
On σ-convexity and σ-monotonicity

Mohammad Hossein Alizadeh

Institute for Advanced Studies in Basic Sciences (IASBS)

International Workshop Variational Analysis and Optimization II: May 30-31,
2024, Milan, Catholic University of Milan

Alizadeh (IASBS ) Variational Analysis and OptimizationII
31 May 2024, Catholic University of Milan
1 / 29



Outline

Convex and σ-convex functions

Topological properties of σ-convex functions

Subdifferential and σ-Subdifferential

conjugate and (σ,y)-conjugate

Monotone and σ-Monotone operators

Alizadeh (IASBS ) Variational Analysis and OptimizationII
31 May 2024, Catholic University of Milan
2 / 29



Outline

Convex and σ-convex functions

Topological properties of σ-convex functions

Subdifferential and σ-Subdifferential

conjugate and (σ,y)-conjugate

Monotone and σ-Monotone operators

Alizadeh (IASBS ) Variational Analysis and OptimizationII
31 May 2024, Catholic University of Milan
2 / 29



Outline

Convex and σ-convex functions

Topological properties of σ-convex functions

Subdifferential and σ-Subdifferential

conjugate and (σ,y)-conjugate

Monotone and σ-Monotone operators

Alizadeh (IASBS ) Variational Analysis and OptimizationII
31 May 2024, Catholic University of Milan
2 / 29



Outline

Convex and σ-convex functions

Topological properties of σ-convex functions

Subdifferential and σ-Subdifferential

conjugate and (σ,y)-conjugate

Monotone and σ-Monotone operators

Alizadeh (IASBS ) Variational Analysis and OptimizationII
31 May 2024, Catholic University of Milan
2 / 29



Outline

Convex and σ-convex functions

Topological properties of σ-convex functions

Subdifferential and σ-Subdifferential

conjugate and (σ,y)-conjugate

Monotone and σ-Monotone operators

Alizadeh (IASBS ) Variational Analysis and OptimizationII
31 May 2024, Catholic University of Milan
2 / 29



Outline

Convex and σ-convex functions

Topological properties of σ-convex functions

Subdifferential and σ-Subdifferential

conjugate and (σ,y)-conjugate

Monotone and σ-Monotone operators

Alizadeh (IASBS ) Variational Analysis and OptimizationII
31 May 2024, Catholic University of Milan
2 / 29



Convex functions

Suppose that X is a Banach space with topological dual space X∗ and
f : X → R ∪ {+∞} is a function.

We define its domain (or effective domain) as

D (f) = dom f =
{
x ∈ X : f (x) < ∞

}
.

The function f is called proper if dom f ̸= ∅ . In addition, f is said to be convex
when for all x, y ∈ X and for each t ∈ [0, 1],

f
(
(1− t)x+ ty

)
≤ (1− t) f (x) + tf (y) .
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Assume that f : X → R ∪ {+∞} is a function.

If f (x) ∈ R, then the subdifferential of f at x is denoted by ∂f (x) and is defined as
the set of all x∗ ∈ X∗ satisfying〈

x∗, y − x
〉
≤ f (y)− f (x) .

for all y ∈ X. When f (x) /∈ R we define ∂f (x) = ∅.
We say that f is subdifferentiable at x if ∂f (x) ̸= ∅.
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σ-convex function

Definition (M.H.A, Roohi, 2017)

Given a function f : X → R ∪ {+∞} and a map σ form dom f to R+, we say that f
is σ-convex if

f
(
tx+ (1− t) y

)
≤ tf (x) + (1− t) f (y) + t (1− t)min{σ (x) , σ (y)}||x− y|| (1)

for all x, y ∈ X, and t ∈]0, 1[.

There are σ-convex functions which are not ε-convex for any ε ≥ 0, as shown in the
following example.
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Example (M.H.A, Roohi, 2017)

Consider the functions φ, f, σ : R → R defined by

φ(x) =

{
x sin2 x if x ≥ 0,

0 if x < 0,

σ (x) = max

{
φ (x) ,max

z≤x
φ (z)− φ (x)

}
f (x) =

∫ x

0

φ(t)dt.

This function f is σ-convex, but it is not ϵ-convex for any ϵ > 0.

Note that if f is a σ-convex function, then dom f is a convex set.
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Note that each convex and lsc function is minorized by an affine function, but in
contrast to the convex and lsc functions, a σ-convex and lsc function does not
necessarily have an affine minorant, as the following example shows:

Example (M.H.A, 2021)

Consider the function f : X → R defined by f (x) = −∥x∥. Then f is σ-convex for
σ ≡ 2, but it does not have an affine minorant.

Example (M.H.A, 2021)

Fix a ∈ X and define the function g : X → R by g (x) =
∣∣∥x∥ − ∥a∥

∣∣. Then g is
σ-convex for σ ≡ 2, and y = 0 is an affine minorant of g.

Example (M.H.A, Hosseinabadi, 2023)

Fixed a ∈ X and define f0 (x) =
∣∣∥x∥ − ∥a∥

∣∣. For each n ∈ N, define fn recursively
by fn (x) =

∣∣fn−1 (x)− ∥a∥
∣∣. Then fn for all n ∈ N ∪ {0} is σ-convex with σ ≡ 2, and

y = 0 is an affine minorant of it.
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∣∣∣∣∣|x| − 1
∣∣− 1

∣∣∣
σ ≡ 2

∣∣|x| − 1
∣∣

σ ≡ 2
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Elementary properties

Proposition

(i) If f is σ-convex and σ ≤ σ′, then f is σ′-convex.

(ii) Let f : X → R ∪ {+∞} be a function. Then f is σ-convex if and only if for all
x, y ∈ X, and t ∈]0, 1[,

f
(
tx+ (1− t) y

)
≤ tf (x) + (1− t) f (y) + t (1− t)σ (x) ||x− y|| (2)

(iii) Let f : X → R ∪ {+∞} be a function. Then f is convex if and only if it is
σ-convex for every σ : dom f → R+.
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Given a function f : X → R∪{+∞} , we define the map σf : dom f → R+ ∪{+∞} by

σf (x) = inf{a ∈ R+ :
f
(
tx+ (1− t) y

)
− tf (x)− (1− t) f (y)

t (1− t)

≤ a ∥x− y∥ ,∀y ∈ dom f, t ∈]0, 1[}.

It should be noticed that if f is σ′-convex for some σ′ : dom f → R+, then

σf = inf {σ : f is σ-convex} . (3)

In this case, σf is finite and f is σf -convex. Note that σf is the minimal σ such that
f is σ-convex.
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Explicit formula

Proposition (M.H.A, 2020)

Suppose that f is σ-convex for some σ. Then

σf (x) = max

{
0, sup

t∈]0,1[

sup
y∈dom f\{x}

f
(
tx+ (1− t) y

)
− tf (x)− (1− t) f (y)

t (1− t) ∥x− y∥

}
. (4)

Proposition

Let f : X → R ∪ {+∞} be a function. Then σf is finite and f is σf -convex if and
only if f is σ-convex for some σ.
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Property B

We introduce the following assumption:

We say that the function σ has the property B, if for every x ∈ int dom f and every
ε > 0 sufficiently small, σ is bounded on the sphere S(x, ε) =

{
y ∈ X : ∥x− y∥ = ε

}
.

.
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Theorem (M.H.A, 2020)

Let f : X → R ∪ {+∞} be a σ-convex function. Assume that f is locally bounded
from above in the interior of its domain. If σ satisfies property B, then f is locally
Lipschitz in the interior of its domain.

Corollary

Every proper, σ-convex function f : R → R∪ {+∞} is locally Lipschitz in the interior
of its domain.
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Clarke-Rockafellar Directional Derivative

For a proper function f : X → R ∪ {+∞} the Clarke-Rockafellar generalized
directional derivative at x in a direction z ∈ X is defined by

f↑ (x, z) = sup
δ>0

lim sup

(y,α)
f→x,λ↘0

inf
u∈B(z,δ)

f (y + λu)− α

λ

where (y, α)
f→ x means that y → x, α → f (x) and α ≥ f (y).

If f is lsc at x, the above definition coincides with

f↑ (x, z) = sup
δ>0

lim sup

y
f→x,λ↘0

inf
u∈B(z,δ)

f (y + λu)− f(y)

λ
.

Here, y
f→ x means that y → x and f (y) → f (x).
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Clarke-Rockafellar Subdifferential

The Clarke-Rockafellar subdifferential of f at x ∈ dom f is defined by

∂CRf (x) =
{
x∗ ∈ X∗ : ⟨x∗, z⟩ ≤ f↑ (x, z) ∀z ∈ X

}
.

In the following we introduce the notion of σ-subdifferential.

Alizadeh (IASBS ) Variational Analysis and OptimizationII
31 May 2024, Catholic University of Milan
15 / 29



Clarke-Rockafellar Subdifferential

The Clarke-Rockafellar subdifferential of f at x ∈ dom f is defined by

∂CRf (x) =
{
x∗ ∈ X∗ : ⟨x∗, z⟩ ≤ f↑ (x, z) ∀z ∈ X

}
.

In the following we introduce the notion of σ-subdifferential.

Alizadeh (IASBS ) Variational Analysis and OptimizationII
31 May 2024, Catholic University of Milan
15 / 29



Clarke-Rockafellar Subdifferential

The Clarke-Rockafellar subdifferential of f at x ∈ dom f is defined by

∂CRf (x) =
{
x∗ ∈ X∗ : ⟨x∗, z⟩ ≤ f↑ (x, z) ∀z ∈ X

}
.

In the following we introduce the notion of σ-subdifferential.
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σ-Subdifferential

Definition (M.H.A, 2020)

Suppose that f : X → R ∪ {+∞} is a proper function. The σ-subdifferential of f is
the multivalued operator ∂σf : X → 2X

∗
defined by

∂σf (x) :=
{
x∗ : ⟨x∗, z⟩ ≤ f (x+ z)− f (x) + min

{
σ (x) , σ (z + x)

}
||z|| ∀z ∈ X

}
if x ∈ dom f ; otherwise it is empty.

It follows from the above definition that ∂f ⊂ ∂σf and so D (∂f) ⊂ D (∂σf) ⊂ dom f .
In the next proposition, we find a relationship between ∂CRf (x) and ∂σf (x).
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Proposition (M.H.A, 2020)

Assume that f : X → R ∪ {+∞} is lsc and σ-convex. Then ∂CRf (x) ⊂ ∂σf (x).

Example

Note that the function f (x) = − |x| is σ-convex with σ ≡ 2. Then ∂f (0) = ∅, and
∂CR

(
f (0)

)
= [−1, 1]

also it is easy to see that ∂σf (0) = [−1, 1].

On the other hand, if we take σ′ ≡ 4, then f is σ′-convex and ∂σ′
f (0) = [−3, 3].

Thus the inclusion in the above proposition can be equality or strict.

Proposition (M.H.A, 2021)

Let f : X → R ∪ {+∞} be a proper and convex function. Suppose that f and
σ : dom f → R+ are Lipschitz near x and f(·) + σ(·) ∥· − x∥ is convex. Then

∂σf (x) ⊂ ∂f (x) + σ (x)B∗.
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Proposition (M.H.A, 2021)

Assume that f : X → R ∪ {+∞} is a proper σ-convex function. If f is Gateaux
differentiable at x ∈ X, then f ′ (x) ∈ ∂σf (x) i.e., ∂σf (x) is nonempty.

Moreover if

σ is usc, then ∂σf (x) ⊂
{
x∗ ∈ X∗ :

∥∥x∗ − f ′ (x)
∥∥ ≤ σ (x)

}
.

Proposition

Suppose that f : X → R ∪ {+∞} is proper. If ∂σf (x) ̸= ∅ and lim supy→x σ (y) < ∞,
then f is lsc at x. If, in addition, x ∈ int dom f and lim supy→x f(y) < +∞, then
∂σf(x) is bounded.

Proposition

Suppose that f : X → R ∪ {+∞} is a proper σ-convex function and x ∈ dom f . If
int dom f ̸= ∅ and x ∈ bd (dom f), then ∂σf (x) is either empty or unbounded.
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Proposition

Let f : X → R ∪ {+∞} be a proper σ-convex function and x0 ∈ dom f be a local
minimizer of f . Set

φ (x) := f (x) + min{σ(x), σ(x0)}||x− x0||. (5)

Then φ attains its global minimum at x0.
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Sigma-subdifferential of sum

Proposition (M.H.A., Zanjani, 2024)

Suppose f, g : X → R ∪ {+∞} are proper, lsc and σ–convex functions and σ has the
property B. If x̄ ∈ dom g ∩ int (dom f) is a local minimum point of the function
f + g − ⟨x∗, ·⟩ for all x∗ ∈ ∂2σ (f + g) (x̄), then

∂σf (x) + ∂σg (x) = ∂2σ (f + g) (x) .

Lemma

Let f : X → R ∪ {+∞} be a proper and convex function. Then
∂σf(x) = ∂(f + σ(·) ∥· − x∥)(x). If, in addition, f(·) + σ(·) ∥· − x∥ is convex, then
∂σf(x) = ∂CR(f + σ(·) ∥· − x∥)(x).

Theorem

Suppose that f, g : X → R ∪ {+∞} are proper, lsc and σ-convex functions. Assume
that σ is Lipschitz, σ (0) = 0, x0 ∈ int(dom f) ∩ dom g and σ (x0 + z) = σ (z) for all
z ∈ X. Then

∂σf (x0) + ∂σg (x0) = ∂2σ (f + g) (x0) .
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σ-conjugate

Definition (M.H.A., 2021)

Suppose that f : X → R∪ {+∞} is a σ-convex function and y ∈ X is fixed. Then the
map f∗

σ,y : X∗ → R ∪ {+∞} defined by

f∗
σ,y

(
x∗) = sup

x∈X

{〈
x∗, x

〉
− f (x)− σ (x) ||x− y||

}
, ∀x∗ ∈ X∗ (6)

is called the (σ, y)-conjugate of f .

As for the convex case, the function f∗
σ,y : X → R ∪ {±∞} defined by

f∗∗
σ,y (x) = sup

x∗∈X∗

{〈
x∗, x

〉
− f∗

σ,y

(
x∗)} , ∀x ∈ X

is the (σ, y)-biconjugate of f .

Proposition

Suppose that f : X → R ∪ {+∞} is a σ-convex function. Then for every x ∈ dom f ,
x∗ ∈ X∗,

x∗ ∈ ∂σf (x) ⇐⇒ f∗
σ,x

(
x∗)+ f (x) =

〈
x∗, x

〉
. (7)

In particular, gr (∂σf) ⊂ dom f × dom f∗
σ,x.
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σ-conjugate

Theorem (M.H.A., 2021)

Suppose that f, g : X → R ∪ {+∞} are lsc. Let f be σ-convex, g be σ′-convex. Then
(i) for every y ∈ X and x∗ ∈ X∗ one has

(f + g)∗σ+σ′,y

(
x∗) ≤

(
f∗
σ,y (·)□g∗σ′,y (·)

) (
x∗) ; (8)

(ii) if σ satisfies property B, y ∈ int dom f and it is a local minimum point of the
function f + g − ⟨x∗, ·⟩, then the equality holds.
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Monotone Operatos

Let T be a set-valued map from X to X∗. The domain and the graph of T are,
respectively, defined by

D (T ) =
{
x ∈ X : T (x) ̸= ∅

}
,

grT =
{(

x, x∗) ∈ X ×X∗ : x ∈ D (T ) , and x∗ ∈ T (x)
}
.

For two set-valued operators T and S, we write T ⊆ S if S is an extension of T , i.e.,
grT ⊆ grS.
We recall that T is monotone if

⟨x− y, x∗ − y∗⟩ ≥ 0

for all x, y ∈ X and x∗ ∈ T (x) , y∗ ∈ T (y).
A monotone operator is called maximal monotone if it has no monotone extension
other than itself.
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σ-Monotonicity

Definition

(i) Given an operator T : X → 2X
∗
and a map σ : D(T ) → R+, T is said to be

σ-monotone if for every x, y ∈ D(T ), x∗ ∈ T (x) and y∗ ∈ T (y),

⟨x∗ − y∗, y − x⟩ ≤ min{σ(x), σ(y)}∥x− y∥. (9)

(ii) A σ-monotone operator T is called maximal σ-monotone, if for every operator T ′

which is σ′-monotone with grT ⊆ grT ′ and σ′ an extension of σ, one has T = T ′.

The operator T is called premonotone, if it is σ-monotone for some σ.
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σ-Monotone

Theorem (Rockafellar for σ-monotonicity, M.H.A., Hadjisavvas, Roohi, 2012)

Suppose that X is a Banach space and T : X → 2X
∗
is a premonotone operator.

Then T is locally bounded at every point of intD(T ).

Theorem (Libor Veselý for σ-monotonicity, M.H.A., Hadjisavvas, Roohi, 2012)

Suppose that T is maximal σ-monotone, σ is usc and x0 ∈ D (T ). If T is locally
bounded at x0, then x0 ∈ D (T ). If in addition D (T ) is convex, then x0 ∈ intD(T ).
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σ-Monotonicity

We recall that an operator T : Rn → 2R
n

is bounded on bounded sets if ∪x∈BT (x) is
bounded for all bounded set B ⊂ Rn.

For a bounded set B ⊂ Rn and any positive ε ∈ R, we define Bε ⊂ Rn as

Bε = {x ∈ Rn : dist(x,B) ≤ ε}. (10)

Theorem (M.H.A. Iusem, Sosa, 2024)

Consider an operator T : Rn → 2R
n

, with convex domain which is bounded on bounded
sets and monotone outside some bounded set B ⊂ Rn. Then T is premonotone, with

σ(y) = α+ sup
v∈T (y)

∥v∥ ,

where
α = sup

u∈T (x),x∈Bε
∥u∥ .

for an arbitrary ε > 0.
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σ-Monotonicity

Proposition

Let T : Rn → 2R
n

be bounded on bounded sets and σ-monotone. Consider a bounded
set B ⊂ Rn and an operator T̄ : Rn → 2R

n

with convex domain which is bounded on
bounded sets and such that T̄ (x) = T (x) for all x /∈ B. Then T̄ is σ̄-monotone, with

σ̄(y) = max{σ(y), σ̂(y)},

where
σ̂(y) = α̂+ sup

v∈T̄ (y)

∥v∥ ,

and
α̂ = sup

u∈T̄ (x),x∈Bε

∥u∥ .

Corollary

If T : Rn → Rn is point to point, continuous and monotone outside some bounded set
B ⊂ Rn, then T is σ-monotone, with σ(y) = α+

∥∥T (y)∥∥, where α = supx∈Bε

∥∥T (x)∥∥.
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σ-Monotonicity

Corollary

If p : R → R is a polynomial of odd degree, then p is σ-monotone.

Conjecture (Iusem Sosa, 2020, JNVA ): Every maximal premonotone operator
contains a maximal monotone one.
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