Remarks on projected solutions for generalized Nash equilibrium problems

John Cotrina

Universidad del Pacífico, Lima-Perú

Variational Analysis and Optimization (VAO 2024) in honor of Nicolas Hadjisavvas

May 30-31, 2024

This work is partially supported by CONCYTEC-PROCIENCIA, Perú, through AmSud 2023-01, code PE501084096-2023

Outline

- Preliminaries
 - Generalized convexity
 - Classical Nash games
 - Generalized Nash games
- Projected solutions
 - Definition
 - Existence results
 - Rosen games
 - Reformulation
- References

Preliminaries

Generalized convexity

A function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be

• convex if, for all $x, y \in \mathbb{R}^n$ and $t \in [0, 1]$

$$f(tx + (1-t)t) \le tf(x) + (1-t)f(y);$$

• quasiconvex if, for all $x, y \in \mathbb{R}^n$ and $t \in [0, 1]$

$$f(tx + (1-t)y) \le \max\{f(x), f(y)\}$$

• semi strictly quasiconvex if, it is quasiconvex and for all $x, y \in \mathbb{R}^n$ such that f(x) < f(y) we have

$$f(tx + (1-t)y) < f(y)$$
, for all $t \in]0,1[$.

Clearly, any convex function is semi stricly quasiconvex.

The classical Nash equilibrium problem (NEP)

A Nash equilibrium problem, [1], consists of p players.

- Each player *i* controls the decision variable $x_i \in C_i$ where C_i is a subset of \mathbb{R}^{n_i} .
- The "total strategy vector" is x which will be often denoted by

$$x = (x_1, x_2, \ldots, x_i, \ldots, x_p) = (x_i, x_{-i}).$$

- Each player i has an objective function $\theta_i:C=\prod_{i=1}^p C_i\to\mathbb{R}$ that depends on all player's strategies, where $n=n_1+\cdots+n_p$.
- Given the strategies $x_{-i} \in C_{-i}$ of the other players, the aim of player i is to choose a strategy $x_i \in C_i$ such that

$$\theta_i(x_i, x_{-i}) \le \theta_i(y_i, x_{-i}) \text{ for all } y_i \in C_i.$$
 (NEP(i))

- A vector $\hat{x} \in C$ is a Nash equilibrium if for any i, \hat{x}_i solves (NEP(i)) associated to \hat{x}_{-i} .
- We denote by $NEP(\{\theta_i, C_i\})$ the set of Nash equilibria.

The Generalized Nash equilibrium problem (GNEP)

In the generalized Nash equilibrium problem

- Each player's strategy must belong to a set identified by the set-valued map $K_i : C \rightrightarrows C_i$ in the sense that the strategy space of player i is $K_i(x)$, which depends on all player's strategies.
- Given the strategy $x_{-i} \in C_{-i}$, player i chooses a strategy $x_i \in C_i$ such that $x_i \in K_i(x_i, x_{-i})$ and

$$\theta_i(x_i, x_{-i}) \le \theta_i(y_i, x_{-i}) \text{ for all } y_i \in K_i(x_i, x_{-i}).$$
 (GNEP(i))

- Thus, a generalized Nash equilibrium [2] is a vector $\hat{x} \in C$ such that the strategy \hat{x}_i is a solution of the problem (GNEP(i)) associated to \hat{x}_{-i} , for any i.
- We denote by GNEP($\{\theta_i, K_i, C_i\}$) the set of generalized Nash equilibria.

The Generalized Nash equilibrium problem (GNEP)

In the generalized Nash equilibrium problem

- Each player's strategy must belong to a set identified by the set-valued map $K_i : C \rightrightarrows C_i$ in the sense that the strategy space of player i is $K_i(x)$, which depends on all player's strategies.
- Given the strategy $x_{-i} \in C_{-i}$, player i chooses a strategy $x_i \in C_i$ such that $x_i \in K_i(x_i, x_{-i})$ and

$$\theta_i(x_i, x_{-i}) \le \theta_i(y_i, x_{-i}) \text{ for all } y_i \in K_i(x_i, x_{-i}).$$
 (GNEP(i))

- Thus, a generalized Nash equilibrium [2] is a vector $\hat{x} \in C$ such that the strategy \hat{x}_i is a solution of the problem (GNEP(i)) associated to \hat{x}_{-i} , for any i.
- We denote by GNEP($\{\theta_i, K_i, C_i\}$) the set of generalized Nash equilibria.

Remark

We notice that:

- Let $\hat{x} \in C$, then $\hat{x} \in \mathsf{GNEP}(\{\theta_i, K_i, C_i\})$ if, and only if, $\hat{x} \in \mathsf{NEP}(\{\theta_i, K_i(\hat{x})\})$.
- the map $K: C \Rightarrow C$ defined as $K(x) = \prod K_i(x)$ is actually a self-map.

The Generalized Nash equilibrium problem (GNEP)

Theorem (♠)

For each i, $C_i \subset \mathbb{R}^{n_i}$ is compact, convex and non-empty. If for all i, the following hold:

- **1** the objective function θ_i is quasiconvex in x_i ,
- **2** the objective function θ_i is continuous,
- **3** the set-valued map K_i is continuous with convex, closed and non-empty values; then the set $GNEP(\{\theta_i, K_i, C_i\})$ has at least one element.

Projected solutions

Projected solutions

- For any i, let $K_i : C \Rightarrow \mathbb{R}^{n_i}$ be a set-valued map.
- A vector \hat{x} of C is said to be **projected solution** [3] of the generalized Nash equilibrium problem if there exists $\hat{w} \in \mathbb{R}^n$ such that:
 - 1. $\hat{x} \in P_C(\hat{w})$, that is \hat{x} is a projection of \hat{w} onto C;
 - **2.** $\hat{w} \in NEP(\{\theta_i, K_i(\hat{x})\}).$

• We denote the set of projected solutions by PSGNEP($\{\theta_i, K_i, C_i\}$).

Projected solutions

Such projected solutions depend on the chosen norm.

Example

Consider for instance the strategy sets $C_1=C_2=[0,1]$, functions θ_1 and θ_2 defined as

$$\theta_1(x_1, x_2) := (x_1 - x_2)^2 \text{ and } \theta_2(x_1, x_2) := (x_2)^2,$$

and constraint set-valued maps K_1 and K_2 defined as

$$\label{eq:K1} \textit{K}_1(\textit{x}_1,\textit{x}_2) := [2-\textit{x}_2,2] \text{ and } \textit{K}_2(\textit{x}_1,\textit{x}_2) := [1,2-\textit{x}_1].$$

Existence results

Theorem

Assume the $\|\cdot\|$ is a norm in \mathbb{R}^n , and for each player i:

- ① C_i is convex, closed and non-empty subset of \mathbb{R}^{n_i} ,
- K_i is continuous with compact and non-empty values,
- ⁽³⁾ K_i is ♠
- \bullet θ_i is \clubsuit
- \bullet $\theta_i(\cdot, x_{-i})$ is \bullet , for all x_{-i} ;

then there exists a projected solution.

	[2] (22.42)	[] (aa.a)	5-1 (2224)	[-] ()
	[3] (2016)	[4] (2018)	[5] (2021)	[6] (2023)
$\overline{C_i}$		Compactness	Compactness	
•	Euclidean norm	Euclidean norm	any norm	Euclidean norm
K _i ♠	is single-valued or convex-valued with $int(K_i(x)) \neq \emptyset$, for all x	is convex-valued	convex-valued	is convex-valued
$\theta_i \clubsuit$	continuous differentiable convexity	continuity convexity	pseudo-continuity quasi-convexity	continuity convexity

Pseudo-continuity

A function $h: \mathbb{R}^n \to \mathbb{R}$ is said to be **pseudocontinuous** [7] if, for each $x \in \mathbb{R}^n$ the following sets

$$\{y \in \mathbb{R}^n: \ h(y) \le h(x)\}$$
 and $\{y \in \mathbb{R}^n: \ h(y) \ge h(x)\}$ are closed.

Example

Consider the function $h: \mathbb{R} \to \mathbb{R}$ defined as

$$h(x) = \begin{cases} x+1, & x>0\\ 0, & x=0\\ x-1, & x<0 \end{cases}$$

It is not difficult to verify that h is pseudocontinuous but it is not continuous.

Let C be a convex and non-empty subset of \mathbb{R}^n . For each i and each $x \in C$, we define $K_i(x) := \{y_i \in \mathbb{R}^{n_i}: (y_i, x_{-i}) \in C\}.$

Let C be a convex and non-empty subset of \mathbb{R}^n . For each i and each $x \in C$, we define

$$K_i(x) := \{ y_i \in \mathbb{R}^{n_i} : (y_i, x_{-i}) \in C \}.$$

The following example shows that this kind of game could not be reduced to a classical Nash game.

Example

Consider $C \subset \mathbb{R}^2$ as in the following figure:

Let C be a convex and non-empty subset of \mathbb{R}^n . For each i and each $x \in C$, we define

$$K_i(x) := \{y_i \in \mathbb{R}^{n_i} : (y_i, x_{-i}) \in C\}.$$

The following example shows that this kind of game could not be reduced to a classical Nash game.

Example

Consider $C \subset \mathbb{R}^2$ as in the following figure:

Remark

We observe that the map $K: C \rightrightarrows \mathbb{R}^n$ defined as $K(x) = \prod K_i(x)$ is not a self-map in general.

A solution of this Rosen game is a vector $\hat{x} \in C$ such that

$$\hat{x} \in \mathsf{NEP}(\{\theta_i, K_i(\hat{x})\}).$$

A solution of this Rosen game is a vector $\hat{x} \in \mathcal{C}$ such that

$$\hat{x} \in \mathsf{NEP}(\{\theta_i, K_i(\hat{x})\}).$$

Theorem

Assume that C is a convex, compact and non-empty subset of \mathbb{R}^n . If for each i the objective function θ_i is

- continuous and
- with respect to its player's variable,

then there exists at least a generalized Nash equilibrium.

where 🔶 means	Convex	Semi Strictly quasi-convex	Quasi-convex	
	Rosen [8]	Aussel-Dutta [9]	Bueno-Calderón-C [10]	
	(1965)	(2008)	(2023)	

A vector $\hat{x} \in C$ is a projected solution, if there exists \hat{y} such that

$$\hat{x} \in P_C(\hat{y})$$
 and $\hat{y} \in \mathsf{NEP}(\{\theta_i, K_i(\hat{x})\})$.

A vector $\hat{x} \in C$ is a projected solution, if there exists \hat{y} such that

$$\hat{x} \in P_C(\hat{y}) \text{ and } \hat{y} \in \mathsf{NEP}(\{\theta_i, K_i(\hat{x})\}).$$

Proposition ([11])

By considering the Euclidean norm, any projected solution is a classical solution.

Since $\|\hat{y} - \hat{x}\|^2 \le \|\hat{y} - x\|^2$, for all $x \in C$, and the fact that $x = (\hat{y}_{i_0}, \hat{x}_{-i_0}) \in C$, for all i_0 , we deduce

$$\sum \|\hat{y}_i - \hat{x}_i\|^2 \le \sum_{i \ne i_0} \|\hat{y}_i - \hat{x}_i\|^2.$$

This implies $\|\hat{y}_{i_0} - \hat{x}_{i_0}\|^2 \le 0$ and consequently $\hat{y}_{i_0} = \hat{x}_{i_0}$. Hence $\hat{y} = \hat{x}$ and the result follows.

A vector $\hat{x} \in C$ is a projected solution, if there exists \hat{y} such that

$$\hat{x} \in P_C(\hat{y})$$
 and $\hat{y} \in NEP(\{\theta_i, K_i(\hat{x})\})$.

Proposition ([11])

By considering the Euclidean norm, any projected solution is a classical solution.

Since $\|\hat{y} - \hat{x}\|^2 \le \|\hat{y} - x\|^2$, for all $x \in C$, and the fact that $x = (\hat{y}_{i_0}, \hat{x}_{-i_0}) \in C$, for all i_0 , we deduce

$$\sum \|\hat{y}_i - \hat{x}_i\|^2 \le \sum_{i \ne i_0} \|\hat{y}_i - \hat{x}_i\|^2.$$

This implies $\|\hat{y}_{i_0} - \hat{x}_{i_0}\|^2 \le 0$ and consequently $\hat{y}_{i_0} = \hat{x}_{i_0}$. Hence $\hat{y} = \hat{x}$ and the result follows.

Remark

A natural question: is it possible to consider any norm in the previous result?

Reformulation

The problem of finding projected solutions for GNEPs can be associated to a particular GNEP by adding a new player.

Reformulation

The problem of finding projected solutions for GNEPs can be associated to a particular GNEP by adding a new player.

• For each $i \in M = \{1, 2, \dots, p, p+1\}$, we consider the sets

$$\hat{C}_i = \begin{cases} \cos(C_i \cup K_i(C)), & \text{if } i \leq p; \\ C, & \text{if } i = p+1 \end{cases}$$

- As usual $\mathbf{x} = (\mathbf{x}_i, \mathbf{x}_{-i}) \in \hat{C} = \prod \hat{C}_i$. We also write \mathbf{x}^0 instead $\mathbf{x}_{-(p+1)}$.
- For each $i \in M$, $\hat{K}_i : \hat{C} \rightrightarrows \hat{C}_i$ and $\hat{\theta}_i : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ are defined as

$$\hat{\mathcal{K}}_i(\mathbf{x}) = \begin{cases} \mathcal{K}_i(\mathbf{x}_{p+1}), & \text{if } i \leq p \\ C, & \text{if } i = p+1 \end{cases} \text{ and } \hat{\theta}_i(\mathbf{x}) = \begin{cases} \theta_i(\mathbf{x}^0), & \text{if } i \leq p \\ \|\mathbf{x}^0 - \mathbf{x}_{p+1}\|, & \text{if } i = p+1. \end{cases}$$

Reformulation

The problem of finding projected solutions for GNEPs can be associated to a particular GNEP by adding a new player.

• For each $i \in M = \{1, 2, \dots, p, p+1\}$, we consider the sets

$$\hat{C}_i = \begin{cases} co(C_i \cup K_i(C)), & \text{if } i \leq p; \\ C, & \text{if } i = p+1 \end{cases}$$

- As usual $\mathbf{x} = (\mathbf{x}_i, \mathbf{x}_{-i}) \in \hat{C} = \prod \hat{C}_i$. We also write \mathbf{x}^0 instead $\mathbf{x}_{-(p+1)}$.
- For each $i \in M$, $\hat{K}_i : \hat{C} \rightrightarrows \hat{C}_i$ and $\hat{\theta}_i : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ are defined as

$$\hat{\mathcal{K}}_i(\mathbf{x}) = \begin{cases} \mathcal{K}_i(\mathbf{x}_{p+1}), & \text{if } i \leq p \\ C, & \text{if } i = p+1 \end{cases} \text{ and } \hat{\theta}_i(\mathbf{x}) = \begin{cases} \theta_i(\mathbf{x}^0), & \text{if } i \leq p \\ \|\mathbf{x}^0 - \mathbf{x}_{p+1}\|, & \text{if } i = p+1. \end{cases}$$

Proposition ([11])

The following implications hold:

- **1** If $\hat{\mathbf{x}} \in \mathsf{GNEP}(\{\hat{\theta}_i, \hat{K}_i\})$, then $\hat{\mathbf{x}}_{p+1} \in \mathsf{PSGNEP}(\{\theta_i, K_i\})$.
- ② If $\hat{\mathbf{x}} \in \mathsf{PSGNEP}(\{\theta_i, K_i\})$, then there is $\hat{\mathbf{y}} \in \mathbb{R}^n$ such that $\hat{\mathbf{x}} = (\hat{\mathbf{y}}, \hat{\mathbf{x}}) \in \mathsf{GNEP}(\{\hat{\theta}_i, \hat{K}_i\})$.

References

References I

J. Nash, "Non-cooperative games," *Annals of Mathematics*, vol. 54, no. 2, pp. 286–295, 1951.

K. J. Arrow and G. Debreu, "Existence of an equilibrium for a competitive economy," *Econometrica*, vol. 22, no. 3, pp. 265–290, 1954.

D. Aussel, A. Sultana, and V. Vetrivel, "On the existence of projected solutions of quasi-variational inequalities and generalized Nash equilibrium problems," *J. Optim. Theory Appl.*, 2016.

J. Cotrina and J. Zúñiga, "Quasi-equilibrium problems with non-self constraint map," *J. Glob Optim*, vol. 75, pp. 177–197, 2019.

O. Bueno and J. Cotrina, "Existence of projected solutions for generalized nash equilibrium problems," *J. Optim. Theory Appl.*, vol. 191, no. 1, pp. 344–362, 2021.

M. Castellani, M. Giuli, and S. Latini, "Projected solutions for finite-dimensional quasiequilibrium problems," *Comput. Manag. Sci.*, vol. 20, Dec. 2023.

J. Morgan and V. Scalzo, "Pseudocontinuous functions and existence of Nash equilibria," *Journal of Mathematical Economics*, vol. 43, no. 2, pp. 174–183, 2007.

J. B. Rosen, "Existence and uniqueness of equilibrium points for concave n-person games," *Econometrica*, vol. 33, no. 3, pp. 520–534, 1965.

References II

D. Aussel and J. Dutta, "Generalized Nash equilibrium problem, Variational inequality and Quasiconvexity," *Oper. Res. Lett.*, vol. 36, no. 4, pp. 461–464, 2008.

O. Bueno, C. Calderón, and J. Cotrina, "A note on jointly convex Nash games," *Optimization*, pp. 1–13, Nov. 2023.

C. Calderón and J. Cotrina, "Remarks on projected solutions for generalized Nash games," *Preprint, pp. 12*, 2024.

Thank you!!