Minimal sublinear functions, recessive sets and applications to Cut Generating Functions

Alberto Zaffaroni

Università di Modena e Reggio Emilia

WORKSHOP Cattolica, Milano, 2023

Motivations

$$
X=\left\{x \in \mathbb{R}_{+}^{p}: R x \in S\right\}, \quad R=\left[r^{1}|\ldots| r^{p}\right]
$$

$S \subset \mathbb{R}^{q}$ closed, $\quad 0 \notin S \Longrightarrow 0 \notin$ cl conv X

Definition

cut:

$c \in \mathbb{R}^{p}: c^{T} x \geq 1, \forall x \in X ;$ dominant cut:

$$
c^{\prime} \leq c \wedge c^{\prime} \text { cut } \Rightarrow c \text { cut } ;
$$

Cut Generating Function

$\rho: \mathbb{R}^{q} \rightarrow \mathbb{R}$, sublinear, $\rho\left(r^{i}\right)=c_{i}$,
$\sum_{i=1}^{p} \rho\left(r^{i}\right) x_{i} \geq 1, \quad \forall x=\left(x_{1}, \ldots, x_{p}\right) \in X$

Cut Generating Functions

Main Reference
Conforti M., Cornuéjols G., Daniilidis A., Lemaréchal C., Malick J.:
Cut Generating Functions and S-free sets, M.O.R., 2015.

Cut Generating Functions

Main Reference
Conforti M., Cornuéjols G., Daniilidis A., Lemaréchal C., Malick J.: Cut Generating Functions and S-free sets, M.O.R., 2015.

CGF's and S-free sets
A sublinear $\rho: \mathbb{R}^{q} \rightarrow \mathbb{R}$ is a CGF for S if and only if $V=[\rho \leq 1]$ is S-free:

$$
\text { int } V \cap S=[\rho<1] \cap S=\emptyset
$$

Sublinear functions as representations

Given $\rho: \mathbb{R}^{q} \rightarrow \mathbb{R}$ sublinear, then $V=[\rho \leq 1]$ is a closed, convex neighbourhood of 0 . And ρ represents V if $V=[\rho \leq 1]$

Minkowski gauge
Given $V \subset \mathbb{R}^{q}$ a closed, convex neighbourhood of 0 , then

$$
\mu_{V}(v)=\inf \{t>0: v \in t V\}
$$

is a (sublinear, continuous) representation of V (the greatest!) Moreover

$$
\mu_{V}(x)=\sup \left\{g^{T} x: g \in V^{\circ}\right\}=\sigma_{V^{\circ}}(x)
$$

Minimal representation of V (Basu et al. 2010, Zaffaroni 2013)
There exists a least representation $\gamma_{V}: \mathbb{R}^{q} \rightarrow \mathbb{R}$.
In both cases γ_{V} is the support function of a special subset V^{\bullet} of V° (least prepolar of V).

The least prepolar

$$
\begin{aligned}
& V^{\bullet} \stackrel{B}{=} \operatorname{cl} \operatorname{conv}\left\{g \in V^{\circ}: \exists \bar{v} \in V, g^{T} \bar{v}=1\right\} \stackrel{Z}{=} V^{\circ} \cap(o(V))^{\oplus} \\
& W^{\oplus}=\left\{g \in \mathbb{R}^{q}: g^{T} w \geq 1, \forall w \in W\right\} \quad \text { reverse polar } \\
& o(V)=\left\{u \in \mathbb{R}^{q}: V \subseteq u+V^{\infty}\right\} \quad \text { recession bounds }
\end{aligned}
$$

Sublinear functions as representations

Given $V=(-\infty, 1] \subset \mathbb{R}$, we have

$$
\begin{array}{rlr}
\mu_{V}(x)=\sigma_{V^{\circ}} & = \begin{cases}x & x \geq 0 \\
0 & x<0\end{cases} & \gamma_{V}(x)=\sigma_{V} \bullet=x \\
C^{\circ} & =[0,1] & V^{\bullet}=\{1\}
\end{array}
$$

Minimal CGF's

Definition

A sublinear function $\rho: \mathbb{R}^{q} \rightarrow \mathbb{R}$ is a minimal CGF if it is minimal among all sublinear functions which represent S-free sets.

Minimal CGF's

Definition

A sublinear function $\rho: \mathbb{R}^{q} \rightarrow \mathbb{R}$ is a minimal CGF if it is minimal among all sublinear functions which represent S-free sets.

Necessary conditions, sufficient conditions

a) If ρ is a minimal CGF, then it is the least representation of

$$
V=[\rho \leq 1] ;
$$

Minimal CGF's

Definition

A sublinear function $\rho: \mathbb{R}^{q} \rightarrow \mathbb{R}$ is a minimal CGF if it is minimal among all sublinear functions which represent S-free sets.

Necessary conditions, sufficient conditions

a) If ρ is a minimal CGF, then it is the least representation of

$$
V=[\rho \leq 1]
$$

b) If V is a maximal, S-free, closed, convex neighbourhood of 0 , then γ_{V} is a minimal CGF.

Minimal CGF's

Definition

A sublinear function $\rho: \mathbb{R}^{q} \rightarrow \mathbb{R}$ is a minimal CGF if it is minimal among all sublinear functions which represent S-free sets.

Necessary conditions, sufficient conditions

a) If ρ is a minimal CGF, then it is the least representation of

$$
V=[\rho \leq 1]
$$

b) If V is a maximal, S-free, closed, convex neighbourhood of 0 , then γ_{V} is a minimal CGF.
c) If ρ is a minimal CGF, then $V=[\rho \leq 1]$ is asymptotically maximal, i.e. $V \subseteq W$, int $W \cap S=\emptyset$, then $W^{\infty}=V^{\infty}$.

Main goals

1) Recession minimality

A sublinear function $\rho: \mathbb{R}^{q} \rightarrow \mathbb{R}$ is recession minimal, if it is minimal among sublinear functions ρ^{\prime} with $\left[\rho^{\prime} \leq 0\right]=[\rho \leq 0]$.

Here the set S is not considered.

Main goals

1) Recession minimality

A sublinear function $\rho: \mathbb{R}^{q} \rightarrow \mathbb{R}$ is recession minimal, if it is minimal among sublinear functions ρ^{\prime} with $\left[\rho^{\prime} \leq 0\right]=[\rho \leq 0]$.

Here the set S is not considered.
2) Minimal CGF

Find ρ minimal with the further requirement that $[\rho<1] \cap S=\emptyset$.

Main goals

1) Recession minimality

A sublinear function $\rho: \mathbb{R}^{q} \rightarrow \mathbb{R}$ is recession minimal, if it is minimal among sublinear functions ρ^{\prime} with $\left[\rho^{\prime} \leq 0\right]=[\rho \leq 0]$.

Here the set S is not considered.
2) Minimal CGF

Find ρ minimal with the further requirement that $[\rho<1] \cap S=\emptyset$.

Three stages for goal 1
1a - Sublinearity by lower level sets;

Main goals

1) Recession minimality

A sublinear function $\rho: \mathbb{R}^{q} \rightarrow \mathbb{R}$ is recession minimal, if it is minimal among sublinear functions ρ^{\prime} with $\left[\rho^{\prime} \leq 0\right]=[\rho \leq 0]$.

Here the set S is not considered.
2) Minimal CGF

Find ρ minimal with the further requirement that $[\rho<1] \cap S=\emptyset$.

Three stages for goal 1
1a - Sublinearity by lower level sets;
1b - Larger sublevels and recession bounds;

Main goals

1) Recession minimality

A sublinear function $\rho: \mathbb{R}^{q} \rightarrow \mathbb{R}$ is recession minimal, if it is minimal among sublinear functions ρ^{\prime} with $\left[\rho^{\prime} \leq 0\right]=[\rho \leq 0]$.

Here the set S is not considered.

2) Minimal CGF

Find ρ minimal with the further requirement that $[\rho<1] \cap S=\emptyset$.

Three stages for goal 1
1a - Sublinearity by lower level sets;
1b - Larger sublevels and recession bounds;
1c - Recession hull, recessive sets and recession minimality.

Sublinearity by lower level sets

Consider $q: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$, positively homogeneous.
Let $L^{+}=[q \leq 1]$ and $L^{-}=[q \leq-1]$, with $L^{-} \subseteq L^{+}$.
The pair $\left(L^{+}, L^{-}\right)$completely characterize q (the other sublevels are homotetic).
If q is also quasiconvex and lower semicontinuous, then L^{+}is closed, convex, radiant, and L^{-}is closed, convex, coradiant.

Sublinearity by lower level sets

Consider $q: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$, positively homogeneous.
Let $L^{+}=[q \leq 1]$ and $L^{-}=[q \leq-1]$, with $L^{-} \subseteq L^{+}$.
The pair $\left(L^{+}, L^{-}\right)$completely characterize q (the other sublevels are homotetic).
If q is also quasiconvex and lower semicontinuous, then L^{+}is closed, convex, radiant, and L^{-}is closed, convex, coradiant.

Theorem

Under the above assumptions, then q is sublinear and continuous provided either $L^{-}=\emptyset$, or:
(1) $0 \in \operatorname{int} L^{+}$and $0 \in \operatorname{into}\left(L^{-}\right)$(Lipschitz continuity);
(2) $\left(L^{+}\right)^{\infty}=\left(L^{-}\right)^{\infty}=L \equiv[q \leq 0]$;
(3) (balancing)

$$
L^{+}+L^{-} \subseteq L
$$

Sublinearity by lower level sets

Balancing of sublevels

A quasiconvex function
A sublinear function

Larger sublevels and recession bounds

Given L^{+}we look for the largest sublevel $L_{\text {max }}^{-}$in order that $L^{+}+L_{\max }^{-} \subseteq L$

$$
\begin{aligned}
L_{\max }^{-} & =\left\{u \in \mathbb{R}^{n}: u+L^{+} \subseteq L\right\}=L^{\star} L^{+} \\
& =\left\{u \in \mathbb{R}^{n}: L^{+} \subseteq L-u\right\} \\
& =-o\left(L^{+}\right)
\end{aligned}
$$

Larger sublevels and recession bounds

Given L^{+}we look for the largest sublevel $L_{\text {max }}^{-}$in order that $L^{+}+L_{\max }^{-} \subseteq L^{-}$

$$
\begin{aligned}
L_{\max }^{-} & =\left\{u \in \mathbb{R}^{n}: u+L^{+} \subseteq L\right\}=L \stackrel{\star}{-} L^{+} \\
& =\left\{u \in \mathbb{R}^{n}: L^{+} \subseteq L-u\right\} \\
& =-o\left(L^{+}\right)
\end{aligned}
$$

Larger sublevels and recession bounds

Given L^{+}we look for the largest sublevel $L_{\text {max }}^{-}$in order that $L^{+}+L_{\max }^{-} \subseteq L$

$$
\begin{aligned}
L_{\max }^{-} & =\left\{u \in \mathbb{R}^{n}: u+L^{+} \subseteq L\right\}=L \stackrel{\star}{-} L^{+} \\
& =\left\{u \in \mathbb{R}^{n}: L^{+} \subseteq L-u\right\} \\
& =-o\left(L^{+}\right)
\end{aligned}
$$

Larger sublevels and recession bounds

Given L^{+}we look for the largest sublevel $L_{\text {max }}^{-}$in order that $L^{+}+L_{\text {max }}^{-} \subseteq L$

$$
\begin{aligned}
L_{\max }^{-} & =\left\{u \in \mathbb{R}^{n}: u+L^{+} \subseteq L\right\}=L \stackrel{\star}{-} L^{+} \\
& =\left\{u \in \mathbb{R}^{n}: L^{+} \subseteq L-u\right\} \\
& =-o\left(L^{+}\right)
\end{aligned}
$$

Larger sublevels and recession bounds

Simmetrically: given $L^{-} \neq \emptyset$ find $L_{\max }^{+}$such that $L_{\max }^{+}+L^{-} \subseteq L$. It holds

$$
L_{\max }^{+}=\left\{u \in \mathbb{R}^{n}: u+L^{-} \subseteq L\right\}=L^{\star} L^{-}=-o\left(L^{-}\right) .
$$

Larger sublevels and recession bounds

Simmetrically: given $L^{-} \neq \emptyset$ find $L_{\max }^{+}$such that $L_{\max }^{+}+L^{-} \subseteq L$. It holds

$$
L_{\max }^{+}=\left\{u \in \mathbb{R}^{n}: u+L^{-} \subseteq L\right\}=L^{\star} L^{-}=-o\left(L^{-}\right)
$$

Two-steps procedure: start from L^{+}, find $L_{\text {max }}^{-}=-o\left(L^{+}\right)$, and then

$$
L_{\max }^{+}=-o\left(L_{\max }^{-}\right)=-o\left(-o\left(L^{+}\right)\right)=o\left(o\left(L^{+}\right)\right) \equiv h\left(L^{+}\right)
$$

Recession hull, recessive sets, recession minimality

Given $V \subset \mathbb{R}^{n}$ we call recession hull of V the set

$$
h(V)=o(o(V))=\bigcap_{z \in o(V)} z+V^{\infty} .
$$

The set V is recessive if $V=h(V)$.

Theorem
The sublinear function $q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is recession minimal if and only if $[q \leq 1]=L^{+}$is recessive and $L^{-}=-o\left(L^{+}\right)$.

Recessive pairs and Dedekind cuts

Recessive pairs: $(V, W): V=o(W)$ and $W=o(V)$ (so that $V=h(V)$).

Dedekind cuts in a partially ordered space (X, K) : a pair (U, L) such that U is the set of upper bounds for L, and L is the set of lower bounds for U. [Ernst and Zaffaroni 2017, 2018]

Recession hull, recessive sets

(1) Supporting halfspaces
(2) Extreme halfpaces
(3) Support function
(4) Polar sets

Supporting halfspaces

$$
\begin{aligned}
o(V)= & =\left\{z \in \mathbb{R}^{n}: g^{\top} z \geq g^{\top} V, \forall v \in V, g \in K^{-}\right\} \\
& =\left\{z \in \mathbb{R}^{n}: g^{T} z \geq \sigma_{V}(g), \forall g \in K^{-}\right\}
\end{aligned}
$$

where $\sigma_{V}(g)=\sup _{v \in V} g^{T} v$ is the support function of V.

extd K^{-}

Extremal halfspaces

Suppose that $K=V^{\infty}$ is polyhedral, i.e.

$$
V^{\infty}=\left\{u \in \mathbb{R}^{n}: g^{T} u \leq 0, g \in E\right\}
$$

where $E=\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}=\operatorname{extd}\left(K^{-}\right)$is finite (and minimal w.r.t. inclusion).

Extremal halfspaces

Suppose that $K=V^{\infty}$ is polyhedral, i.e.

$$
V^{\infty}=\left\{u \in \mathbb{R}^{n}: g^{T} u \leq 0, g \in E\right\}
$$

where $E=\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}=\operatorname{extd}\left(K^{-}\right)$is finite (and minimal w.r.t. inclusion).

Then

$$
h(V)=\left\{w \in \mathbb{R}^{n}: g^{T} w \leq \sigma_{V}(g), \forall g \in E\right\}
$$

Morever for every function $\tau: E \rightarrow \mathbb{R}$ we can obtain a recessive pair (V, W), with $V^{\infty}=K$, by this formula:

$$
V=\left\{z \in \mathbb{R}^{n}: g^{T} z \leq \tau(g)\right\} \quad W=\left\{z \in \mathbb{R}^{n}: g^{T} z \geq \tau(g)\right\}
$$

Extremal halfspaces

Suppose that $K=V^{\infty}$ is polyhedral, i.e.

$$
V^{\infty}=\left\{u \in \mathbb{R}^{n}: g^{T} u \leq 0, g \in E\right\}
$$

where $E=\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}=\operatorname{extd}\left(K^{-}\right)$is finite (and minimal w.r.t. inclusion).

Then

$$
h(V)=\left\{w \in \mathbb{R}^{n}: g^{T} w \leq \sigma_{V}(g), \forall g \in E\right\}
$$

Morever for every function $\tau: E \rightarrow \mathbb{R}$ we can obtain a recessive pair (V, W), with $V^{\infty}=K$, by this formula:

$$
V=\left\{z \in \mathbb{R}^{n}: g^{T} z \leq \tau(g)\right\} \quad W=\left\{z \in \mathbb{R}^{n}: g^{T} z \geq \tau(g)\right\}
$$

These characterizations fails if V^{∞} is not polyhedral,

Counterexample

Recession hull, recessive sets

In the example above $\sigma_{V}(h)=-1$ and $\sigma_{V}(g)=0$, for all $g \in E \backslash\{h\}$. Hence σ_{V} is lower semicontinuous, but not normal lower semicontinuous.

Recession hull, recessive sets

In the example above $\sigma_{V}(h)=-1$ and $\sigma_{V}(g)=0$, for all $g \in E \backslash\{h\}$. Hence σ_{V} is lower semicontinuous, but not normal lower semicontinuous.

Theorem

Let V be convex, int $V^{\infty} \neq \emptyset$, and let E be the set of extreme points of a base B of $\left(V^{\infty}\right)^{-}$. It holds

$$
\begin{aligned}
& o(V)=\left\{z \in \mathbb{R}^{n}: g^{T} z \geq s_{V}(g), \forall g \in E\right\} \\
& h(V)=\left\{z \in \mathbb{R}^{n}: g^{T} z \leq s_{V}(g), \forall g \in E\right\} .
\end{aligned}
$$

where s_{V} is the normal l.s.c. regularization of σ_{V} on E.

Support function

If V is the traslate of a convex cone, i.e. $V=y+V^{\infty}$ for some $y \in \mathbb{R}^{n}$, then it holds

$$
\sigma_{V}(h)=\left\{\begin{array}{lc}
\langle y, h\rangle & \text { if } h \in\left(V^{\infty}\right)^{-} \\
+\infty & \text { otherwise }
\end{array}\right.
$$

that is σ_{V} is linear on its effective domain, and its graph is flat there.

Theorem

Let V be convex, with int $V^{\infty} \neq \emptyset$. Then V is recessive if and only if its support function σ_{V} is normal lower semicontinuous, with $\operatorname{dom} \sigma_{V}=\left(V^{\infty}\right)^{*}$ and satisfies the following condition:

$$
g^{T} y \leq \sigma_{V}(g), \quad \forall g \in E \quad \Longrightarrow \quad h^{T} y \leq \sigma_{V}(h), \quad \forall h \in\left(V^{\infty}\right)^{-}
$$

Thus if V is recessive then the graph of its support function is in some way as flat as possible.

Polar sets

If $V=y+V^{\infty}$, and $y \in-\operatorname{int} V^{\infty}$, then it holds

$$
V^{\circ}=\left\{g \in\left(V^{\infty}\right)^{-}:\langle y, g\rangle \leq 1\right\} .
$$

Thus V° is the smallest convex radiant set compatible with the values along extreme directions of the polar cone $\left(V^{\infty}\right)^{-}$.

Theorem

Let (V, W) be a recessive pair, with $0 \in$ int V.
Then

$$
\begin{aligned}
& V^{\circ}=c l \operatorname{conv}\left\{\ell \in \operatorname{extd}\left(V^{\infty}\right)^{-}: \sigma_{V}(\ell) \leq 1\right\} \\
& W^{\oplus}=c l \operatorname{conv}\left\{\ell \in \operatorname{extd}\left(V^{\infty}\right)^{-}: \iota_{V}(\ell) \geq 1\right\}
\end{aligned}
$$

Minimal CGF

Only one representation, the Minkowski gauge.
(1) V is bounded;
(2) V unbounded with int $V^{\infty}=\emptyset$;
(3) int $V^{\infty} \neq \emptyset$, but $o(V)=\emptyset$.

Interesting cases: int $V^{\infty} \neq \emptyset$ and $o(V) \neq \emptyset$.

In some situations it is known that ρ is a minimal CGF if and only if $V(\rho)$ is a maximal S-free convex neighbourhood of 0 , and $\rho=\gamma_{V}$. Tipically when S is (a subset of) $\mathbb{Z}^{q}-b$.

Minimal Cut Generating Functions

Necessary conditions, sufficient conditions
a) If ρ is a minimal CGF, then it is the least representation of $V=[\rho \leq 1] ;$
b) If V is a maximal, S-free, closed, convex neighbourhood of 0 , then γ_{V} is a minimal CGF.
c) If ρ is a minimal CGF, then $V=[\rho \leq 1]$ is asymptotically maximal, i.e. $V \subseteq W$, int $W \cap S=\emptyset$, then $W^{\infty}=V^{\infty}$.

Theorem

The sublinear function $\rho: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a minimal CGF if and only if it is the least gauge of a (convex neighbourhood of 0) V such that V is asymptotically maximal and V is maximal S-free in $h(V)$.

Minimal CGF

Theorem

Suppose that there exists only one maximal S-free convex neighbourhood W of 0 . And that int $W^{\infty} \neq \emptyset$ and $o(W) \neq \emptyset$.
Then ρ is a minimal CGF if and only if $\rho=\gamma U, U=W \cap V$, and V is a recessive neighbourhood of 0 , with $V^{\infty}=W^{\infty}$.

Minimal CGF - 2

Theorem

Suppose that all maximal S-free convex neighbourhood W of 0 have the same (solid!) recession cone K. Then ρ is a minimal CGF if and only if $\rho=\gamma_{V}, V$ is a neighbourhood of 0 , which is maximal S-free in $h(V)$, with $V^{\infty}=K$.

Minimal CGF

In order to get rid of the assumption of asymptotic maximality, more general cases should be considered individually. For their analysis the following cone is relevant:

$$
T=\left\{d \in \mathbb{R}^{q}: \mathbb{R}_{+} d \cap S=\emptyset\right\}
$$

If T has a maximal convex S-free component which is closed, with nonempty interior, it can be used as the recession cone of some set $U=W \cap V, W$ maximal, V recessive, whose least representation is minimal.

