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Number fields

Q := rational numbers. C := complex numbers.
Number field: a field K such that Q ⊂ K ⊂ C and K has finite dimension as
Q-vector space.

▶ K = Q(i) := {a + ib : a, b ∈ Q} (with i 2 = −1) is a number field with dim =
2.

▶ Let α := e 2πi
5 . Then K = Q(α) = {a + bα+ cα2 + dα3 : a, b, c, d ∈ Q} is a

number field with dim = 4.
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Motivations

There are many reasons why people are interested in number fields. Some are:
▶ Better comprehension of integer equations (they were first used for partial

study of Fermat’s xn + yn = zn).
▶ Algebraic varieties may be defined over number fields (e.g: conics, elliptic

curves).

▶ Cryptography.
▶ Algorithms for the factorization of prime numbers.
▶ Algorithms for the study of Euclidean lattices (e.g: LLL algorithm).
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Classification of number fields

Goal: to classify and list all number fields satisfying certain properties.
E.g: number fields with minimal or sufficiently small values of the following
invariants.

▶ Discriminant: an integer number ∆K which generalizes the ∆ of the second
degree equations.
∆Q(i) = −4, ∆Q(exp(2πi/5)) = 125.

▶ Regulator: the determinant RK of a matrix whose entries are logarithms of
absolute values of numbers in K.
RQ(i) = 1, RQ(exp(2πi/5)) = 0.962423650119 . . .

The classification is helped by softwares for Number Theory and Symbolic Algebra
computations (PARI/GP, Magma, Sage...)
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My Ph.D. work

2017-2020: my aim was to compute complete lists of number fields K with small
discriminant and regulator in specific families which were not previously
considered.
For these families finite lists can be obtained since:
▶ There are only finitely many K with |dK| ≤ B.
▶ There exist C,D > 0 such that log |dK| ≤ C + D · RK.

Small discriminants: I obtained the lists for all the families I considered.
Small regulators: The best we could get were conjectural results.
This happened because the constant C in the estimate above was not the
best possible.
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The main object of study

The constant C is the supremum of

Pn(ε) :=
∏

1≤i<j≤n

∣∣∣∣1 − εi
εj

∣∣∣∣
over all ε := (ε1, . . . , εn) ∈ Cn such that 0 < |ε1| ≤ .. ≤ |εn|.

▶ Remak (1952): Pn(ε) ≤ nn/2. This was the value used in the procedure.
▶ Pohst (1977): if every εi is real and n ≤ 11, then Pn(ε) ≤ 2⌊n/2⌋ (where

⌊x⌋ := biggest integer ≤ x) and this bound is sharp.
▶ Friedman and Ramirez-Raposo (2018): if five of the εi are real and two are

complex conjugated, then P7(ε) ≤ e6 ≃ 1
2 · 77/2.
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New settings of the problem

Summer-Autumn 2020: together with my Ph.D. advisor (Prof. Giuseppe Molteni,
UniMi), we realized the following:
▶ The previous results suggest that among the n complex numbers εi, 2r of

them should be complex conjugated couples, with the remaining being real.

▶ Our families of fields are actually defined by numbers satisfying this relation.
▶ The smaller r, the smaller should be the true upper bound C of the “new”

Pn,r.

We started with r = 0, i.e. Pohst’s case with only real numbers εi.
Numerical experiments and some new insight led us to think that in this case
C = 2⌊n/2⌋ was true for every n ∈ N.
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The real variables case

Pn+1,0(ε) :=
∏

1≤i<j≤n+1

∣∣∣∣1 − εi
εj

∣∣∣∣ .
Remember that 0 < |ε1| ≤ |ε2| ≤ · · · ≤ |εn+1|.

The change of variables xi := εi/εi+1 (for i = 1, . . . , n) gives

Qn(x1, . . . , xn) :=
n∏

i=1

n∏
j=i

(
1 −

j∏
k=i

xk

)
, xk ∈ [−1, 1] ∀k.

We have obtained a multivariate polynomial over the hypercube [−1, 1]n: if we
prove that maxx∈[−1,1]n Qn(x) = 2⌊ n+1

2 ⌋, we extend Pohst’s result to every n.

max
x1∈[−1,1]

Q1(x1) = max
x1∈[−1,1]

(1 − x1) = 2 = 2⌊ 1+1
2 ⌋,

max
(x1,x2)∈[−1,1]2

Q2(x1, x2) = max
(x1,x2)∈[−1,1]2

(1 − x1)(1 − x1x2)(1 − x2) = 2 = 2⌊ 2+1
2 ⌋.
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Configurations

Given a vector of signs ρ := (ρ1, . . . , ρn), we consider the function over [0, 1]n
defined as

Qn,ρ(x1, . . . , xn) :=
n∏

i=1

n∏
j=i

(
1 −

j∏
k=i

ρk

j∏
k=i

xk

)
which we call a configuration of Qn.

Q3,(+,−,−)(x1, x2, x3) = (1 − x1) (1 + x1x2) (1 − x1x2x3)
(1 + x2) (1 − x2x3)

(1 + x3)

Calculus and constrained optimization show that the maximum of this
configuration is 2 < 2⌊(3+1)/2⌋ = 4.We want to prove Qn,ρ ≤ 2⌊ n+1

2 ⌋ for the 2n

choices of ρ.
Problem: as n increases, the partial derivatives approach becomes unsustainable.
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Graphical schemes

Q3,(+,−,−)(x1, x2, x3) = (1 − x1) (1 + x1x2) (1 − x1x2x3)
(1 + x2) (1 − x2x3)

(1 + x3)

We represent a configuration Qn,ε with a triangular array formed by signs + and
−, each sign at (i, j) being equal to

∏j
k=i ρk.

Q3,(+,−,−) =
+ − +

− +

−

Q4,(−,+,+,−) =
− − − +

+ + −
+ −

−

Every n × n triangular array A formed by + and − (we call it graphical scheme
of dimension n) corresponds to a function FA : [0, 1]n → R defined as

FA(x1, . . . , xn) =
n∏

i=1

n∏
j=i

(
1 − Ai,j

j∏
k=i

xk

)
.
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Estimates and patterns of graphical schemes

Pohst’s original idea: in a graphical scheme A we can recognize patterns,
corresponding to bounded factors of FA. Consider a sign at place (i, j):

j
i + ≤ 1 since it corresponds to (1 − u) ≤ 1 for u ∈ [0, 1].

j j′
i + − ≤ 1 since it corresponds to (1 − u)(1 + uv) ≤ 1 for u, v ∈ [0, 1].

j
i − ≤ 1
i′ +

for the very same reason.

j j′
i − + ≤ 1
i′ + −

since (1 − u)(1 + uv)(1 + uw)(1 − uvw) ≤ 1 for u, v,w ∈ [0, 1].

j j + 1
i − + ≤ 2

i + 1 −
since it is nothing but a consequence of Q2(x1, x2) ≤ 2, which

we already know.
Covering the scheme with patterns gives an upper bound to FA.
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An example

We can use Pohst’s bounds to prove the result for the configuration shown before.

Q3,(+,−,−) =

+ − +

− +

−
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An example

We can use Pohst’s bounds to prove the result for the configuration shown before.

Q3,(+,−,−) =

+ − +

− +

−

The blue factors correspond to (1 − x1)(1 + x1x2) ≤ 1.
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We can use Pohst’s bounds to prove the result for the configuration shown before.

Q3,(+,−,−) =

+ − +

− +

−

The blue factors correspond to (1 − x1)(1 + x1x2) ≤ 1.
The orange factor corresponds to (1 − x1x2x3) ≤ 1.
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An example

We can use Pohst’s bounds to prove the result for the configuration shown before.

Q3,(+,−,−) =

+ − +

− +

−

The blue factors correspond to (1 − x1)(1 + x1x2) ≤ 1.
The orange factor corresponds to (1 − x1x2x3) ≤ 1.
The green factors correspond to Q2,(−,−) ≤ 2.
Therefore the function Q3,(+,−,−) associated to this scheme is ≤ 2.
We can use this technique to obtain estimates for certain configurations for every
n.
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Configuration with negative signs

Theorem
Let Qn,ρ− be the configuration of Qn with all negative signs. Then,
Qn,ρ−(x1, . . . , xn) ≤ 2⌊(n+1)/2⌋.

Proof: If n = 1 or n = 2 the claim is trivial. Assume n ≥ 3 is odd and the claim is
true for every dimension < n. The configuration is represented by the scheme

An,− =
− + − + · · · + −

− + − · · · − +
An−2,−

where An−2,− ≤ 2⌊(n−1)/2⌋ by hypothesis. In the first two rows we have one

triangle
1 2

1 − + ≤ 2,
2 −

we have ⌊ n−2
2 ⌋ squares

j j′
1 − + ≤ 1
2 + −

and one final vertical

segment
n

1 − ≤ 1
2 +

. The contribution of the first two rows is then ≤ 2 and so

An,− ≤ 2 · 2⌊(n−1)/2⌋ = 2⌊ n+1
2 ⌋.

For n ≥ 4 even the proof is completely similar.
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For n ≥ 4 even the proof is completely similar.
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Configuration with negative signs

Theorem
Let Qn,ρ− be the configuration of Qn with all negative signs. Then,
Qn,ρ−(x1, . . . , xn) ≤ 2⌊(n+1)/2⌋.
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Transforming patterns

If A,A′ are graphical schemes of dimension n, we say A ≤ A′ if FA ≤ FA′ .
New idea: instead of just detecting patterns, we replace them with other patterns
as result of an estimate.

P) j
i + ≤

j
i − since (1 − u) ≤ (1 + u) for u ∈ [0, 1].

H) j j′
i + − ≤

j j′
i − + since (1 − u)(1 + uv) ≤ (1 + u)(1 − uv) for u, v ∈ [0, 1].

V)
j

i − ≤
i′ +

j
i +
i′ −

for the very same reason.

S)
j j′

i − + ≤
i′ + −

j j′
i + −
i′ − +

since for u, v,w ∈ [0, 1] we have

(1 − u)(1 + uv)(1 + uw)(1 − uvw) ≤ (1 + u)(1 − uv)(1 − uw)(1 + uvw).

Every replacement is a move on A and produces a new scheme A′ and an estimate
A ≤ A′.
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Wrong and correct signs

Given a graphical scheme A, we say that the sign Ai,j is wrong if Ai,j = (−1)i−j,
and is correct otherwise.
By definition, the only graphical scheme with every sign being correct is the
configuration with negative signs An,−.

+ − −
− −

+

− − + −
+ − +

− +

−

The labeled signs are wrong.

▶ The first scheme presents two patterns to which we apply a move H and a
move V. These moves correct the scheme into the one with negative signs.

▶ The second scheme is corrected by a move S and a move V.
But the correction of a scheme A with moves P, H, V and S gives
A ≤ An,− ≤ 2⌊ n+1

2 ⌋. Is this always possible?
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The theorem

Theorem (B., Molteni 2021)
Let A be a configuration of Qn. There is a list L of moves P, H, V, S which
corrects A into the configuration Cn,− defined by negative signs.

Corollary
max

(x1,...,xn)∈[−1,1]n
Qn(x1, . . . , xn) = 2⌊ n+1

2 ⌋.

The list L is created by induction on the dimension n.
▶ n = 1 : either A = −, and we are done, or A = +, and we apply P.
▶ n − 1 → n: let A′ be the configuration obtained removing the n-th column

from A. By inductive hypothesis exists a list L′ of moves which applied to A′

gives A′ ≤ An−1,− (the one in dimension n − 1).
▶ We look at the signs in the n-th column and correct them adding new moves

which may overlap with old moves over A′ in L′.
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Fundamental steps

▶ We examine the n-th column, and we look for the 1st wrong − starting from
the bottom. If Ai,j = − is wrong, we have to decide whether applying V or H
(or S).

▶ There is a precise criterion for this choice: sum the signs to the left of Ai,j
and the signs below. The two sums (we call them H(i, j) and V(i, j)) are
opposite to each other.

▶ If V(i, j) > 0, pick the first wrong + available below Ai,j and add a move V to
the list.

▶ If H(i, j) > 0, pick the first wrong + to the left of Ai,j. If this + is corrected
by a V in L′, replace V with a move S. If the wrong + is corrected by P,
replace it with a move H.

▶ Once every wrong − on the n-th column has been corrected, correct every
remaining wrong + with a move P.

Remark: there are some subtle issues that need to be checked in order for this
procedure to work (for example that wrong + are always available whenever one
applies a move V).
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An instance of the algorithm

We want to apply the algorithm to the following configuration of dimension 6.

+ − − − + +

− − − + +

+ + − −
+ − −

− −
+
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An instance of the algorithm

We want to apply the algorithm to the following configuration of dimension 6.

+ − − − + +

− − − + +

+ + − −
+ − −

− −
+

Column 1: there are no wrong − and there is a wrong +. We get

L = {P[1; 1]}.
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An instance of the algorithm

We want to apply the algorithm to the following configuration of dimension 6.

+ − − − + +

− − − + +

+ + − −
+ − −

− −
+

Column 2: we have H(1, 2) = 1 and in the old list there was a P. We replace it
with

L = {H[1; 1, 2]}.
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An instance of the algorithm

We want to apply the algorithm to the following configuration of dimension 6.

+ − − − + +

− − − + +

+ + − −
+ − −

− −
+

Column 3: we have V(2, 3) = 1 and we get

L = {H[1; 1, 2],V[2, 3; 3]}.
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An instance of the algorithm

We want to apply the algorithm to the following configuration of dimension 6.

+ − − − + +

− − − + +

+ + − −
+ − −

− −
+

Column 4: we have V(1, 4) = 1 and we get

L = {H[1; 1, 2],V[2, 3; 3],V[1, 4; 4]}.
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An instance of the algorithm

We want to apply the algorithm to the following configuration of dimension 6.

+ − − − + +

− − − + +

+ + − −
+ − −

− −
+

Column 5: we have H(4, 5) = 1 and previously we had V[1, 4; 4], so we replace this
move by a move S. We get

L = {H[1; 1, 2],V[2, 3; 3], S[1, 4; 4, 5]}.

.
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An instance of the algorithm

We want to apply the algorithm to the following configuration of dimension 6.

+ − − − + +

− − − + +

+ + − −
+ − −

− −
+

Column 6: we have V(5, 6) = 1 and we get

L = {H[1; 1, 2],V[2, 3; 3], S[1, 4; 4, 5],V[5, 6; 6]}.
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An instance of the algorithm

We want to apply the algorithm to the following configuration of dimension 6.

+ − − − + +

− − − + +

+ + − −
+ − −

− −
+

Column 6: we have H(3, 6) = 1 and previously we had V[2, 3; 3], so we replace this
move by a move S. We get

L = {H[1; 1, 2], S[2, 3; 3, 6], S[1, 4; 4, 5],V[5, 6; 6]}.
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Remarks and new problems

▶ The maximum of Qn is always attained at (−1, 0,−1, 0, . . .), hence at the
boundary of the hypercube.

▶ It would be nice to have a property which immediately states that the
maximum points are on the boundary. Unfortunately, Qn is superharmonic,
not subharmonic.

▶ The result is general but not yet applied to the classification of number fields:
in fact, for n ≥ 10 we do not have complete lists of number fields with small
discriminant.

2021-2022: together with Molteni, we tried to investigate the case with r = 1 (i.e.
one couple of complex conjugated εi’s), since the easiest family for which I
obtained the tables falls into this case.
The problem becomes more difficult.
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The case with r = 1

Pn+1,1(ε) :=
∏

1≤i<j≤n+1

∣∣∣∣1 − εi
εj

∣∣∣∣ .
For n + 1 = 3, 4, the old upper bounds (33/2, 44/2 = 16) are the correct ones.

FIRST PROBLEM: There is a couple of complex conjugated εk and εk+1: there
are different changes of variables depending on the position of k.

εk = rkeiθ, g := cos θ, xi :=


εi
εi+1

i ̸= k − 1, k
εk−1

rk
i = k − 1,

rk
εk+1

i = k

This results in several functions arising from the same Pn+1,1(ε) (orderings).
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Pn+1,1(ε) :=
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∣∣∣∣1 − εi
εj

∣∣∣∣ .
For n + 1 = 3, 4, the old upper bounds (33/2, 44/2 = 16) are the correct ones.
FIRST PROBLEM: There is a couple of complex conjugated εk and εk+1: there
are different changes of variables depending on the position of k.

εk = rkeiθ, g := cos θ, xi :=


εi
εi+1

i ̸= k − 1, k
εk−1

rk
i = k − 1,

rk
εk+1

i = k

This results in several functions arising from the same Pn+1,1(ε) (orderings).
E.g: n + 1 = 5, ε4 and ε5 conjugated (1st ordering)

(1 − x1) (1 − x1x2) (1 − 2x1x2x3g + (x1x2x3)2)
(1 − x2) (1 − 2x2x3g + (x2x3)2)

(1 − 2x3g + x2
3) 2

√
1 − g2
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εi
εi+1

i ̸= k − 1, k
εk−1

rk
i = k − 1,

rk
εk+1

i = k

This results in several functions arising from the same Pn+1,1(ε) (orderings).
E.g: n + 1 = 5, ε3 and ε4 conjugated (2nd ordering)

(1 − x1) (1 − 2x1x2g + (x1x2)2) (1 − x1x2x3)
(1 − 2x2g + x2

2) (1 − x2x3)

(1 − 2x3g + x2
3) 2

√
1 − g2
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The procedure for n + 1 = 5

For the two orderings of P5,1, we look for common zeros of polynomials associated
to partial derivatives.
Algebraic Elimination Theory: common zeros of multivariate polynomials arise
from zeros of successive resultants, with the number of variables decreasing.

f1(x, y, z) f2(x, y, z) f3(x, y, z)

Res(f1, f2)(x, z)︸ ︷︷ ︸
R1(x,z)

Res(f2, f3)(x, z)︸ ︷︷ ︸
R2(x,z)

Res(R1,R2)(x)

Common zeros of fi have x component which is a zero of Res(R1,R2)(x).
From this, we prove (via Symbolic Algebra softwares) that there are no critical points for
the orderings of P5,1 in the interior of [−1, 1]4.
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Elimination Theory on the boundaries

We repeat this process on the boundaries of [−1, 1]4, so that we have less
variables to deal with. We find (easy) critical points.

(1 − x1) (1 − x1x2) (1 − 2x1x2x3g + (x1x2x3)2)
(1 − x2) (1 − 2x2x3g + (x2x3)2)

(1 − 2x3g + x2
3) 2

√
1 − g2

Maximum point: (x1, x2, x3, g) =
(

−1√
7 ,−1, 1, −1

2
√

7

)
.

Maximum value: 16M = 16.6965 . . . where M = 315/2/(4 · 77/2).

16.6965 . . . < 55/2 = 55.90169 . . .

This improvement allows to expand the list of number fields with small regulator
in the family associated to P5,1.
However, if we increase n, direct applications of Elimination Theory to our
functions become computationally unsustainable.
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Graphical schemes, again

We can use again graphical schemes and configurations, with a new notation for
the terms containing g.

+ + −′

+ −′

−′
2
√

1 − g2
− −′ +

+′ −
−′

2
√

1 − g2

SECOND PROBLEM: Many of the moves detected in the real variables case are
no longer available for the new factors.

E.g: no longer true that +−′ ≤ −+′ or −′ + ≤
+′ −

+′ −
−′ +

but the

move −′ ≤
+′

+′

−′
is still available.
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The procedure for n + 1 ∈ {6, 7, 8, 9}

▶ For each of the 3 possible orderings (resp. 3, 4, 4) we consider the 16 (resp.
32, 64, 128) configurations available and the corresponding graphical
schemes.

▶ Some of these schemes are estimated similarly to Pohst’s procedure, by
recognizing patterns.

− − +′ −
+ −′ +

−′ +

−′

2
√

1 − g2

Green ≤ 2, Red ≤ 5.2, Yellow ≤ 32/27. Configuration ≤ 12.33.
▶ We now need more than 100 different patterns. Some are hard to estimate

and need Elimination Theory.
▶ Other schemes are reduced to schemes we already bounded thanks to moves

similar to those of the real variables case.
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Results and consequences

Table of upper bounds for every configuration in every consiered case.

ordering
n + 1 5 6 7 8 9

1st 16M 32 32M 64M 155.1
2nd 16M 32M 54M 79.42 190.2
3rd 34.89 65.81 79.2 201.4
4th 80 233.1

Red values: sharp upper bound.
We conjecture an iterative behaviour similar to the one of the previous problem.
We conjecture the upper bound is independent of the ordering.

Corollary (B.-Molteni,2023)
The lists of fields with small regulator, r = 1 and n + 1 ∈ {5, 6, 7} are larger than
the previously available lists.
The list of four fields with n + 1 = 8, r = 1 and smallest regulator is now available
(previously unknown).
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