Minimal sublinear functions, recessive sets and applications to Cut Generating Functions

Alberto Zaffaroni

Università di Modena e Reggio Emilia

WORKSHOP Cattolica, Milano, 2023

A. Zaffaroni (Università di Modena)

Minimal sublinear functions

WORKSHOP Cattolica, Milano, 2023

Sar

1/

< 回 ト < 三 ト < 三 ト

Motivations

$$X = \{x \in \mathbb{R}^p_+ : Rx \in S\}, \qquad R = [r^1| \dots |r^p]$$
$$S \subset \mathbb{R}^q \text{ closed}, \qquad 0 \notin S \implies 0 \notin \text{ cl conv } X$$

Cut Generating Function

$$\rho : \mathbb{R}^q \to \mathbb{R}$$
, sublinear, $\rho(r^i) = c_i$,
 $\sum_{i=1}^p \rho(r^i) x_i \ge 1$, $\forall x = (x_1, ..., x_p) \in X$

2/

Cut Generating Functions

Main Reference

Conforti M., Cornuéjols G., Daniilidis A., Lemaréchal C., Malick J.:

Cut Generating Functions and S-free sets, M.O.R., 2015.

Sar

3

< 回 > < 三 > < 三 >

Cut Generating Functions

Main Reference

Conforti M., Cornuéjols G., Daniilidis A., Lemaréchal C., Malick J.:

Cut Generating Functions and S-free sets, M.O.R., 2015.

CGF's and *S*-free sets

A sublinear $\rho : \mathbb{R}^q \to \mathbb{R}$ is a CGF for S if and only if $V = [\rho \leq 1]$ is S-free:

int
$$V \cap S = [\rho < 1] \cap S = \emptyset$$
.

A. Zaffaroni (Università di Modena)

= nar

3/

イロト イ理ト イヨト イヨト

Sublinear functions as representations

Given $\rho : \mathbb{R}^q \to \mathbb{R}$ sublinear, then $V = [\rho \le 1]$ is a closed, convex neighbourhood of 0. And ρ represents V if $V = [\rho \le 1]$

Minkowski gauge

Given $V \subset \mathbb{R}^q$ a closed, convex neighbourhood of 0, then

$$\mu_V(v) = \inf\{t > 0: v \in tV\}$$

is a (sublinear, continuous) representation of V (the greatest!) Moreover

$$\mu_V(x) = \sup\{g^T x : g \in V^\circ\} = \sigma_{V^\circ}(x)$$

Minimal representation of V (Basu et al. 2010, Zaffaroni 2013) There exists a least representation $\gamma_V : \mathbb{R}^q \to \mathbb{R}$. In both cases γ_V is the support function of a special subset V^{\bullet} of V° (least prepolar of V).

4 /

The least prepolar

$$V^{ullet} \stackrel{B}{=} \mathsf{cl}\,\mathsf{conv}\,\{g\in V^\circ:\,\existsar{v}\in V,\,g^{\,T}ar{v}=1\}\stackrel{Z}{=}V^\circ\cap(o(V))^\oplus$$

 $W^{\oplus} = \{ g \in \mathbb{R}^q : g^T w \ge 1, \forall w \in W \}$ reverse polar

 $o(V) = \{u \in \mathbb{R}^q : V \subseteq u + V^\infty\}$ recession bounds

A. Zaffaroni (Università di Modena)

Minimal sublinear functions

WORKSHOP Cattolica, Milano, 2023

(∃) ⊳

990

5 /

Sublinear functions as representations

Given
$$V = (-\infty, 1] \subset \mathbb{R}$$
, we have

$$\mu_V(x) = \sigma_{V^\circ} = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$$

$$C^\circ = [0, 1]$$

$$V^\bullet = \{1\}$$

A. Zaffaroni (Università di Modena)

A sublinear function $\rho : \mathbb{R}^q \to \mathbb{R}$ is a minimal CGF if it is minimal among all sublinear functions which represent *S*-free sets.

∃ <\0<</p>

7 /

イロト イヨト イヨト

A sublinear function $\rho : \mathbb{R}^q \to \mathbb{R}$ is a minimal CGF if it is minimal among all sublinear functions which represent S-free sets.

Necessary conditions, sufficient conditions

a) If ρ is a minimal CGF, then it is the least representation of $V=[\rho\leq 1];$

3

Sar

7/

A sublinear function $\rho : \mathbb{R}^q \to \mathbb{R}$ is a minimal CGF if it is minimal among all sublinear functions which represent S-free sets.

Necessary conditions, sufficient conditions

- a) If ρ is a minimal CGF, then it is the least representation of $V=[\rho\leq 1];$
- b) If V is a maximal, S-free, closed, convex neighbourhood of 0, then γ_V is a minimal CGF.

3

7/

イロト イヨト イヨト -

A sublinear function $\rho: \mathbb{R}^q \to \mathbb{R}$ is a minimal CGF if it is minimal among all sublinear functions which represent S-free sets.

Necessary conditions, sufficient conditions

- a) If ρ is a minimal CGF, then it is the least representation of $V = [\rho < 1];$
- b) If V is a maximal, S-free, closed, convex neighbourhood of 0, then γ_V is a minimal CGF.
- c) If ρ is a minimal CGF, then $V = [\rho \leq 1]$ is asymptotically maximal, i.e. $V \subseteq W$, int $W \cap S = \emptyset$, then $W^{\infty} = V^{\infty}$.

7/

1) Recession minimality

A sublinear function $\rho : \mathbb{R}^q \to \mathbb{R}$ is recession minimal, if it is minimal among sublinear functions ρ' with $[\rho' \leq 0] = [\rho \leq 0]$.

Here the set S is not considered.

SOC

イロト 不得 トイラト イラト 二日

1) Recession minimality

A sublinear function $\rho : \mathbb{R}^q \to \mathbb{R}$ is recession minimal, if it is minimal among sublinear functions ρ' with $[\rho' \leq 0] = [\rho \leq 0]$.

Here the set S is not considered.

2) Minimal CGF

Find ρ minimal with the further requirement that $[\rho < 1] \cap S = \emptyset$.

200

イロト イボト イヨト イヨト 二日

1) Recession minimality

A sublinear function $\rho : \mathbb{R}^q \to \mathbb{R}$ is recession minimal, if it is minimal among sublinear functions ρ' with $[\rho' \leq 0] = [\rho \leq 0]$.

Here the set S is not considered.

2) Minimal CGF

Find ρ minimal with the further requirement that $[\rho < 1] \cap S = \emptyset$.

Three stages for goal 1

1a - Sublinearity by lower level sets;

= nar

8/

イロト イボト イヨト イヨト

1) Recession minimality

A sublinear function $\rho : \mathbb{R}^q \to \mathbb{R}$ is recession minimal, if it is minimal among sublinear functions ρ' with $[\rho' \leq 0] = [\rho \leq 0]$.

Here the set S is not considered.

2) Minimal CGF

Find ρ minimal with the further requirement that $[\rho < 1] \cap S = \emptyset$.

Three stages for goal 1

- 1a Sublinearity by lower level sets;
- 1b Larger sublevels and recession bounds;

= nar

8/

イロト イポト イヨト イヨト

1) Recession minimality

A sublinear function $\rho : \mathbb{R}^q \to \mathbb{R}$ is recession minimal, if it is minimal among sublinear functions ρ' with $[\rho' \leq 0] = [\rho \leq 0]$.

Here the set S is not considered.

2) Minimal CGF

Find ρ minimal with the further requirement that $[\rho < 1] \cap S = \emptyset$.

Three stages for goal 1

- 1a Sublinearity by lower level sets;
- 1b Larger sublevels and recession bounds;
- 1c Recession hull, recessive sets and recession minimality.

8/

Sublinearity by lower level sets

Consider $q : \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$, positively homogeneous. Let $L^+ = [q \le 1]$ and $L^- = [q \le -1]$, with $L^- \subseteq L^+$. The pair (L^+, L^-) completely characterize q (the other sublevels are homotetic).

If q is also quasiconvex and lower semicontinuous, then L^+ is closed, convex, radiant, and L^- is closed, convex, coradiant.

Sublinearity by lower level sets

Consider $q : \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$, positively homogeneous. Let $L^+ = [q \le 1]$ and $L^- = [q \le -1]$, with $L^- \subseteq L^+$. The pair (L^+, L^-) completely characterize q (the other sublevels are homotetic).

If q is also quasiconvex and lower semicontinuous, then L^+ is closed, convex, radiant, and L^- is closed, convex, coradiant.

Theorem

Under the above assumptions, then q is sublinear and continuous provided either $L^- = \emptyset$, or:

① $0 \in int L^+$ and $0 \in int o(L^-)$ (Lipschitz continuity);

(2)
$$(L^+)^{\infty} = (L^-)^{\infty} = L \equiv [q \le 0];$$

③ (balancing)

$$L^+ + L^- \subseteq L.$$

9/

Sublinearity by lower level sets

Balancing of sublevels

L-L+

A quasiconvex function

A sublinear function

イロト イボト イヨト イヨト

A. Zaffaroni (Università di Modena)

Minimal sublinear functions

WORKSHOP Cattolica, Milano, 2023

990

10

Э

Given L^+ we look for the largest sublevel L^-_{max} in order that $L^+ + L^-_{max} \subseteq L$

$$L^{-}_{max} = \{ u \in \mathbb{R}^n : u + L^+ \subseteq L \} = L^{\star} - L^+$$
$$= \{ u \in \mathbb{R}^n : L^+ \subseteq L - u \}$$
$$= -o(L^+)$$

-

Given L^+ we look for the largest sublevel L^-_{max} in order that $L^+ + L^-_{max} \subseteq L$

$$L^{-}_{max} = \{ u \in \mathbb{R}^n : u + L^+ \subseteq L \} = L^{\star} - L^+$$
$$= \{ u \in \mathbb{R}^n : L^+ \subseteq L - u \}$$
$$= -o(L^+)$$

Given L^+ we look for the largest sublevel L^-_{max} in order that $L^+ + L^-_{max} \subseteq L$

$$L^{-}_{max} = \{ u \in \mathbb{R}^n : u + L^+ \subseteq L \} = L^{\star} - L^+$$
$$= \{ u \in \mathbb{R}^n : L^+ \subseteq L - u \}$$
$$= -o(L^+)$$

Given L^+ we look for the largest sublevel L^-_{max} in order that $L^+ + L^-_{max} \subseteq L$

$$L^{-}_{max} = \{ u \in \mathbb{R}^n : u + L^+ \subseteq L \} = L^* - L^+$$
$$= \{ u \in \mathbb{R}^n : L^+ \subseteq L - u \}$$
$$= -o(L^+)$$

Simmetrically: given $L^- \neq \emptyset$ find L^+_{max} such that $L^+_{max} + L^- \subseteq L$. It holds

$$L_{max}^+ = \{ u \in \mathbb{R}^n : u + L^- \subseteq L \} = L \stackrel{\star}{-} L^- = -o(L^-).$$

Simmetrically: given $L^- \neq \emptyset$ find L^+_{max} such that $L^+_{max} + L^- \subseteq L$. It holds

$$L_{max}^+ = \{ u \in \mathbb{R}^n : u + L^- \subseteq L \} = L \stackrel{\star}{-} L^- = -o(L^-).$$

Two-steps procedure: start from L^+ , find $L^-_{max} = -o(L^+)$, and then

$$L_{max}^+ = -o(L_{max}^-) = -o(-o(L^+)) = o(o(L^+)) \equiv h(L^+).$$

Recession hull, recessive sets, recession minimality

Given $V \subset \mathbb{R}^n$ we call recession hull of V the set

$$h(V) = o(o(V)) = \bigcap_{z \in o(V)} z + V^{\infty}.$$

The set V is recessive if V = h(V).

Theorem

The sublinear function $q: \mathbb{R}^n \to \mathbb{R}$ is recession minimal if and only if $[q < 1] = L^+$ is recessive and $L^- = -o(L^+)$.

A. Zaffaroni (Università di Modena)

Recessive pairs and Dedekind cuts

Recessive pairs: (V, W): V = o(W) and W = o(V) (so that V = h(V)).

It holds
$$o(V) = \bigcap_{v \in V} v - V^{\infty} =$$
 set of lower bounds of V w.r.t. V^{∞}

Dedekind cuts in a partially ordered space (X, K): a pair (U, L) such that U is the set of upper bounds for L, and L is the set of lower bounds for U. [Ernst and Zaffaroni 2017, 2018]

Recession hull, recessive sets

- Supporting halfspaces
- Extreme halfpaces 2
- Support function 3
- Polar sets 4

< 17 ▶

999

Supporting halfspaces

$$o(V) = \{z \in \mathbb{R}^n : g^T z \ge g^T v, \forall v \in V, g \in K^-\}$$
$$= \{z \in \mathbb{R}^n : g^T z \ge \sigma_V(g), \forall g \in K^-\}$$

where $\sigma_V(g) = \sup_{v \in V} g^T v$ is the support function of V.

Extremal halfspaces

Suppose that $K = V^{\infty}$ is polyhedral, i.e.

$$V^{\infty} = \{ u \in \mathbb{R}^n : g^T u \le 0, g \in E \}$$

where $E = \{g_1, g_2, ..., g_m\} = \text{extd}(K^-)$ is finite (and minimal w.r.t. inclusion).

Extremal halfspaces

Suppose that $K = V^{\infty}$ is polyhedral, i.e.

$$V^{\infty} = \{ u \in \mathbb{R}^n : g^T u \leq 0, g \in E \}$$

where $E = \{g_1, g_2, ..., g_m\} = \text{extd}(K^-)$ is finite (and minimal w.r.t. inclusion).

Then

$$h(V) = \{ w \in \mathbb{R}^n : g^T w \leq \sigma_V(g), \forall g \in E \}.$$

Morever for every function $\tau: E \to \mathbb{R}$ we can obtain a recessive pair (V, W), with $V^{\infty} = K$, by this formula:

$$V = \{z \in \mathbb{R}^n : g^T z \le \tau(g)\}$$
 $W = \{z \in \mathbb{R}^n : g^T z \ge \tau(g)\}$

A. Zaffaroni (Università di Modena)

Extremal halfspaces

Suppose that $K = V^{\infty}$ is polyhedral, i.e.

$$V^{\infty} = \{ u \in \mathbb{R}^n : g^T u \leq 0, g \in E \}$$

where $E = \{g_1, g_2, ..., g_m\} = \text{extd}(K^-)$ is finite (and minimal w.r.t. inclusion).

Then

$$h(V) = \{ w \in \mathbb{R}^n : g^T w \leq \sigma_V(g), \forall g \in E \}.$$

Morever for every function $\tau : E \to \mathbb{R}$ we can obtain a recessive pair (V, W), with $V^{\infty} = K$, by this formula:

$$V = \{z \in \mathbb{R}^n : g^T z \le \tau(g)\} \qquad W = \{z \in \mathbb{R}^n : g^T z \ge \tau(g)\}$$

A. Zaffaroni (Università di Modena)

Counterexample

 $K = \{(r, s, t) \in \mathbb{R}^3 : t > \sqrt{r^2 + s^2}\}$ $h = (1, 0, 1) \in \text{extd}(K^+)$ $H = \{z \in \mathbb{R}^3 : h^T z < -1\}$ $V = -K \cap H$ $V^{\infty} = -K$ $B = \{k \in K^+ : k^T e = 1\},\$ with $e = (0, 0, 1) \in \operatorname{int} K$ $E = \operatorname{ext} B$ $h(V) = -K \neq V$ despite $V = \{ w \in \mathbb{R}^n : g^T w < \sigma_V(g), \forall g \in E \}$

Recession hull, recessive sets

In the example above $\sigma_V(h) = -1$ and $\sigma_V(g) = 0$, for all $g \in E \setminus \{h\}$. Hence σ_V is lower semicontinuous, but not normal lower semicontinuous.

Recession hull, recessive sets

In the example above $\sigma_V(h) = -1$ and $\sigma_V(g) = 0$, for all $g \in E \setminus \{h\}$. Hence σ_V is lower semicontinuous, but not normal lower semicontinuous.

Theorem

Let V be convex, int $V^{\infty} \neq \emptyset$, and let E be the set of extreme points of a base B of $(V^{\infty})^{-}$. It holds

$$o(V) = \{z \in \mathbb{R}^n : g^T z \ge s_V(g), \forall g \in E\} \\ h(V) = \{z \in \mathbb{R}^n : g^T z \le s_V(g), \forall g \in E\}.$$

where s_V is the normal l.s.c. regularization of σ_V on E.

200

21

イロト イポト イヨト イヨト 二日

Support function

If V is the traslate of a convex cone, i.e. $V = y + V^{\infty}$ for some $y \in \mathbb{R}^n$, then it holds

$$\sigma_V(h) = \left\{egin{array}{cc} \langle y,h
angle & ext{if} \ h\in (V^\infty)^-\ +\infty & ext{otherwise} \end{array}
ight.$$

that is σ_V is linear on its effective domain, and its graph is flat there.

Theorem

Let V be convex, with int $V^{\infty} \neq \emptyset$. Then V is recessive if and only if its support function σ_V is normal lower semicontinuous, with $dom \sigma_V = (V^{\infty})^*$ and satisfies the following condition:

 $g^T y \leq \sigma_V(g), \quad \forall g \in E \implies h^T y \leq \sigma_V(h), \quad \forall h \in (V^\infty)^-$

Thus if V is recessive then the graph of its support function is in some way as flat as possible.

A. Zaffaroni (Università di Modena)

Minimal sublinear functions

WORKSHOP Cattolica, Milano, 2023

Polar sets

If $V = y + V^{\infty}$, and $y \in -int V^{\infty}$, then it holds $V^{\circ} = \{g \in (V^{\infty})^{-} : \langle y, g \rangle \leq 1\}.$

Thus V° is the smallest convex radiant set compatible with the values along extreme directions of the polar cone $(V^{\infty})^{-}$.

Theorem

Let (V, W) be a recessive pair, with $0 \in int V$. Then $V_{i}^{0} = clearer \{ \ell \in outd(V_{i}^{\infty})^{-} : i \in \ell \} \in 1 \}$

$$V^\circ = \operatorname{cl\,conv} \{\ell \in \operatorname{extd}(V^\infty)^- : \, \sigma_V(\ell) \leq 1\},$$

$$W^{\oplus} = cl \operatorname{conv} \{ \ell \in \operatorname{extd}(V^{\infty})^{-} : \iota_{V}(\ell) \geq 1 \}.$$

Minimal CGF

Only one representation, the Minkowski gauge.

- V is bounded;
- 2 *V* unbounded with int $V^{\infty} = \emptyset$;
- (3) int $V^{\infty} \neq \emptyset$, but $o(V) = \emptyset$.

Interesting cases: int $V^{\infty} \neq \emptyset$ and $o(V) \neq \emptyset$.

In some situations it is known that ρ is a minimal CGF if and only if $V(\rho)$ is a maximal *S*-free convex neighbourhood of 0, and $\rho = \gamma_V$. Tipically when *S* is (a subset of) $\mathbb{Z}^q - b$.

Minimal Cut Generating Functions

Necessary conditions, sufficient conditions

- a) If ρ is a minimal CGF, then it is the least representation of $V=[\rho\leq 1];$
- b) If V is a maximal, S-free, closed, convex neighbourhood of 0, then γ_V is a minimal CGF.
- c) If ρ is a minimal CGF, then $V = [\rho \le 1]$ is asymptotically maximal, i.e. $V \subseteq W$, int $W \cap S = \emptyset$, then $W^{\infty} = V^{\infty}$.

Theorem

The sublinear function $\rho : \mathbb{R}^n \to \mathbb{R}$ is a minimal CGF if and only if it is the least gauge of a (convex neighbourhood of 0) V such that V is asymptotically maximal and V is maximal S-free in h(V).

= ~ ~ ~

25

イロト イポト イヨト イヨト

Minimal CGF

Theorem

Suppose that there exists only one maximal S-free convex neighbourhood W of 0. And that int $W^{\infty} \neq \emptyset$ and $o(W) \neq \emptyset$. Then ρ is a minimal CGF if and only if $\rho = \gamma_U$, $U = W \cap V$, and V is a recessive neighbourhood of 0, with $V^{\infty} = W^{\infty}$.

Minimal CGF - 2

Theorem

Suppose that all maximal S-free convex neighbourhood W of 0 have the same (solid!) recession cone K. Then ρ is a minimal CGF if and only if $\rho = \gamma_V$, V is a neighbourhood of 0, which is maximal S-free in h(V), with $V^{\infty} = K$.

SOC

27

< 回 > < 三 > < 三 >

Minimal CGF

In order to get rid of the assumption of asymptotic maximality, more general cases should be considered individually. For their analysis the following cone is relevant:

$$\mathcal{T} = \{ d \in \mathbb{R}^q : \mathbb{R}_+ d \cap S = \emptyset \}$$

If T has a maximal convex S-free component which is closed, with nonempty interior, it can be used as the recession cone of some set $U = W \cap V$, W maximal, V recessive, whose least representation is minimal.

