A (maybe open) question on indecomposable Banach spaces

 C. Zanco (INPS of Italy, former Università degli Studi - Milano, Italy), talk connected with a joint work with V.P. Fonf (former Ben-Gurion University - Beer-Sheva, Israel), S. Lajara (Universidad Complutense - Madrid, Spain), S. Troyanski (Bulgarian Academy of Science - Sofia, Bulgaria)

> Infinite-dimensional convexity and geometry of Banach spaces 09 -10 November, 2023

Are there indecomposable non hereditarely indecomposable Banach spaces of density character not bigger than continuum?

* 3 > < 3</p>

Are there indecomposable non hereditarely indecomposable Banach spaces of density character not bigger than continuum?

Definition

A Banach space E is said *indecomposable* (I) if E cannot be obtained as the direct sum of two of its infinite-dimensional closed subsapaces. E is said *hereditarely indecomposable* (HI) whenever each of its infinite-dimensional subspaces is (I).

Are there indecomposable non hereditarely indecomposable Banach spaces of density character not bigger than continuum?

Definition

A Banach space E is said *indecomposable* (I) if E cannot be obtained as the direct sum of two of its infinite-dimensional closed subsapaces. E is said *hereditarely indecomposable* (HI) whenever each of its infinite-dimensional subspaces is (I).

Clearly *E* is (HI) iff the angle between any two closed infinite-dimensional subspaces *X* and *Y* of *E*, i.e. $dist(S_X, S_Y)$, is 0.

First example

T. Gowers, B. Maurey: *The unconditional basic sequence problem* (1993).

Actually their construction leads to a (HI) reflexive space with basis.

T. Gowers, B. Maurey: *The unconditional basic sequence problem* (1993).

Actually their construction leads to a (HI) reflexive space with basis.

Consequences on the operator theory

Every (linear bounded) operator acting on a (HI) Banach space may be obtained as a strictly singular perburbation of a multiple of the identity (T. Gowers and B. Maurey: *Banach spaces with small spaces of operators*, 1997). In particular, any such operator must be either strictly singular or Fredholm with index 0. As a consequence, a (HI) space is not isomorphic to any of its proper subspaces, in particular to any of its hyperplanes.

Every (linear bounded) operator acting on a (HI) Banach space may be obtained as a compact perburbation of a multiple of the identity (S. Argyros and R. Haydon, 2011).

Every (HI) Banach space embeds into ℓ^∞ (S. Argyros and A. Tolias, 2004).

4 3 5 4 3

Every (HI) Banach space embeds into ℓ^{∞} (S. Argyros and A. Tolias, 2004).

Assume the generalized continuum hypothesis. For every cardinal κ there is an (I) Banach space of density character bigger than κ . In particular, it has no infinite-dimensional complemented subspace of density smaller than κ . The spaces are Banach algebras of the form C(K) with "few operators" where K is compact Hausdorff and connected (P. Koszmider, S. Shelah and M. Świetek, 2016). Any separable reflexive space is a quotient of a reflexive (HI) space (S. Argyros and T.Raikoftsalis, 2012).

It follows that every separable reflexive space is isomorphic to a subspace of a reflexive (I) space.

Any separable reflexive space is a quotient of a reflexive (HI) space (S. Argyros and T.Raikoftsalis, 2012).

It follows that every separable reflexive space is isomorphic to a subspace of a reflexive (I) space.

The Gowers space G without any reflexive subspace and not containing c_0 or ℓ_1 must contain some (HI) space, so (James + Gowers dichotomy theorem) there exist (HI) spaces free of reflexive (infinite-dimensional) subspaces. It seems a still open problem whether G is (HI) or at least (I).

Terminology

Let *E* be a Banach space, let *X* be a subspace of *E* and *Z* be a subspace of E^* (the dual space to *E*). We say that *Z* is norming for *X* if the formula

$$|||x||| = \sup_{f \in B_Z} |f(x)|, x \in X$$

defines an equivalent norm on X (where B_Z denotes the unit ball of Z). It is clear that if Z is norming for X, then Z is total over X (that is, $X \cap Z_{\perp} = \{0\}$, where $Z_{\perp} = \{x \in E : f(x) = 0 \text{ for every } f \in Z\}$).

Terminology

Let *E* be a Banach space, let *X* be a subspace of *E* and *Z* be a subspace of E^* (the dual space to *E*). We say that *Z* is norming for *X* if the formula

$$|||x||| = \sup_{f \in B_Z} |f(x)|, x \in X$$

defines an equivalent norm on X (where B_Z denotes the unit ball of Z). It is clear that if Z is norming for X, then Z is total over X (that is, $X \cap Z_{\perp} = \{0\}$, where $Z_{\perp} = \{x \in E : f(x) = 0 \text{ for every } f \in Z\}$).

Analogously, if X is norming for Z (namely, if the image of X through the canonical maping $\pi : E \to E^{**}$ is norming for Z), then X is total over Z (that is, $X^{\perp} \cap Z = \{0\}$, where $X^{\perp} = \{f \in E^* : f(x) = 0 \text{ for every } x \in X\}$).

・ 同 ト ・ 三 ト ・ 三 ト

A Banach space E is HI if, and only if, for any closed subspace $X \subset E$ with dim $(X) = \infty$ and any w^{*}-closed subspace $Z \subset E^*$ such that Z is norming for X, we have $\operatorname{codim}(Z) < \infty$ (V.D. Milman).

A Banach space E is HI if, and only if, for any closed subspace $X \subset E$ with dim $(X) = \infty$ and any w^{*}-closed subspace $Z \subset E^*$ such that Z is norming for X, we have $\operatorname{codim}(Z) < \infty$ (V.D. Milman).

A Banach space E is I if, and only if, for every closed subspace $X \subset E$ with dim $(X) = \infty$ and every w^{*}-closed subspace $Z \subset E^*$ such that Z is norming for X and X is total over Z, we have $\operatorname{codim}(Z) < \infty$ (V. Fonf, S. Lajara, S. Troyanski and C.Z.).

The key

Proposition

(V. Fonf, S. Lajara, S. Troyanski and C.Z., 2019)

E a Banach space, X a closed subspace of E, Z a w^* -closed subspace of E^* . Then

Z norming for $X \iff X \oplus Z_{\perp}$ closed in *E*.

伺 ト イヨト イヨト

The key

Proposition

(V. Fonf, S. Lajara, S. Troyanski and C.Z., 2019)

E a Banach space, X a closed subspace of $E,\,Z$ a $w^*\mbox{-closed}$ subspace of $E^*.$ Then

Z norming for $X \iff X \oplus Z_{\perp}$ closed in E.

Proof.

 \implies part.

Let
$$\lambda \in (0, 1]$$
 be a number satisfying
 $\sup_{f \in B_Z} |f(x)| \ge \lambda ||x||$ for every $x \in X$.
Fix $x \in X$ and pick $f \in B_Z$ such that $f(x) \ge \lambda ||x||/2$. Therefore,
for each $y \in Z_{\perp}$ we have

$$||x - y|| \ge f(x - y) = f(x) \ge \lambda ||x||/2.$$

naa

Consider the quotient map $Q: E \to E/Z_{\perp}$: consequently,

$$||Qx|| = \inf \{||x - y|| : y \in Z_{\perp}\} \ge \lambda ||x||/2,$$

hence the restriction map $Q_{|X}$ is an isomorphic embedding. It suffices to show that $\inf\{||x - y|| : x \in S_X, y \in S_{Z_{\perp}}\} > 0$. Assume the contrary: then there exist sequences $(x_n)_n \subset S_X$ and $(y_n)_n \subset S_{Z_{\perp}}$ such that $||x_n - y_n|| \to 0$. Thus, $||Qx_n - Qy_n|| \to 0$ that implies $||Qx_n|| \to 0$, contradicting the fact that the restriction map $Q_{|X}$ is an isomorphic embedding.

Proof.

 \Leftarrow part.

Set $U = X \oplus Z_{\perp}$ and let M and N denote the annihilator subspaces of X and Z_{\perp} relative to U, that is, $M = \{f \in U^* : f_{|x} = 0\}$ and $N = \{g \in U^* : g_{|Z_{\perp}} = 0\}$. Since U is closed, it follows that $U^* = M \oplus N$. In particular, there exists $\alpha > 0$ such that

$\alpha (\|f\| + \|g\|) \le \|f + g\| \le \|f\| + \|g\|$

whenever $f \in M$ and $g \in N$. Choose a vector $x \in X$ with ||x|| = 1, take $\varphi \in U^*$ with $\varphi(x) = ||\varphi|| = 1$ and let functionals $f \in M$ and $g \in N$ such that $\varphi = f + g$. It is clear that $g(x) = \varphi(x) = 1$ and, because of the previous inequality, we have $||g|| \le \alpha^{-1}$. Therefore, the functional $\psi = \alpha g$ belongs to B_N and $\psi(x) \ge \alpha$. Now, let $\widehat{\psi} \in E^*$ be such that $\widehat{\psi}_{|U} = \psi$ and $||\widehat{\psi}|| = ||\psi||$. Then, $\widehat{\psi} \in B_Z$ and $\widehat{\psi}(x) \ge \alpha$. Consequently, Z is norming for X.

< ロ > < 同 > < 三 > < 三 > <

-

Getting characterization of HI spaces

A Banach space E is HI if, and only if, for any closed subspace $X \subset E$ with dim $(X) = \infty$ and any w^{*}-closed subspace $Z \subset E^*$ such that Z is norming for X, we have $\operatorname{codim}(Z) < \infty$ (V.D. Milman).

A Banach space E is HI if, and only if, for any closed subspace $X \subset E$ with dim $(X) = \infty$ and any w^{*}-closed subspace $Z \subset E^*$ such that Z is norming for X, we have $\operatorname{codim}(Z) < \infty$ (V.D. Milman).

Let X be an infinite-dimensional closed subspace of E and Z a w^* -closed subspace of E^* which is norming for X. By the Proposition, we have $X \cap Z_{\perp} = \{0\}$ and $X \oplus Z_{\perp}$ is closed. E being HI implies dim $(Z_{\perp}) < \infty$, so codim $(Z) < \infty$.

A Banach space *E* is HI if, and only if, for any closed subspace $X \subset E$ with dim $(X) = \infty$ and any w^{*}-closed subspace $Z \subset E^*$ such that *Z* is norming for *X*, we have codim $(Z) < \infty$ (V.D. Milman).

Let X be an infinite-dimensional closed subspace of E and Z a w^* -closed subspace of E^* which is norming for X. By the Proposition, we have $X \cap Z_{\perp} = \{0\}$ and $X \oplus Z_{\perp}$ is closed. E being HI implies dim $(Z_{\perp}) < \infty$, so codim $(Z) < \infty$.

Conversely, if *E* is not HI there exist infinite-dimensional closed subspaces *X* and *Y* of *E* such that $X \oplus Y$ is closed in *E*. Take $Z = Y^{\perp}$: *Z* is *w*^{*}-closed so, by the Proposition, is norming for *X*. From $Y = Z_{\perp}$ we get $\operatorname{codim}(Z) = \dim(Y) = \infty$.

伺 ト イ ヨ ト イ ヨ ト

Theorem

(V. Fonf, S. Lajara, S. Troyanski and C.Z., 2019) E a Banach space, X a closed subspace of E, Z a w^* -closed subspace of E^* . Then

Z norming for X and X total over $Z \iff E \oplus Z_{\perp} = E$.

.

Theorem

(V. Fonf, S. Lajara, S. Troyanski and C.Z., 2019) E a Banach space, X a closed subspace of E, Z a w^* -closed subspace of E^* . Then

Z norming for X and X total over $Z \iff E \oplus Z_{\perp} = E$.

Proof.

 \implies part.

Clearly $X \cap Z_{\perp} = \{0\}$. We claim that the direct sum $X \oplus Z_{\perp}$ is dense in *E*. Indeed, since *Z* is *w*^{*}-closed, the adjoint operator of the map $Q_{|X} : X \to E/Z_{\perp}$ can be identified with the restriction map $q_{|Z}^* : Z \to X^*$. It is clear that ker $q_{|Z}^* = X^{\perp} \cap Z$. Bearing in mind that *X* is total over *Z*, it follows that $q_{|Z}^*$ is one-to-one. Hence, the operator $Q_{|X}$ has dense range, and using the Hahn-Banach theorem we deduce that the manifold $X \oplus Z_{\perp}$ is dense in *E*. On the other hand, as *Z* is norming for *X*, Proposition guarantees that $X \oplus Z_{\perp}$ is closed. Consequently, $E = X \oplus Z_{\perp}$.

C. Zanco (INPS of Italy, former Università degli Studi - Milano, I A (maybe open) question on indecomposable Banach spaces

 \Leftarrow part.

Taking into account that Z is w^* -closed and the sum $X \oplus Z_{\perp}(=E)$ is closed in E, according to Proposition we have that Z is norming for X. Moreover, it is a standard exercise to get $E^* = X^{\perp} \oplus (Z_{\perp})^{\perp} = X^{\perp} \oplus Z$: this implies that X is total over Z.

Getting characterization of I spaces

A Banach space *E* is I if, and only if, for every closed subspace $X \subset E$ with dim $(X) = \infty$ and every w^{*}-closed subspace $Z \subset E^*$ such that *Z* is norming for *X* and *X* is total over *Z*, we have $\operatorname{codim}(Z) < \infty$ (V. Fonf, S. Lajara, S. Troyanski and C.Z.).

A Banach space E is I if, and only if, for every closed subspace $X \subset E$ with dim $(X) = \infty$ and every w^{*}-closed subspace $Z \subset E^*$ such that Z is norming for X and X is total over Z, we have $\operatorname{codim}(Z) < \infty$ (V. Fonf, S. Lajara, S. Troyanski and C.Z.).

Let X be an infinite-dimensional closed subspace of E and Z a w^* -closed subspace of E^* which is norming for X. By the Theorem, we have $X \cap Z_{\perp} = \{0\}$ and $X \oplus Z_{\perp} = E$. E being I implies dim $(Z_{\perp}) < \infty$, so codim $(Z) < \infty$.

A Banach space *E* is I if, and only if, for every closed subspace $X \subset E$ with dim $(X) = \infty$ and every w^{*}-closed subspace $Z \subset E^*$ such that *Z* is norming for *X* and *X* is total over *Z*, we have $\operatorname{codim}(Z) < \infty$ (V. Fonf, S. Lajara, S. Troyanski and C.Z.).

Let X be an infinite-dimensional closed subspace of E and Z a w^* -closed subspace of E^* which is norming for X. By the Theorem, we have $X \cap Z_{\perp} = \{0\}$ and $X \oplus Z_{\perp} = E$. E being I implies dim $(Z_{\perp}) < \infty$, so codim $(Z) < \infty$.

Conversely, if *E* is not I there exist infinite-dimensional closed subspaces *X* and *Y* of *E* such that $X \oplus Y = E$. Take $Z = Y^{\perp}$: *Z* is *w*^{*}-closed so, by the Theorem, is norming for *X*. From $Y = Z_{\perp}$ we get $\operatorname{codim}(Z) = \dim(Y) = \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem

Corollary (V. Fonf, S. Lajara, S. Troyanski and C.Z., 2019) Let E be a Banach space, let X be a closed subspace of E and Z be a closed subspace of E^* . If X is reflexive then the following conditions are equivalent:

- X is norming for Z and Z is total over X.
- Z is norming for X and X is total over Z.
- **(3)** X is norming for Z and Z is norming for X.
- Z is w^{*}-closed and $E = X \oplus Z_{\perp}$.
- **()** *Z* is reflexive and $E = X \oplus Z_{\perp}$.

This talk has been based on

V. P. Fonf, S. Lajara, S. Troyanski and C. Zanco, Norming subspaces of Banach spaces, Proc. Amer. Math. Soc. 147 (2019), n. 7, 3039-3045. This talk has been based on

V. P. Fonf, S. Lajara, S. Troyanski and C. Zanco, Norming subspaces of Banach spaces, Proc. Amer. Math. Soc. 147 (2019), n. 7, 3039-3045.

THANK YOU FOR YOUR ATTENTION!