On σ-convexity and σ-monotonicity

Mohammad Hossein Alizadeh

Institute for Advanced Studies in Basic Sciences (IASBS)

International Workshop Variational Analysis and Optimization II: May 30-31, 2024, Milan, Catholic University of Milan

Outline

Outline

- Convex and σ-convex functions

Outline

- Convex and σ-convex functions
- Topological properties of σ-convex functions

Outline

- Convex and σ-convex functions
- Topological properties of σ-convex functions
- Subdifferential and σ-Subdifferential

Outline

- Convex and σ-convex functions
- Topological properties of σ-convex functions
- Subdifferential and σ-Subdifferential
- conjugate and (σ, y)-conjugate

Outline

- Convex and σ-convex functions
- Topological properties of σ-convex functions
- Subdifferential and σ-Subdifferential
- conjugate and (σ, y)-conjugate
- Monotone and σ-Monotone operators

Convex functions

Suppose that X is a Banach space with topological dual space X^{*} and $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a function.

Convex functions

Suppose that X is a Banach space with topological dual space X^{*} and $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a function. We define its domain (or effective domain) as

$$
D(f)=\operatorname{dom} f=\{x \in X: f(x)<\infty\}
$$

Convex functions

Suppose that X is a Banach space with topological dual space X^{*} and $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a function. We define its domain (or effective domain) as

$$
D(f)=\operatorname{dom} f=\{x \in X: f(x)<\infty\}
$$

The function f is called proper if $\operatorname{dom} f \neq \emptyset$.

Convex functions

Suppose that X is a Banach space with topological dual space X^{*} and $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a function. We define its domain (or effective domain) as

$$
D(f)=\operatorname{dom} f=\{x \in X: f(x)<\infty\}
$$

The function f is called proper if $\operatorname{dom} f \neq \emptyset$. In addition, f is said to be convex when for all $x, y \in X$ and for each $t \in[0,1]$,

$$
f((1-t) x+t y) \leq(1-t) f(x)+t f(y)
$$

Assume that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a function.

Assume that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a function.
If $f(x) \in \mathbb{R}$, then the subdifferential of f at x is denoted by $\partial f(x)$ and is defined as the set of all $x^{*} \in X^{*}$ satisfying

$$
\left\langle x^{*}, y-x\right\rangle \leq f(y)-f(x) .
$$

for all $y \in X$.

Assume that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a function.
If $f(x) \in \mathbb{R}$, then the subdifferential of f at x is denoted by $\partial f(x)$ and is defined as the set of all $x^{*} \in X^{*}$ satisfying

$$
\left\langle x^{*}, y-x\right\rangle \leq f(y)-f(x) .
$$

for all $y \in X$. When $f(x) \notin \mathbb{R}$ we define $\partial f(x)=\emptyset$.

Assume that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a function.
If $f(x) \in \mathbb{R}$, then the subdifferential of f at x is denoted by $\partial f(x)$ and is defined as the set of all $x^{*} \in X^{*}$ satisfying

$$
\left\langle x^{*}, y-x\right\rangle \leq f(y)-f(x)
$$

for all $y \in X$. When $f(x) \notin \mathbb{R}$ we define $\partial f(x)=\emptyset$. We say that f is subdifferentiable at x if $\partial f(x) \neq \emptyset$.

Definition (M.H.A, Roohi, 2017)

Given a function $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ and a map σ form $\operatorname{dom} f$ to \mathbb{R}_{+}, we say that f is σ-convex if

$$
\begin{equation*}
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)+t(1-t) \min \{\sigma(x), \sigma(y)\}\|x-y\| \tag{1}
\end{equation*}
$$

for all $x, y \in X$, and $t \in] 0,1[$.

Definition (M.H.A, Roohi, 2017)

Given a function $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ and a map σ form $\operatorname{dom} f$ to \mathbb{R}_{+}, we say that f is σ-convex if

$$
\begin{equation*}
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)+t(1-t) \min \{\sigma(x), \sigma(y)\}\|x-y\| \tag{1}
\end{equation*}
$$

for all $x, y \in X$, and $t \in] 0,1[$.
There are σ-convex functions which are not ε-convex for any $\varepsilon \geq 0$, as shown in the following example.

Example (M.H.A, Roohi, 2017)

Consider the functions $\varphi, f, \sigma: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
& \varphi(x)=\left\{\begin{array}{cl}
x \sin ^{2} x & \text { if } x \geq 0 \\
0 & \text { if } x<0
\end{array}\right. \\
& \sigma(x)=\max \left\{\varphi(x), \max _{z \leq x} \varphi(z)-\varphi(x)\right\} \\
& f(x)=\int_{0}^{x} \varphi(t) d t
\end{aligned}
$$

This function f is σ-convex, but it is not ϵ-convex for any $\epsilon>0$.

Example (M.H.A, Roohi, 2017)

Consider the functions $\varphi, f, \sigma: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
& \varphi(x)=\left\{\begin{array}{cl}
x \sin ^{2} x & \text { if } x \geq 0 \\
0 & \text { if } x<0
\end{array}\right. \\
& \sigma(x)=\max \left\{\varphi(x), \max _{z \leq x} \varphi(z)-\varphi(x)\right\} \\
& f(x)=\int_{0}^{x} \varphi(t) d t
\end{aligned}
$$

This function f is σ-convex, but it is not ϵ-convex for any $\epsilon>0$.
Note that if f is a σ-convex function, then $\operatorname{dom} f$ is a convex set.

Note that each convex and lsc function is minorized by an affine function, but in contrast to the convex and lsc functions, a σ-convex and lsc function does not necessarily have an affine minorant, as the following example shows:

Note that each convex and lsc function is minorized by an affine function, but in contrast to the convex and lsc functions, a σ-convex and lsc function does not necessarily have an affine minorant, as the following example shows:

Example (M.H.A, 2021)

Consider the function $f: X \rightarrow \mathbb{R}$ defined by $f(x)=-\|x\|$. Then f is σ-convex for $\sigma \equiv 2$, but it does not have an affine minorant.

Note that each convex and lsc function is minorized by an affine function, but in contrast to the convex and lsc functions, a σ-convex and lsc function does not necessarily have an affine minorant, as the following example shows:

Example (M.H.A, 2021)

Consider the function $f: X \rightarrow \mathbb{R}$ defined by $f(x)=-\|x\|$. Then f is σ-convex for $\sigma \equiv 2$, but it does not have an affine minorant.

Example (M.H.A, 2021)

Fix $a \in X$ and define the function $g: X \rightarrow \mathbb{R}$ by $g(x)=|\|x\|-\|a\||$. Then g is σ-convex for $\sigma \equiv 2$, and $y=0$ is an affine minorant of g.

Note that each convex and lsc function is minorized by an affine function, but in contrast to the convex and lsc functions, a σ-convex and lsc function does not necessarily have an affine minorant, as the following example shows:

Example (M.H.A, 2021)

Consider the function $f: X \rightarrow \mathbb{R}$ defined by $f(x)=-\|x\|$. Then f is σ-convex for $\sigma \equiv 2$, but it does not have an affine minorant.

Example (M.H.A, 2021)

Fix $a \in X$ and define the function $g: X \rightarrow \mathbb{R}$ by $g(x)=|\|x\|-\|a\||$. Then g is σ-convex for $\sigma \equiv 2$, and $y=0$ is an affine minorant of g.

Example (M.H.A, Hosseinabadi, 2023)

Fixed $a \in X$ and define $f_{0}(x)=|\|x\|-\|a\||$. For each $n \in \mathbb{N}$, define f_{n} recursively by $f_{n}(x)=\mid f_{n-1}(x)-\|a\| \|$. Then f_{n} for all $n \in \mathbb{N} \cup\{0\}$ is σ-convex with $\sigma \equiv 2$, and $y=0$ is an affine minorant of it.

$|||x|-1|-1|$
$\sigma \equiv 2$

$||x|-1|$
$\sigma \equiv 2$

Elementary properties

Proposition

(i) If f is σ-convex and $\sigma \leq \sigma^{\prime}$, then f is σ^{\prime}-convex.

Elementary properties

Proposition

(i) If f is σ-convex and $\sigma \leq \sigma^{\prime}$, then f is σ^{\prime}-convex.
(ii) Let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a function. Then f is σ-convex if and only if for all $x, y \in X$, and $t \in] 0,1[$,

Elementary properties

Proposition

(i) If f is σ-convex and $\sigma \leq \sigma^{\prime}$, then f is σ^{\prime}-convex.
(ii) Let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a function. Then f is σ-convex if and only if for all $x, y \in X$, and $t \in] 0,1[$,

$$
\begin{equation*}
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)+t(1-t) \sigma(x)\|x-y\| \tag{2}
\end{equation*}
$$

(iii) Let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a function. Then f is convex if and only if it is σ-convex for every $\sigma: \operatorname{dom} f \rightarrow \mathbb{R}_{+}$.

Given a function $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$, we define the $\operatorname{map} \sigma_{f}: \operatorname{dom} f \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ by

$$
\begin{aligned}
\sigma_{f}(x) & =\inf \left\{a \in \mathbb{R}_{+}: \frac{f(t x+(1-t) y)-t f(x)-(1-t) f(y)}{t(1-t)}\right. \\
& \leq a\|x-y\|, \forall y \in \operatorname{dom} f, t \in] 0,1[\}
\end{aligned}
$$

Given a function $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$, we define the $\operatorname{map} \sigma_{f}: \operatorname{dom} f \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ by

$$
\begin{aligned}
\sigma_{f}(x) & =\inf \left\{a \in \mathbb{R}_{+}: \frac{f(t x+(1-t) y)-t f(x)-(1-t) f(y)}{t(1-t)}\right. \\
& \leq a\|x-y\|, \forall y \in \operatorname{dom} f, t \in] 0,1[\}
\end{aligned}
$$

It should be noticed that if f is σ^{\prime}-convex for some $\sigma^{\prime}: \operatorname{dom} f \rightarrow \mathbb{R}_{+}$, then

$$
\begin{equation*}
\sigma_{f}=\inf \{\sigma: f \text { is } \sigma \text {-convex }\} \tag{3}
\end{equation*}
$$

Given a function $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$, we define the map $\sigma_{f}: \operatorname{dom} f \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ by

$$
\begin{aligned}
\sigma_{f}(x) & =\inf \left\{a \in \mathbb{R}_{+}: \frac{f(t x+(1-t) y)-t f(x)-(1-t) f(y)}{t(1-t)}\right. \\
& \leq a\|x-y\|, \forall y \in \operatorname{dom} f, t \in] 0,1[\}
\end{aligned}
$$

It should be noticed that if f is σ^{\prime}-convex for some $\sigma^{\prime}: \operatorname{dom} f \rightarrow \mathbb{R}_{+}$, then

$$
\begin{equation*}
\sigma_{f}=\inf \{\sigma: f \text { is } \sigma \text {-convex }\} \tag{3}
\end{equation*}
$$

In this case, σ_{f} is finite and f is σ_{f}-convex. Note that σ_{f} is the minimal σ such that f is σ-convex.

Explicit formula

Proposition (M.H.A, 2020)

Suppose that f is σ-convex for some σ. Then

$$
\begin{equation*}
\sigma_{f}(x)=\max \left\{0, \sup _{t \in[0,1[y \in \operatorname{dom} f \backslash\{x\}} \frac{f(t x+(1-t) y)-t f(x)-(1-t) f(y)}{t(1-t)\|x-y\|}\right\} . \tag{4}
\end{equation*}
$$

Explicit formula

Proposition (M.H.A, 2020)

Suppose that f is σ-convex for some σ. Then

$$
\begin{equation*}
\sigma_{f}(x)=\max \left\{0, \sup _{t \in] 0,1[y \in \operatorname{dom} f \backslash\{x\}} \sup \frac{f(t x+(1-t) y)-t f(x)-(1-t) f(y)}{t(1-t)\|x-y\|}\right\} . \tag{4}
\end{equation*}
$$

Proposition

Let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a function. Then σ_{f} is finite and f is σ_{f}-convex if and only if f is σ-convex for some σ.

Explicit formula

Proposition (M.H.A, 2020)

Suppose that f is σ-convex for some σ. Then

$$
\begin{equation*}
\sigma_{f}(x)=\max \left\{0, \sup _{t \in] 0,1[y \in \operatorname{dom} f \backslash\{x\}} \sup \frac{f(t x+(1-t) y)-t f(x)-(1-t) f(y)}{t(1-t)\|x-y\|}\right\} . \tag{4}
\end{equation*}
$$

Proposition

Let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a function. Then σ_{f} is finite and f is σ_{f}-convex if and only if f is σ-convex for some σ.

Property B

We introduce the following assumption:

We say that the function σ has the property B , if for every $x \in \operatorname{int} \operatorname{dom} f$ and every $\varepsilon>0$ sufficiently small, σ is bounded on the sphere $S(x, \varepsilon)=\{y \in X:\|x-y\|=\varepsilon\}$.

Theorem (M.H.A, 2020)

Let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a σ-convex function. Assume that f is locally bounded from above in the interior of its domain. If σ satisfies property B, then f is locally Lipschitz in the interior of its domain.

Theorem (M.H.A, 2020)

Let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a σ-convex function. Assume that f is locally bounded from above in the interior of its domain. If σ satisfies property B, then f is locally Lipschitz in the interior of its domain.

Corollary

Every proper, σ-convex function $f: \mathbb{R} \rightarrow \mathbb{R} \cup\{+\infty\}$ is locally Lipschitz in the interior of its domain.

Clarke-Rockafellar Directional Derivative

Clarke-Rockafellar Directional Derivative

For a proper function $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ the Clarke-Rockafellar generalized directional derivative at x in a direction $z \in X$ is defined by

$$
f^{\uparrow}(x, z)=\sup _{\delta>0} \limsup _{(y, \alpha) \xrightarrow[\rightarrow]{f} x, \lambda \searrow 0} \inf _{u \in B(z, \delta)} \frac{f(y+\lambda u)-\alpha}{\lambda}
$$

where $(y, \alpha) \xrightarrow{f} x$ means that $y \rightarrow x, \alpha \rightarrow f(x)$ and $\alpha \geq f(y)$.

Clarke-Rockafellar Directional Derivative

For a proper function $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ the Clarke-Rockafellar generalized directional derivative at x in a direction $z \in X$ is defined by

$$
f^{\uparrow}(x, z)=\sup _{\delta>0} \limsup _{(y, \alpha) \xrightarrow[\rightarrow]{f} x, \lambda \searrow 0} \inf _{u \in B(z, \delta)} \frac{f(y+\lambda u)-\alpha}{\lambda}
$$

where $(y, \alpha) \xrightarrow{f} x$ means that $y \rightarrow x, \alpha \rightarrow f(x)$ and $\alpha \geq f(y)$.
If f is lsc at x, the above definition coincides with

$$
f^{\uparrow}(x, z)=\sup _{\delta>0} \limsup _{\substack{f \\ y \rightarrow x, \lambda \searrow 0}} \inf _{u \in B(z, \delta)} \frac{f(y+\lambda u)-f(y)}{\lambda} .
$$

Here, $y \xrightarrow{f} x$ means that $y \rightarrow x \quad$ and $\quad f(y) \rightarrow f(x)$.

Clarke-Rockafellar Subdifferential

Clarke-Rockafellar Subdifferential

The Clarke-Rockafellar subdifferential of f at $x \in \operatorname{dom} f$ is defined by

$$
\partial^{C R} f(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, z\right\rangle \leq f^{\uparrow}(x, z) \quad \forall z \in X\right\} .
$$

Clarke-Rockafellar Subdifferential

The Clarke-Rockafellar subdifferential of f at $x \in \operatorname{dom} f$ is defined by

$$
\partial^{C R} f(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, z\right\rangle \leq f^{\uparrow}(x, z) \quad \forall z \in X\right\} .
$$

In the following we introduce the notion of σ-subdifferential.

σ-Subdifferential

Definition (M.H.A, 2020)

Suppose that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a proper function. The σ-subdifferential of f is the multivalued operator $\partial^{\sigma} f: X \rightarrow 2^{X^{*}}$ defined by

$$
\partial^{\sigma} f(x):=\left\{x^{*}:\left\langle x^{*}, z\right\rangle \leq f(x+z)-f(x)+\min \{\sigma(x), \sigma(z+x)\}\|z\| \quad \forall z \in X\right\}
$$

if $x \in \operatorname{dom} f$; otherwise it is empty.

σ-Subdifferential

Definition (M.H.A, 2020)

Suppose that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a proper function. The σ-subdifferential of f is the multivalued operator $\partial^{\sigma} f: X \rightarrow 2^{X^{*}}$ defined by

$$
\partial^{\sigma} f(x):=\left\{x^{*}:\left\langle x^{*}, z\right\rangle \leq f(x+z)-f(x)+\min \{\sigma(x), \sigma(z+x)\}\|z\| \quad \forall z \in X\right\}
$$

if $x \in \operatorname{dom} f$; otherwise it is empty.
It follows from the above definition that $\partial f \subset \partial^{\sigma} f$ and so $D(\partial f) \subset D\left(\partial^{\sigma} f\right) \subset \operatorname{dom} f$.

σ-Subdifferential

Definition (M.H.A, 2020)

Suppose that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a proper function. The σ-subdifferential of f is the multivalued operator $\partial^{\sigma} f: X \rightarrow 2^{X^{*}}$ defined by

$$
\partial^{\sigma} f(x):=\left\{x^{*}:\left\langle x^{*}, z\right\rangle \leq f(x+z)-f(x)+\min \{\sigma(x), \sigma(z+x)\}\|z\| \quad \forall z \in X\right\}
$$

if $x \in \operatorname{dom} f$; otherwise it is empty.
It follows from the above definition that $\partial f \subset \partial^{\sigma} f$ and so $D(\partial f) \subset D\left(\partial^{\sigma} f\right) \subset \operatorname{dom} f$. In the next proposition, we find a relationship between $\partial^{C R} f(x)$ and $\partial^{\sigma} f(x)$.

Proposition (M.H.A, 2020)

Assume that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is lsc and σ-convex. Then $\partial^{C R} f(x) \subset \partial^{\sigma} f(x)$.

Example

Note that the function $f(x)=-|x|$ is σ-convex with $\sigma \equiv 2$. Then $\partial f(0)=\emptyset$, and $\partial^{C R}(f(0))=[-1,1]$

Proposition (M.H.A, 2020)

Assume that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is lsc and σ-convex. Then $\partial^{C R} f(x) \subset \partial^{\sigma} f(x)$.

Example

Note that the function $f(x)=-|x|$ is σ-convex with $\sigma \equiv 2$. Then $\partial f(0)=\emptyset$, and $\partial^{C R}(f(0))=[-1,1]$ also it is easy to see that $\partial^{\sigma} f(0)=[-1,1]$.

Proposition (M.H.A, 2020)

Assume that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is lsc and σ-convex. Then $\partial^{C R} f(x) \subset \partial^{\sigma} f(x)$.

Example

Note that the function $f(x)=-|x|$ is σ-convex with $\sigma \equiv 2$. Then $\partial f(0)=\emptyset$, and $\partial^{C R}(f(0))=[-1,1]$ also it is easy to see that $\partial^{\sigma} f(0)=[-1,1]$.
On the other hand, if we take $\sigma^{\prime} \equiv 4$, then f is σ^{\prime}-convex and $\partial^{\sigma^{\prime}} f(0)=[-3,3]$.
Thus the inclusion in the above proposition can be equality or strict.

Proposition (M.H.A, 2021)

Let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper and convex function. Suppose that f and $\sigma: \operatorname{dom} f \rightarrow \mathbb{R}_{+}$are Lipschitz near x and $f(\cdot)+\sigma(\cdot)\|\cdot-x\|$ is convex. Then

$$
\partial^{\sigma} f(x) \subset \partial f(x)+\sigma(x) B^{*}
$$

Proposition (M.H.A, 2021)

Assume that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a proper σ-convex function. If f is Gateaux differentiable at $x \in X$, then $f^{\prime}(x) \in \partial^{\sigma} f(x)$ i.e., $\partial^{\sigma} f(x)$ is nonempty.

Proposition (M.H.A, 2021)

Assume that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a proper σ-convex function. If f is Gateaux differentiable at $x \in X$, then $f^{\prime}(x) \in \partial^{\sigma} f(x)$ i.e., $\partial^{\sigma} f(x)$ is nonempty. Moreover if σ is usc, then $\partial^{\sigma} f(x) \subset\left\{x^{*} \in X^{*}:\left\|x^{*}-f^{\prime}(x)\right\| \leq \sigma(x)\right\}$.

Proposition (M.H.A, 2021)

Assume that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a proper σ-convex function. If f is Gateaux differentiable at $x \in X$, then $f^{\prime}(x) \in \partial^{\sigma} f(x)$ i.e., $\partial^{\sigma} f(x)$ is nonempty. Moreover if σ is usc, then $\partial^{\sigma} f(x) \subset\left\{x^{*} \in X^{*}:\left\|x^{*}-f^{\prime}(x)\right\| \leq \sigma(x)\right\}$.

Proposition

Suppose that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is proper. If $\partial^{\sigma} f(x) \neq \emptyset$ and $\lim \sup _{y \rightarrow x} \sigma(y)<\infty$, then f is lsc at x.

Proposition (M.H.A, 2021)

Assume that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a proper σ-convex function. If f is Gateaux differentiable at $x \in X$, then $f^{\prime}(x) \in \partial^{\sigma} f(x)$ i.e., $\partial^{\sigma} f(x)$ is nonempty. Moreover if σ is usc, then $\partial^{\sigma} f(x) \subset\left\{x^{*} \in X^{*}:\left\|x^{*}-f^{\prime}(x)\right\| \leq \sigma(x)\right\}$.

Proposition

Suppose that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is proper. If $\partial^{\sigma} f(x) \neq \emptyset$ and $\lim \sup _{y \rightarrow x} \sigma(y)<\infty$, then f is lsc at x. If, in addition, $x \in \operatorname{int} \operatorname{dom} f$ and $\lim \sup _{y \rightarrow x} f(y)<+\infty$, then $\partial^{\sigma} f(x)$ is bounded.

Proposition (M.H.A, 2021)

Assume that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a proper σ-convex function. If f is Gateaux differentiable at $x \in X$, then $f^{\prime}(x) \in \partial^{\sigma} f(x)$ i.e., $\partial^{\sigma} f(x)$ is nonempty. Moreover if σ is usc, then $\partial^{\sigma} f(x) \subset\left\{x^{*} \in X^{*}:\left\|x^{*}-f^{\prime}(x)\right\| \leq \sigma(x)\right\}$.

Proposition

Suppose that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is proper. If $\partial^{\sigma} f(x) \neq \emptyset$ and $\lim \sup _{y \rightarrow x} \sigma(y)<\infty$, then f is lsc at x. If, in addition, $x \in \operatorname{int} \operatorname{dom} f$ and $\lim \sup _{y \rightarrow x} f(y)<+\infty$, then $\partial^{\sigma} f(x)$ is bounded.

Proposition

Suppose that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a proper σ-convex function and $x \in \operatorname{dom} f$. If $\operatorname{int} \operatorname{dom} f \neq \emptyset$ and $x \in \operatorname{bd}(\operatorname{dom} f)$, then $\partial^{\sigma} f(x)$ is either empty or unbounded.

Proposition

Let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper σ-convex function and $x_{0} \in \operatorname{dom} f$ be a local minimizer of f. Set

$$
\begin{equation*}
\varphi(x):=f(x)+\min \left\{\sigma(x), \sigma\left(x_{0}\right)\right\}\left\|x-x_{0}\right\| . \tag{5}
\end{equation*}
$$

Then φ attains its global minimum at x_{0}.

Sigma-subdifferential of sum

Proposition (M.H.A., Zanjani, 2024)

Suppose $f, g: X \rightarrow \mathbb{R} \cup\{+\infty\}$ are proper, lsc and σ-convex functions and σ has the property B. If $\bar{x} \in \operatorname{dom} g \cap \operatorname{int}(\operatorname{dom} f)$ is a local minimum point of the function $f+g-\left\langle x^{*}, \cdot\right\rangle$ for all $x^{*} \in \partial^{2 \sigma}(f+g)(\bar{x})$, then

Sigma-subdifferential of sum

Proposition (M.H.A., Zanjani, 2024)

Suppose $f, g: X \rightarrow \mathbb{R} \cup\{+\infty\}$ are proper, lsc and σ-convex functions and σ has the property B. If $\bar{x} \in \operatorname{dom} g \cap \operatorname{int}(\operatorname{dom} f)$ is a local minimum point of the function $f+g-\left\langle x^{*}, \cdot\right\rangle$ for all $x^{*} \in \partial^{2 \sigma}(f+g)(\bar{x})$, then

$$
\partial^{\sigma} f(x)+\partial^{\sigma} g(x)=\partial^{2 \sigma}(f+g)(x)
$$

Sigma-subdifferential of sum

Proposition (M.H.A., Zanjani, 2024)

Suppose $f, g: X \rightarrow \mathbb{R} \cup\{+\infty\}$ are proper, lsc and σ-convex functions and σ has the property B. If $\bar{x} \in \operatorname{dom} g \cap \operatorname{int}(\operatorname{dom} f)$ is a local minimum point of the function $f+g-\left\langle x^{*}, \cdot\right\rangle$ for all $x^{*} \in \partial^{2 \sigma}(f+g)(\bar{x})$, then

$$
\partial^{\sigma} f(x)+\partial^{\sigma} g(x)=\partial^{2 \sigma}(f+g)(x) .
$$

Lemma

Let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper and convex function. Then $\partial^{\sigma} f(x)=\partial(f+\sigma(\cdot)\|\cdot-x\|)(x)$. If, in addition, $f(\cdot)+\sigma(\cdot)\|\cdot-x\|$ is convex, then $\partial^{\sigma} f(x)=\partial^{C R}(f+\sigma(\cdot)\|\cdot x\|)(x)$.

Sigma-subdifferential of sum

Proposition (M.H.A., Zanjani, 2024)

Suppose $f, g: X \rightarrow \mathbb{R} \cup\{+\infty\}$ are proper, lsc and σ-convex functions and σ has the property B. If $\bar{x} \in \operatorname{dom} g \cap \operatorname{int}(\operatorname{dom} f)$ is a local minimum point of the function $f+g-\left\langle x^{*}, \cdot\right\rangle$ for all $x^{*} \in \partial^{2 \sigma}(f+g)(\bar{x})$, then

$$
\partial^{\sigma} f(x)+\partial^{\sigma} g(x)=\partial^{2 \sigma}(f+g)(x)
$$

Lemma

Let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper and convex function. Then $\partial^{\sigma} f(x)=\partial(f+\sigma(\cdot)\|\cdot-x\|)(x)$. If, in addition, $f(\cdot)+\sigma(\cdot)\|\cdot-x\|$ is convex, then $\partial^{\sigma} f(x)=\partial^{C R}(f+\sigma(\cdot)\|\cdot-x\|)(x)$.

Theorem

Suppose that $f, g: X \rightarrow \mathbb{R} \cup\{+\infty\}$ are proper, lsc and σ-convex functions. Assume that σ is Lipschitz, $\sigma(0)=0, x_{0} \in \operatorname{int}(\operatorname{dom} f) \cap \operatorname{dom} g$ and $\sigma\left(x_{0}+z\right)=\sigma(z)$ for all $z \in X$. Then

$$
\partial^{\sigma} f\left(x_{0}\right)+\partial^{\sigma} g\left(x_{0}\right)=\partial^{2 \sigma}(f+g)\left(x_{0}\right) .
$$

σ-conjugate

Definition (M.H.A., 2021)

Suppose that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a σ-convex function and $y \in X$ is fixed. Then the $\operatorname{map} f_{\sigma, y}^{*}: X^{*} \rightarrow \mathbb{R} \cup\{+\infty\}$ defined by

σ-conjugate

Definition (M.H.A., 2021)

Suppose that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a σ-convex function and $y \in X$ is fixed. Then the $\operatorname{map} f_{\sigma, y}^{*}: X^{*} \rightarrow \mathbb{R} \cup\{+\infty\}$ defined by

$$
\begin{equation*}
f_{\sigma, y}^{*}\left(x^{*}\right)=\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-f(x)-\sigma(x)\|x-y\|\right\}, \quad \forall x^{*} \in X^{*} \tag{6}
\end{equation*}
$$

is called the (σ, y)-conjugate of f.

σ-conjugate

Definition (M.H.A., 2021)

Suppose that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a σ-convex function and $y \in X$ is fixed. Then the $\operatorname{map} f_{\sigma, y}^{*}: X^{*} \rightarrow \mathbb{R} \cup\{+\infty\}$ defined by

$$
\begin{equation*}
f_{\sigma, y}^{*}\left(x^{*}\right)=\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-f(x)-\sigma(x)\|x-y\|\right\}, \quad \forall x^{*} \in X^{*} \tag{6}
\end{equation*}
$$

is called the (σ, y)-conjugate of f.
As for the convex case, the function $f_{\sigma, y}^{*}: X \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ defined by

$$
f_{\sigma, y}^{* *}(x)=\sup _{x^{*} \in X^{*}}\left\{\left\langle x^{*}, x\right\rangle-f_{\sigma, y}^{*}\left(x^{*}\right)\right\}, \quad \forall x \in X
$$

is the (σ, y)-biconjugate of f.

σ-conjugate

Definition (M.H.A., 2021)

Suppose that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a σ-convex function and $y \in X$ is fixed. Then the $\operatorname{map} f_{\sigma, y}^{*}: X^{*} \rightarrow \mathbb{R} \cup\{+\infty\}$ defined by

$$
\begin{equation*}
f_{\sigma, y}^{*}\left(x^{*}\right)=\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-f(x)-\sigma(x)\|x-y\|\right\}, \quad \forall x^{*} \in X^{*} \tag{6}
\end{equation*}
$$

is called the (σ, y)-conjugate of f.
As for the convex case, the function $f_{\sigma, y}^{*}: X \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ defined by

$$
f_{\sigma, y}^{* *}(x)=\sup _{x^{*} \in X^{*}}\left\{\left\langle x^{*}, x\right\rangle-f_{\sigma, y}^{*}\left(x^{*}\right)\right\}, \quad \forall x \in X
$$

is the (σ, y)-biconjugate of f.

Proposition

Suppose that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a σ-convex function. Then for every $x \in \operatorname{dom} f$, $x^{*} \in X^{*}$,

$$
\begin{equation*}
x^{*} \in \partial^{\sigma} f(x) \Longleftrightarrow f_{\sigma, x}^{*}\left(x^{*}\right)+f(x)=\left\langle x^{*}, x\right\rangle . \tag{7}
\end{equation*}
$$

σ-conjugate

Definition (M.H.A., 2021)

Suppose that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a σ-convex function and $y \in X$ is fixed. Then the $\operatorname{map} f_{\sigma, y}^{*}: X^{*} \rightarrow \mathbb{R} \cup\{+\infty\}$ defined by

$$
\begin{equation*}
f_{\sigma, y}^{*}\left(x^{*}\right)=\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-f(x)-\sigma(x)\|x-y\|\right\}, \quad \forall x^{*} \in X^{*} \tag{6}
\end{equation*}
$$

is called the (σ, y)-conjugate of f.
As for the convex case, the function $f_{\sigma, y}^{*}: X \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ defined by

$$
f_{\sigma, y}^{* *}(x)=\sup _{x^{*} \in X^{*}}\left\{\left\langle x^{*}, x\right\rangle-f_{\sigma, y}^{*}\left(x^{*}\right)\right\}, \quad \forall x \in X
$$

is the (σ, y)-biconjugate of f.

Proposition

Suppose that $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a σ-convex function. Then for every $x \in \operatorname{dom} f$, $x^{*} \in X^{*}$,

$$
\begin{equation*}
x^{*} \in \partial^{\sigma} f(x) \Longleftrightarrow f_{\sigma, x}^{*}\left(x^{*}\right)+f(x)=\left\langle x^{*}, x\right\rangle . \tag{7}
\end{equation*}
$$

In particular, $\operatorname{gr}\left(\partial^{\sigma} f\right) \subset \operatorname{dom} f \times \operatorname{dom} f_{\sigma, x}^{*}$.

Theorem (M.H.A., 2021)
Suppose that $f, g: X \rightarrow \mathbb{R} \cup\{+\infty\}$ are lsc. Let f be σ-convex, g be σ^{\prime}-convex. Then (i) for every $y \in X$ and $x^{*} \in X^{*}$ one has

$$
\begin{equation*}
(f+g)_{\sigma+\sigma^{\prime}, y}^{*}\left(x^{*}\right) \leq\left(f_{\sigma, y}^{*}(\cdot) \square g_{\sigma^{\prime}, y}^{*}(\cdot)\right)\left(x^{*}\right) ; \tag{8}
\end{equation*}
$$

Theorem (M.H.A., 2021)

Suppose that $f, g: X \rightarrow \mathbb{R} \cup\{+\infty\}$ are lsc. Let f be σ-convex, g be σ^{\prime}-convex. Then (i) for every $y \in X$ and $x^{*} \in X^{*}$ one has

$$
\begin{equation*}
(f+g)_{\sigma+\sigma^{\prime}, y}^{*}\left(x^{*}\right) \leq\left(f_{\sigma, y}^{*}(\cdot) \square g_{\sigma^{\prime}, y}^{*}(\cdot)\right)\left(x^{*}\right) \tag{8}
\end{equation*}
$$

(ii) if σ satisfies property $B, y \in \operatorname{int} \operatorname{dom} f$ and it is a local minimum point of the function $f+g-\left\langle x^{*}, \cdot\right\rangle$, then the equality holds.

Monotone Operatos

Let T be a set-valued map from X to X^{*}. The domain and the graph of T are, respectively, defined by

$$
\begin{gathered}
D(T)=\{x \in X: T(x) \neq \emptyset\} \\
\operatorname{gr} T=\left\{\left(x, x^{*}\right) \in X \times X^{*}: x \in D(T), \text { and } x^{*} \in T(x)\right\} .
\end{gathered}
$$

Monotone Operatos

Let T be a set-valued map from X to X^{*}. The domain and the graph of T are, respectively, defined by

$$
\begin{gathered}
D(T)=\{x \in X: T(x) \neq \emptyset\} \\
\operatorname{gr} T=\left\{\left(x, x^{*}\right) \in X \times X^{*}: x \in D(T), \text { and } x^{*} \in T(x)\right\} .
\end{gathered}
$$

For two set-valued operators T and S, we write $T \subseteq S$ if S is an extension of T, i.e., $\operatorname{gr} T \subseteq \operatorname{gr} S$.
We recall that T is monotone if

$$
\left\langle x-y, x^{*}-y^{*}\right\rangle \geq 0
$$

for all $x, y \in X$ and $x^{*} \in T(x), y^{*} \in T(y)$.

Monotone Operatos

Let T be a set-valued map from X to X^{*}. The domain and the graph of T are, respectively, defined by

$$
\begin{gathered}
D(T)=\{x \in X: T(x) \neq \emptyset\} \\
\operatorname{gr} T=\left\{\left(x, x^{*}\right) \in X \times X^{*}: x \in D(T), \text { and } x^{*} \in T(x)\right\} .
\end{gathered}
$$

For two set-valued operators T and S, we write $T \subseteq S$ if S is an extension of T, i.e., $\operatorname{gr} T \subseteq \operatorname{gr} S$.
We recall that T is monotone if

$$
\left\langle x-y, x^{*}-y^{*}\right\rangle \geq 0
$$

for all $x, y \in X$ and $x^{*} \in T(x), y^{*} \in T(y)$.
A monotone operator is called maximal monotone if it has no monotone extension other than itself.

Monotone Operatos

Let T be a set-valued map from X to X^{*}. The domain and the graph of T are, respectively, defined by

$$
\begin{gathered}
D(T)=\{x \in X: T(x) \neq \emptyset\} \\
\operatorname{gr} T=\left\{\left(x, x^{*}\right) \in X \times X^{*}: x \in D(T), \text { and } x^{*} \in T(x)\right\} .
\end{gathered}
$$

For two set-valued operators T and S, we write $T \subseteq S$ if S is an extension of T, i.e., $\operatorname{gr} T \subseteq \operatorname{gr} S$.
We recall that T is monotone if

$$
\left\langle x-y, x^{*}-y^{*}\right\rangle \geq 0
$$

for all $x, y \in X$ and $x^{*} \in T(x), y^{*} \in T(y)$.
A monotone operator is called maximal monotone if it has no monotone extension other than itself.

σ-Monotonicity

Definition

(i) Given an operator $T: X \rightarrow 2^{X^{*}}$ and a map $\sigma: D(T) \rightarrow \mathbb{R}_{+}, T$ is said to be σ-monotone if for every $x, y \in D(T), x^{*} \in T(x)$ and $y^{*} \in T(y)$,

$$
\begin{equation*}
\left\langle x^{*}-y^{*}, y-x\right\rangle \leq \min \{\sigma(x), \sigma(y)\}\|x-y\| \tag{9}
\end{equation*}
$$

σ-Monotonicity

Definition

(i) Given an operator $T: X \rightarrow 2^{X^{*}}$ and a map $\sigma: D(T) \rightarrow \mathbb{R}_{+}, T$ is said to be σ-monotone if for every $x, y \in D(T), x^{*} \in T(x)$ and $y^{*} \in T(y)$,

$$
\begin{equation*}
\left\langle x^{*}-y^{*}, y-x\right\rangle \leq \min \{\sigma(x), \sigma(y)\}\|x-y\| . \tag{9}
\end{equation*}
$$

(ii) A σ-monotone operator T is called maximal σ-monotone, if for every operator T^{\prime} which is σ^{\prime}-monotone with $\operatorname{gr} T \subseteq \operatorname{gr} T^{\prime}$ and σ^{\prime} an extension of σ, one has $T=T^{\prime}$.

σ-Monotonicity

Definition

(i) Given an operator $T: X \rightarrow 2^{X^{*}}$ and a map $\sigma: D(T) \rightarrow \mathbb{R}_{+}, T$ is said to be σ-monotone if for every $x, y \in D(T), x^{*} \in T(x)$ and $y^{*} \in T(y)$,

$$
\begin{equation*}
\left\langle x^{*}-y^{*}, y-x\right\rangle \leq \min \{\sigma(x), \sigma(y)\}\|x-y\| . \tag{9}
\end{equation*}
$$

(ii) A σ-monotone operator T is called maximal σ-monotone, if for every operator T^{\prime} which is σ^{\prime}-monotone with $\operatorname{gr} T \subseteq \operatorname{gr} T^{\prime}$ and σ^{\prime} an extension of σ, one has $T=T^{\prime}$.

The operator T is called premonotone, if it is σ-monotone for some σ.

σ-Monotone

Theorem (Rockafellar for σ-monotonicity, M.H.A., Hadjisavvas, Roohi, 2012)
Suppose that X is a Banach space and $T: X \rightarrow 2^{X^{*}}$ is a premonotone operator. Then T is locally bounded at every point of int $D(T)$.

σ-Monotone

Theorem (Rockafellar for σ-monotonicity, M.H.A., Hadjisavvas, Roohi, 2012)
Suppose that X is a Banach space and $T: X \rightarrow 2^{X^{*}}$ is a premonotone operator. Then T is locally bounded at every point of int $D(T)$.

Theorem (Libor Veselý for σ-monotonicity, M.H.A., Hadjisavvas, Roohi, 2012)
Suppose that T is maximal σ-monotone, σ is usc and $x_{0} \in \overline{D(T)}$. If T is locally bounded at x_{0}, then $x_{0} \in D(T)$. If in addition $\overline{D(T)}$ is convex, then $x_{0} \in \operatorname{int} D(T)$.

σ-Monotonicity

We recall that an operator $T: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}$ is bounded on bounded sets if $\cup_{x \in B} T(x)$ is bounded for all bounded set $B \subset \mathbb{R}^{n}$.

σ-Monotonicity

We recall that an operator $T: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}$ is bounded on bounded sets if $\cup_{x \in B} T(x)$ is bounded for all bounded set $B \subset \mathbb{R}^{n}$.
For a bounded set $B \subset \mathbb{R}^{n}$ and any positive $\varepsilon \in \mathbb{R}$, we define $B^{\varepsilon} \subset \mathbb{R}^{n}$ as

$$
\begin{equation*}
B^{\varepsilon}=\left\{x \in \mathbb{R}^{n}: \operatorname{dist}(x, B) \leq \varepsilon\right\} . \tag{10}
\end{equation*}
$$

σ-Monotonicity

We recall that an operator $T: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}$ is bounded on bounded sets if $\cup_{x \in B} T(x)$ is bounded for all bounded set $B \subset \mathbb{R}^{n}$.
For a bounded set $B \subset \mathbb{R}^{n}$ and any positive $\varepsilon \in \mathbb{R}$, we define $B^{\varepsilon} \subset \mathbb{R}^{n}$ as

$$
\begin{equation*}
B^{\varepsilon}=\left\{x \in \mathbb{R}^{n}: \operatorname{dist}(x, B) \leq \varepsilon\right\} . \tag{10}
\end{equation*}
$$

Theorem (M.H.A. Iusem, Sosa, 2024)

Consider an operator $T: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}$, with convex domain which is bounded on bounded sets and monotone outside some bounded set $B \subset \mathbb{R}^{n}$. Then T is premonotone, with

$$
\sigma(y)=\alpha+\sup _{v \in T(y)}\|v\|
$$

where

$$
\alpha=\sup _{u \in T(x), x \in B^{\varepsilon}}\|u\|
$$

for an arbitrary $\varepsilon>0$.

σ-Monotonicity

Proposition

Let $T: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}$ be bounded on bounded sets and σ-monotone. Consider a bounded set $B \subset \mathbb{R}^{n}$ and an operator $\bar{T}: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}$ with convex domain which is bounded on bounded sets and such that $\bar{T}(x)=T(x)$ for all $x \notin B$. Then \bar{T} is $\bar{\sigma}$-monotone, with

$$
\bar{\sigma}(y)=\max \{\sigma(y), \widehat{\sigma}(y)\},
$$

where

$$
\widehat{\sigma}(y)=\widehat{\alpha}+\sup _{v \in \bar{T}(y)}\|v\|,
$$

and

$$
\widehat{\alpha}=\sup _{u \in \bar{T}(x), x \in B^{\varepsilon}}\|u\| .
$$

σ-Monotonicity

Proposition

Let $T: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}$ be bounded on bounded sets and σ-monotone. Consider a bounded set $B \subset \mathbb{R}^{n}$ and an operator $\bar{T}: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}$ with convex domain which is bounded on bounded sets and such that $\bar{T}(x)=T(x)$ for all $x \notin B$. Then \bar{T} is $\bar{\sigma}$-monotone, with

$$
\bar{\sigma}(y)=\max \{\sigma(y), \widehat{\sigma}(y)\}
$$

where

$$
\widehat{\sigma}(y)=\widehat{\alpha}+\sup _{v \in \bar{T}(y)}\|v\|,
$$

and

$$
\widehat{\alpha}=\sup _{u \in \bar{T}(x), x \in B^{\varepsilon}}\|u\|
$$

Corollary

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is point to point, continuous and monotone outside some bounded set $B \subset \mathbb{R}^{n}$, then T is σ-monotone, with $\sigma(y)=\alpha+\|T(y)\|$, where $\alpha=\sup _{x \in B^{\varepsilon}}\|T(x)\|$.

σ-Monotonicity

Corollary

If $p: \mathbb{R} \rightarrow \mathbb{R}$ is a polynomial of odd degree, then p is σ-monotone.

σ-Monotonicity

Corollary
If $p: \mathbb{R} \rightarrow \mathbb{R}$ is a polynomial of odd degree, then p is σ-monotone.
Conjecture (Iusem Sosa, 2020, JNVA): Every maximal premonotone operator contains a maximal monotone one.

References

- M. H. Alizadeh, A. N. Iusem, W. Sosa, Some recent results on premonotone operators, J. Convex Anal. 31 (2024).
- M.H. Alizadeh, A.Y. Zanjani, On the sum rules and maximality of generalized subdifferentials, Optimization, online (2024),
https://doi.org/10.1080/02331934.2023.2187666
- M. H. Alizadeh, J. Hosseinabadi, On σ-subdifferential polarity and Frechet σ-subdifferential, Numer. Funct. Anal. Optim., 44 (2023) 603-618.
- Alizadeh, M.H.: On generalized convex functions and generalized subdifferential II. Optim Lett 15, (2021) -169. (2021). https://doi.org/10.1007/s11590-020-01682-0 .
- Alizadeh, M.H.: On generalized convex functions and generalized subdifferential. Optim. Lett. 14, (2020) 157 -169.
- M.H. Alizadeh, N. Hadjisavvas, M. Roohi, Local boundedness properties for generalized monotone operators, J. Convex Anal. 19 (2012) 49-61.
- H. Huang, C. Sun,sigma-subdifferential and its application to minimization problem, Positivity 24,(2020) 539-515.
- Iusem A., Kassay G. and Sosa W., An existence result for equilibrium problems with some surjectivity consequences, J. Convex Anal. 16, 807-826 (2009).

