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω1(b, d)ω3(m
′′ + b′, d)γ(m′′ + |b− b′|),

C23 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω2(m
′ + b, d)ω3(m

′′ + b′, d)γ(|m′ −m′′|+ |b− b′|),

where we denote, for instance, ω1(b, d) =
∑

i
wi

w

∑
i′∈db i

wi′∑
i′∈di

wi′
and similarly for the other

elements. See previous notation for further details. The expectation E[|µjd − µid|µ`d] is
simulated from a number S of independent draws (ȳ1s, ȳ2s, ȳ3s) with s = 1, . . . , S of
the random vector (µjd, µid, µ`d). The simulated expectation will be a function of the
variogram parameters m′, m′′ and d and of σ2. It is denoted θB(m,m′,m′′, d, σ2) and
estimated as follows:

φB(m′,m′′, d, σ2) =
1

S

S∑
s=1

|ȳ2s − ȳ1s|ȳ3s.

This element is constant over m′ and m′′. Hence, we use φB(m′,m′′, d, σ2) as a simulated
analog for E[|µid−µjd|µ`d], so that the covariance term

∑
`
w`

w

∑
i

∑
j
wiwj

w2 E[|µid − µjd|µ`d]
writes

∑
`
w`

w

∑
i

∑
j
wiwj

w2 φB(m′,m′′, d, σ2), or equivalently

∑
i

wi
w

B∑
m′=1

∑
j∈dm′i

wj

w

B∑
m′′=1

∑
`∈dm′′i

w`

w
φB(m′,m′′, d, σ2),

which is denoted
∑B

m′=1

∑B
m′′=1 ω(m′,m′′, d)φB(m′,m′′, d, σ2).

The second term of (22) is calculated as in (21). Overall, we are now allowed to write
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the covariance term as follows:

Cov[∆B d, µd] =
B∑

m′=1

B∑
m′′=1

ω(m′,m′′, d)φB(m′,m′′, d, σ2)

−
√

2

π
µ

B∑
m′=1

∑
i

∑
j∈dmi

ωij(m, d)
√
V ar[|µid − µjd|], (23)

where

V ar[|µid − µjd|] =

Bd∑
b=1

Bd∑
b′=1

2ωij(b, b
′, d)γ(m− |b− b′|)− (ωi(b, b

′, d) + ωj(b, b
′, d))γ(b− b′)

The weights have been already defined in (21). Plugging (13), (20), (21) and (23) into
(18) we derive an estimator for the GINI within index SE. The last section discuss feasible
estimators.

A.5 Implementation

Consider a sample of size n of income realizations yi with i = 1, . . . , n. The income
vector y = (y1, . . . , yn) is a draw from the spatial random process {Ys : s ∈ S}, while for
each location s ∈ S we assume to observe, at most, one income realization. Information
about location of an observation i in the geographic space S under analysis is denoted
by si ∈ S, so that a location s identifies a precise point on a map. Information about
latitude and longitude coordinates of si are given. In this way, distance measures between
locations can be easily constructed. In applications involving geographic representations,
the latitude and longitude coordinates of any pair of income yi, yj can be combined to
obtain the geodesic distance among the locations of i and of j. Furthermore, observed
incomes are associated with weights wi ≥ 0 and are indexed according to the sample units,
with w =

∑
iwi. It is often the case that the sample weights give the inverse probability

of selection of an observation from the population.
The mean income in an individual neighborhood of range d, µid, is estimated by

µ̂id =
∑n

j=1 ŵjyj where

ŵj :=
wj · 1(||si − sj|| ≤ d)∑
j wj · 1(||si − sj|| ≤ d)

so that
∑

j ŵj = 1, and 1(.) is the indicator function. The estimator of the average
neighborhood mean income is instead µ̂d =

∑n
i=1

wi

w
µ̂id. The estimator of the GINI

between index of spatial inequality, denoted ˆGINIB(y, d), is the Gini inequality index
of the vector of estimated average incomes (µ̂1d, . . . , µ̂nd), indexed by the size d of the
individual neighborhood. It can be computed by mean of the plug-in estimators as in
Binder and Kovacevic (1995) and Bhattacharya (2007). The estimator of the GINI within
index of spatial inequality, denoted ˆGINIW (y, d), is the sample weighted average of the
mean absolute deviation of the income of an individual located in s from the income of
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other individuals located in s′, with ||s− s′|| ≤ d. Formally

ˆGINIW (y, d) =
n∑
i=1

wi
w

1

2µ̂id

n∑
j=1

ŵj |yi − yj|,

where ŵj is defined as above.
The estimation of the GINI indices is conditional on d, which is a parameter under

control of the researcher. The distance d is conventionally reported in meters and is meant
to capture a continuous measure of individual neighborhood. In practice, however, one
cannot produce estimates of spatial inequality for a continuum of neighborhoods, and so
in applications the neighborhood size is parametrized by the product of the number and
size of lags between observations. The GINI indices are estimated for a finite number of
lags and for a given size of the lags. The maximum number of lags indicates the point at
which distance between observations is large enough that the spatial GINI indices converge
to their respective asymptotic values. For a given neighborhood of size d, we can then
partition the distance interval [0, d], defining the size of a neighborhood, into K intervals
d0, d1, . . . , dK of equal size, with d0 = 0. The distance between any pair of observations
i and j located at distance dk−1 < ||si − sj|| ≤ dk one from the other is assumed to be

dk. The pairs (dk, ˆGINIB(y, dk)) and (dk, ˆGINIW (y, dk)) for any k = 1, . . . , K can be
hence plotted on a graph. The curves resulting by linearly interpolating these points are
the empirical equivalent of the GINI spatial inequality curves.

A plug-in estimator for the asymptotic standard error of the GINI indices can be
derived under the assumptions listed in the previous sections. The SE estimator crucially
depend on four components: (i) the consistent estimator for the average µ̃, denoted µ̂,
which coincides with the sample average; (ii) the consistent estimator for variance σ2,
denoted σ̂2, which is given by the sample variance; (iii) the consistent estimator for the
variogram; (iv) the estimator of the weighting schemes.

Empirical estimators µ̂ and σ̂2 are standard. The robust non-parametric estimator
of the variogram proposed by Cressie and Hawkins (1980) can be used to assess the
pattern of spatial dependency from spatial data on income realizations. The empirical
variogram is defined for given spatial lags, meaning that it produces a measure of spatial
dependence among observations that are located at a given distance lag one from the
others. Under the assumption that data occur on the transect at equally spaced points,
we use b = 1, . . . , B to partition the empirical spectrum of distances between observed
locations into equally spaced lags, and we estimate the variogram on each of these lags.
This means that 2γ(b) refers to the correlation between incomes placed at distance lags of
exactly b distance units. It is understood that the size of the sample is large compared to
B, in the sense that the sampling rate per unit area remains constant when the partition
into lags becomes finer. This assumption allows to estimate a non-parametric version
of the variogram at every distance lag. Following Cressie (1985), we use weighted least
squares to fit a theoretical variogram model to the empirical variogram estimates. The
theoretical model consists in a continuous parametric function mapping distance into the
corresponding variogram level. In the application, we choose the spherical variogram
model for γ (see Cressie 1985). We also assume that γ(0)→ 0 and that γ(a) = σ2, where
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a is the so-called range level: beyond distance a, the random variables Ys+h and Ys with
h > a are spatially uncorrelated. Under the assumption that data occur on a transect,
we set the max number of lags B so that 2B = a. The parameters of the variogram
model are estimated via weighted least squares, where the non-parametric variogram
coordinates are regressed on distance lags. The estimated parameters are then used to
draw parametric predictions for the estimator 2γ̂ of the variogram at pre-determined
abscissae (distance lags). The predictions are then plugged into the GINI indices SE
estimators. Cressie (1985) has shown that this methodology leads to consistent estimates
of the true variogram function under the stationarity assumptions mentioned above.

Finally, SE estimation requires to produce reliable estimators of the weights ω. These
can be non-parametrically identified from the formulas provided above. In some cases,
however, computation of the exact weights requires looping more than once across ob-
servations. The overall computation time thus increases exponentially in the number of
observations and the procedure becomes quickly unfeasible. We propose alternative, fea-
sible estimator for these weights, denoted ω̂, that are expressed as linear averages. The
computational time is, nevertheless, quadratic in the number of observations as it requires
at least one loop across all observations.

We consider here only the weights that appear in the estimators ŜEW d in (10) and
ŜEB d in (18) that cannot be directly inferred (i.e., are computationally unfeasible) from
observed weights. For a given observation i, define w(b, i) =

∑
j∈dbi

wj for any gap b =
1, . . . , Bd, . . . , B the weight associated with income realizations that are exactly located
b lags away from i. Then, denote w(d, i) =

∑
j∈di

wj =
∑Bd

b=1w(b, i). We construct the
following estimators for the weights appeasing in the GINI within SE estimator:

For (14) : ω̂(m, b, b′, d) =
∑
i

wi
w

w(b, i)

w(d, i)

w(m, i)

w

w(m+ b′, i)

w(m+ d, i)
,

For (16) : ω̂(m, b′, d) =
∑
i

wi
w

w(m, i)

w

w(b′, i)

w(d, i)
,

To compute these weights, one has to loop over all observations twice, and assign to each
observation i the total weight w(b, i) of those observations j 6= i that are located exactly
at distance b from i. Then, ω̂(m, b, b′, d) and ω̂(m, b′, d) are obtained by averaging these
weights across i’s. The key feature of these estimators is that second-order loops across
observations placed at distance b′ from an observation at distance m from i are estimated
by averaging across all observations i the relative weight of observations at distance m+b′

from ay i.
For the computation of the GINI between index, one needs to construct the relative

weights by taking as a reference the maximum distance achievable, and not the reference
abscissa d for which the index is calculated. We hence assume that beyond the threshold d,
indicating half of the the maximum distance achievable in the sample, spatial correlation
is negligible and weights can thus be set to zero. We implicitly maintain that d ≤ d. We
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then propose the following estimators:

For (20) : ω̂(m,m′,m′′, d) =
∑
i

wi
w

w(m′, i)

w(d, i)

w(m, i)

w(d, i)

w(m+m′′, i)

w(m+ d, i)

For (21) : ω̂ij(b, b
′, d) =

w(b, i)

w(d, i)

w(m+ b′, i)

w(m+ d, i)

For (21) : ω̂i(b, b
′, d) =

w(b, i)

w(d, i)

w(b′, i)

w(d, i)

For (21) : ω̂j(b, b
′, d) =

w(m+ b, i)

w(m+ d, i)

w(m+ b′, i)

w(m+ d, i)

For (21) :
∑
i

∑
j∈dmi

ω̂ij(m, d) =
∑
i

wi
w

w(m, i)

w

By plugging these estimators into (19) we obtain the implementable estimator of the
variance component V ar[∆B d], defined as follows:

V̂ ar[∆B d] =
B∑

m=1

B∑
m′

B∑
m′′=1

ω̂(m,m′,m′′, d)θB(m,m′,m′′, d, σ̂2)−

2

π

(
B∑

m′=1

∑
i

wi
w

w(m, i)

w

√
V̂ ar[|µid − µjd|]

)2

(24)

where

V̂ ar[|µid − µjd|] =

Bd∑
b=1

Bd∑
b′=1

2ω̂ij(b, b
′, d)γ̂(m− |b− b′|)− (ω̂i(b, b

′, d) + ω̂j(b, b
′, d))γ̂(b− b′).

An equivalent procedure, based on analogous weighting scheme, has to be replicated
to determine the empirical estimator for (23).

59



B Additional results

B.1 Inference results for spatial inequality curves, Chicago (IL)

Figure 8 show that, in general, the gap in GINI within indices is small and never sig-
nificant, not even at 10% confidence level. Essentially, there is no statistical support to
conclude that the GINI curves for within spatial inequality have changed across time, a
result which holds irrespectively of the extent of individual neighborhood. We draw a
different conclusion for what concerns changes associated to the GINI between inequality
curves. Pairwise differences across these curves, along with their confidence intervals, are
reported in Figure 9. The differences in inequality curves compared to the spatial inequal-
ity curve of the year 1980 (panels (a), (b) and (c) of the figure) are generally positive and
significant at 5% confidence level. This indicates that spatial inequality between indi-
vidual neighborhood has increased compared to the initial period, roughly homogenously
with respect to the individual neighborhood spatial extension. After that period, data
display very little statistical support to changes in inequality across the 1990’ and 2000’.
Spatial between inequality has slightly increased after 1990 (panels (d) and (e)), while it
has remained stable after 2000 (panel (f)). In the latter case, the confidence bounds of
the difference in spatial inequality curves of years 2010/2014 and 2000 fluctuates around
the horizontal axis.

We use estimates of the GINI standard errors to study the pattern of the spatial in-
equality curves. More specifically, we compute differences in the GINI within GINIW (d)
or between GINIB(d) indices at various abscissae d, then we compute the standard errors
of these differences, and finally we test if these differences are significantly different than
zero. If they are, we study how spatial inequality evolves with the size of the neigh-
borhood. In particular, the sign of these differences predicts the direction of the change
in spatia inequality. We refer to five distance thresholds defining neighborhoods that
are very small (100 meters, 300 meters), relatively large (1km, 5km), and very inclusive
neighborhoods (10km, 25km), which include most of the urban space under analysis. The
resulting differences are reported in Table 4. We note that the dip in the spatial inequality
curve associated with the GINI within is not statistically significant, since most of the
changes in spatial inequality in very large neighborhoods is substantially equivalent to
the spatial inequality observed for very small neighborhoods (between 100 to 300 meters
of size). For 1990 and 2000, we find a statistically significant increase in inequality when
average size neighborhoods (1km of radius) are compared with very large concepts of
neighborhoods. Overall, the GINI within pattern is substantially flat when the distance
increases beyond 5km. The pattern registered for the GINI between index is much more
clear-cut: generally, the spatial inequality curve constructed from the index is decreasing
in distance (differences in GINI between are always negative), and the patterns of changes
are also significant at 5%, indicating strong reliability on the pattern of heterogeneity in
average income distribution across neighborhoods.
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Figure 8: Differences in spatial GINI within indices over four decades, Chicago (IL)

(a) GINIW 1990 - GINIW 1980 (b) GINIW 2000 - GINIW 1980

(c) GINIW 2014 - GINIW 1980 (d) GINIW 2000 - GINIW 1990

(e) GINIW 2014 - GINIW 1990 (f) GINIW 2014 - GINIW 2000

Note: Authors elaboration on U.S. decennial Census data and 2010/14 CS data. The income concept
is equivalent gross annual household income. Confidence bounds at 95% are based on standard error
estimators discussed in the appendix A.

61



Figure 9: Differences in spatial GINI between indices over four decades, Chicago (IL)

(a) GINIB 1990 - GINIB 1980 (b) GINIB 2000 - GINIB 1980

(c) GINIB 2014 - GINIB 1980 (d) GINIB 2000 - GINIB 1990

(e) GINIB 2014 - GINIB 1990 (f) GINIB 2014 - GINIB 2000

Note: Authors elaboration on U.S. decennial Census data and 2010/14 CS data. The income concept
is equivalent gross annual household income. Confidence bounds at 95% are based on standard error
estimators discussed in the appendix A.
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Figure 10: Spatial inequality, income inequality and average incomes across U.S. cities.

(a) Within and between GINI, 1980 (b) Within and between GINI, 2010/14

(c) Spatial and citywide inequality (d) Spatial inequality and citywide income

Note: Authors elaboration on U.S. Census and ACS data for 50 largest U.S. cities in 2014. Spatial
inequality computed at distance range of two kilometers. Citywide income inequality and average incomes
are based on block-group level household equivalent gross income estimates. Average income is normalized
to have zero average and unit standard deviation over the weighted selected sample of 50 cities. Gray
lines correspond to sample weighted averages of within and between GINI indices. Vertical spikes identify
the 95% confidence bounds of regression predictions.
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Index Year Differences across distances
300m vs 1km vs 5km vs 25km vs 10km vs 25km vs 25km vs

100m 100m 100m 100m 2km 2km 10km
GINIW 1980 -0.004 -0.012 -0.006 0.015 0.013 0.025 0.012

(0.019) (0.020) (0.020) (0.021) (0.021) (0.023) (0.023)
1990 -0.006 -0.019 0.003 0.037* 0.036 0.051** 0.015

(0.022) (0.022) (0.021) (0.021) (0.022) (0.023) (0.021)
2000 -0.004 -0.016 -0.002 0.035* 0.034 0.050** 0.016

(0.017) (0.017) (0.020) (0.021) (0.021) (0.022) (0.024)
2010 -0.000 -0.004 0.001 0.033 0.019 0.036 0.017

(0.017) (0.018) (0.019) (0.021) (0.021) (0.023) (0.024)
GINIB 1980 -0.020** -0.087** -0.151** -0.239** -0.061** -0.120** -0.059**

(0.002) (0.002) (0.003) (0.003) (0.002) (0.002) (0.003)
1990 -0.012** -0.084** -0.171** -0.280** -0.097** -0.160** -0.064**

(0.004) (0.003) (0.004) (0.004) (0.003) (0.003) (0.004)
2000 -0.009** -0.060** -0.130** -0.237** -0.095** -0.152** -0.057**

(0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003)
2010 -0.019** -0.083** -0.160** -0.261** -0.084** -0.141** -0.058**

(0.002) (0.002) (0.003) (0.003) (0.003) (0.002) (0.003)

Table 4: Patterns of GINI indices across distance levels
Note: Authors elaboration on U.S. Census data. Each column report differences in GINI indices at
various distance thresholds. SE of the distance estimate are reported in brackets. Significance levels:
∗ = 10% and ∗∗ = 5%.

B.2 Spatial inequality in the largest U.S. metro areas

Figure 3 and Figure 4 report patterns of spatial inequality measured by GINI within and
between indices for the 50 largest U.S. metro area (as of 2014). At any given distance
abscissa, the graphs display substantial heterogeneity in measured spatial inequality across
the metro areas. We correlate variability observed at a given distance threshold of two
kilometers with characteristics of the city. We find that the GINI within and between
indices capture dimensions of inequality that are not necessarily interconnected. Although
both indices should converge to precise values when the neighborhood size is very small
or very large, the in-between patterns capture different aspects of the joint distribution
of incomes and locations. In panel (a) an (b) of Figure 10 we display the joint pattern
of the two indices computed for the spatial distributions of incomes in the 50 largest
U.S. cities. In this way, we capture substantial heterogeneity both in the geography and
the inequality of urban income distributions. We compute both indices for individual
neighborhoods of size 1km using 1980 Census data and 2010/14 ACS data. As the figure
shows, the two dimensions of spatial inequality seem slightly positively correlated in 1980,
although there is little statistical support for this claim. The 2010/14 ACS data do not
reveal significance correlations of within and between GINI indices. Lack of correlation
of within and between components of spatial inequality can be attributed to the fact that
GINI within and the GINI between indices do not result from decomposing the citywide
Gini index (or another additively separable index, for which negative correlation should
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arise), but rather they aggregate different aspects of the distribution of incomes within
and across individual neighborhoods.

Figure 10.(c) displays the empirical relation between citywide inequality (measured
by the Gini index) and spatial inequality. The degree of association is visualized by the
slopes of the regression lines. We examine both within and between spatial inequality for
the Census year 1980 and for ACS 2010/14 data, for an individual neighborhood of size
two kilometers. As expected, the citywide Gini index and the GINI indices are positively
correlated. Heterogeneity of GINI between indices around the regression lines is, however,
substantially larger than heterogeneity in GINI within, thus indicating less reliability in
these latter correlations. In both cases, the degree of association between spatial and
citywide inequality is slightly decreasing over time. Figure 10.(d) shows the association
among GINI indices and city affluence (measured by the normalized average equivalent
income in each city). Results are less clear-cut and we do not detect a remarkable as-
sociation between city affluence and GINI spatial inequality, both in the within and the
between form. This is somehow expected, as the GINI indices capture relative notions of
inequality (thus improving comparability across cities that differ in affluence).
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C Statistics for selected U.S. cities

City Year # Blocks Hh/block Eq. scale Equivalent household income
Mean 20% 80% Gini 90%/10%

New York (NY) 1980 6319 1318 1.572 12289 4601 19034 0.474 11.247
1990 6774 1664 2.058 22763 7799 35924 0.507 13.013
2000 6618 1537 1.604 41061 12196 66542 0.549 25.913

2010/14 7182 1140 1.566 56558 19749 92656 0.502 17.323

Los Angeles (CA) 1980 5059 1052 1.615 14697 6167 22248 0.441 10.735
1990 5905 1585 2.012 26434 10509 41048 0.475 12.391
2000 6103 1158 1.690 38844 13720 59767 0.509 19.256

2010/14 6385 1107 1.649 55224 19056 90324 0.505 13.628

Chicago (IL) 1980 3756 1122 1.630 13794 5798 20602 0.434 11.351
1990 4444 1217 2.029 21859 9132 32316 0.461 11.903
2000 4691 1173 1.625 41193 16076 61667 0.473 11.533

2010/14 4763 1060 1.575 55710 20022 89856 0.486 13.452

Houston (TX) 1980 1238 1253 1.624 15419 6900 22718 0.428 10.233
1990 2531 1291 1.994 22827 10203 33287 0.462 11.771
2000 2318 1418 1.667 39231 16619 57539 0.472 10.736

2010/14 2781 2148 1.644 55841 22156 88033 0.484 12.394

Philadelphia (PA) 1980 3978 855 1.650 12651 5589 18557 0.410 10.245
1990 3300 1384 2.001 21816 9601 31606 0.442 11.788
2000 4212 982 1.602 38995 15788 57841 0.454 10.972

2010/14 3819 1124 1.566 56205 21567 89602 0.465 13.174

Phoenix (AZ) 1980 697 1155 1.609 12854 5920 18741 0.401 8.972
1990 1857 961 1.970 21233 9831 30732 0.439 9.803
2000 1984 1222 1.622 37860 17098 54998 0.437 8.541

2010/14 2494 1110 1.590 48194 20218 73509 0.456 10.906

San Antonio (TX) 1980 597 891 1.686 10501 4364 15399 0.451 10.206
1990 1101 890 1.983 17350 7569 25243 0.455 9.903
2000 1065 1189 1.651 31592 13726 45517 0.454 16.081

2010/14 1220 1307 1.623 44773 19048 68074 0.454 11.225

San Diego (CA) 1980 908 1471 1.577 12759 5628 18338 0.412 8.893
1990 1628 1473 1.961 24194 11007 35191 0.434 11.239
2000 1678 1172 1.637 39537 16698 57219 0.451 9.644

2010/14 1789 1546 1.615 55564 21947 88783 0.452 11.978

Table 6: Income and population distribution across block groups, U.S. 50 largest cities
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Dallas (TX) 1980 1141 931 1.620 14614 6759 21494 0.425 9.522
1990 2310 965 1.993 24074 11287 35141 0.454 11.691
2000 2189 1251 1.633 43913 19306 65158 0.464 10.093

2010/14 2696 1251 1.625 54729 23689 84291 0.460 11.163

San Jose (CA) 1980 571 1417 1.633 16762 8441 24258 0.365 7.215
1990 1016 1400 1.954 32120 15598 47103 0.405 8.339
2000 965 1169 1.689 59428 24663 91637 0.433 9.465

2010/14 1071 1427 1.664 82154 30785 137435 0.455 14.295

Austin (TX) 1980 296 1084 1.517 11407 4867 17064 0.440 9.902
1990 718 1345 2.019 18968 8497 27339 0.461 10.522
2000 644 1416 1.569 38993 17418 55766 0.442 9.455

2010/14 899 1662 1.576 55093 23478 85981 0.443 11.403

Jacksonville (FL) 1980 434 1000 1.622 10868 4602 15546 0.428 9.415
1990 628 1509 1.973 19217 8365 27219 0.435 9.512
2000 505 2358 1.590 34398 14528 49341 0.434 8.629

2010/14 688 1757 1.550 46517 18370 71941 0.450 10.883

San Francisco (CA) 1980 1083 1166 1.514 16322 6927 24339 0.424 9.864
1990 1226 1477 2.040 28783 11624 44191 0.467 13.379
2000 1105 1316 1.549 60967 20961 97430 0.494 13.179

2010/14 1210 1328 1.525 85755 28440 145763 0.482 16.858

Indianapolis (IN) 1980 730 1073 1.617 12550 5958 18183 0.388 9.032
1990 1029 1395 1.985 20996 9806 29406 0.425 9.515
2000 944 1395 1.573 37021 16392 52896 0.423 8.317

2010/14 1030 1639 1.568 47262 19870 71036 0.450 10.624

Columbus (OH) 1980 758 1105 1.593 12427 5984 17840 0.394 8.874
1990 1281 1128 1.988 19865 9262 28819 0.427 9.649
2000 1140 986 1.553 35926 16152 51815 0.431 8.848

2010/14 1269 1293 1.560 48270 21115 72778 0.439 11.633

Fort Worth (TX) 1980 640 650 1.615 12873 5870 18794 0.409 9.169
1990 1203 956 1.972 21517 10428 30620 0.424 9.835
2000 1101 1147 1.638 37074 17140 52607 0.429 8.719

2010/14 1326 1294 1.625 50540 21830 75565 0.449 10.553

Charlotte (NC) 1980 346 1169 1.614 11411 5203 16277 0.400 8.864
1990 930 1032 1.959 20366 8961 29519 0.424 9.445
2000 856 1195 1.583 39683 16640 59188 0.451 9.145

2010/14 1172 1299 1.579 47697 19231 74717 0.452 11.757

Detroit (MI) 1980 2184 764 1.638 12853 5587 19246 0.415 10.783
1990 4531 974 1.990 22673 10194 33441 0.445 12.181
2000 3954 963 1.603 40742 17362 59654 0.439 9.817

2010/14 3798 986 1.560 46492 18592 71604 0.456 11.856

El Paso (TX) 1980 218 897 1.759 8525 3572 12373 0.443 9.182
1990 425 1042 1.969 15009 6372 21601 0.456 8.963
2000 418 960 1.750 23862 9095 33972 0.476 16.668

2010/14 511 1142 1.694 33277 13049 51000 0.462 11.060
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Seattle (WA) 1980 1405 885 1.540 14437 6481 21204 0.398 8.514
1990 2255 1004 1.984 22563 10601 31905 0.416 10.514
2000 2473 855 1.568 42386 18650 60276 0.427 8.448

2010/14 2475 1087 1.555 59626 24442 92751 0.438 10.314

Denver (CO) 1980 1054 899 1.575 14283 6866 20352 0.396 8.081
1990 1694 983 2.005 22072 10791 31410 0.432 11.069
2000 1711 1038 1.578 43300 20142 62101 0.425 8.100

2010/14 1908 1230 1.561 58203 24081 90216 0.450 10.751

Washington (DC) 1980 1580 1608 1.619 18273 9281 26315 0.390 8.361
1990 2540 2193 1.968 32091 16818 45700 0.404 7.758
2000 2642 1409 1.603 53263 24898 78715 0.425 8.968

2010/14 3335 1360 1.600 80366 35929 124973 0.420 10.665

Memphis (TN) 1980 478 1021 1.639 11370 4852 16693 0.457 10.804
1990 920 903 1.997 17888 8072 26052 0.471 10.945
2000 783 1153 1.605 33086 13753 47853 0.471 18.640

2010/14 764 1380 1.573 42700 17702 65757 0.465 11.492

Boston (MA) 1980 3662 809 1.622 12696 5417 18790 0.406 10.048
1990 4497 1032 1.997 24633 10314 37112 0.436 12.226
2000 3963 961 1.584 43840 16776 66109 0.458 11.004

2010/14 4082 1058 1.566 64422 23196 105048 0.470 13.712

Nashville (TN) 1980 375 1043 1.605 12416 5382 18373 0.442 10.358
1990 755 1260 1.979 19811 8712 28653 0.442 9.710
2000 723 1374 1.555 36360 15118 52565 0.448 9.000

2010/14 911 1535 1.568 49714 20024 76735 0.452 10.444

Baltimore (MD) 1980 1517 900 1.641 12751 5932 18442 0.400 10.075
1990 1965 1269 1.972 23987 11302 34591 0.426 11.780
2000 1780 1204 1.588 38615 16954 55517 0.431 9.565

2010/14 1932 1182 1.567 59954 25171 93398 0.439 11.158

Oklahoma City (OK) 1980 709 720 1.573 12933 5777 18878 0.419 9.075
1990 1034 854 1.993 17551 7499 26072 0.445 9.616
2000 880 941 1.557 30578 12488 44422 0.447 15.739

2010/14 1015 1021 1.562 45377 18504 68795 0.457 10.504

Portland (OR) 1980 696 1077 1.526 12819 5411 18704 0.404 9.155
1990 1145 1131 1.991 19987 8840 28511 0.424 9.403
2000 1141 1111 1.586 37618 16409 53854 0.417 8.385

2010/14 1374 1211 1.567 49201 19927 74485 0.428 10.490

Las Vegas (NV) 1980 150 2018 1.554 12756 5568 17713 0.406 8.542
1990 318 2570 1.976 20006 8888 27960 0.431 9.310
2000 796 1396 1.620 36442 16095 51823 0.430 8.202

2010/14 1284 1215 1.592 44657 18771 66044 0.442 9.525

Louisville (KY) 1980 582 873 1.592 11451 5036 17218 0.414 9.188
1990 957 938 1.990 18323 7864 27067 0.445 9.771
2000 742 1021 1.542 32264 13213 46595 0.444 15.196

2010/14 840 1087 1.536 45220 17798 69576 0.451 10.739

68



Continued
City Year # Blocks Hh/block Eq. scale Equivalent household income

Mean 20% 80% Gini 90%/10%

Milwaukee (WI) 1980 1125 788 1.606 13629 6277 19823 0.384 8.008
1990 1540 935 1.994 20192 9430 29189 0.420 9.621
2000 1389 883 1.575 36437 15855 52408 0.426 8.692

2010/14 1465 927 1.540 48088 19198 72556 0.452 10.903

Albuquerque (NM) 1980 278 957 1.629 11593 5209 16795 0.413 9.366
1990 430 884 1.992 18125 8120 26181 0.444 9.886
2000 404 941 1.558 33181 13980 47243 0.440 9.523

2010/14 434 1176 1.533 43410 17042 66070 0.461 11.785

Tucson (AZ) 1980 306 810 1.578 10384 4601 15056 0.400 8.130
1990 561 1029 2.000 16834 7279 24236 0.461 9.772
2000 601 1045 1.551 30864 12504 44934 0.460 15.544

2010/14 614 1423 1.534 42082 16637 64100 0.463 11.018

Fresno (CA) 1980 571 1417 1.633 16762 8441 24258 0.365 7.215
1990 532 1044 1.989 18020 7467 26327 0.463 9.649
2000 546 933 1.730 27064 10878 38272 0.471 16.750

2010/14 587 1094 1.714 37117 15473 56226 0.461 11.747

Sacramento (CA) 1980 423 1148 1.529 11659 4941 17097 0.408 9.032
1990 1031 1557 1.968 21357 9535 30607 0.421 10.800
2000 1094 1199 1.616 36344 15452 52005 0.434 9.269

2010/14 1369 1143 1.606 49000 20048 75343 0.435 11.883

Kansas City (MO-KS) 1980 1006 991 1.587 13577 6444 19645 0.393 9.056
1990 1465 1043 1.991 20820 9844 29980 0.426 9.736
2000 1352 1005 1.575 38395 17532 54896 0.426 8.529

2010/14 1468 1111 1.562 50056 21337 76139 0.439 10.496

Atlanta (GA) 1980 840 1150 1.591 11821 4837 17433 0.457 10.792
1990 1962 1650 1.959 24596 11684 35257 0.431 11.546
2000 1639 1826 1.628 43435 19191 63050 0.438 9.395

2010/14 2379 1631 1.598 51857 20271 80941 0.460 12.044

Norfolk (VA) 1980 541 1142 1.666 11265 5156 16109 0.411 9.453
1990 903 1531 1.951 19181 9208 27018 0.405 9.323
2000 892 1189 1.619 32543 15069 45638 0.412 7.757

2010/14 1089 1135 1.572 48576 21406 72037 0.420 9.538

Omaha (NE-IA) 1980 399 814 1.616 12576 5952 17858 0.388 8.192
1990 626 728 1.991 19465 9546 27285 0.424 9.462
2000 650 626 1.584 35338 16484 49614 0.417 7.904

2010/14 745 801 1.570 47979 21411 70100 0.428 9.776

Colorado Springs (CO) 1980 159 961 1.583 11320 5290 16547 0.406 8.194
1990 308 1077 1.970 19034 9441 26299 0.408 9.125
2000 303 1174 1.612 35946 18023 49660 0.391 7.238

2010/14 362 1506 1.590 47967 21394 72013 0.422 9.581

Raleigh (NC) 1980 237 1331 1.563 12403 5620 18069 0.414 9.799
1990 499 1623 1.981 21517 9825 30516 0.421 11.087
2000 430 1545 1.553 40050 16738 57936 0.445 9.987

2010/14 707 1679 1.567 54607 22647 84366 0.444 10.753
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Miami (FL) 1980 1307 2022 1.559 12962 5246 18895 0.444 9.980
1990 1549 3062 2.008 19659 7405 28802 0.477 10.503
2000 638 1987 1.556 35599 14112 51177 0.451 9.572

2010/14 936 1474 1.557 47343 18170 73153 0.457 11.349

Oakland (CA) 1980 1376 1007 1.589 14714 6930 21331 0.397 9.819
1990 1636 1673 1.972 27737 13353 40200 0.428 11.701
2000 1488 1277 1.631 47663 20554 71300 0.443 11.010

2010/14 1676 1289 1.622 68482 27490 110290 0.457 13.566

Minneapolis (MN) 1980 1704 829 1.593 14300 6794 20511 0.383 7.374
1990 2239 1096 1.986 23220 11170 33176 0.411 10.532
2000 2105 1136 1.593 43427 20413 61659 0.408 7.339

2010/14 2244 1231 1.570 57533 24116 88819 0.432 9.900

Tulsa (OK) 1980 340 823 1.546 12889 5475 19014 0.431 9.341
1990 730 779 1.990 18258 7716 26596 0.455 9.883
2000 541 980 1.566 33077 13504 48629 0.446 8.419

2010/14 599 1154 1.566 44777 17354 68006 0.457 10.355

Cleveland (OH) 1980 1654 867 1.631 12466 5551 18359 0.402 9.899
1990 2691 1052 2.005 19509 8388 28706 0.446 10.056
2000 2272 1029 1.563 35221 14392 50973 0.443 9.109

2010/14 2238 1085 1.519 44764 17146 68783 0.460 11.080

Wichita (KS) 1980 289 704 1.576 12717 5768 18455 0.388 8.499
1990 451 896 1.989 19303 8801 27625 0.428 9.526
2000 371 954 1.590 33430 15421 47101 0.414 7.812

2010/14 411 1133 1.575 43162 18600 64259 0.431 9.672

New Orleans (LA) 1980 938 960 1.623 11743 4629 17279 0.456 11.116
1990 1215 1113 2.015 15751 5944 23640 0.484 26.274
2000 974 1009 1.597 29996 10495 43919 0.490 18.694

2010/14 1053 924 1.532 44250 15342 69804 0.481 13.121

Bakersfield (CA) 1980 169 810 1.635 11081 4431 15901 0.423 9.342
1990 374 1170 1.965 18526 8018 26588 0.433 9.347
2000 353 1171 1.723 27908 11092 39953 0.459 16.969

2010/14 450 1319 1.723 38846 16404 59346 0.447 11.251

Tampa (FL) 1980 903 1300 1.515 10663 4430 15388 0.424 8.280
1990 1547 1620 1.980 17140 7176 24448 0.440 9.216
2000 1448 1307 1.530 32815 13303 46343 0.448 8.451

2010/14 2002 1131 1.506 43788 17047 66315 0.460 10.445
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