On σ -convexity and σ -monotonicity

Mohammad Hossein Alizadeh

Institute for Advanced Studies in Basic Sciences (IASBS)

International Workshop Variational Analysis and Optimization II: May 30-31, 2024, Milan, Catholic University of Milan

Alizadeh (IASBS)

(日)

Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 $\bullet\,$ Convex and $\sigma\text{-convex}$ functions

▲口▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- $\bullet\,$ Convex and $\sigma\text{-convex}$ functions
- Topological properties of σ -convex functions

イロト イ理ト イヨト イヨト

臣

- $\bullet\,$ Convex and $\sigma\text{-convex}$ functions
- Topological properties of $\sigma\text{-convex}$ functions
- Subdifferential and $\sigma\text{-Subdifferential}$

イロト イヨト イヨト イヨト

臣

- $\bullet\,$ Convex and $\sigma\text{-convex}$ functions
- Topological properties of $\sigma\text{-}\mathrm{convex}$ functions
- $\bullet\,$ Subdifferential and $\sigma\text{-Subdifferential}$
- conjugate and (σ, y) -conjugate

イロト イ理ト イヨト イヨト

- $\bullet\,$ Convex and $\sigma\text{-convex}$ functions
- Topological properties of $\sigma\text{-}\mathrm{convex}$ functions
- $\bullet\,$ Subdifferential and $\sigma\text{-Subdifferential}$
- conjugate and (σ, y) -conjugate
- $\bullet\,$ Monotone and $\sigma\textsc{-}Monotone$ operators

Suppose that X is a Banach space with topological dual space X^* and $f: X \to \mathbb{R} \cup \{+\infty\}$ is a function.

ヘロト 人間 とくほど 人間と

1

Suppose that X is a Banach space with topological dual space X^* and $f: X \to \mathbb{R} \cup \{+\infty\}$ is a function. We define its *domain* (or effective domain) as

$$D(f) = \operatorname{dom} f = \left\{ x \in X : f(x) < \infty \right\}.$$

イロト イ理ト イヨト イヨト

Suppose that X is a Banach space with topological dual space X^* and $f: X \to \mathbb{R} \cup \{+\infty\}$ is a function. We define its *domain* (or effective domain) as

$$D(f) = \operatorname{dom} f = \left\{ x \in X : f(x) < \infty \right\}.$$

イロト イ理ト イヨト イヨト

æ

The function f is called $proper \text{ if } \mathrm{dom}\, f \neq \emptyset$.

Suppose that X is a Banach space with topological dual space X^* and $f: X \to \mathbb{R} \cup \{+\infty\}$ is a function. We define its *domain* (or effective domain) as

$$D(f) = \operatorname{dom} f = \left\{ x \in X : f(x) < \infty \right\}.$$

The function f is called *proper* if dom $f \neq \emptyset$. In addition, f is said to be *convex* when for all $x, y \in X$ and for each $t \in [0, 1]$,

$$f((1-t)x+ty) \le (1-t)f(x)+tf(y).$$

イロト イポト イヨト イヨト

Assume that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a function.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Assume that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a function. If $f(x) \in \mathbb{R}$, then the *subdifferential* of f at x is denoted by $\partial f(x)$ and is defined as the set of all $x^* \in X^*$ satisfying

$$\langle x^*, y - x \rangle \le f(y) - f(x).$$

for all $y \in X$.

・ロト ・回 ト ・ 回 ト ・ 回 ト

1

Assume that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a function. If $f(x) \in \mathbb{R}$, then the *subdifferential* of f at x is denoted by $\partial f(x)$ and is defined as the set of all $x^* \in X^*$ satisfying

$$\langle x^*, y - x \rangle \le f(y) - f(x)$$
.

for all $y \in X$. When $f(x) \notin \mathbb{R}$ we define $\partial f(x) = \emptyset$.

・ロト ・回 ト ・ヨト ・ヨト

臣

Assume that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a function. If $f(x) \in \mathbb{R}$, then the *subdifferential* of f at x is denoted by $\partial f(x)$ and is defined as the set of all $x^* \in X^*$ satisfying

$$\langle x^*, y - x \rangle \le f(y) - f(x)$$

for all $y \in X$. When $f(x) \notin \mathbb{R}$ we define $\partial f(x) = \emptyset$. We say that f is subdifferentiable at x if $\partial f(x) \neq \emptyset$.

・ロト ・母ト ・ヨト ・ヨトー

Definition (M.H.A, Roohi, 2017)

Given a function $f: X \to \mathbb{R} \cup \{+\infty\}$ and a map σ form dom f to \mathbb{R}_+ , we say that f is σ -convex if

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + t(1-t)\min\{\sigma(x), \sigma(y)\}||x-y|| \qquad (1)$$

for all $x, y \in X$, and $t \in]0, 1[$.

・ロト ・回ト ・ヨト ・ヨト

Definition (M.H.A, Roohi, 2017)

Given a function $f: X \to \mathbb{R} \cup \{+\infty\}$ and a map σ form dom f to \mathbb{R}_+ , we say that f is σ -convex if

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + t(1-t)\min\{\sigma(x), \sigma(y)\}||x-y||$$
(1)

for all $x, y \in X$, and $t \in]0, 1[$.

There are σ -convex functions which are not ε -convex for any $\varepsilon \ge 0$, as shown in the following example.

イロト スポト メヨト メヨト

Example (M.H.A, Roohi, 2017)

Consider the functions $\varphi, f, \sigma : \mathbb{R} \to \mathbb{R}$ defined by

$$\varphi(x) = \begin{cases} x \sin^2 x & \text{if } x \ge 0, \\ 0 & \text{if } x < 0, \end{cases}$$
$$\sigma(x) = \max\left\{\varphi(x), \max_{z \le x} \varphi(z) - \varphi(x)\right\}$$
$$f(x) = \int_0^x \varphi(t) dt.$$

This function f is σ -convex, but it is not ϵ -convex for any $\epsilon > 0$.

・ロト ・回ト ・ヨト ・ヨト

Example (M.H.A, Roohi, 2017)

Consider the functions $\varphi, f, \sigma : \mathbb{R} \to \mathbb{R}$ defined by

$$\varphi(x) = \begin{cases} x \sin^2 x & \text{if } x \ge 0, \\ 0 & \text{if } x < 0, \end{cases}$$
$$\sigma(x) = \max\left\{\varphi(x), \max_{z \le x} \varphi(z) - \varphi(x)\right\}$$
$$f(x) = \int_0^x \varphi(t) dt.$$

This function f is σ -convex, but it is not ϵ -convex for any $\epsilon > 0$.

Note that if f is a σ -convex function, then dom f is a convex set.

(日)

イロト イ理ト イヨト イヨト

1

Example (M.H.A, 2021)

Alizadeh (IASBS)

Consider the function $f: X \to \mathbb{R}$ defined by f(x) = -||x||. Then f is σ -convex for $\sigma \equiv 2$, but it does not have an affine minorant.

・ロト ・回 ト ・ヨト ・ ヨト

Example (M.H.A, 2021)

Consider the function $f: X \to \mathbb{R}$ defined by f(x) = -||x||. Then f is σ -convex for $\sigma \equiv 2$, but it does not have an affine minorant.

Example (M.H.A, 2021)

Fix $a \in X$ and define the function $g: X \to \mathbb{R}$ by g(x) = ||x|| - ||a|||. Then g is σ -convex for $\sigma \equiv 2$, and y = 0 is an affine minorant of g.

・ロト ・回 ト ・ヨト ・ヨト

Example (M.H.A, 2021)

Consider the function $f: X \to \mathbb{R}$ defined by $f(x) = -\|x\|$. Then f is σ -convex for $\sigma \equiv 2$, but it does not have an affine minorant.

Example (M.H.A, 2021)

Fix $a \in X$ and define the function $g: X \to \mathbb{R}$ by g(x) = ||x|| - ||a|||. Then g is σ -convex for $\sigma \equiv 2$, and y = 0 is an affine minorant of g.

Example (M.H.A, Hosseinabadi, 2023)

Fixed $a \in X$ and define $f_0(x) = ||x|| - ||a|||$. For each $n \in \mathbb{N}$, define f_n recursively by $f_n(x) = |f_{n-1}(x) - ||a|||$. Then f_n for all $n \in \mathbb{N} \cup \{0\}$ is σ -convex with $\sigma \equiv 2$, and y = 0 is an affine minorant of it.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆○

▲日本 ▲園本 ▲目本 ▲目本 三日 ● ○○○

▲日本 ▲園本 ▲目本 ▲目本 三日 ● ○○○

Alizadeh (IASBS)

Proposition

(i) If f is σ -convex and $\sigma \leq \sigma'$, then f is σ' -convex.

イロト イ理ト イヨト イヨト

Proposition

(i) If f is σ -convex and $\sigma \leq \sigma'$, then f is σ' -convex. (ii) Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a function. Then f is σ -convex if and only if for all $x, y \in X$, and $t \in]0, 1[$,

イロト イ理ト イヨト イヨト

Proposition

(i) If f is σ -convex and $\sigma \leq \sigma'$, then f is σ' -convex. (ii) Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a function. Then f is σ -convex if and only if for all $x, y \in X$, and $t \in]0, 1[$,

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + t(1-t)\sigma(x)||x-y||$$
(2)

(iii) Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a function. Then f is convex if and only if it is σ -convex for every σ : dom $f \to \mathbb{R}_+$.

・ロト ・週 ト ・ヨト ・ヨト … ヨ

Given a function $f: X \to \mathbb{R} \cup \{+\infty\}$, we define the map $\sigma_f: \operatorname{dom} f \to \mathbb{R}_+ \cup \{+\infty\}$ by

$$\sigma_f(x) = \inf\{a \in \mathbb{R}_+ : \frac{f(tx + (1-t)y) - tf(x) - (1-t)f(y)}{t(1-t)}$$

$$\leq a ||x - y||, \forall y \in \operatorname{dom} f, t \in]0, 1[\}.$$

イロト イヨト イヨト イヨト

Given a function $f: X \to \mathbb{R} \cup \{+\infty\}$, we define the map $\sigma_f: \operatorname{dom} f \to \mathbb{R}_+ \cup \{+\infty\}$ by

$$\sigma_f(x) = \inf\{a \in \mathbb{R}_+ : \frac{f(tx + (1-t)y) - tf(x) - (1-t)f(y)}{t(1-t)}$$

$$\leq a ||x - y||, \forall y \in \operatorname{dom} f, t \in]0, 1[\}.$$

It should be noticed that if f is σ' -convex for some $\sigma' : \operatorname{dom} f \to \mathbb{R}_+$, then

$$\sigma_f = \inf \left\{ \sigma : f \text{ is } \sigma \text{-convex} \right\}. \tag{3}$$

イロト イヨト イヨト イヨト

Given a function $f: X \to \mathbb{R} \cup \{+\infty\}$, we define the map $\sigma_f: \operatorname{dom} f \to \mathbb{R}_+ \cup \{+\infty\}$ by

$$\sigma_f(x) = \inf\{a \in \mathbb{R}_+ : \frac{f(tx + (1-t)y) - tf(x) - (1-t)f(y)}{t(1-t)}$$

$$\leq a ||x - y||, \forall y \in \operatorname{dom} f, t \in]0, 1[\}.$$

It should be noticed that if f is σ' -convex for some $\sigma' : \operatorname{dom} f \to \mathbb{R}_+$, then

$$\sigma_f = \inf \left\{ \sigma : f \text{ is } \sigma \text{-convex} \right\}.$$
(3)

イロト イ理ト イヨト イヨト

æ

In this case, σ_f is finite and f is σ_f -convex. Note that σ_f is the minimal σ such that f is σ -convex.

Proposition (M.H.A, 2020)

Suppose that f is σ -convex for some σ . Then

$$\sigma_f(x) = \max\left\{0, \sup_{t \in]0, 1[y \in \dim f \setminus \{x\}} \frac{f\left(tx + (1-t)y\right) - tf(x) - (1-t)f(y)}{t(1-t)\|x - y\|}\right\}.$$
 (4)

イロト イ理ト イヨト イヨト

Proposition (M.H.A, 2020)

Suppose that f is σ -convex for some σ . Then

$$\sigma_f(x) = \max\left\{0, \sup_{t \in]0, 1[y \in \text{dom } f \setminus \{x\}} \frac{f\left(tx + (1-t)y\right) - tf(x) - (1-t)f(y)}{t(1-t)\|x - y\|}\right\}.$$
 (4)

Proposition

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a function. Then σ_f is finite and f is σ_f -convex if and only if f is σ -convex for some σ .

イロト イヨト イヨト イヨト

Proposition (M.H.A, 2020)

Suppose that f is σ -convex for some σ . Then

$$\sigma_f(x) = \max\left\{0, \sup_{t \in]0, 1[y \in \text{dom } f \setminus \{x\}} \frac{f\left(tx + (1-t)y\right) - tf(x) - (1-t)f(y)}{t(1-t)\|x - y\|}\right\}.$$
 (4)

Proposition

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a function. Then σ_f is finite and f is σ_f -convex if and only if f is σ -convex for some σ .

イロト イヨト イヨト イヨト

Property B

We introduce the following assumption:

We say that the function σ has the property B, if for every $x \in \operatorname{int} \operatorname{dom} f$ and every $\varepsilon > 0$ sufficiently small, σ is bounded on the sphere $S(x, \varepsilon) = \{y \in X : ||x - y|| = \varepsilon\}$.

Theorem (M.H.A, 2020)

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a σ -convex function. Assume that f is locally bounded from above in the interior of its domain. If σ satisfies property B, then f is locally Lipschitz in the interior of its domain.

イロト イ理ト イヨト イヨト

Theorem (M.H.A, 2020)

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a σ -convex function. Assume that f is locally bounded from above in the interior of its domain. If σ satisfies property B, then f is locally Lipschitz in the interior of its domain.

Corollary

Every proper, σ -convex function $f : \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ is locally Lipschitz in the interior of its domain.

イロト イヨト イヨト イヨト

Alizadeh (IASBS)

イロト イヨト イヨト イヨト

æ.

For a proper function $f: X \to \mathbb{R} \cup \{+\infty\}$ the Clarke-Rockafellar generalized directional derivative at x in a direction $z \in X$ is defined by

$$f^{\uparrow}(x,z) = \sup_{\delta > 0} \limsup_{(y,\alpha) \stackrel{f}{\to} x, \lambda \searrow 0} \inf_{u \in B(z,\delta)} \frac{f(y + \lambda u) - \alpha}{\lambda}$$

where $(y, \alpha) \xrightarrow{f} x$ means that $y \to x, \alpha \to f(x)$ and $\alpha \ge f(y)$.

<ロト <週 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For a proper function $f: X \to \mathbb{R} \cup \{+\infty\}$ the Clarke-Rockafellar generalized directional derivative at x in a direction $z \in X$ is defined by

$$f^{\uparrow}(x,z) = \sup_{\delta > 0} \limsup_{(y,\alpha) \stackrel{f}{\to} x, \lambda \searrow 0} \inf_{u \in B(z,\delta)} \frac{f(y + \lambda u) - \alpha}{\lambda}$$

where $(y, \alpha) \xrightarrow{f} x$ means that $y \to x, \alpha \to f(x)$ and $\alpha \ge f(y)$. If f is lsc at x, the above definition coincides with

$$f^{\uparrow}(x,z) = \sup_{\delta > 0} \limsup_{\substack{y \stackrel{f}{\to} x, \lambda \searrow 0}} \inf_{u \in B(z,\delta)} \frac{f(y + \lambda u) - f(y)}{\lambda}.$$

Here, $y \xrightarrow{f} x$ means that $y \to x$ and $f(y) \to f(x)$.

・ロト ・母ト ・ヨト ・ヨト - ヨ

Alizadeh (IASBS)

イロト イヨト イヨト イヨト

æ.

The Clarke-Rockafellar subdifferential of f at $x\in \mathrm{dom}\, f$ is defined by

$$\partial^{CR} f\left(x\right) = \left\{x^* \in X^* : \langle x^*, z \rangle \le f^{\uparrow}\left(x, z\right) \quad \forall z \in X\right\}.$$

イロト イヨト イヨト イヨト

æ

The Clarke-Rockafellar subdifferential of f at $x \in \text{dom } f$ is defined by

$$\partial^{CR} f\left(x\right) = \left\{x^{*} \in X^{*}: \left\langle x^{*}, z\right\rangle \leq f^{\uparrow}\left(x, z\right) \quad \forall z \in X\right\}.$$

・ロト ・回ト ・ヨト ・ヨト

æ

In the following we introduce the notion of σ -subdifferential.

Definition (M.H.A, 2020)

Suppose that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a proper function. The σ -subdifferential of f is the multivalued operator $\partial^{\sigma} f: X \to 2^{X^*}$ defined by

$$\partial^{\sigma} f\left(x\right) := \left\{ x^{*} : \left\langle x^{*}, z\right\rangle \leq f\left(x+z\right) - f\left(x\right) + \min\left\{\sigma\left(x\right), \sigma\left(z+x\right)\right\} ||z|| \;\; \forall z \in X \right\} \right\}$$

if $x \in \text{dom } f$; otherwise it is empty.

イロト スポト メヨト メヨト

Definition (M.H.A, 2020)

Suppose that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a proper function. The σ -subdifferential of f is the multivalued operator $\partial^{\sigma} f: X \to 2^{X^*}$ defined by

$$\partial^{\sigma} f\left(x\right) := \left\{ x^{*} : \left\langle x^{*}, z\right\rangle \leq f\left(x+z\right) - f\left(x\right) + \min\left\{\sigma\left(x\right), \sigma\left(z+x\right)\right\} ||z|| \;\; \forall z \in X \right\} \right\}$$

if $x \in \text{dom } f$; otherwise it is empty.

It follows from the above definition that $\partial f \subset \partial^{\sigma} f$ and so $D(\partial f) \subset D(\partial^{\sigma} f) \subset \operatorname{dom} f$.

・ロト ・母 ト ・ヨト ・ ヨト

Definition (M.H.A, 2020)

Suppose that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a proper function. The σ -subdifferential of f is the multivalued operator $\partial^{\sigma} f: X \to 2^{X^*}$ defined by

$$\partial^{\sigma} f\left(x\right) := \left\{ x^{*} : \left\langle x^{*}, z\right\rangle \leq f\left(x+z\right) - f\left(x\right) + \min\left\{\sigma\left(x\right), \sigma\left(z+x\right)\right\} ||z|| \;\; \forall z \in X \right\} \right\}$$

if $x \in \text{dom } f$; otherwise it is empty.

It follows from the above definition that $\partial f \subset \partial^{\sigma} f$ and so $D(\partial f) \subset D(\partial^{\sigma} f) \subset \text{dom } f$. In the next proposition, we find a relationship between $\partial^{CR} f(x)$ and $\partial^{\sigma} f(x)$.

・ロト ・母 ト ・ヨト ・ ヨト

Assume that $f: X \to \mathbb{R} \cup \{+\infty\}$ is lsc and σ -convex. Then $\partial^{CR} f(x) \subset \partial^{\sigma} f(x)$.

Example

Note that the function f(x) = -|x| is σ -convex with $\sigma \equiv 2$. Then $\partial f(0) = \emptyset$, and $\partial^{CR} (f(0)) = [-1, 1]$

イロト イ理ト イヨト イヨト

Assume that $f: X \to \mathbb{R} \cup \{+\infty\}$ is lsc and σ -convex. Then $\partial^{CR} f(x) \subset \partial^{\sigma} f(x)$.

Example

Note that the function f(x) = -|x| is σ -convex with $\sigma \equiv 2$. Then $\partial f(0) = \emptyset$, and $\partial^{CR} (f(0)) = [-1, 1]$ also it is easy to see that $\partial^{\sigma} f(0) = [-1, 1]$.

・ロト ・回 ト ・ヨト ・ ヨト

Assume that $f: X \to \mathbb{R} \cup \{+\infty\}$ is lsc and σ -convex. Then $\partial^{CR} f(x) \subset \partial^{\sigma} f(x)$.

Example

Note that the function f(x) = -|x| is σ -convex with $\sigma \equiv 2$. Then $\partial f(0) = \emptyset$, and $\partial^{CR} (f(0)) = [-1, 1]$ also it is easy to see that $\partial^{\sigma} f(0) = [-1, 1]$. On the other hand, if we take $\sigma' \equiv 4$, then f is σ' -convex and $\partial^{\sigma'} f(0) = [-3, 3]$. Thus the inclusion in the above proposition can be equality or strict.

Proposition (M.H.A, 2021)

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a proper and convex function. Suppose that f and $\sigma: \operatorname{dom} f \to \mathbb{R}_+$ are Lipschitz near x and $f(\cdot) + \sigma(\cdot) \|\cdot - x\|$ is convex. Then $\partial^{\sigma} f(x) \subset \partial f(x) + \sigma(x) B^*.$

・ロト ・母ト ・ヨト ・ヨト - ヨ

Assume that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a proper σ -convex function. If f is Gateaux differentiable at $x \in X$, then $f'(x) \in \partial^{\sigma} f(x)$ i.e., $\partial^{\sigma} f(x)$ is nonempty.

Alizadeh (IASBS)

Variational Analysis and OptimizationII 18 / 29

イロト イヨト イヨト イヨト

臣

Assume that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a proper σ -convex function. If f is Gateaux differentiable at $x \in X$, then $f'(x) \in \partial^{\sigma} f(x)$ i.e., $\partial^{\sigma} f(x)$ is nonempty. Moreover if σ is usc, then $\partial^{\sigma} f(x) \subset \left\{x^* \in X^* : \|x^* - f'(x)\| \le \sigma(x)\right\}$.

・ロト ・回 ト ・ヨト ・ヨト

Alizadeh (IASBS)

Assume that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a proper σ -convex function. If f is Gateaux differentiable at $x \in X$, then $f'(x) \in \partial^{\sigma} f(x)$ i.e., $\partial^{\sigma} f(x)$ is nonempty. Moreover if σ is usc, then $\partial^{\sigma} f(x) \subset \left\{x^* \in X^* : \left\|x^* - f'(x)\right\| \le \sigma(x)\right\}$.

Proposition

Suppose that $f: X \to \mathbb{R} \cup \{+\infty\}$ is proper. If $\partial^{\sigma} f(x) \neq \emptyset$ and $\limsup_{y \to x} \sigma(y) < \infty$, then f is lsc at x.

・ロト ・回 ト ・ヨト ・ヨト

Assume that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a proper σ -convex function. If f is Gateaux differentiable at $x \in X$, then $f'(x) \in \partial^{\sigma} f(x)$ i.e., $\partial^{\sigma} f(x)$ is nonempty. Moreover if σ is usc, then $\partial^{\sigma} f(x) \subset \left\{x^* \in X^* : \left\|x^* - f'(x)\right\| \le \sigma(x)\right\}$.

Proposition

Suppose that $f: X \to \mathbb{R} \cup \{+\infty\}$ is proper. If $\partial^{\sigma} f(x) \neq \emptyset$ and $\limsup_{y \to x} \sigma(y) < \infty$, then f is lsc at x. If, in addition, $x \in \operatorname{int} \operatorname{dom} f$ and $\limsup_{y \to x} f(y) < +\infty$, then $\partial^{\sigma} f(x)$ is bounded.

・ロト ・週 ト ・ヨト ・ヨト … ヨ

Assume that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a proper σ -convex function. If f is Gateaux differentiable at $x \in X$, then $f'(x) \in \partial^{\sigma} f(x)$ i.e., $\partial^{\sigma} f(x)$ is nonempty. Moreover if σ is usc, then $\partial^{\sigma} f(x) \subset \left\{x^* \in X^* : \left\|x^* - f'(x)\right\| \le \sigma(x)\right\}$.

Proposition

Suppose that $f: X \to \mathbb{R} \cup \{+\infty\}$ is proper. If $\partial^{\sigma} f(x) \neq \emptyset$ and $\limsup_{y \to x} \sigma(y) < \infty$, then f is lsc at x. If, in addition, $x \in \operatorname{int} \operatorname{dom} f$ and $\limsup_{y \to x} f(y) < +\infty$, then $\partial^{\sigma} f(x)$ is bounded.

Proposition

Suppose that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a proper σ -convex function and $x \in \text{dom } f$. If int dom $f \neq \emptyset$ and $x \in \text{bd} (\text{dom } f)$, then $\partial^{\sigma} f(x)$ is either empty or unbounded.

<ロト <週 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a proper σ -convex function and $x_0 \in \text{dom } f$ be a local minimizer of f. Set

$$\varphi(x) := f(x) + \min\{\sigma(x), \sigma(x_0)\} ||x - x_0||.$$
(5)

イロト イヨト イヨト イヨト

臣

Then φ attains its global minimum at x_0 .

Alizadeh (IASBS)

Alizadeh (IASBS)

Proposition (M.H.A., Zanjani, 2024)

Suppose $f, g: X \to \mathbb{R} \cup \{+\infty\}$ are proper, lsc and σ -convex functions and σ has the property **B**. If $\bar{x} \in \text{dom } g \cap \text{int} (\text{dom } f)$ is a local minimum point of the function $f + g - \langle x^*, \cdot \rangle$ for all $x^* \in \partial^{2\sigma} (f + g) (\bar{x})$, then

イロト イポト イヨト イヨト

Proposition (M.H.A., Zanjani, 2024)

Suppose $f, g: X \to \mathbb{R} \cup \{+\infty\}$ are proper, lsc and σ -convex functions and σ has the property **B**. If $\bar{x} \in \text{dom } g \cap \text{int} (\text{dom } f)$ is a local minimum point of the function $f + g - \langle x^*, \cdot \rangle$ for all $x^* \in \partial^{2\sigma} (f + g) (\bar{x})$, then

 $\partial^{\sigma} f(x) + \partial^{\sigma} g(x) = \partial^{2\sigma} \left(f + g \right)(x).$

・ロト ・週 ト ・ヨト ・ヨト … ヨ

Proposition (M.H.A., Zanjani, 2024)

Suppose $f, g: X \to \mathbb{R} \cup \{+\infty\}$ are proper, lsc and σ -convex functions and σ has the property **B**. If $\bar{x} \in \text{dom } g \cap \text{int} (\text{dom } f)$ is a local minimum point of the function $f + g - \langle x^*, \cdot \rangle$ for all $x^* \in \partial^{2\sigma} (f + g) (\bar{x})$, then

$$\partial^{\sigma} f(x) + \partial^{\sigma} g(x) = \partial^{2\sigma} \left(f + g \right)(x).$$

Lemma

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a proper and convex function. Then $\partial^{\sigma} f(x) = \partial (f + \sigma(\cdot) \| \cdot - x \|)(x)$. If, in addition, $f(\cdot) + \sigma(\cdot) \| \cdot - x \|$ is convex, then $\partial^{\sigma} f(x) = \partial^{CR} (f + \sigma(\cdot) \| \cdot - x \|)(x)$.

◆□▶ ◆□▶ ◆目▶ ◆日▶ ◆□ ● ○○○

Proposition (M.H.A., Zanjani, 2024)

Suppose $f, g: X \to \mathbb{R} \cup \{+\infty\}$ are proper, lsc and σ -convex functions and σ has the property **B**. If $\bar{x} \in \text{dom } g \cap \text{int} (\text{dom } f)$ is a local minimum point of the function $f + g - \langle x^*, \cdot \rangle$ for all $x^* \in \partial^{2\sigma} (f + g) (\bar{x})$, then

$$\partial^{\sigma} f\left(x\right) + \partial^{\sigma} g\left(x\right) = \partial^{2\sigma} \left(f + g\right)\left(x\right).$$

Lemma

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a proper and convex function. Then $\partial^{\sigma} f(x) = \partial (f + \sigma(\cdot) \| \cdot - x \|)(x)$. If, in addition, $f(\cdot) + \sigma(\cdot) \| \cdot - x \|$ is convex, then $\partial^{\sigma} f(x) = \partial^{CR} (f + \sigma(\cdot) \| \cdot - x \|)(x)$.

Theorem

Suppose that $f, g: X \to \mathbb{R} \cup \{+\infty\}$ are proper, lsc and σ -convex functions. Assume that σ is Lipschitz, $\sigma(0) = 0$, $x_0 \in int(\operatorname{dom} f) \cap \operatorname{dom} g$ and $\sigma(x_0 + z) = \sigma(z)$ for all $z \in X$. Then

$$\partial^{\sigma} f(x_0) + \partial^{\sigma} g(x_0) = \partial^{2\sigma} (f+g)(x_0).$$

Alizadeh (IASBS)

ヘロマ 人間マ 人間マ 人間マ

Definition (M.H.A., 2021)

Alizadeh (IASBS)

Suppose that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a σ -convex function and $y \in X$ is fixed. Then the map $f^*_{\sigma,y}: X^* \to \mathbb{R} \cup \{+\infty\}$ defined by

イロト イ理ト イヨト イヨト

æ

Definition (M.H.A., 2021)

Alizadeh (IASBS)

Suppose that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a σ -convex function and $y \in X$ is fixed. Then the map $f^*_{\sigma,y}: X^* \to \mathbb{R} \cup \{+\infty\}$ defined by

$$f_{\sigma,y}^{*}\left(x^{*}\right) = \sup_{x \in X} \left\{ \left\langle x^{*}, x \right\rangle - f\left(x\right) - \sigma\left(x\right) \left|\left|x - y\right|\right| \right\}, \qquad \forall x^{*} \in X^{*}$$
(6)

is called the (σ, y) -conjugate of f.

イロト イ理ト イヨト イヨト

э

Definition (M.H.A., 2021)

Suppose that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a σ -convex function and $y \in X$ is fixed. Then the map $f^*_{\sigma,y}: X^* \to \mathbb{R} \cup \{+\infty\}$ defined by

$$f_{\sigma,y}^{*}\left(x^{*}\right) = \sup_{x \in X} \left\{ \left\langle x^{*}, x \right\rangle - f\left(x\right) - \sigma\left(x\right) \left|\left|x - y\right|\right| \right\}, \qquad \forall x^{*} \in X^{*}$$
(6)

is called the (σ, y) -conjugate of f.

As for the convex case, the function $f^*_{\sigma,y}: X \to \mathbb{R} \cup \{\pm \infty\}$ defined by

$$f_{\sigma,y}^{**}\left(x\right) = \sup_{x^{*} \in X^{*}} \left\{ \left\langle x^{*}, x \right\rangle - f_{\sigma,y}^{*}\left(x^{*}\right) \right\}, \qquad \forall x \in X$$

is the (σ, y) -biconjugate of f.

・ロト ・回 ト ・ヨト ・ヨト

Definition (M.H.A., 2021)

Suppose that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a σ -convex function and $y \in X$ is fixed. Then the map $f_{\sigma,y}^*: X^* \to \mathbb{R} \cup \{+\infty\}$ defined by

$$f_{\sigma,y}^{*}\left(x^{*}\right) = \sup_{x \in X} \left\{ \left\langle x^{*}, x \right\rangle - f\left(x\right) - \sigma\left(x\right) \left|\left|x - y\right|\right| \right\}, \qquad \forall x^{*} \in X^{*}$$
(6)

is called the (σ, y) -conjugate of f.

As for the convex case, the function $f^*_{\sigma,y}: X \to \mathbb{R} \cup \{\pm \infty\}$ defined by

$$f_{\sigma,y}^{**}\left(x\right) = \sup_{x^{*} \in X^{*}} \left\{ \left\langle x^{*}, x \right\rangle - f_{\sigma,y}^{*}\left(x^{*}\right) \right\}, \qquad \forall x \in X$$

is the (σ, y) -biconjugate of f.

Proposition

Suppose that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a σ -convex function. Then for every $x \in \text{dom } f$, $x^* \in X^*$,

$$x^* \in \partial^{\sigma} f(x) \iff f^*_{\sigma,x}(x^*) + f(x) = \langle x^*, x \rangle.$$
(7)

Definition (M.H.A., 2021)

Suppose that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a σ -convex function and $y \in X$ is fixed. Then the map $f_{\sigma,y}^*: X^* \to \mathbb{R} \cup \{+\infty\}$ defined by

$$f_{\sigma,y}^{*}\left(x^{*}\right) = \sup_{x \in X} \left\{ \left\langle x^{*}, x \right\rangle - f\left(x\right) - \sigma\left(x\right) \left|\left|x - y\right|\right| \right\}, \qquad \forall x^{*} \in X^{*}$$
(6)

is called the (σ, y) -conjugate of f.

As for the convex case, the function $f^*_{\sigma,y}: X \to \mathbb{R} \cup \{\pm \infty\}$ defined by

$$f_{\sigma,y}^{**}\left(x\right) = \sup_{x^{*} \in X^{*}} \left\{ \left\langle x^{*}, x \right\rangle - f_{\sigma,y}^{*}\left(x^{*}\right) \right\}, \qquad \forall x \in X$$

is the (σ, y) -biconjugate of f.

Proposition

Suppose that $f: X \to \mathbb{R} \cup \{+\infty\}$ is a σ -convex function. Then for every $x \in \text{dom } f$, $x^* \in X^*$,

$$x^* \in \partial^{\sigma} f(x) \iff f^*_{\sigma,x}(x^*) + f(x) = \langle x^*, x \rangle.$$
(7)

In particular, $\operatorname{gr}(\partial^{\sigma} f) \subset \operatorname{dom} f \times \operatorname{dom} f_{\sigma,x}^*$.

Theorem (M.H.A., 2021)

Alizadeh (IASBS)

Suppose that $f, g: X \to \mathbb{R} \cup \{+\infty\}$ are lsc. Let f be σ -convex, g be σ' -convex. Then (i) for every $y \in X$ and $x^* \in X^*$ one has

$$(f+g)^*_{\sigma+\sigma',y}\left(x^*\right) \le \left(f^*_{\sigma,y}\left(\cdot\right) \Box g^*_{\sigma',y}\left(\cdot\right)\right)\left(x^*\right);\tag{8}$$

イロト イヨト イヨト イヨト

臣

Variational Analysis and OptimizationII 22/29

Theorem (M.H.A., 2021)

Suppose that $f, g: X \to \mathbb{R} \cup \{+\infty\}$ are lsc. Let f be σ -convex, g be σ' -convex. Then (i) for every $y \in X$ and $x^* \in X^*$ one has

$$(f+g)^*_{\sigma+\sigma',y}\left(x^*\right) \le \left(f^*_{\sigma,y}\left(\cdot\right) \Box g^*_{\sigma',y}\left(\cdot\right)\right)\left(x^*\right);\tag{8}$$

・ロト ・週 ト ・ヨト ・ヨト … ヨ

(ii) if σ satisfies property $B, y \in \text{int dom } f$ and it is a local minimum point of the function $f + g - \langle x^*, \cdot \rangle$, then the equality holds.

$$D(T) = \left\{ x \in X : T(x) \neq \emptyset \right\},\$$
gr $T = \left\{ \left(x, x^*\right) \in X \times X^* : x \in D(T), \text{ and } x^* \in T(x) \right\}.$

イロト イヨト イヨト イヨト

Ξ.

$$D(T) = \left\{ x \in X : T(x) \neq \emptyset \right\},\$$

gr $T = \left\{ \left(x, x^* \right) \in X \times X^* : x \in D(T), \text{ and } x^* \in T(x) \right\}.$

For two set-valued operators T and S, we write $T \subseteq S$ if S is an extension of T, i.e., gr $T \subseteq$ gr S.

We recall that T is monotone if

$$\langle x - y, x^* - y^* \rangle \ge 0$$

for all $x, y \in X$ and $x^* \in T(x), y^* \in T(y)$.

イロト イヨト イヨト イヨト

1

$$D(T) = \left\{ x \in X : T(x) \neq \emptyset \right\},\$$

gr $T = \left\{ \left(x, x^* \right) \in X \times X^* : x \in D(T), \text{ and } x^* \in T(x) \right\}.$

For two set-valued operators T and S, we write $T \subseteq S$ if S is an extension of T, i.e., gr $T \subseteq$ gr S.

We recall that T is monotone if

$$\langle x - y, x^* - y^* \rangle \ge 0$$

for all $x, y \in X$ and $x^* \in T(x), y^* \in T(y)$.

A monotone operator is called maximal monotone if it has no monotone extension other than itself.

イロト イヨト イヨト イヨト

-

$$D(T) = \left\{ x \in X : T(x) \neq \emptyset \right\},\$$

gr $T = \left\{ \left(x, x^* \right) \in X \times X^* : x \in D(T), \text{ and } x^* \in T(x) \right\}.$

For two set-valued operators T and S, we write $T \subseteq S$ if S is an extension of T, i.e., gr $T \subseteq$ gr S.

We recall that T is monotone if

$$\langle x - y, x^* - y^* \rangle \ge 0$$

for all $x, y \in X$ and $x^* \in T(x), y^* \in T(y)$.

A monotone operator is called maximal monotone if it has no monotone extension other than itself.

イロト イヨト イヨト イヨト

-

Alizadeh (IASBS)

Definition

(i) Given an operator $T: X \to 2^{X^*}$ and a map $\sigma: D(T) \to \mathbb{R}_+, T$ is said to be σ -monotone if for every $x, y \in D(T), x^* \in T(x)$ and $y^* \in T(y)$,

$$\langle x^* - y^*, y - x \rangle \le \min\{\sigma(x), \sigma(y)\} \|x - y\|.$$
(9)

・ロト ・母 ト ・ヨト ・ ヨト

æ

Variational Analysis and OptimizationII 24/29

Definition

(i) Given an operator $T: X \to 2^{X^*}$ and a map $\sigma: D(T) \to \mathbb{R}_+, T$ is said to be σ -monotone if for every $x, y \in D(T), x^* \in T(x)$ and $y^* \in T(y)$,

$$\langle x^* - y^*, y - x \rangle \le \min\{\sigma(x), \sigma(y)\} \|x - y\|.$$
(9)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

(ii) A σ -monotone operator T is called maximal σ -monotone, if for every operator T' which is σ' -monotone with gr $T \subseteq$ gr T' and σ' an extension of σ , one has T = T'.

Definition

(i) Given an operator $T: X \to 2^{X^*}$ and a map $\sigma: D(T) \to \mathbb{R}_+, T$ is said to be σ -monotone if for every $x, y \in D(T), x^* \in T(x)$ and $y^* \in T(y)$,

$$\langle x^* - y^*, y - x \rangle \le \min\{\sigma(x), \sigma(y)\} \|x - y\|.$$
(9)

・ロト ・母ト ・ヨト ・ヨト

(ii) A σ -monotone operator T is called maximal σ -monotone, if for every operator T' which is σ' -monotone with gr $T \subseteq$ gr T' and σ' an extension of σ , one has T = T'.

The operator T is called premonotone, if it is σ -monotone for some σ .

Theorem (Rockafellar for σ -monotonicity, M.H.A., Hadjisavvas, Roohi, 2012)

Suppose that X is a Banach space and $T: X \to 2^{X^*}$ is a premonotone operator. Then T is locally bounded at every point of int D(T).

イロト イ理ト イヨト イヨト

Theorem (Rockafellar for σ -monotonicity, M.H.A., Hadjisavvas, Roohi, 2012)

Suppose that X is a Banach space and $T: X \to 2^{X^*}$ is a premonotone operator. Then T is locally bounded at every point of int D(T).

Theorem (Libor Veselý for σ -monotonicity, M.H.A., Hadjisavvas, Roohi, 2012)

Suppose that T is maximal σ -monotone, σ is use and $x_0 \in \overline{D(T)}$. If T is locally bounded at x_0 , then $x_0 \in D(T)$. If in addition $\overline{D(T)}$ is convex, then $x_0 \in \operatorname{int} D(T)$.

・ロト ・回 ト ・ヨト ・ヨト

σ -Monotonicity

We recall that an operator $T : \mathbb{R}^n \to 2^{\mathbb{R}^n}$ is bounded on bounded sets if $\bigcup_{x \in B} T(x)$ is bounded for all bounded set $B \subset \mathbb{R}^n$.

・ロト ・回 ト ・ヨト ・ ヨト

臣

$\sigma\text{-}\mathrm{Monotonicity}$

We recall that an operator $T : \mathbb{R}^n \to 2^{\mathbb{R}^n}$ is bounded on bounded sets if $\bigcup_{x \in B} T(x)$ is bounded for all bounded set $B \subset \mathbb{R}^n$.

For a bounded set $B \subset \mathbb{R}^n$ and any positive $\varepsilon \in \mathbb{R}$, we define $B^{\varepsilon} \subset \mathbb{R}^n$ as

$$B^{\varepsilon} = \{ x \in \mathbb{R}^n : \operatorname{dist}(x, B) \le \varepsilon \}.$$
(10)

・ロト ・雪 ・ ・ ヨ ・ ・

æ

σ -Monotonicity

We recall that an operator $T : \mathbb{R}^n \to 2^{\mathbb{R}^n}$ is bounded on bounded sets if $\bigcup_{x \in B} T(x)$ is bounded for all bounded set $B \subset \mathbb{R}^n$.

For a bounded set $B \subset \mathbb{R}^n$ and any positive $\varepsilon \in \mathbb{R}$, we define $B^{\varepsilon} \subset \mathbb{R}^n$ as

$$B^{\varepsilon} = \{ x \in \mathbb{R}^n : \operatorname{dist}(x, B) \le \varepsilon \}.$$
(10)

・ロト ・母ト ・ヨト ・ヨト

Theorem (M.H.A. Iusem, Sosa, 2024)

Consider an operator $T : \mathbb{R}^n \to 2^{\mathbb{R}^n}$, with convex domain which is bounded on bounded sets and monotone outside some bounded set $B \subset \mathbb{R}^n$. Then T is premonotone, with

$$\sigma(y) = \alpha + \sup_{v \in T(y)} \|v\|,$$

where

$$\alpha = \sup_{u \in T(x), x \in B^{\varepsilon}} \|u\|.$$

for an arbitrary $\varepsilon > 0$.

Proposition

Let $T : \mathbb{R}^n \to 2^{\mathbb{R}^n}$ be bounded on bounded sets and σ -monotone. Consider a bounded set $B \subset \mathbb{R}^n$ and an operator $\overline{T} : \mathbb{R}^n \to 2^{\mathbb{R}^n}$ with convex domain which is bounded on bounded sets and such that $\overline{T}(x) = T(x)$ for all $x \notin B$. Then \overline{T} is $\overline{\sigma}$ -monotone, with

$$\bar{\sigma}(y) = \max\{\sigma(y), \hat{\sigma}(y)\},\$$

where

$$\widehat{\sigma}(y) = \widehat{\alpha} + \sup_{v \in \overline{T}(y)} \|v\|,$$

and

$$\widehat{\alpha} = \sup_{u \in \overline{T}(x), x \in B^{\varepsilon}} \|u\|.$$

3

Proposition

Let $T : \mathbb{R}^n \to 2^{\mathbb{R}^n}$ be bounded on bounded sets and σ -monotone. Consider a bounded set $B \subset \mathbb{R}^n$ and an operator $\overline{T} : \mathbb{R}^n \to 2^{\mathbb{R}^n}$ with convex domain which is bounded on bounded sets and such that $\overline{T}(x) = T(x)$ for all $x \notin B$. Then \overline{T} is $\overline{\sigma}$ -monotone, with

$$\bar{\sigma}(y) = \max\{\sigma(y), \hat{\sigma}(y)\},\$$

where

$$\widehat{\sigma}(y) = \widehat{\alpha} + \sup_{v \in \overline{T}(y)} \|v\|,$$

and

$$\widehat{\alpha} = \sup_{u \in \overline{T}(x), x \in B^{\varepsilon}} \|u\|.$$

Corollary

If $T : \mathbb{R}^n \to \mathbb{R}^n$ is point to point, continuous and monotone outside some bounded set $B \subset \mathbb{R}^n$, then T is σ -monotone, with $\sigma(y) = \alpha + ||T(y)||$, where $\alpha = \sup_{x \in B^{\varepsilon}} ||T(x)||$.

・ロト ・回 ト ・ヨト ・ ヨト

Corollary

If $p : \mathbb{R} \to \mathbb{R}$ is a polynomial of odd degree, then p is σ -monotone.

Alizadeh (IASBS)

イロト イヨト イヨト イヨト

æ

Corollary

If $p : \mathbb{R} \to \mathbb{R}$ is a polynomial of odd degree, then p is σ -monotone.

Conjecture (Iusem Sosa, 2020, JNVA): Every maximal premonotone operator contains a maximal monotone one.

イロト イヨト イヨト イヨト

References

- M. H. Alizadeh, A. N. Iusem, W. Sosa, Some recent results on premonotone operators, J. Convex Anal. **31** (2024).
- M.H. Alizadeh, A.Y. Zanjani, On the sum rules and maximality of generalized subdifferentials, Optimization, online (2024), https://doi.org/10.1080/02331934.2023.2187666
- M. H. Alizadeh, J. Hosseinabadi, On σ-subdifferential polarity and Frechet σ-subdifferential, Numer. Funct. Anal. Optim., 44 (2023) 603–618.
- Alizadeh, M.H.: On generalized convex functions and generalized subdifferential II. Optim Lett 15, (2021) –169. (2021). https://doi.org/10.1007/s11590-020-01682-0.
- Alizadeh, M.H.: On generalized convex functions and generalized subdifferential. Optim. Lett. **14**, (2020) 157 –169.
- M.H. Alizadeh, N. Hadjisavvas, M. Roohi, *Local boundedness properties for generalized monotone operators*, J. Convex Anal. **19** (2012) 49–61.
- H. Huang, C. Sun, sigma-subdifferential and its application to minimization problem, Positivity 24, (2020) 539-515.
- Iusem A., Kassay G. and Sosa W., An existence result for equilibrium problems with some surjectivity consequences, J. Convex Anal. 16, 807-826 (2009).

ト (日) (日)