International Workshop Variational Analysis and Optimization Milan-Italy, May 30-31, 2024 "In honor of our colleague and friend Nicolas Hadjisavvas"

Characterizing quasiconvexity of the pointwise infimum of a family of arbitrary translations of quasiconvex functions

Yboon García Ramos

*Join work with:

- Fabián Flores, Departamento de Ingeniería Matemática, Universidad de Concepción.
- Nicolas Hadjisavvas, Department of Product and Systems Design Engineering, University of the Aegean.

・ロト ・ 四ト ・ ヨト ・ ヨト

Santiago-2014

Lima-2019

Arica-2024

Yboon García Ramos (UP)

э

イロン イ理 とく ヨン イヨン

This talk is based on:

- Characterizing quasiconvexity of the pointwise infimum of a family of arbitrary translations of quasiconvex functions, with applications to sums and quasiconvex optimization, *Mathematical Programming* 189 (2021) 315–337 (With F. Flores and N. Hadjisavvas)
- Closedness under addition for families of quasimonotone operators. Optimization, 73(4), (2022) 1267–1284. https://doi.org/10.1080/02331934.2022.2154127 (With F. Flores and N. Hadjisavvas)

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

The Framework:

X: real Banach space, X^* : continuous dual, $\langle \cdot, \cdot \rangle$ the pairing between X and X^* . For $f: X \to \mathbb{R} \cup \{+\infty\}$,

- dom $f = \{x \in X : f(x) < +\infty\}$ (domain).
- Epi $(f) = \{(x, \alpha) \in X \times \mathbb{R} : f(x) \le \alpha\}$ (epigraph).
- For any $\lambda \in \mathbb{R}$

 $[f \leq \lambda] \doteq \{x \in X : f(x) \leq \lambda\}$ (sublevel set at height λ)

 $[f < \lambda] \doteq \{x \in X : f(x) < \lambda\}$ (strict sublevel set at height λ)

イロン 不得 とくほ とくほ とうほ

Motivation: convex functions vs quasiconvex functions

 $f \operatorname{convex} \Leftrightarrow \operatorname{Epi}(f) \text{ is convex}.$

f quasiconvex $\Leftrightarrow S_{\lambda}$ is convex, $\forall \lambda \in \mathbb{R}$.

- If f, g convex $\Rightarrow f + g$ convex.
- If f, g quasiconvex $\Rightarrow f + g$ is not in general quasiconvex.

< □ > < 同 > < 回 > < 回 > .

Motivation: convex functions vs quasiconvex functions

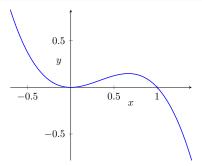
 $f \operatorname{convex} \Leftrightarrow \operatorname{Epi}(f) \text{ is convex}.$

f quasiconvex $\Leftrightarrow S_{\lambda}$ is convex, $\forall \lambda \in \mathbb{R}$.

- If $f, g \text{ convex} \Rightarrow f + g \text{ convex}$.
- If f, g quasiconvex $\Rightarrow f + g$ is not in general quasiconvex.

Example

 $f(x)=x^2,\,g(x)=-x^3\Rightarrow (f+g)(x)=x^2-x^3,$ is not a quasiconvex function.



Motivation: convex functions vs quasiconvex functions

Characterization subdifferential

• f convex, lsc: (classical) Subdifferential

 $f \operatorname{convex} \Leftrightarrow \partial f \operatorname{maximal} \operatorname{monotone}.$

• *f* lsc: Clarke-Rockafellar subdifferential:

 $\partial f(x) = \{x^* \in X : f^{\uparrow}(x, u) \ge \langle x^*, u \rangle, \forall u \in X\}, \ x \in \text{domf.}[7]$

f quasiconvex $\Leftrightarrow \partial f$ quasimonotone. [3]

 $\partial f(x) = \{x^* \in X : f^{\uparrow}(x, u) \ge \langle x^*, u \rangle, \forall u \in X\}, \text{ if } x \in \text{dom } f; \\ \partial f(x) = \emptyset, \text{ otherwise.}$

$$f^{\uparrow}(x,u) = \sup_{\delta > 0} \limsup_{\substack{y \to f^{x} \\ t \searrow 0^{+}}} \inf_{v \in B(u,\delta)} \frac{f(y+tv) - f(y)}{t}, \text{ for } x \in \text{dom } f.$$

How do we preserve quasi-convexity under summation?

Easy example

 $f: X \to \mathbb{R} \cup \{+\infty\}$ quasiconvex and $g: \mathbb{R} \to \mathbb{R}$ nondecreasing.

 $[g \circ f \leq \lambda], \text{ is convex } \forall \lambda \in \mathbb{R}$

so, $g \circ f$ quasiconvex and it is easy to show that

 $f + g \circ f$ is quasiconvex

and in other cases?

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Quasiconvex and quasimonotone families

æ

<ロ> <問> <問> < 回> < 回> 、

Definition

A family \mathcal{A} of operators $T_i : X \rightrightarrows X^*$, $i \in I$, will be called a quasimonotone family, if the operator T with graph $\operatorname{Gr} T = \bigcup \operatorname{Gr} T_i$ is quasimonotone.

Two operators T_1 , T_2 will be called a quasimonotone pair if $\{T_1, T_2\}$ is a quasimonotone family.

Definition

A family of functions $f_i : X \to \mathbb{R} \cup \{+\infty\}$, $i \in I$, is called a *quasiconvex family* if for every $i, j \in I$ and every $x, y \in X, z \in]x, y[$, the following implication holds:

$$f_i(x) < f_i(z) \Rightarrow f_j(z) \le f_j(y).$$

Two functions f_1, f_2 will be called a *quasiconvex pair*, if $\{f_1, f_2\}$ is a quasiconvex family.

Definition

A family \mathcal{A} of operators $T_i : X \rightrightarrows X^*$, $i \in I$, will be called a quasimonotone family, if the operator T with graph $\operatorname{Gr} T = \bigcup \operatorname{Gr} T_i$ is quasimonotone.

Two operators T_1 , T_2 will be called a quasimonotone pair if $\{T_1, T_2\}$ is a quasimonotone family.

Definition

A family of functions $f_i : X \to \mathbb{R} \cup \{+\infty\}, i \in I$, is called a *quasiconvex family* if for every $i, j \in I$ and every $x, y \in X, z \in]x, y[$, the following implication holds:

$$f_i(x) < f_i(z) \Rightarrow f_j(z) \le f_j(y).$$

Two functions f_1, f_2 will be called a *quasiconvex pair*, if $\{f_1, f_2\}$ is a quasiconvex family.

(日)

First result

Our first main result relates quasiconvexity of a pair of functions to quasimonotonicity of the pair of subdifferentials.

Theorem

Let $f_1, f_2 : X \to \mathbb{R} \cup \{+\infty\}$ be lsc functions. Then $\{f_1, f_2\}$ is a quasiconvex pair if and only if $\{\partial f_1, \partial f_2\}$ is a quasimonotone pair.

Tools:

[[2, Corollary 4.3]]

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a lsc function, and $a, b \in X$ with f(a) < f(b). Then there exist $c \in [a, b[$ and sequences $x_n \to c$ and $x_n^* \in \partial f(x_n)$, such that $f(x_n) \to f(c)$ and $\langle x_n^*, x - x_n \rangle > 0$, for every x = c + t (b - a) with t > 0.

[[1, Theorem 2.1]]

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a lsc function. The following are equivalent:

(i) f is quasiconvex;

 $(ii) \ \exists \ x^* \in \partial f(x): \langle x^*, y-x\rangle > 0 \Rightarrow f(z) \leq f(y), \forall z \in [x,y].$

э.

< 日 > < 同 > < 回 > < 回 > < □ > <

How big is the class of quasiconvex pairs of lsc functions?

Candidates:

- Type 1: f_1 and f_2 are quasiconvex, and there is a proportionality between the subdifferentials: $\partial f_i(x) \subseteq \mathbb{R}_+ \partial f_j(x), \forall x \in X$, $i \neq j, i = 1$ or i = 2.
- 2 Type 2: f_1 and f_2 are nondecreasing transformations of a same quasiconvex function; that is, there exists a quasiconvex function g and nondecreasing functions h_1 , h_2 such that $f_1 = h_1 \circ g$ and $f_2 = h_2 \circ g$.

③ Type 3: f_1, f_2 quasiconvex with argmin $f_1 \cap \operatorname{argmin} f_2 \neq \emptyset$.

イロト 不得 トイヨト イヨト

Examples:

Neither Type 1 nor Type 2

•
$$X = \mathbb{R};$$

•
$$f_1(x) = \begin{cases} x^2, & x < 1, \\ 1, & x \ge 1 \end{cases}$$
 $f_2(x) = f_1(-x).$

- $\partial f_1 \cup \partial f_2$ is quasimonotone $\Rightarrow f_1 + f_2$ is quasiconvex
- However, neither

$$\mathbb{R}_+\partial f_1(x) \subseteq \mathbb{R}_+\partial f_2(x), \ \forall \ x \in \operatorname{Dom} \partial f_2,$$

nor

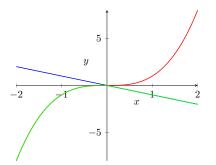
 $\mathbb{R}_+\partial f_2(x) \subseteq \mathbb{R}_+\partial f_1(x), \, \forall x \in \text{Dom } \partial f_1 \text{ hold.}$

Type 3

- $X = \mathbb{R};$
- $f_1(x) = \min\{0, x\}, \quad f_2(x) = \max\{0, x\}.$
- The subdifferentials are a quasimonotone pair, whereas one function has no minima, the other does have minima. Here, argmin f₁ ∩ argmin f₂ = Ø.
 It is obvious that f₁ + f₂ is quasiconvex.

Other problem that in apparent is not relared to the problem of the sum

f(x) = -x, $g(x) = x^3 \Rightarrow \min\{f, g\}$ is not a quasiconvex function.



< ロ > < 同 > < 回 > < 回 >

Characterizations of quasiconvexity of the minimum of any vertical translation of two quasiconvex functions.

Theorem

Assume that the functions f_1 , f_2 are quasiconvex. Then, the following assertions are equivalent:

(a) $\{f_1, f_2\}$ is a quasiconvex pair.

- (b) for every $\lambda_1, \lambda_2 \in \mathbb{R}$, $[f_1 \leq \lambda_1] \cup [f_2 \leq \lambda_2]$ is convex.
- (c) for every $\lambda_1, \lambda_2 \in \mathbb{R}$, $[f_1 < \lambda_1] \cup [f_2 < \lambda_2]$ is convex.
- (d) for every $x \in X$, $[f_1 < f_1(x)] \cup [f_2 < f_2(x)]$ is convex.
- (e) for every $\alpha \in \mathbb{R}$, the function h_{α} defined by $h_{\alpha}(x) \doteq \min\{f_1(x) + \alpha, f_2(x)\}$ is quasiconvex.
- * Equivalences (a) (e) are true in any vector space

э

Example

Consider the functions f_1, f_2 defined on \mathbb{R}^2 by

$$f_1(x_1, x_2) = \begin{cases} \max \{ \arctan x_1, 0 \} & \text{if } -1 \le x_2 \le +1 \\ \frac{\pi}{2} & \text{if } x_2 < -1 \\ x_2 - 1 + \frac{\pi}{2} & \text{if } x_2 > 1 \end{cases}$$

$$f_2(x_1, x_2) = \begin{cases} \max \{ -\arctan x_1, 0 \} & \text{if } -1 \le x_2 \le +1 \\ -x_2 - 1 + \frac{\pi}{2} & \text{if } x_2 < -1 \\ \frac{\pi}{2} & \text{if } x_2 > 1 \end{cases}$$

One may check that the union of any two sublevel sets is convex, so the functions are a quasiconvex pair $\Rightarrow \min\{f_1, f_2\}$ is quasiconvex.

A (10) A (10)

Some consequences for the sum of quasiconvex functions Let $J \doteq \{1, 2, ..., m\}$.

Theorem

Let $\{f_i : i \in J\}$ be a quasiconvex family. Then $f_1 + f_2 + \cdots + f_m$ and $\min\{f_1, f_2, \cdots, f_n\}$ are quasiconvex.

Another characterization:

Proposition

Let f_1, f_2 be functions on X. Then $\{f_1, f_2\}$ is a quasiconvex pair, iff for every pair of nondecreasing functions h_1, h_2 , the function $h_1 \circ f_1 + h_2 \circ f_2$ is quasiconvex.

伺 ト イ ヨ ト イ ヨ

Some consequences for the sum of quasiconvex functions Let $J \doteq \{1, 2, ..., m\}$.

Theorem

Let $\{f_i : i \in J\}$ be a quasiconvex family. Then $f_1 + f_2 + \cdots + f_m$ and $\min\{f_1, f_2, \cdots, f_n\}$ are quasiconvex.

Another characterization:

Proposition

Let f_1, f_2 be functions on X. Then $\{f_1, f_2\}$ is a quasiconvex pair, iff for every pair of nondecreasing functions h_1, h_2 , the function $h_1 \circ f_1 + h_2 \circ f_2$ is quasiconvex.

(日)

Remark

The result that the sum of two convex functions is convex, and so quasiconvex, cannot be re-obtained with our results ③. But

• We show that our class of functions, for which the sum of quasiconvex functions is quasiconvex, contains not trivial functions and

• • • •

A D A D A D A

Other properties that are preserved under summation in a

quasiconvex family

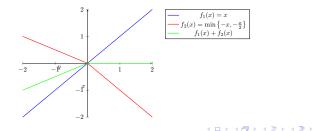
 \boldsymbol{f} is semistrictly quasiconvex if \boldsymbol{f} is quasiconvex and

 $[x, y \in \operatorname{dom} f, f(x) \neq f(y)] \Rightarrow \left[f(tx + (1 - t)y) < \max\{f(x), f(y)\}, \forall t \in]0, 1[.] \right]$

The sum of two semistrictly quasiconvex functions is not necessarily semistrictly quasiconvex.

Example

$$f_1(x) = x$$
 and $f_2(x) = \min \{-x, -\frac{x}{2}\}$.
 f_1, f_2 : semistrictly quasiconvex, but their sum is not



Proposition

Let f_1, f_2, \ldots, f_m be lsc and semistrictly quasiconvex (and so quasiconvex) functions. If $\{f_i : i \in J\}$ is a quasiconvex family, then the sum $f_1 + f_2 + \cdots + f_m$ is also semistrictly quasiconvex.

イロト 不得 トイヨト イヨト

The *C*-family

$$C \subseteq \mathbb{R}^n$$

 $C^{\infty} \doteq \{v \in \mathbb{R}^n : \exists t_k \to +\infty, \exists x_k \in C, \frac{x_k}{t_k} \to v\}.$ (asymptotic cone).

Definition [9]

It is said that f belongs to C if for all $x \in \text{dom } f$ and all $v \in (\text{dom } f)^{\infty}$, $v \neq 0$, one has either

(i)
$$0 \le t \mapsto f(x + tv)$$
 is nonincreasing, or

(ii)
$$\lim_{t \to +\infty} f(x+tv) = +\infty.$$

Remark: f convex or coercive then $f \in C$;

Proposition

Let f_1, f_2, \ldots, f_m be lsc functions on X, such that

 $\{f_i: i \in J\}$ is a quasiconvex family.

If $f_i \in C$ for all $i \in J$, then $f_1 + f_2 + \cdots + f_m \in C$.

Q-subdifferential ([13])

$$\begin{split} & \text{Geven } f: \mathbb{R}^n \to \mathbb{R}, \\ & \partial^Q f(x) = \left\{ (v,t) \in \mathbb{R}^{n+1} : \langle v, x \rangle \geq t \text{ and } f(y) \geq f(x) \text{ if } \langle v, y \rangle \geq t \right\}. \end{split}$$

Theorem ([13])

Let $f, g : \mathbb{R}^n \to \mathbb{R}$ For each $x \in \mathbb{R}^n$, assume that at least one of the following conditions is satisfied:

(i)
$$[f < f(x)] \subseteq [g < g(x)]$$
 (or $[g < g(x)] \subseteq [f < f(x)]$)
(ii) $\partial^Q f(x) \subseteq \partial^Q g(x)$ (or $\partial^Q g(x) \subseteq \partial^Q f(x)$.)

Then f + g is quasiconvex.

Proposition

Let f, g be as in Theorem 7. Then $\{f, g\}$ is a quasiconvex pair, and so f + g and $\min\{f, g\}$ are quasiconvex.

Q-subdifferential ([13])

$$\begin{split} & \text{Geven } f: \mathbb{R}^n \to \mathbb{R}, \\ & \partial^Q f(x) = \left\{ (v,t) \in \mathbb{R}^{n+1} : \langle v, x \rangle \geq t \text{ and } f(y) \geq f(x) \text{ if } \langle v, y \rangle \geq t \right\}. \end{split}$$

Theorem ([13])

Let $f, g : \mathbb{R}^n \to \mathbb{R}$ For each $x \in \mathbb{R}^n$, assume that at least one of the following conditions is satisfied:

(i)
$$[f < f(x)] \subseteq [g < g(x)]$$
 (or $[g < g(x)] \subseteq [f < f(x)]$)
(ii) $\partial^Q f(x) \subseteq \partial^Q g(x)$ (or $\partial^Q g(x) \subseteq \partial^Q f(x)$.)

Then f + g is quasiconvex.

Proposition

Let f, g be as in Theorem 7. Then $\{f, g\}$ is a quasiconvex pair, and so f + g and $\min\{f, g\}$ are quasiconvex.

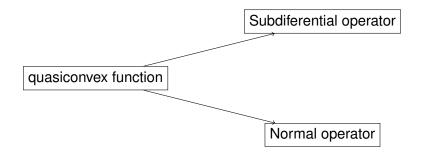
Operators associated to quasiconvex functions

• via subdifferentials:

D.-T. Luc -'93 ; Aussel & Corvellec & Lassonde-'94; Daniilidis & Hadjisavvas-'02

• via normal cones to the sublevel sets :

Borde & Crouzeix-'90; Aussel & Danilidis-' 20.



Operators

For $T: X \rightrightarrows X^*$, we denote by

Gr
$$T = \{(x, x^*) \in X \times X^* : x^* \in T(x)\}$$

its graph , and for

Dom
$$T = \left\{ x \in X : \exists x^* \in X, (x, x^*) \in \operatorname{Gr} T \right\}$$

its Domain .

An operator $T: X \rightrightarrows X^*$ is called *quasimonotone*, if $\forall (x, x^*) \in \text{Gr } T$ and $(y, y^*) \in \text{Gr } T$,

$$\langle x^*, y - x \rangle > 0 \Rightarrow \langle y^*, y - x \rangle \ge 0;$$

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Quasimonotone family (recall)

Definition

A family \mathcal{A} of operators $T_i : X \rightrightarrows X^*$, $i \in I$, is called a *quasimonotone family*, if the operator T with graph $\operatorname{Gr} T = \bigcup_{i \in I} \operatorname{Gr} T_i$ is quasimonotone. Two operators T_1 , T_2 will be called a *quasimonotone pair* if $\{T_1, T_2\}$ is a

quasimonotone family.

Remark

A family of monotone operators not necessarily satisfies this definition: $T_1, T_2 : \mathbb{R} \to \mathbb{R}, T_1(x) = x, T_2(x) = 1$ (or $T_2(x) = e^x$) are monotone operators but $\{T_1, T_2\}$ is not a quasimonotone pair. It is enough to take x = -1 and y = 1.

・ロト ・ 四ト ・ ヨト ・ ヨト

Quasimonotone family (recall)

Definition

A family \mathcal{A} of operators $T_i : X \rightrightarrows X^*$, $i \in I$, is called a *quasimonotone family*, if the operator T with graph $\operatorname{Gr} T = \bigcup_{i \in I} \operatorname{Gr} T_i$ is quasimonotone. Two operators T_1 , T_2 will be called a *quasimonotone pair* if $\{T_1, T_2\}$ is a quasimonotone family.

Remark

A family of monotone operators not necessarily satisfies this definition: $T_1, T_2 : \mathbb{R} \to \mathbb{R}, T_1(x) = x, T_2(x) = 1$ (or $T_2(x) = e^x$) are monotone operators but $\{T_1, T_2\}$ is not a quasimonotone pair. It is enough to take x = -1 and y = 1.

ヘロト ヘ回ト ヘヨト ヘヨト

More about quasimonotone families

Proposition

Let $T_1, T_2: X \rightrightarrows X^*$ be two operators. The following are equivalent:

- (a) The family $\{T_1, T_2\}$ is a quasimonotone pair on $\text{Dom } T_1 \cap \text{Dom } T_2$.
- (b) For every pair of functions $f_1, f_2 : X \to \mathbb{R}_+$, the operator $f_1T_1 + f_2T_2$ is quasimonotone.

Proposition

Let $J = \{1, 2, \dots m\}$. Assume that $T_i, i \in J$ (or their restrictions on $\bigcap_{i \in J} \text{Dom } T_i$) constitute a quasimonotone family of operators. Then,

 $T_1 + T_2 + \cdots + T_m$ is quasimonotone.

(日)

More about quasimonotone families

Proposition

Let $T_1, T_2: X \rightrightarrows X^*$ be two operators. The following are equivalent:

- (a) The family $\{T_1, T_2\}$ is a quasimonotone pair on $\text{Dom } T_1 \cap \text{Dom } T_2$.
- (b) For every pair of functions $f_1, f_2 : X \to \mathbb{R}_+$, the operator $f_1T_1 + f_2T_2$ is quasimonotone.

Proposition

Let $J = \{1, 2, \dots m\}$. Assume that T_i , $i \in J$ (or their restrictions on $\bigcap_{i \in J} \text{Dom } T_i$) constitute a quasimonotone family of operators. Then,

 $T_1 + T_2 + \cdots + T_m$ is quasimonotone.

3

イロト 不得 トイヨト イヨト

A particular case of quasimonotone family

Proposition

Let T_i , $i \in J$ be quasimonotone operators such that

 $\mathbb{R}_+T_i(x) \subseteq \mathbb{R}_+T_{i+1}(x) \quad \forall x \in X, \ i = 1, 2, \dots, m-1.$

Then $\{T_i : i \in J\}$, is a quasimonotone family.

Corollary

Let T_i , $i \in J$ be quasimonotone operators such that

 $\mathbb{R}_{+}T_{i}(x) \subseteq \mathbb{R}_{+}T_{i+1}(x) \quad \forall x \in X, \ i = 1, 2, \dots, m-1.$

Then $T_1 + T_2 + \cdots + T_m$ is quasimonotone.

(日)

A particular case of quasimonotone family

Proposition

Let T_i , $i \in J$ be quasimonotone operators such that

 $\mathbb{R}_+T_i(x) \subseteq \mathbb{R}_+T_{i+1}(x) \quad \forall x \in X, \ i = 1, 2, \dots, m-1.$

Then $\{T_i : i \in J\}$, is a quasimonotone family.

Corollary

Let T_i , $i \in J$ be quasimonotone operators such that

 $\mathbb{R}_{+}T_{i}(x) \subseteq \mathbb{R}_{+}T_{i+1}(x) \quad \forall x \in X, \ i = 1, 2, \dots, m-1.$

Then $T_1 + T_2 + \cdots + T_m$ is quasimonotone.

Strictly quasimonotone operators

T : *X* ⇒ *X*^{*} is said to be *strictly quasimonotone* if it is quasimonotone and for all *x*, *y* ∈ dom*T*, *x* ≠ *y*

 $\exists z \in]x, y[, \exists z^* \in T(z) : \langle z^*, y - x \rangle \neq 0.$

Example

 $T_1 : \mathbb{R} \to \mathbb{R}, T_1(x) = x^2$ and $T_2 : \mathbb{R} \to \mathbb{R}, T_2(x) = -x^2$ are strictly quasimonotone operators. Obviously $T_1 + T_2$ is not strictly quasimonotone.

Strictly quasimonotone operators

T : *X* ⇒ *X*^{*} is said to be *strictly quasimonotone* if it is quasimonotone and for all *x*, *y* ∈ dom*T*, *x* ≠ *y*

 $\exists z \in]x, y[, \exists z^* \in T(z) : \langle z^*, y - x \rangle \neq 0.$

Example

 $T_1 : \mathbb{R} \to \mathbb{R}, T_1(x) = x^2$ and $T_2 : \mathbb{R} \to \mathbb{R}, T_2(x) = -x^2$ are strictly quasimonotone operators. Obviously $T_1 + T_2$ is not strictly quasimonotone.

Proposition

Assume that T_i , $i \in J$, are strictly quasimonotone, and constitute a quasimonotone family. If the operator T with graph $\operatorname{Gr} T = \bigcup_{i \in J} \operatorname{Gr} T_i$

satisfies

 $\forall x, y \in \text{Dom } T, \ x \neq y, \]x, y[\cap \text{Dom } T \neq \emptyset.$ (1)

then T is strictly quasimonotone.

Remark:

Equation (1) is satisfied if Dom T is convex.

伺 ト イヨ ト イヨト

Proposition

Suppose that T_i , $i \in J$ is a quasimonotone family of operators on $\bigcap_{i \in j} \text{Dom } T_i$. If T_1 is a strictly quasimonotone operator such that either

(a)
$$\bigcap_{i \in J} \text{Dom } T_i \text{ is convex, or}$$

(b) $\text{Dom } T_1 \subseteq \text{Dom } T_i, \text{ for } i \in J, i \neq 1,$
then

$$T_1 + \cdots + T_m$$

is strictly quasimonotone.

く 同 ト く ヨ ト く ヨ ト -

Semistrictly quasimonotone operators

- $T:X \rightrightarrows X^*$ is said to be
 - *semistrictly quasimonotone* if it is quasimonotone and for all $(x, x^*) \in \text{Gr } T$ and $y \in \text{dom} T$

$$\langle x^*, y - x \rangle > 0 \Rightarrow \exists z \in]\frac{x + y}{2}, y[, \exists z^* \in T(z) : \langle z^*, z - x \rangle > 0.$$

Example

Let $T_1, T_2 : \mathbb{R} \to \mathbb{R}$ defined by

$$T_1(x) = \begin{cases} [0, +\infty[, & \text{if } x = 0; \\ \{0\}, & \text{if } x < 0; \\ \emptyset, & \text{otherwise.} \end{cases} \quad T_2(x) = \begin{cases}]-\infty, 0], & \text{if } x = 0; \\ \{0\}, & \text{if } x > 0; \\ \emptyset, & \text{otherwise.} \end{cases}$$

Let T be the operator whose graph is $\operatorname{Gr} T_1 \cup \operatorname{Gr} T_2$.

• T_1 and T_2 are semistrictly quasimonotone and constitute a quasimonotone pair.

• T is quasimonotone but not semistrictly quasimonotone.

Proposition

Assume that T_i , $i \in J$ are semistrictly quasimonotone and $\bigcap_{i \in j} \text{Dom } T_i$ is convex. If T_i , $i \in J$ constitute a quasimonotone family of operators on $\bigcap_{i \in j} \text{Dom } T_i$, then $T_1 + T_2 + \dots + T_m$,

is semistrictly quasimonotone.

Normal operators associated to a quasiconvex functions

Given a lsc function $f: X \to \mathbb{R}$, the set-valued operator $N_f: X \rightrightarrows X^*$ defined by

$$N_f(x) = \begin{cases} N_{[f \le f(x)]}(x), & \text{if } x \in \text{dom } f \\ \emptyset, & \text{otherwise,} \end{cases}$$

is the Normal Operator associated to f. Fact:

- (Aussel & Daniilidis) Let X be a reflexive Banach space, and $f: X \to \mathbb{R}$ a lsc function. Then, the following statements are equivalent:
 - (i) f is quasiconvex.
 - (ii) $x, y \in \text{dom} f, x^* \in N_f(x)$ and $\langle x^*, y x \rangle > 0 \Rightarrow f(x) < f(y)$.
 - (iii) N_f is quasimonotone.

・ロト ・四ト ・ヨト ・ヨト

Normal operators associated to a quasiconvex functions

Proposition

Let $f_i : X \to \mathbb{R} \cup \{+\infty\}$, $i \in J$ be a family of lsc functions. Consider the following assertions:

(a) $\{f_1, \ldots, f_m\}$ is a quasiconvex family. (b) $\{N_{f_1}, \ldots, N_{f_m}\}$ is a quasimonotone family. Then $(a) \Rightarrow (b)$. If, in addition $f_i, i \in J$ are continuous or, X admits a Gâteaux-smooth renorm, then $(b) \Rightarrow (a)$.

(Semi)strictly quasiconvex case

Proposition

Let $f_i : X \to \mathbb{R} \cup \{+\infty\}$, $i \in J$, be lsc functions that constitute a quasiconvex family, where each function is continuous on its respective domain. The following hold:

- (a) If at least one f_i , $i \in J$ is strictly quasiconvex, then $N_{f_1} + \cdots + N_{f_m}$ is strictly quasimonotone.
- (b) If every function f_i , $i \in J$ is semistrictly quasiconvex, then $N_{f_1} + \cdots + N_{f_m}$ is semistrictly quasimonotone.

AUSSEL, D., Subdifferential properties of quasiconvex and pseudoconvex functions: a unified approach, J. Optim. Theory Appl. 97, 29–45 (1998).

AUSSEL, D.; CORVELLEC, J.-N; LASSONDE, M., Mean value property and subdifferential criteria for lower semicontinuous functions, *Trans. Amer. Math. Soc.* 347, 4147–4161 (1995).

AUSSEL, D.; CORVELLEC, J.-N.; LASSONDE, M., Subdifferential characterization of quasiconvexity and convexity, *J. Convex Anal.*, 1 (1994), 195–201.

AUSSEL, D.; CORVELLEC, J.-N.; LASSONDE, M., Subdifferential characterization of quasiconvexity and convexity, *J. Convex Anal.*, 1 (1994), 195–201.

AUSSEL, D.; DANIILIDIS, A., Normal characterization of the main classes of quasiconvex functions, *Set-Valued Anal.*, 8(2000), 219–236.

BORDE, J.; CROUZEIX, J.-P., Continuity properties of the normal cone to the level sets of a quasiconvex function, *J. Optim. Theory Appl.*, **66** (1990), 415–429.

CLARKE, F. H., *Optimization and nonsmooth analysis.* Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons Inc., New York, 1983.

CROUZEIX, J.-P., Contributions à l'etude des fonctions quasi-convexes, Thèse d'Etat, Université de Clermont-Ferrand II, 1977, pp. 231.

FLORES-BAZÁN, F.; HADJISAVVAS, N.; LARA, F.; MONTENEGRO, I.: First- and second- order asymptotic analysis with applications in quasiconvex optimization, *J. Optim. Theory Appl.*, **170** (2016) 372–393.

FLORES-BAZÁN, F.; HADJISAVVAS, N.; VERA, C., An optimal alternative theorem and applications to mathematical programming, *J. Global Optim.*, **37** (2007), 229–243,

FLORES-BAZÁN, F.; MASTROENI, G.; VERA, C., Proper or weak efficiency via saddle point conditions in cone-constrained nonconvex vector optimization problems, *J. Optim. Theory Appl.*, **181** (2019) 787–816.

HADJISAVVAS, N., The use of subdifferentials for studying generalized convex functions, *J. Stat. Manag. Syst.*, **5** (2002), 125–139.

Thank you!

Celebrating Marc Lassonde's 75th birthday First half of October 2025 http://isora2025.imca.edu.pe

IMCA

< ロ > < 同 > < 回 > < 回 >