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Preliminaries



Generalized convexity

A function f : Rn → R is said to be

convex if, for all x , y ∈ Rn and t ∈ [0, 1]

f (tx + (1− t)t) ≤ tf (x) + (1− t)f (y);

quasiconvex if, for all x , y ∈ Rn and t ∈ [0, 1]

f (tx + (1− t)y) ≤ max{f (x), f (y)}

semi strictly quasiconvex if, it is quasiconvex and for all x , y ∈ Rn such that f (x) < f (y)
we have

f (tx + (1− t)y) < f (y), for all t ∈]0, 1[.

Clearly, any convex function is semi stricly quasiconvex.



The classical Nash equilibrium problem (NEP)

A Nash equilibrium problem, [1], consists of p players.

Each player i controls the decision variable xi ∈ Ci where Ci is a subset of Rni .

The “total strategy vector” is x which will be often denoted by

x = (x1, x2, . . . , xi , . . . , xp) = (xi , x−i ).

Each player i has an objective function θi : C =

p∏
i=1

Ci → R that depends on all player’s

strategies, where n = n1 + · · ·+ np .

Given the strategies x−i ∈ C−i of the other players, the aim of player i is to choose a
strategy xi ∈ Ci such that

θi (xi , x−i ) ≤ θi (yi , x−i ) for all yi ∈ Ci . (NEP(i))

A vector x̂ ∈ C is a Nash equilibrium if for any i , x̂i solves (NEP(i)) associated to x̂−i .

We denote by NEP({θi ,Ci}) the set of Nash equilibria.



The Generalized Nash equilibrium problem (GNEP)

In the generalized Nash equilibrium problem

Each player’s strategy must belong to a set identified by the set-valued map Ki : C ⇒ Ci

in the sense that the strategy space of player i is Ki (x), which depends on all player’s
strategies.

Given the strategy x−i ∈ C−i , player i chooses a strategy xi ∈ Ci such that
xi ∈ Ki (xi , x−i ) and

θi (xi , x−i ) ≤ θi (yi , x−i ) for all yi ∈ Ki (xi , x−i ). (GNEP(i))

Thus, a generalized Nash equilibrium [2] is a vector x̂ ∈ C such that the strategy x̂i is a
solution of the problem (GNEP(i)) associated to x̂−i , for any i .

We denote by GNEP({θi ,Ki ,Ci}) the set of generalized Nash equilibria.

Remark
We notice that:

Let x̂ ∈ C , then x̂ ∈ GNEP({θi ,Ki ,Ci}) if, and only if, x̂ ∈ NEP({θi ,Ki (x̂)}).
the map K : C ⇒ C defined as K(x) =

∏
Ki (x) is actually a self-map.
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The Generalized Nash equilibrium problem (GNEP)

Theorem (♠)
For each i , Ci ⊂ Rni is compact, convex and non-empty. If for all i , the following hold:

1 the objective function θi is quasiconvex in xi ,

2 the objective function θi is continuous,

3 the set-valued map Ki is continuous with convex, closed and non-empty values;

then the set GNEP({θi ,Ki ,Ci}) has at least one element.



Projected solutions



Projected solutions

For any i , let Ki : C ⇒ Rni be a set-valued map.

A vector x̂ of C is said to be projected solution [3] of the generalized Nash equilibrium
problem if there exists ŵ ∈ Rn such that:

1. x̂ ∈ PC (ŵ), that is x̂ is a projection of ŵ onto C ;

2. ŵ ∈ NEP({θi ,Ki (x̂)}).

x̂

ŵ

K(x̂)

C

We denote the set of projected solutions by PSGNEP({θi ,Ki ,Ci}).



Projected solutions

Such projected solutions depend on the chosen norm.

Example
Consider for instance the strategy sets C1 = C2 = [0, 1], functions θ1 and θ2 defined as

θ1(x1, x2) := (x1 − x2)
2 and θ2(x1, x2) := (x2)

2,

and constraint set-valued maps K1 and K2 defined as

K1(x1, x2) := [2− x2, 2] and K2(x1, x2) := [1, 2− x1].

PSGNEP({θi ,Ki ,Ci})

Euclidean norm Maximum norm

{(1, 1)} {(1, s) : s ∈ [0, 1]}
x1

x2

1

1

2

2

x̂0

K(x̂0) = {(2, 1)}



Existence results

Theorem
Assume the ∥ · ∥ is a norm in Rn, and for each player i :

1 Ci is convex, closed and non-empty subset of Rni ,

2 Ki is continuous with compact and non-empty values,

3 Ki is ♠
4 θi is ♣
5 θi (·, x−i ) is ♦, for all x−i ;

then there exists a projected solution.

[3] (2016) [4] (2018) [5] (2021) [6] (2023)

Ci Compactness Compactness
∥ · ∥ Euclidean norm Euclidean norm any norm Euclidean norm

is single-valued or
Ki ♠ convex-valued with is convex-valued convex-valued is convex-valued

int(Ki (x)) ̸= ∅, for all x
θi ♣ continuous differentiable continuity pseudo-continuity continuity

♦ convexity convexity quasi-convexity convexity



Pseudo-continuity

A function h : Rn → R is said to be pseudocontinuous [7] if, for each x ∈ Rn the following sets

{y ∈ Rn : h(y) ≤ h(x)} and {y ∈ Rn : h(y) ≥ h(x)} are closed.

Example
Consider the function h : R → R defined as

h(x) =


x + 1, x > 0

0, x = 0

x − 1, x < 0

.

It is not difficult to verify that h is pseudocontinuous but it is not continuous.



The generalized Nash game proposed by Rosen [8]

Let C be a convex and non-empty subset of Rn. For each i and each x ∈ C , we define

Ki (x) := {yi ∈ Rni : (yi , x−i ) ∈ C}.

The following example shows that this kind of game could not be reduced to a classical Nash
game.

Example

Consider C ⊂ R2 as in the following figure:

C

K1(x)

K2(x)

x

Remark
We observe that the map K : C ⇒ Rn defined as K(x) =

∏
Ki (x) is not a self-map in general.
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The generalized Nash game proposed by Rosen

A solution of this Rosen game is a vector x̂ ∈ C such that

x̂ ∈ NEP({θi ,Ki (x̂)}).

Theorem
Assume that C is a convex, compact and non-empty subset of Rn. If for each i the objective
function θi is

1 continuous and

2 ♠ with respect to its player’s variable,

then there exists at least a generalized Nash equilibrium.

where ♠ means Convex Semi Strictly quasi-convex Quasi-convex

Rosen [8] Aussel-Dutta [9] Bueno-Calderón-C [10]
(1965) (2008) (2023)
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The generalized Nash game proposed by Rosen

A vector x̂ ∈ C is a projected solution, if there exists ŷ such that

x̂ ∈ PC (ŷ) and ŷ ∈ NEP({θi ,Ki (x̂)}).

Proposition ([11])
By considering the Euclidean norm, any projected solution is a classical solution.

Since ∥ŷ − x̂∥2 ≤ ∥ŷ − x∥2, for all x ∈ C , and the fact that x = (ŷi0 , x̂−i0 ) ∈ C , for all i0, we
deduce ∑

∥ŷi − x̂i∥2 ≤
∑
i ̸=i0

∥ŷi − x̂i∥2.

This implies ∥ŷi0 − x̂i0∥2 ≤ 0 and consequently ŷi0 = x̂i0 . Hence ŷ = x̂ and the result follows.

Remark
A natural question: is it possible to consider any norm in the previous result?
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Reformulation

The problem of finding projected solutions for GNEPs can be associated to a particular GNEP
by adding a new player.

For each i ∈ M = {1, 2, . . . , p, p + 1}, we consider the sets

Ĉi =

{
co(Ci ∪ Ki (C)), if i ≤ p;

C , if i = p + 1

As usual x = (xi , x−i ) ∈ Ĉ =
∏

Ĉi . We also write x0 instead x−(p+1).

For each i ∈ M, K̂i : Ĉ ⇒ Ĉi and θ̂i : Rn × Rn → R are defined as

K̂i (x) =

{
Ki (xp+1), if i ≤ p

C , if i = p + 1
and θ̂i (x) =

{
θi (x

0), if i ≤ p

∥x0 − xp+1∥, if i = p + 1.

Proposition ([11])
The following implications hold:

1 If x̂ ∈ GNEP({θ̂i , K̂i}), then x̂p+1 ∈ PSGNEP({θi ,Ki}).
2 If x̂ ∈ PSGNEP({θi ,Ki}), then there is ŷ ∈ Rn such that x̂ = (ŷ , x̂) ∈ GNEP({θ̂i , K̂i}).
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Ĉi =

{
co(Ci ∪ Ki (C)), if i ≤ p;

C , if i = p + 1

As usual x = (xi , x−i ) ∈ Ĉ =
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