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Question

Are there indecomposable non hereditarely indecomposable Banach
spaces of density character not bigger than continuum?

Definition

A Banach space E is said indecomposable (I) if E cannot be
obtained as the direct sum of two of its infinite-dimensional closed
subsapaces. E is said hereditarely indecomposable (HI) whenever
each of its infinite-dimensional subspaces is (I).

Clearly E is (HI) iff the angle between any two closed
infinite-dimensional subspaces X and Y of E , i.e. dist(SX , SY ), is
0.
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First example

T. Gowers, B. Maurey: The unconditional basic sequence problem
(1993).
Actually their construction leads to a (HI) reflexive space with
basis.

Consequences on the operator theory

Every (linear bounded) operator acting on a (HI) Banach space
may be obtained as a strictly singular perburbation of a multiple of
the identity (T. Gowers and B. Maurey: Banach spaces with small
spaces of operators, 1997). In particular, any such operator must
be either strictly singular or Fredholm with index 0. As a
consequence, a (HI) space is not isomorphic to any of its proper
subspaces, in particular to any of its hyperplanes.

Every (linear bounded) operator acting on a (HI) Banach space
may be obtained as a compact perburbation of a multiple of the
identity (S. Argyros and R. Haydon, 2011).
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Basic facts on density character

Every (HI) Banach space embeds into ℓ∞ (S. Argyros and A.
Tolias, 2004).

Assume the generalized continuum hypothesis. For every cardinal
κ there is an (I) Banach space of density character bigger than κ.
In particular, it has no infinite-dimensional complemented subspace
of density smaller than κ. The spaces are Banach algebras of the
form C (K ) with ”few operators” where K is compact Hausdorff
and connected (P. Koszmider, S. Shelah and M. Świetek, 2016).
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More information

Any separable reflexive space is a quotient of a reflexive (HI) space
(S. Argyros and T.Raikoftsalis, 2012).

It follows that every separable reflexive space is isomorphic to a
subspace of a reflexive (I) space.

The Gowers space G without any reflexive subspace and not
containing c0 or ℓ1 must contain some (HI) space, so (James +
Gowers dichotomy theorem) there exist (HI) spaces free of reflexive
(infinite-dimensional) subspaces. It seems a still open problem
whether G is (HI) or at least (I).
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Terminology

Let E be a Banach space, let X be a subspace of E and Z be a
subspace of E ∗ (the dual space to E ). We say that Z is norming
for X if the formula

|||x ||| = sup
f ∈BZ

|f (x)|, x ∈ X

defines an equivalent norm on X (where BZ denotes the unit ball
of Z ). It is clear that if Z is norming for X , then Z is total over X
(that is, X ∩ Z⊥ = {0}, where
Z⊥ = {x ∈ E : f (x) = 0 for every f ∈ Z}).

Analogously, if X is norming for Z (namely, if the image of X
through the canonical maping π : E → E ∗∗ is norming for Z ), then
X is total over Z (that is, X⊥ ∩ Z = {0}, where
X⊥ = {f ∈ E ∗ : f (x) = 0 for every x ∈ X}).
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The two characterizations

A Banach space E is HI if, and only if, for any closed subspace
X ⊂ E with dim(X ) = ∞ and any w∗-closed subspace Z ⊂ E ∗

such that Z is norming for X , we have codim (Z ) <∞ (V.D.
Milman).

A Banach space E is I if, and only if, for every closed subspace
X ⊂ E with dim(X ) = ∞ and every w∗-closed subspace Z ⊂ E ∗

such that Z is norming for X and X is total over Z , we have
codim (Z ) <∞ (V. Fonf, S. Lajara, S. Troyanski and C.Z.).
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The key

Proposition

(V. Fonf, S. Lajara, S. Troyanski and C.Z., 2019)

E a Banach space, X a closed subspace of E , Z a w∗-closed
subspace of E ∗. Then

Z norming for X ⇐⇒ X ⊕ Z⊥ closed in E .

Proof.

=⇒ part.

Let λ ∈ (0, 1] be a number satisfying
supf ∈BZ

|f (x)| ≥ λ∥x∥ for every x ∈ X .

Fix x ∈ X and pick f ∈ BZ such that f (x) ≥ λ∥x∥/2. Therefore,
for each y ∈ Z⊥ we have

∥x − y∥ ≥ f (x − y) = f (x) ≥ λ∥x∥/2.
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Consider the quotient map Q : E → E/Z⊥: consequently,

∥Qx∥ = inf {∥x − y∥ : y ∈ Z⊥} ≥ λ∥x∥/2,

hence the restriction map Q|X is an isomorphic embedding.
It suffices to show that inf{∥x − y∥ : x ∈ SX , y ∈ SZ⊥} > 0.
Assume the contrary: then there exist sequences (xn)n ⊂ SX and
(yn)n ⊂ SZ⊥ such that ∥xn − yn∥ → 0. Thus, ∥Qxn − Qyn∥ → 0
that implies ∥Qxn∥ → 0, contradicting the fact that the restriction
map Q|X is an isomorphic embedding.
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Proof.

⇐= part.

Set U = X ⊕Z⊥ and let M and N denote the annihilator subspaces
of X and Z⊥ relative to U, that is, M =

{
f ∈ U∗ : f|x = 0

}
and

N =
{
g ∈ U∗ : g|Z⊥ = 0

}
. Since U is closed, it follows that

U∗ = M ⊕ N. In particular, there exists α > 0 such that

α (∥f ∥+ ∥g∥) ≤ ∥f + g∥ ≤ ∥f ∥+ ∥g∥

whenever f ∈ M and g ∈ N. Choose a vector x ∈ X with ∥x∥ = 1,
take φ ∈ U∗ with φ(x) = ∥φ∥ = 1 and let functionals f ∈ M and
g ∈ N such that φ = f + g . It is clear that g(x) = φ(x) = 1 and,
because of the previous inequality, we have ∥g∥ ≤ α−1. Therefore,
the functional ψ = αg belongs to BN and ψ(x) ≥ α. Now, let
ψ̂ ∈ E ∗ be such that ψ̂|U = ψ and ∥ψ̂∥ = ∥ψ∥. Then, ψ̂ ∈ BZ and

ψ̂(x) ≥ α. Consequently, Z is norming for X .

C. Zanco (INPS of Italy, former Università degli Studi - Milano, Italy), talk connected with a joint work with V.P. Fonf (former Ben-Gurion University - Beer-Sheva, Israel), S. Lajara (Universidad Complutense - Madrid, Spain), S. Troyanski (Bulgarian Academy of Science - Sofia, Bulgaria)A (maybe open) question on indecomposable Banach spaces



Getting characterization of HI spaces

A Banach space E is HI if, and only if, for any closed subspace
X ⊂ E with dim(X ) = ∞ and any w∗-closed subspace Z ⊂ E ∗

such that Z is norming for X , we have codim (Z ) <∞ (V.D.
Milman).

Let X be an infinite-dimensional closed subspace of E and Z a
w∗-closed subspace of E ∗ which is norming for X . By the
Proposition, we have X ∩ Z⊥ = {0} and X ⊕ Z⊥ is closed. E being
HI implies dim(Z⊥) <∞, so codim(Z ) <∞.

Conversely, if E is not HI there exist infinite-dimensional closed
subspaces X and Y of E such that X ⊕ Y is closed in E . Take
Z = Y⊥: Z is w∗-closed so, by the Proposition, is norming for X .
From Y = Z⊥ we get codim(Z ) = dim(Y ) = ∞.
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Theorem

(V. Fonf, S. Lajara, S. Troyanski and C.Z., 2019)
E a Banach space, X a closed subspace of E , Z a w∗-closed
subspace of E ∗. Then

Z norming for X and X total over Z ⇐⇒ E ⊕ Z⊥ = E .

Proof.

=⇒ part.

Clearly X ∩ Z⊥ = {0}. We claim that the direct sum X ⊕ Z⊥ is
dense in E . Indeed, since Z is w∗-closed, the adjoint operator of
the map Q|X : X → E/Z⊥ can be identified with the restriction

map q∗|Z : Z → X ∗. It is clear that ker q∗|Z = X⊥ ∩ Z . Bearing in
mind that X is total over Z , it follows that q∗|Z is one-to-one.
Hence, the operator Q|X has dense range, and using the
Hahn-Banach theorem we deduce that the manifold X ⊕ Z⊥ is
dense in E . On the other hand, as Z is norming for X , Proposition
guarantees that X ⊕ Z⊥ is closed. Consequently, E = X ⊕ Z⊥.
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⇐= part.

Taking into account that Z is w∗-closed and the sum
X ⊕ Z⊥(= E ) is closed in E , according to Proposition we have
that Z is norming for X . Moreover, it is a standard exercise to get
E ∗ = X⊥ ⊕ (Z⊥)

⊥ = X⊥ ⊕ Z : this implies that X is total over Z .
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Getting characterization of I spaces

A Banach space E is I if, and only if, for every closed subspace
X ⊂ E with dim(X ) = ∞ and every w∗-closed subspace Z ⊂ E ∗

such that Z is norming for X and X is total over Z , we have
codim (Z ) <∞ (V. Fonf, S. Lajara, S. Troyanski and C.Z.).

Let X be an infinite-dimensional closed subspace of E and Z a
w∗-closed subspace of E ∗ which is norming for X . By the
Theorem, we have X ∩ Z⊥ = {0} and X ⊕ Z⊥ = E . E being I
implies dim(Z⊥) <∞, so codim(Z ) <∞.

Conversely, if E is not I there exist infinite-dimensional closed
subspaces X and Y of E such that X ⊕ Y = E . Take Z = Y⊥: Z
is w∗-closed so, by the Theorem, is norming for X . From Y = Z⊥
we get codim(Z ) = dim(Y ) = ∞.

C. Zanco (INPS of Italy, former Università degli Studi - Milano, Italy), talk connected with a joint work with V.P. Fonf (former Ben-Gurion University - Beer-Sheva, Israel), S. Lajara (Universidad Complutense - Madrid, Spain), S. Troyanski (Bulgarian Academy of Science - Sofia, Bulgaria)A (maybe open) question on indecomposable Banach spaces



The case of reflexive spaces

Theorem

Corollary (V. Fonf, S. Lajara, S. Troyanski and C.Z., 2019)
Let E be a Banach space, let X be a closed subspace of E and Z
be a closed subspace of E ∗. If X is reflexive then the following
conditions are equivalent:

1 X is norming for Z and Z is total over X .

2 Z is norming for X and X is total over Z .

3 X is norming for Z and Z is norming for X .

4 Z is w∗-closed and E = X ⊕ Z⊥.

5 Z is reflexive and E = X ⊕ Z⊥.
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