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Convex functions

Suppose that X is a Banach space with topological dual space X* and
f: X - RU{+o0} is a function.
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Convex functions

Suppose that X is a Banach space with topological dual space X* and
f: X = RU{+o0} is a function. We define its domain (or effective domain) as

D(f)=domf={zeX:f(z)<oo}.
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D(f)=domf={zeX:f(z)<oo}.

The function f is called proper if dom f # () .
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Convex functions

Suppose that X is a Banach space with topological dual space X* and
f: X = RU{+o0} is a function. We define its domain (or effective domain) as

D(f)=domf={zeX:f(z)<oo}.

The function f is called proper if dom f # @ . In addition, f is said to be convex
when for all z,y € X and for each t € [0, 1],

f(A=tya4ty) <A —1t)f(z)+tf(y).
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Assume that f: X — RU {+o0o} is a function.




Assume that f: X — RU {+o0o} is a function.
If f(x) € R, then the subdifferential of f at z is denoted by df (z) and is defined as
the set of all ™ € X™ satisfying

(e"y—2) < fly) — f(2).
for ally € X.
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Assume that f: X — RU {+o0o} is a function.
If f(x) € R, then the subdifferential of f at z is denoted by df (z) and is defined as
the set of all ™ € X™ satisfying

(a"y—2) < fy) - f(2).
for all y € X. When f (z) ¢ R we define 9f (z) = 0.
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Assume that f: X — RU {+o0o} is a function.
If f(x) € R, then the subdifferential of f at z is denoted by df (z) and is defined as
the set of all ™ € X™ satisfying

(" y—z) < fly)— f(2).

for all y € X. When f (z) ¢ R we define 9f (z) = 0.
We say that f is subdifferentiable at x if df (z) # 0.
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o-convex function

Definition (M.H.A, Roohi, 2017)

Given a function f: X — RU {+occ} and a map o form dom f to R, we say that f
is o-convex if

flle+ A=ty <tf @)+ 1 -1)f(y) +t1—t)min{o (z),0 W}z -yl (1)

for all z,y € X, and t €]0, 1].
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o-convex function

Definition (M.H.A, Roohi, 2017)

Given a function f: X — RU {+occ} and a map o form dom f to R, we say that f
is o-convex if

flle+ A=ty <tf @)+ 1 -1)f(y) +t1—t)min{o (z),0 W}z -yl (1)

for all z,y € X, and t €]0, 1].

There are o-convex functions which are not e-convex for any € > 0, as shown in the
following example.
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Example (M.H.A, Roohi, 2017)
Consider the functions ¢, f,0 : R — R defined by

zsin?z if x>0,
0 if x <0,

o (2) = max { i (o) max s ()~ 9 o)}

z<zx

This function f is o-convex, but it is not e-convex for any € > 0.
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Example (M.H.A, Roohi, 2017)
Consider the functions ¢, f,0 : R — R defined by

| zsin’z
0

o () = max {go (z)

if x>0,
if x <0,

z<zx

mexp () = (o)}

This function f is o-convex, but it is not e-convex for any € > 0.

Note that if f is a o-convex function, then dom f is a convex set.
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Note that each convex and Isc function is minorized by an affine function, but in
contrast to the convex and Isc functions, a o-convex and lsc function does not
necessarily have an affine minorant, as the following example shows:




Note that each convex and Isc function is minorized by an affine function, but in
contrast to the convex and Isc functions, a o-convex and lsc function does not
necessarily have an affine minorant, as the following example shows:

Example (M.H.A, 2021)

Consider the function f: X — R defined by f () = —||z||. Then f is o-convex for
o = 2, but it does not have an affine minorant.
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Note that each convex and Isc function is minorized by an affine function, but in
contrast to the convex and Isc functions, a o-convex and lsc function does not
necessarily have an affine minorant, as the following example shows:

Example (M.H.A, 2021)

Consider the function f: X — R defined by f () = —||z||. Then f is o-convex for

o = 2, but it does not have an affine minorant.
v

Fix a € X and define the function g : X — R by g (z) = ’||w|| — ||a||‘ Then g is
o-convex for o =2, and y = 0 is an affine minorant of g.
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Note that each convex and Isc function is minorized by an affine function, but in
contrast to the convex and Isc functions, a o-convex and lsc function does not
necessarily have an affine minorant, as the following example shows:

Consider the function f: X — R defined by f () = —||z||. Then f is o-convex for
o = 2, but it does not have an affine minorant.

v
Fix a € X and define the function g : X — R by g (z) = |||w|| — ||a||‘ Then g is
o-convex for o =2, and y = 0 is an affine minorant of g.

Example (M.H.A, Hosseinabadi, 2023)

Fixed a € X and deﬁne fo () = |||#]| — [|lall|. For each n € N, define f, recursively
by fn (z) = ’fn 1(x) — ||a||‘ Then f, for all n € NU{0} is o-convex with o = 2, and
y = 0 is an affine rmnorant of it.
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Elementary properties

(i) If f is o-convex and o < o', then f is o’ -convez.




perties

(i) If f is o-convex and o < o', then f is o’ -convez.
(i) Let f: X — RU {400} be a function. Then f is o-convex if and only if for all
z,y € X, and t €]0,1],
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Elementary properties

(i) If f is o-convex and o < o', then f is o’ -convez.
(i) Let f: X — RU {400} be a function. Then f is o-convex if and only if for all

z,y € X, and t €]0,1],
flz+ 1 =t)y) <tf(@)+ QA —-t)f(y) +tQ—t)o(z)]|z -yl (2)

(ii3) Let f: X — RU {400} be a function. Then f is convez if and only if it is
o-convex for every o : dom f — R .
v

9/29
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Given a function f : X — RU{+4oc0}, we define the map oy : dom f — Ry U{+o0} by
flte+(1—t)y) —tf(@)—1-t)f(y)

t(l—1t)
<a HLE - y” :VZ/ € dOIIlf,t 6107 1[}

of () =inf{a € Ry :
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Given a function f : X — RU{+4oc0}, we define the map oy : dom f — Ry U{+o0} by
flte+(1—t)y) —tf(@)—1-t)f(y)

t(l—1t)
<a HLE - y” :VZ/ € dOIIlf,t 6107 1[}

of () =inf{a € Ry :

It should be noticed that if f is o’-convex for some o’ : dom f — R, , then

of =inf{o : f is o-convex}. (3)
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Given a function f : X — RU{+4oc0}, we define the map oy : dom f — Ry U{+o0} by
flte+(1—t)y) —tf(@)—1-t)f(y)

t(l—1t)
<a HLE - y” :VZ/ € dOIIlf,t 6107 1[}

of () =inf{a € Ry :

It should be noticed that if f is o’-convex for some o’ : dom f — R, , then
of =inf{o : f is o-convex}. (3)

In this case, oy is finite and f is oy-convex. Note that oy is the minimal o such that
f is o-convex.
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Explicit formula

Proposition (M.H.A, 2020)

Suppose that f is o-convex for some . Then

Uf(x):max{o’sup s f(trc+(1—t)y)—tf(w)—(l—t)f(y)}. @

t€]0,1[ yedom f\{z} t(L—1)|lz -yl
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Explicit formula

Proposition (M.H.A, 2020)

Suppose that f is o-convex for some . Then

Uf(x):max{o’sup s f(trc+(1—t)y)—tf(rc)—(l—t)f(y)}. @

t€]0,1[ yedom f\{z} t(L—1)|lz -yl

Let f : X - RU {400} be a function. Then oy is finite and f is of-convez if and
only if f is o-convex for some o.
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Explicit formula

Proposition (M.H.A, 2020)

Suppose that f is o-convex for some . Then

Uf(x):max{o’sup s f(trc+(1—t)y)—tf(rc)—(l—t)f(y)}. @

t€]0,1[ yedom f\{z} t(L—1)|lz -yl

Let f : X - RU {400} be a function. Then oy is finite and f is of-convez if and
only if f is o-convex for some o.
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Property B

We introduce the following assumption:

We say that the function o has the property B, if for every x € int dom f and every
e > 0 sufficiently small, ¢ is bounded on the sphere S(z,¢) = {y € X : |lz —y|| = ¢}.
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Let f : X - R U {400} be a o-convex function. Assume that f is locally bounded
from above in the interior of its domain. If o satisfies property B, then f is locally
Lipschitz in the interior of its domain.
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[
Let f : X — RU {+o0} be a o-convex function. Assume that f is locally bounded

from above in the interior of its domain. If o satisfies property B, then f is locally
Lipschitz in the interior of its domain.

Every proper, o-convez function f: R — RU{+oo} is locally Lipschitz in the interior
of its domain.

v
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Clarke-Rockafellar Directional Derivative

For a proper function f: X — RU {400} the Clarke-Rockafellar generalized
directional derivative at x in a direction z € X is defined by

) —
11 (z,2) =sup limsup inf s w
520 (4 )z a0 “E D

where (y, ) 4 & means that y—z,a— f(x) and a > f (y).
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Clarke-Rockafellar Directional Derivative

For a proper function f: X — RU {400} the Clarke-Rockafellar generalized
directional derivative at x in a direction z € X is defined by

) —
11 (z,2) =sup limsup inf s w
520 (4 )z a0 “E D

where (y, ) 4, & means that y—z,a— f(x) and a > f (y).
If f is Isc at x, the above definition coincides with

fT (z,2) = sup limsup }an s fly+iw) = fy) (y + M;\) — f(y)
§>0 yimc,)\\o u€B(z,0)

Here, y 4, & means that y—z and f(y)— f(x).
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Clarke-Rockafellar Subdifferential

The Clarke-Rockafellar subdifferential of f at x € dom f is defined by

R f (z) = {x eX*:(a2) < f(z,2) Vee X}.
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Clarke-Rockafellar Subdifferential

The Clarke-Rockafellar subdifferential of f at x € dom f is defined by

R f (z) = {x eX*:(a2) < f(z,2) Vee X}.

In the following we introduce the notion of o-subdifferential.
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o-Subdifferential

Definition (M.H.A, 2020)

Suppose that f: X — RU {+oc} is a proper function. The o-subdifferential of f is
the multivalued operator 8° f : X — 2% defined by

97 f (z) := {w* (z"z) < f(x+2)— f(z)+min{o(z),0(z+ )} ||z]| Vz EX}

if x € dom f; otherwise it is empty.
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o-Subdifferential

Definition (M.H.A, 2020)

Suppose that f: X — RU {+oc} is a proper function. The o-subdifferential of f is
the multivalued operator 8° f : X — 2% defined by

97 f (z) := {w* (z"z) < f(x+2)— f(z)+min{o(z),0(z+ )} ||z]| Vz EX}

if x € dom f; otherwise it is empty.
v

It follows from the above definition that df C 97 f and so D (9f) C D (9° f) C dom f.
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o-Subdifferential

Definition (M.H.A, 2020)

Suppose that f: X — RU {+oc} is a proper function. The o-subdifferential of f is
the multivalued operator 8° f : X — 2% defined by

97 f (z) := {w* (z"z) < f(x+2)— f(z)+min{o(z),0(z+ )} ||z]| Vz EX}

if x € dom f; otherwise it is empty.
v

It follows from the above definition that 9f C 97 f and so D (9f) C D (9° f) C dom f.
In the next proposition, we find a relationship between 0% f (z) and 9° f ().
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Proposition (M.H.A, 2020)

Assume that f : X — R U {400} is Isc and o-convex. Then 0°Ff (x) C 8° f (z).

Note that the function f (z) = — |z| is o-convex with o = 2. Then df (0) = 0, and
o°f (£(0) =[-1,1]
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Proposition (M.H.A, 2020)

Assume that f : X — R U {400} is Isc and o-convex. Then 0°Ff (x) C 8° f (z).

Note that the function f (z) = — |z| is o-convex with o = 2. Then df (0) = 0, and
9°% (f(0)) = [~1,1] also it is easy to see that 97 f (0) = [-1,1].
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Proposition (M.H.A, 2020)

Assume that f : X — R U {400} is Isc and o-convex. Then 0°Ff (x) C 8° f (z).

Note that the function f (z) = — |z| is o-convex with o = 2. Then df (0) = 0, and
9°% (f(0)) = [~1,1] also it is easy to see that 97 f (0) = [-1,1].

On the other hand, if we take ¢’ = 4, then £ is o’-convex and 9° f (0) = [-3,3].
Thus the inclusion in the above proposition can be equality or strict.

Proposition (M.H.A, 2021)

Let f : X - RU{+o00} be a proper and convex function. Suppose that f and
o :dom f — Ry are Lipschitz near z and f(-) + o(:) || — z|| is convex. Then

9% f(z) C Of (z) + o (z) B™.
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Proposition (M.H.A, 2021)

Assume that f: X — RU {+oo} is a proper o-convex function. If f is Gateaux
differentiable at x € X, then f' (z) € 37 f (x) i.e., ° f (z) is nonempty.

Alizadeh (IASBS ) Variational Analy nd OptimizationII 18 /29



Proposition (M.H.A, 2021)

Assume that f: X — RU {+oo} is a proper o-convex function. If f is Gateaux
differentiable at © € X, then f' (z) € 87 f (x) i.e., 37 f () is nonempty. Moreover if
o is usc, then 8° f (z) C {x* eX*:|z* = f (=) < a(x)}.
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Proposition (M.H.A, 2021)

Assume that f: X — RU {+oo} is a proper o-convex function. If f is Gateaux
differentiable at © € X, then f' (z) € 87 f (x) i.e., 37 f () is nonempty. Moreover if

o is usc, then 8° f (z) C {x* eX*:|z* = f (=) < a(x)}.

Suppose that f: X — RU {+oo} is proper. If 9° f (z) # 0 and limsup,_,, o (y) < oo,
then f is lsc at x.
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Proposition (M.H.A, 2021)

Assume that f: X — RU {+oo} is a proper o-convex function. If f is Gateaux
differentiable at © € X, then f' (z) € 87 f (x) i.e., 37 f () is nonempty. Moreover if

o is usc, then 8° f (z) C {x* eX*:|z* = f (=) < a(x)}.

Suppose that f: X — RU {+oo} is proper. If 9° f (z) # 0 and limsup,_,, o (y) < oo,
then f is lsc at x. If, in addition, x € intdom f and limsup, _,, fy) < 400, then
07 f(x) is bounded.
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Proposition (M.H.A, 2021)

Assume that f: X — RU {+oo} is a proper o-convex function. If f is Gateaux
differentiable at © € X, then f' (z) € 87 f (x) i.e., 37 f () is nonempty. Moreover if

o is usc, then 0° f (x) C {:c* eX*:|z* = f (=) < a(x)}.

Proposition

Suppose that f : X — RU {400} is proper. If 0° f (x) # 0 and limsup,_,, o (y) < oo,
then f is lsc at x. If, in addition, x € intdom f and limsup, _,, fy) < 400, then
07 f(x) is bounded.

Suppose that f: X — RU {400} is a proper o-convex function and z € dom f. If
intdom f # 0 and = € bd (dom f), then 07 f (z) is either empty or unbounded.
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Let f : X — R U {400} be a proper o-convex function and xo € dom f be a local
minimizer of f. Set

¢ (2) := f (x) + min{o(z), o (zo0) }||z — wol|. ()

Then ¢ attains its global minimum at xo.
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Sigma-subdifferential of sum

Proposition (M.H.A., Zanjani, 2024)

Suppose f,g: X — RU{+oo} are proper, lsc and o—convez functions and o has the
property B. If T € dom g N int (dom f) s a local minimum point of the function
f4g— (&) for all z* € 8% (f + g) (%), then
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Sigma-subdifferential of sum

Proposition (M.H.A., Zanjani, 2024)

Suppose f,g: X — RU{+oo} are proper, lsc and o—convez functions and o has the
property B. If T € dom g N int (dom f) s a local minimum point of the function
f4g— (&) for all z* € 8% (f + g) (%), then

0°f (2) + 079 (x) = 8 (f +9) (x).
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Sigma-subdifferential of sum

Proposition (M.H.A., Zanjani, 2024)

Suppose f,g: X — RU{+oo} are proper, lsc and o—convez functions and o has the
property B. If T € dom g N int (dom f) s a local minimum point of the function
f4g— (&) for all z* € 8% (f + g) (%), then

0°f (2) + 079 (x) = 8 (f +9) (x).

v

Let f : X - R U {400} be a proper and convezx function. Then
A f(x) =0(f +a() ||- — z||)(x). If, in addition, f(-)+ o(-)||- — x| is convez, then
8% f(z) = 0°F(f + o () |l — ) ().
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Sigma-subdifferential of sum

Proposition (M.H.A., Zanjani, 2024)

Suppose f,g: X — RU{+oo} are proper, lsc and o—convez functions and o has the
property B. If T € dom g N int (dom f) s a local minimum point of the function
f4g— (&) for all z* € 8% (f + g) (%), then

9°f (2) + 079 (x) = 0" (f + 9) (x). )
Let f : X - R U {400} be a proper and convezx function. Then

0% f(x) =0(f + () ||- — z|))(z). If, in addition, f(-) +o(:)||- — x| is convez, then
8% f(z) = 0°F(f + o () |l — ) ().

A\,

Suppose that f,g: X — RU {400} are proper, lsc and o-convezr functions. Assume
that o is Lipschitz, o (0) = 0, zo € int(dom f) Ndom g and o (zo + 2z) = o (2) for all
z € X. Then

0 f (x0) + 079 (x0) = 9*° (f + g) (w0) .

\
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o-conjugate

Definition (M.H.A., 2021)

Suppose that f: X — RU {400} is a o-convex function and y € X is fixed. Then the
map f5, : X" — RU{+oc0} defined by
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o-conjugate

Definition (M.H.A., 2021)

Suppose that f: X — RU {400} is a o-convex function and y € X is fixed. Then the
map f5, : X" — RU{+oc0} defined by

2y (@) =swp {(@" 2y~ f @ —o@lle-9ll}, V" ex” ()

is called the (o, y)-conjugate of f.
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o-conjugate

Definition (M.H.A., 2021)

Suppose that f: X — RU {400} is a o-convex function and y € X is fixed. Then the
map f5, : X" — RU{+oc0} defined by

2y (@) =swp {(@" 2y~ f @ —o@lle-9ll}, V" ex” ()

is called the (o, y)-conjugate of f.

As for the convex case, the function f7, : X = RU {Zoco} defined by
@ = s {(a70) £, ()}, Veex
zrEX*

is the (o, y)-biconjugate of f.
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o-conjugate

Definition (M.H.A., 2021)

Suppose that f: X — RU {400} is a o-convex function and y € X is fixed. Then the
map f5, : X" — RU{+oc0} defined by

foy@)=swp{@@a)-f@-c@lz-yll}, v ex”  (§

is called the (o, y)-conjugate of f.

As for the convex case, the function f7, : X = RU {Zoco} defined by

f3% (@) = sup {(:cﬂx)—f;y (1:*)}, Ve X
ZreX*

is the (o, y)-biconjugate of f.

Suppose that f: X — RU {400} is a o-convex function. Then for every x € dom f,
e X¥,
2" € f(z) <= fr. (@) +f(z)=(a",2). (7)
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o-conjugate

Definition (M.H.A., 2021)

Suppose that f: X — RU {400} is a o-convex function and y € X is fixed. Then the
map f5, : X" — RU{+oc0} defined by

foy@)=swp{@@a)-f@-c@lz-yll}, v ex”  (§

is called the (o, y)-conjugate of f.

As for the convex case, the function f7, : X = RU {Zoco} defined by

f3% (@) = sup {(:cﬂx)—f;y (1:*)}, Ve X
ZreX*

is the (o, y)-biconjugate of f.

Suppose that f: X — RU {400} is a o-convex function. Then for every x € dom f,
e X¥,

T €O f(3) = fin (@) + f (@) = (a",3). )
In particular, gr (0° f) C dom f x dom f ...
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o-conjugate

Theorem (M.H.A., 2021)

Suppose that f,g: X — RU{+oc} are Isc. Let f be o-convex, g be o’'-convexr. Then
(i) for every y € X and z* € X™ one has

(f+9)5iory (&%) < (fou (Vg5 () (27) 5 (8)
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o-conjugate

Theorem (M.H.A., 2021)

Suppose that f,g: X — RU{+oc} are Isc. Let f be o-convex, g be o’'-convexr. Then
(i) for every y € X and z* € X™ one has

(f+9)5iory (&%) < (fou (Vg5 () (27) 5 (8)

(i) if o satisfies property B, y € intdom f and it is a local minimum point of the
function f+ g — (z*,-), then the equality holds.
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Monotone Operatos

Let T be a set-valued map from X to X™*. The domain and the graph of T are,
respectively, defined by
D(T)={zeX:T(z)#0},

ng:{(x,x*) EXxX":2eD(T), and z* ET(@}-
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Monotone Operatos

Let T be a set-valued map from X to X™*. The domain and the graph of T are,
respectively, defined by
D(T)={zeX:T(z)#0},

ng:{(x,x*) EXxX":2eD(T), and z* ET(@}-

For two set-valued operators T and S, we write T' C S if S is an extension of T, i.e.,
grT CgrS.
We recall that T' is monotone if

(x—y,z" —y") >0

forall z,y € X and z* € T (z) ,y* € T (y).
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Monotone Operatos

Let T be a set-valued map from X to X™*. The domain and the graph of T are,
respectively, defined by

D(T)={ze X :T(z)#0},
ng:{(x,a:*) eXxX":zeD(T), andx*ET(x)}.

For two set-valued operators T and S, we write T' C S if S is an extension of T, i.e.,
grT CgrS.
We recall that T' is monotone if

(x—y,z" —y") >0

forall z,y € X and z* € T (z) ,y* € T (y).
A monotone operator is called maximal monotone if it has no monotone extension
other than itself.
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ng:{(x,a:*) eXxX":zeD(T), andx*ET(x)}.

For two set-valued operators T and S, we write T' C S if S is an extension of T, i.e.,
grT CgrS.
We recall that T' is monotone if

(x—y,z" —y") >0

forall z,y € X and z* € T (z) ,y* € T (y).
A monotone operator is called maximal monotone if it has no monotone extension
other than itself.
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o-Monotonicity

(i) Given an operator T : X — 2¥" and a map o : D(T) — Ry, T is said to be
o-monotone if for every x,y € D(T), " € T (z) and y* € T (y),

(" —y",y — ) <minf{o(z),s(y) iz -yl

(9)
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o-Monotonicity

(i) Given an operator T : X — 2¥" and a map o : D(T) — Ry, T is said to be
o-monotone if for every x,y € D(T), " € T (z) and y* € T (y),

(" —y",y — ) <minf{o(z),s(y) iz -yl (9)

(ii) A o-monotone operator T is called mazimal o-monotone, if for every operator T"
which is o’-monotone with grT" C gr7” and ¢’ an extension of o, one has T' = T".
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o-Monotonicity

(i) Given an operator T : X — 2¥" and a map o : D(T) — Ry, T is said to be
o-monotone if for every x,y € D(T), " € T (z) and y* € T (y),

(" —y",y — ) <minf{o(z),s(y) iz -yl (9)

(ii) A o-monotone operator T is called mazimal o-monotone, if for every operator T"
which is o’-monotone with grT" C gr7” and ¢’ an extension of o, one has T' = T".

The operator T is called premonotone, if it is o-monotone for some o.
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o-Monotone

Theorem (Rockafellar for o-monotonicity, M.H.A., Hadjisavvas, Roohi, 2012)

Suppose that X is a Banach space and T : X — 2% isa premonotone operator.
Then T is locally bounded at every point of int D(T').
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o-Monotone

Theorem (Rockafellar for o-monotonicity, M.H.A., Hadjisavvas, Roohi, 2012)

Suppose that X is a Banach space and T : X — 2% isa premonotone operator.
Then T is locally bounded at every point of int D(T').

Theorem (Libor Vesely for o-monotonicity, M.H.A., Hadjisavvas, Roohi, 2012)

Suppose that T is maximal o-monotone, o is usc and xo € D (T). If T 1is locally
bounded at zo, then o € D (T). If in addition D (T') is convez, then zo € int D(T).

v
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o-Monotonicity

We recall that an operator T': R™ — 2R" is bounded on bounded sets if UzesT(x) is
bounded for all bounded set B C R".
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o-Monotonicity

We recall that an operator T': R™ — 2R" is bounded on bounded sets if UzesT(x) is
bounded for all bounded set B C R".

For a bounded set B C R™ and any positive € € R, we define B C R" as

Bf = {z € R" : dist(z, B) < ¢} (10)
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o-Monotonicity

We recall that an operator T': R™ — 2R" is bounded on bounded sets if UzesT(x) is
bounded for all bounded set B C R".
For a bounded set B C R™ and any positive € € R, we define B C R" as

B® = {x € R" : dist(z, B) < ¢}. (10)

Theorem (M.H.A. Iusem, Sosa, 2024)

Consider an operator T : R" — 28" with conver domain which is bounded on bounded
sets and monotone outside some bounded set B C R™. Then T is premonotone, with

o(y)=a+ sup ||,
veT (y)
where

o= _ww .
uweT (z),zEBE

for an arbitrary € > 0.
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o-Monotonicity

Proposition

Let T : R™ — 28" be bounded on bounded sets and o-monotone. Consider a bounded
set B C R™ and an operator T : R™ — 28" with convex domain which is bounded on
bounded sets and such that T'(x) = T'(z) for all x ¢ B. Then T is G-monotone, with

&(y) = max{a(y),(y)},

where

a(y)=a+ sup |,
veT (y)

and

a= s lul.
uweT (z),zEBE
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o-Monotonicity

Let T : R™ — 28" be bounded on bounded sets and o-monotone. Consider a bounded
set B C R™ and an operator T : R™ — 28" with convex domain which is bounded on
bounded sets and such that T'(x) = T'(z) for all x ¢ B. Then T is G-monotone, with

&(y) = max{a(y),(y)},

where
d(y)=a+ sup |jv],
veT (y)
and

a=  sup |l -
uweT (z),zEBE

If T : R™ — R"™ is point to point, continuous and monotone outside some bounded set

B C R", then T is o-monotone, with o(y) = o+ HT(y)H, where o = sSup, ¢ -
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o-Monotonicity

If p: R — R is a polynomial of odd degree, then p is o-monotone.
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o-Monotonic

If p: R — R is a polynomial of odd degree, then p is o-monotone.

Conjecture (Iusem Sosa, 2020, JNVA ): Every maximal premonotone operator
contains a maximal monotone one.
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