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This talk is based on the papers:

(La) F. Lara, On strongly quasiconvex functions: existence results and
proximal point algorithms, JOTA, 192, 891–911, (2022).

(MV ) F. Lara, R.T. Marcavillaca, P.T. Vuong, Characterizations,
dinamycal systems and gradient methods for strongly quasiconvex
functions, Submitted, (2024).
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Generalized convex functions: weakly convex, Difference of Convex
(DC), Invex, Quasiconvex functions

Economic theory, especially in consumer preference theory (see (D)).
Quasiconcavity is the mathematical formulation of tendency to the
diversification.

Fractional programming (applications in economics as min
(cost/time), max (return/risk) among others).

(D) G. Debreu. “Theory of value: an axiomatic approach to economic
equilibrium”. John Wiley, New York, (1959).

Gérard Debreu

Nobel Prize in Economics 1983.
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Strongly Convex and Quasiconvex [Polyak-1966]

A function h with a convex domain is said to be

(a) Strongly convex if there exists γ ∈ ]0,+∞[ such that for all
x , y ∈ dom h and all λ ∈ [0, 1], we have

h(λy + (1− λ)x) ≤ λh(y) + (1− λ)h(x)− λ(1− λ)
γ

2
‖x − y‖2, (1)

(b) Strongly quasiconvex if there exists γ ∈ ]0,+∞[ such that for all
x , y ∈ dom h and all λ ∈ [0, 1], we have

h(λy + (1− λ)x) ≤ max{h(y), h(x)} − λ(1− λ)
γ

2
‖x − y‖2. (2)

(P) B.T. Polyak, Existence theorems and convergence of minimizing
sequences in extremum problems with restrictions, Soviet Math., 7,
72–75, (1966).
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Summarizing (quasiconvex is denoted by qcx):

strongly convex ⇒ strictly convex ⇒ convex
⇓ ⇓ ⇓

strongly qcx ⇒ strictly qcx ⇒ qcx

Remark

There is no relationship between convex and strongly quasiconvex
functions. Indeed, the function h(x) = −x2 − x is strongly quasiconvex on
[0, 1] without being convex, while h(x) ≡ 1 is convex without being
strongly quasiconvex.
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Geometric Interpretation

Proposition

Let h : Rn → R be a proper function. Then

(a) h is convex if and only if

epi h := {(x , t) ∈ Rn × R : h(x) ≤ t} is a convex set. (3)

(b) h is quasiconvex if and only if

Sλ(h) := {x ∈ Rn : h(x) ≤ λ} is a convex set for all λ ∈ R.
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Example [J-1996]

Given c > 0, the function h : Rn → R given by h(x) = ‖x‖ is strongly
quasiconvex on B(0, c) without being strongly convex.

Example [Lara-2022]

Given c > 0, the function h : Rn → R given by h(x) =
√
‖x‖ is strongly

quasiconvex on B(0, c) without being convex.

Example [LMV-2024]

The function h : R→ R given by h(x) = x2 + 3 sin2(x) is strongly
quasiconvex on R without being convex.

(J) M. Jovanović, A note on strongly convex and quasiconvex
functions, Math. Notes, 60, 584–585, (1996).
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New examples

Fractional programming

Given a subset K of Rn, and functions h : Rn → R and g : Rn → R, we
define the fractional minimization problem by

min
x∈K

ϕ(x) = min
x∈K

h(x)

g(x)
. (FMP)

This problem is important in continuous optimization and mathematical
programming due to its applications in several fields of the mathematical
sciences, especially for economics purposes, for instance, in maximization
of productivity as maximization of return/risk or profit/cost and
minimization of cost/time among others.
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Proposition [ILMY-2024]

Suppose that ϕ(x) = h(x)
g(x) for all x ∈ domϕ with domϕ a convex set, h is

strongly convex with modulus γ > 0, g is finite, positive and bounded
from above by M on domϕ. If any of the following conditions holds:

(a) g is affine,

(b) h is nonnegative on domϕ and g is concave,

(c) h is nonpositive on domϕ and g is convex,

then ϕ is strongly quasiconvex with modulus γ′ := γ
M > 0.
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Corollary [ILMY-2024]

Let A,B ∈ Rn×n, a, b ∈ Rn, α, β ∈ R, and ϕ : Rn → R be the function
given by:

ϕ(x) =
h(x)

g(x)
=

1
2〈Ax , x〉+ 〈a, x〉+ α
1
2〈Bx , x〉+ 〈b, x〉+ β

. (4)

Take 0 < m < M and define:

K = {x ∈ Rn : m ≤ g(x) ≤ M}.

If A is a symmetric and positive definite matrix and at least one of the
following conditions holds:

(a) B = 0 (the null matrix),

(b) h is nonnegative on K and B is negative semidefinite,

(c) h is nonpositive on K and B is positive semidefinite,

then h is strongly quasiconvex on K with modulus γ = λmin(A)
M , where

λmin(A) is the minimum eigenvalue of A.
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Convexity vs Quasiconvexity

Proposition

If h is a proper function and β > 0, then

h is convex ⇐⇒ h +
1

2β
‖·‖2 is strongly convex. (5)

Remark

If h is a proper function and β > 0, then

h is quasiconvex ; h +
1

2β
‖·‖2 is strongly quasiconvex. (6)

Indeed, the continuous function h : R→ R given by h(x) = x3 is
quasiconvex, but x3 + 1

2β |x |
2 is not strongly quasiconvex for any β > 0.
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The Existence Result

Theorem [Polyak-1966]

Let K be a closed and convex set in Rn and h : K → R be a lsc and
strongly convex function with modulus γh > 0. Then, argminK h = {x}
and

h(x) +
γh
2
‖y − x‖2 ≤ h(y), ∀ y ∈ dom h. (7)

Open Problem

Let K be a closed and convex set in Rn and h : K → R be a lsc and
strongly quasiconvex function with modulus γh > 0. Then, argminK h is
a singleton ?.

(P) B.T. Polyak, Existence theorems and convergence of minimizing
sequences in extremum problems with restrictions, Soviet Math., 7,
72–75, (1966).
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Partial Advances

(VN) A.A. Vladimirov, Y.E. Nesterov, Y.N. Chekanov, O
ravnomerno kvazivypuklyh funkcionalah [On uniformly quasiconvex
functionals], Vestn. Mosk. un-ta, vycis. mat. i kibern., 4, 18–27,
(1978).

(V ) J.P. Vial, Strong convexity of sets and functions, J. Math.
Economics, 9, 187–205, (1982).

(J) M. Jovanović, On strong quasiconvex functions and boundedness
of level sets, Optimization, 20, 163–165, (1989).

(CZ ) J.P. Crouzeix, J.A. Ferland, C. Zălinescu, α-convex sets
and strong quasiconvexity, MOR, 22, 998–1022, (1997).
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Definition

A proper function h : Rn → R is said to be:

(i) 2-supercoercive, if

lim inf
‖x‖→+∞

h(x)

‖x‖2
> 0, (8)

(iv) coercive, if
lim

‖x‖→+∞
h(x) = +∞. (9)

or equivalently, if Sλ(h) is bounded for all λ ∈ R.

Remark

Clearly, (i)⇒ (ii), but the reverse statements does not hold as the
function h(x) =

√
x shows.
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Main Theorem

Theorem [Lara-2022]

Let K be a convex set in Rn and h : K → R be a strongly quasiconvex
function with modulus γh > 0. Then h is 2-supercoercive (in particular,
supercoercive).

Corollary [Lara-2022; Kab-Lara-2022]

Let K be a closed and convex set in Rn and h : K → R be a lsc and
strongly quasiconvex function with modulus γh > 0. Then,
argminK h = {x} and

h(x) +
γh
8
‖y − x‖2 ≤ h(y), ∀ y ∈ K . (10)
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Proximal Point Algorithm

Step 0. Take x1 ∈ K , k = 0 and {ck}k∈N be a sequence of positive
numbers bounded away from 0.

Step 1. Take k = k + 1 and

xk+1 ∈ Proxckh(K , xk). (11)

Step 2. If xk+1 = xk , then STOP, {xk} = argminKh. Otherwise, go
to Step 1.

Theorem [Lara-2022]

Let K ⊆ Rn be a closed and convex set, h : Rn → R be a proper, lsc and
strongly quasiconvex function with value γh > 0 such that K ⊆ dom h,
and {ck}k∈N be a sequence of positive numbers bounded away from 0.
Then the sequence {xk}k∈N, generated by relation (11), is a minimizing
sequence of h, i.e., h(xk) ↓ minx∈K h(x).
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Algorithmic Consequences:

(KL) A. Kabgani, F. Lara, Strong subdifferentials: theory and
applications in nonconvex optimization, JoGO, 84, 349–368, (2022).

(RM) S.-M. Grad, F. Lara, R.T. Marcavillaca, Relaxed-inertial
proximal point type algorithms for quasiconvex minimization, JoGO,
85, 615–635, (2023).

(LM) F. Lara, R.T. Marcavillaca, Bregman proximal point type
algorithms for quasiconvex minimization, Optimization, DOI:
10.1080/02331934.2022.2112580, (2024).
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Equilibrium Problems:

(IL) A. Iusem, F. Lara, Proximal point algorithms for quasiconvex
pseudomonotone equilibrium problems, JOTA, 193, 1–3, 443–461,
(2022).

(RM) S.-M. Grad, F. Lara, R.T. Marcavillaca, Relaxed-inertial
proximal point algorithms for nonconvex pseudomonotone equilibrium
problems with applications, JOTA, DOI:
10.1007/s10957-023-02375-1, (2024).

(RM) F. Lara, R.T. Marcavillaca, L. H. Yen, An extragradient
projection method for strongly quasiconvex equilibrium problems with
applications. COAM, DOI: 10.1007/s40314-024-02626-5, (2024).

(IY ) A. Iusem, F. Lara, R.T. Marcavillaca, L.H. Yen, A
two-steps proximal point algorithm for nonconvex equilibrium
problems with applications in fractional programming, Submitted,
(2024).
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Characterizations

Theorem

Let K ⊆ Rn be a convex set and h : Rn → R be a differentiable function.
Then the following assertions hold:

(a) h is convex on K if and only if

〈∇h(x)−∇h(y), x − y〉 ≥ 0, ∀ x , y ∈ K . (12)

(b) h is strongly convex on K with modulus γh > 0 if and only if

〈∇h(x)−∇h(y), x − y〉 ≥ γh‖x − y‖2, ∀ x , y ∈ K . (13)
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Generalized Monotonicity

Given a nonempty set C in Rn and a set-valued operator T : Rn ⇒ Rn, T
is said to be:

(a) strongly pseudomonotone on C with modulus γ ≥ 0, if for all
x , y ∈ C , we have

〈v , x−y〉 ≥ 0 =⇒ 〈u, y−x〉 ≤ −γ‖y−x‖2, ∀ v ∈ T (y), ∀ u ∈ T (x).
(14)

(b) strongly quasimonotone on C with modulus γ ≥ 0, if for all x , y ∈ C ,
we have

〈v , x−y〉 > 0 =⇒ 〈u, y−x〉 ≤ −γ‖y−x‖2, ∀ v ∈ T (y), ∀ u ∈ T (x).
(15)
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Theorem [AE-1961]

Let K ⊆ Rn be a convex set and h : Rn → R be a differentiable function.
Then h is quasiconvex on K if and only if for every x , y ∈ K , we have

h(x) ≤ h(y) =⇒ 〈∇h(y), x − y〉 ≤ 0. (16)

(AE ) K.J. Arrow, A.C. Enthoven, Quasiconcave programming,
Econometrica, 29, 779–800, (1961).

Kenneth Joseph Arrow

Nobel Prize in Economics 1972.
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Theorem [LMV-2024]

Let K ⊆ Rn be a convex set and h : K → R be differentiable function.
Then h is strongly quasiconvex on K with modulus γh ≥ 0 if and only if
for every x , y ∈ K , we have

h(x) ≤ h(y) =⇒ 〈∇h(y), x − y〉 ≤ −γh
2
‖y − x‖2. (17)

Corollary [AE-1961]

Let K ⊆ Rn be a convex set and h : K → R be differentiable function.
Then h is quasiconvex if and only if for every x , y ∈ K , we have

h(x) ≤ h(y) =⇒ 〈∇h(y), x − y〉 ≤ 0. (18)
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Generalized Monotonicity

Proposition [LMV-2024]

Let K ⊆ Rn be a convex set and h : K → R be differentiable function.
Then h is strongly quasiconvex on K with modulus γh ≥ 0 if and only if
for each x , y ∈ K , we have

〈∇h(x), y−x〉 > −γh
2
‖y−x‖2 =⇒ 〈∇h(y), x−y〉 ≤ −γh

2
‖y−x‖2. (19)

Corollary

If γh = 0, then

h is quasiconvex ⇐⇒ ∇h is quasimonotone. (20)
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Remark [LMV-2024]

∇h is γh − strongly monotone

⇓

〈∇h(x), y − x〉 > −γh
2
‖y − x‖2 =⇒ 〈∇h(y), x − y〉 ≤ −γh

2
‖y − x‖2

⇓

∇h is
γh
2
− strongly pseudomonotone (21)

⇓

∇h is
γh
2
− strongly quasimonotone.
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Proposition [LMV-2024]

Let K ⊆ Rn be a convex set and h : K → R be differentiable function and
γ ≥ 0. Then

h is γ − strongly convex ⇐⇒ ∇h is γ
2 − strongly mon

⇓ ⇓
h is γ − strongly qcx ⇐⇒ ∇h satisfies relation (19)

⇓ ⇓
h is γ − sharply ⇐⇒ ∇h is γ

2 − strongly pseudomon.

Definition [KK-2000]

h is said to be sharply quasiconvex with modulus γ ≥ 0 if for every
x , y ∈ K , the following implication holds:

〈∇h(y), x−y〉 ≥ 0⇒ h(λy+(1−λ)x) ≤ max{h(y), h(x)}−λ(1−λ)
γ

2
‖y−x‖2.

(22)
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Generalized Convexity for Gradient Methods

Definition [NNG-2019]

A differentiable function h : Rn → R is said to be µ-quasi-strongly convex,
µ > 0, if

〈∇h(x), x − x∗〉 ≥ h(x)− h(x∗) +
µ

2
‖x − x∗‖2, ∀ x ∈ Rn. (23)

where x∗ denotes the projection of x onto argminRn h.

(NN) I. Necoara, Y. Nesterov, F. Glineur, Linear convergence of
first-order methods for non-strongly convex optimization, Math.
Program., 175, 69–107, (2019).
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Definition

A differentiable function h : Rn → R satisfies the Polyak- Lojasiewicz (PL)
property if there exists µ > 0 such that

‖∇h(x)‖2 ≥ µ(h(x)− h(x)), ∀ x ∈ Rn, (24)

where x ∈ argminRn h.

(L) S.  Lojasiewicz, A topological property of real analytic subsets.
Coll. du CNRS, Les équations aux dérivées partielles, 117, 87–89,
(1963).

(P2) B.T. Polyak, Gradient methods for minimizing functionals, Zh.
Vychisl. Math. Mat. Fiz., 3, 643–653, (1963).
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Proposition [LMV-2024]

Let h : Rn → R be a differentiable function. If h is µ-quasi-strongly convex
function with µ > 0 and admits an unique minimizer, then h is strongly
quasiconvex with modulus µ > 0.

Proposition [LMV-2024]

Let h : Rn → R be a differentiable function. If h is strongly quasiconvex
with modulus γ > 0 with L-Lipschitz continuous gradient (L > 0), then

the PL property holds with modulus µ := γ2

2L > 0, that is,

‖∇h(x)‖2 ≥ γ2

2L
(h(x)− h(x)), ∀ x ∈ Rn, (25)

where x = argminRn h.
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Remark [LMV-2024]

(i) The reverse statement does not hold in general as the Example 4.1.3
in the Book of Nesterov 2018 shows (satisfies the PL property but it
is not strongly quasiconvex).

(ii) The function h : Rn → R given by h(x) = x2 + 3 sin2 x is an example
of a strongly quasiconvex function satisfying the PL property and
without being convex.

(N) Y. Nesterov, “Lectures on convex optimization”. Springer, Berlin,
(2018).

Felipe Lara (UTA) Strongly quasiconvex functions 30/05/2024 29 / 40



The Problem

We are concerned with the study of the minimization problem

min
x∈Rn

h(x). (26)

where h : Rn → R is a continuously differentiable function. Our goal is the
study of problem (26) via the first-order dynamical system:{

ẋ(t) +∇h(x(t))) = 0, t > 0,

x(t0) = x0.
(27)
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Theorem [LMV-2024]

Let the function h : Rn → R be continuously differentiable and strongly
quasiconvex with modulus γ ≥ 0 and x = argminRn h. Then the following
assertions hold:

(a) t 7→ h(x(t)) is nonincreasing.

(b) Any trajectory x(t) to the dynamical system (27) satisfy that

‖x(t)− x‖ ≤ ‖x0 − x‖e−
γ
2
t , (28)

i.e., x(t) converges exponentially to the unique solution of (26);

(c) For any trajectory x(t) to the dynamical system (27) there exists
T > 0 and L > 0 such that

h(x(t))−h(x) ≤ min

{
L

2
‖x0 − x‖e−

γ
2
t , (h(x0)− h(x)) e−

γ2

2L
t

}
, ∀t ≥ T ,

(29)
as a consequence, h(x(t)) converges exponentially to h∗ = minRn h.
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The Gradient Method

Algorithm 1 The Gradient Method

Step 0. Take x0 ∈ Rn, k = 0 and a sequence {βk}k ⊆ R++.

Step 1. Compute ∇h(xk) and

xk+1 = xk − βk∇h(xk). (30)

Step 2. If xk+1 = xk , then STOP, xk ∈ argminRn h. Otherwise, take
k = k + 1 and go to Step 1.
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Theorem [LMV-2024]

Let h : Rn → R be a strongly quasiconvex function with modulus γ > 0
and differentiable with locally Lipschitz continuous gradient. Let
x = argminRn h and {βk}k be a positive sequence satisfying

0 < β ≤ βk ≤ β < min

{
γ

L2
0

,
2

L0

}
. (31)

Then,

‖xk+1 − x‖2 ≤
(
1− βk(γ − βkL2

0)
)
‖xk − x‖2, ∀ k ∈ N. (32)

and {xk}k converges linearly to the unique solution x .
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Corollary [LMV-2024]

Assume the assumptions of previous Theorem holds, γ < 2L0 and
βk <

γ
L2

0
≤ 2

L0
. Then we have an optimal convergence rate for the

functional values:

h(xk)− h(x) ≤
(

1− γ2

4L2
0

)k−1

‖x0 − x‖2. (33)

and

h(xk)− h(x) ≤
(

1− γ3

4L3
0

(
1− γ

4L0

))k−1

(h(x0)− h(x)). (34)
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2nd-order Dynamical System

We consider the following gradient dynamical system:{
ẍ(t) + αẋ(t) +∇h(x(t)) = 0, t > 0,

x(0) = x0, ẋ(0) = v0.
(35)

Assumption

Tthere exists κ ∈ ]0,+∞[ such that for every trajectory x(t) of the
dynamical system (35) we have

〈∇h(x(t)), x(t)− x〉 ≥ κ(h(x(t))− h(x)), (36)

where x = argminRnh.
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Remark [LMV-2024]

(i) Assumption (36) holds trivially with κ = 1 for convex functions.

(ii) If h : Rn → R is differentiable with L-Lipschitz gradient and strongly
quasiconvex with modulus γ > 0, then by Main Theorem and Descent
Lemma with ∇h(x) = 0, we have

〈∇h(x), x − x〉 ≥ γ

2
‖x − x‖2 ≥ γ

L
(h(x)− h(x)),

which implies (36) with κ = γ
L .
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Theorem [LMV-2024]

Let h : Rn → R be a differentiable and strongly quasiconvex function with
modulus γ > 0 and x = argminRnh. Suppose that assumption (36) holds.
Then any trajectory x(t) generated by (35) converges exponentially to the
unique solution x of problem (26), and the function values h(x(t))
converges exponentially to the optimal value h(x).

Corollary [LMV-2024]

The following asymptotic exponential convergence rate holds:

h(x(t))− h∗ = O
(
e−λκt

)
, (37)

‖x(t)− x‖ = O
(
e−λκt

)
, (38)

with λ = min{
√

γ
2κ ,

2α
κ+4}.
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Theorem [LMV-2024]

Let h : Rn → R be a differentiable with L-Lipschitz gradient and strongly
quasiconvex function with modulus γ > 0, x = argminRnh, θ ∈ ]0, 1[ and

β ∈ ]0, 1−θ2

L ]. Then the sequence {xk}k , generated by the heavy ball
method:

xk+1 = xk + θ(xk − xk−1)− β∇h(xk). (39)

converges linearly to x and the sequence {h(xk)}k converges linearly to
the optimal value h(x).
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Corollary [LMV-2024]

Under the assumptions of the previous Theorem, we have the following
convergence rate

h(xk+1)− h(x) ≤
(

1− ρ

σ

)k
E1, (40)

‖xk+1 − xk‖2 ≤ 2β

θ2

(
1− ρ

σ

)k
E1. (41)

Moreover, for all k ∈ N, we have

‖∇h(xk)‖ ≤ (1 + θ)

θ

(
1− ρ

σ

) k−1
2

√
2

β

√
E1,

‖xk − x‖ ≤ 2(1 + θ)

γ θ

(
1− ρ

σ

) k−1
2

√
2

β

√
E1.

where θ ∈ ]0, 1[, β ∈ ]0, 1−θ2

L ], ρ = min{β2 ,
1−βL−θ2

2β }, σ = max{2L
γ2 + β, 1

β}
and E1 := h(x0)− h(x) + θ2

2β‖x1 − x0‖2.
Felipe Lara (UTA) Strongly quasiconvex functions 30/05/2024 39 / 40



(ADR) J.-F. Aujol, Ch. Dossal, A. Rondepierre, Convergence rate
of the heavy ball method for quasi-strongly convex optimization,
SIOPT, 32, 1817–1842, (2022).

(BC ) H.H. Bauschke, P.L. Combettes, “Convex Analysis and
Monotone Operators Theory in Hilbert Spaces”. CMS Books in
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