A variational approach to weakly continuous preference relations

Massimiliano Giuli

D. Aussel - M. Milasi - D. Scopelliti

Setting

Let
$>\succ$ be a preference relation on a t.v.s. X

Setting

Let
$\rangle \succ$ be a preference relation on a t.v.s. X
> asymmetric: $x \succ y$ implies $y \nsucc x$, for each $x, y \in X$
> negatively transitive: $x \nsucc y$ and $y \nsucc z$ imply $x \nsucc z$, for each $x, y, z \in X$

Setting

Let
$\rangle \succ$ be a preference relation on a t.v.s. X
> asymmetric: $x \succ y$ implies $y \nsucc x$, for each $x, y \in X$
> negatively transitive: $x \nsucc y$ and $y \nsucc z$ imply $x \nsucc z$, for each $x, y, z \in X$

Setting

Let
$>\succ$ be a preference relation on a t.v.s. X
> asymmetric: $x \succ y$ implies $y \nsucc x$, for each $x, y \in X$
> negatively transitive: $x \nsucc y$ and $y \nsucc z$ imply $x \nsucc z$, for each $x, y, z \in X$
$\succ \quad \succeq \quad(x \succeq y$ if $y \nsucc x)$

Setting

Let
$\rangle \succ$ be a preference relation on a t.v.s. X
> asymmetric: $x \succ y$ implies $y \nsucc x$, for each $x, y \in X$
> negatively transitive: $x \nsucc y$ and $y \nsucc z$ imply $x \nsucc z$, for each $x, y, z \in X$

\succ	\Longrightarrow
asymmetric	
negatively transitive	complete
transitive	

> \succeq
> complete: $x \succeq y$ or $y \succeq x$, for each $x, y \in X$
> transitive: $x \succeq y$ and $y \succeq z$ imply $x \succeq z$, for each $x, y, z \in X$

Setting

Let
$>\succ$ be a preference relation on X
> asymmetric: $x \succ y$ implies $y \nsucc x$, for each $x, y \in X$
> negatively transitive: $x \nsucc y$ and $y \nsucc z$ imply $x \nsucc z$, for each $x, y, z \in X$

> \succeq
> complete: $x \succeq y$ or $y \succeq x$, for each $x, y \in X$
> transitive: $x \succeq y$ and $y \succeq z$ imply $x \succeq z$, for each $x, y, z \in X$

Setting

Let
$>\succ$ be a preference relation on X
> asymmetric: $x \succ y$ implies $y \nsucc x$, for each $x, y \in X$
8 negatively transitive: $x \nsucc y$ and $y \nsucc z$ imply $x \nsucc z$, for each $x, y, z \in X$

$$
\begin{array}{llll}
(x \succ y \text { if } y \nsucceq x) & \succ & \succeq \\
& \text { asymmetric } & & \begin{array}{c}
\text { complete } \\
\\
\\
\\
\text { negatively transitive }
\end{array} \\
\text { transitive }
\end{array}
$$

$>\succeq$
> complete: $x \succeq y$ or $y \succeq x$, for each $x, y \in X$
> transitive: $x \succeq y$ and $y \succeq z$ imply $x \succeq z$, for each $x, y, z \in X$

Setting

Let
$>\succ$ be a preference relation on X
> asymmetric: $x \succ y$ implies $y \nsucc x$, for each $x, y \in X$
> negatively transitive: $x \nsucc y$ and $y \nsucc z$ imply $x \nsucc z$, for each $x, y, z \in X$

\succ	\Longleftrightarrow
asymmetric	
negatively transitive	
complete	
transitive	

> \succeq
> complete: $x \succeq y$ or $y \succeq x$, for each $x, y \in X$
> transitive: $x \succeq y$ and $y \succeq z$ imply $x \succeq z$, for each $x, y, z \in X$

Setting

Define for any $x \in X$
$\geqslant U(x)=\{y \in X: y \succ x\}$
$L(x)=\{y \in X: x \succ y\}$

Setting

Define for any $x \in X$
$\partial(x)=\{y \in X: y \succ x\}$
$L(x)=\{y \in X: x \succ y\}$
Notice that

$$
U(x) \subseteq L^{C}(x)=\{y \in X: y \succeq x\}
$$

Setting

Define for any $x \in X$
$\geqslant U(x)=\{y \in X: y \succ x\}$
$L(x)=\{y \in X: x \succ y\}$
Notice that

$$
U(x) \subseteq L^{C}(x)=\{y \in X: y \succeq x\}
$$

Assume
\succ convex, i.e. $U(x)$ is convex for each $x \in X$

Setting

Define for any $x \in X$
> $U(x)=\{y \in X: y \succ x\}$
$L(x)=\{y \in X: x \succ y\}$
Notice that

$$
U(x) \subseteq L^{C}(x)=\{y \in X: y \succeq x\}
$$

Assume
\succ convex, i.e. $U(x)$ is convex for each $x \in X$
quasiconcave $u: X \rightarrow \mathbb{R} \quad \underset{\text { not surjective }}{\stackrel{x \succ y \Leftrightarrow u(x)>u(y)}{\stackrel{y y y y}{l}} \quad \text { convex preference relation } \succ}$

Setting

$$
U(x)=\{y \in X: y \succ x\} \quad L(x)=\{y \in X: x \succ y\}
$$

The preference relation \succ is
> upper semicontinuous at x if $y \in U(x) \Rightarrow y \in U(z), \forall z \in V_{x}$

Setting

$$
U(x)=\{y \in X: y \succ x\} \quad L(x)=\{y \in X: x \succ y\}
$$

The preference relation \succ is
> upper semicontinuous at x if $y \in U(x) \Rightarrow y \in U(z), \forall z \in V_{x}$
$>$ lower semicontinuous at x if $y \in L(x) \Rightarrow y \in L(z), \forall z \in V_{x}$

Setting

$$
U(x)=\{y \in X: y \succ x\} \quad L(x)=\{y \in X: x \succ y\}
$$

The preference relation \succ is
> upper semicontinuous at x if $y \in U(x) \Rightarrow y \in U(z), \forall z \in V_{x}$
$>$ lower semicontinuous at x if $y \in L(x) \Rightarrow y \in L(z), \forall z \in V_{x}$
\Rightarrow upper semicontinuous $\Leftrightarrow L(x)$ is open for each $x \in X$

Setting

$$
U(x)=\{y \in X: y \succ x\} \quad L(x)=\{y \in X: x \succ y\}
$$

The preference relation \succ is
> upper semicontinuous at x if $y \in U(x) \Rightarrow y \in U(z), \forall z \in V_{x}$
$>$ lower semicontinuous at x if $y \in L(x) \Rightarrow y \in L(z), \forall z \in V_{x}$
\Rightarrow upper semicontinuous $\Leftrightarrow L(x)$ is open for each $x \in X$
$>$ lower semicontinuous $\Leftrightarrow U(x)$ is open for each $x \in X$

Setting

$$
U(x)=\{y \in X: y \succ x\} \quad L(x)=\{y \in X: x \succ y\}
$$

The preference relation \succ is
> upper semicontinuous at x if $y \in U(x) \Rightarrow y \in U(z), \forall z \in V_{x}$
$>$ lower semicontinuous at x if $y \in L(x) \Rightarrow y \in L(z), \forall z \in V_{x}$
$>$ upper semicontinuous $\Leftrightarrow L(x)$ is open for each $x \in X$
$>$ lower semicontinuous $\Leftrightarrow U(x)$ is open for each $x \in X$
If \succ has a numerical representation u
\succ is upper (lower) semicontinuous $\stackrel{[1]}{\Longleftrightarrow} u$ is upper (lower) pseudocontinuous
[1] Morgan \& Scalzo: Discontinuous but well-posed optimization problems.
SIAM J. Optim. 17 (2006) 861-870

Lexicographic order

Lexicographic order

$x \succ y \Leftrightarrow x_{1}>y_{1}$ or $x_{1}=y_{1}$ and $x_{2}>y_{2}$

USC	IsC
no	no

Lexicographic order

$$
x \succ y \Leftrightarrow x_{1}>y_{1} \text { or } x_{1}=y_{1} \text { and } x_{2}>y_{2}
$$

USC	IsC
no	no

> weak upper semicontinuous at x if $y \in \operatorname{int} U(x) \Rightarrow y \in U(z), \forall z \in V_{x}$

Lexicographic order

$$
x \succ y \Leftrightarrow x_{1}>y_{1} \text { or } x_{1}=y_{1} \text { and } x_{2}>y_{2}
$$

usc	Isc	wusc
no	no	yes

> weak upper semicontinuous at x if $y \in \operatorname{int} U(x) \Rightarrow y \in U(z), \forall z \in V_{x}$

Lexicographic order

$$
x \succ y \Leftrightarrow x_{1}>y_{1} \text { or } x_{1}=y_{1} \text { and } x_{2}>y_{2}
$$

usc	Isc	wusc
no	no	yes

> weak upper semicontinuous at x if $y \in \operatorname{int} U(x) \Rightarrow y \in U(z), \forall z \in V_{x}$
s solid at x if

$$
U(x) \neq \emptyset \Rightarrow \operatorname{int} U(x) \neq \emptyset
$$

Lexicographic order

$$
x \succ y \Leftrightarrow x_{1}>y_{1} \text { or } x_{1}=y_{1} \text { and } x_{2}>y_{2}
$$

usc	lsc	wusc	solid
no	no	yes	yes

> weak upper semicontinuous at x if $y \in \operatorname{int} U(x) \Rightarrow y \in U(z), \forall z \in V_{x}$
s solid at x if

$$
U(x) \neq \emptyset \Rightarrow \operatorname{int} U(x) \neq \emptyset
$$

Comparisons

For a relation \succ

Comparisons

For a relation \succ

upper semicontinuity	\Rightarrow	weak upper semicontinuity
lower semicontinuity	\Rightarrow	solidness

Comparisons

For a relation \succ

upper semicontinuity	\Rightarrow	weak upper semicontinuity
	\nLeftarrow	
lower semicontinuity	\Rightarrow	solidness
	\nLeftarrow	

Comparisons

For a relation \succ

upper semicontinuity	\Rightarrow	weak upper semicontinuity
	\nLeftarrow	solidness
lower semicontinuity	\Rightarrow	
	\nLeftarrow	

\succ is weakly lower continuous $\stackrel{[2]}{\Longleftrightarrow} y \succ x \Rightarrow y \succeq z, \forall z \in V_{x}$
［2］Campbell \＆Walker：Maximal elements of weakly continuous relations．
J．Econom．Theory 50 （1990）459－464

Comparisons

For a relation \succ

upper semicontinuity	\Rightarrow	weak upper semicontinuity
	\nLeftarrow	
lower semicontinuity	\Rightarrow	
	\nLeftarrow	solidness
upper semicontinuity	\Rightarrow	weak lower continuity

\succ is weakly lower continuous $\stackrel{[2]}{\Longleftrightarrow} y \succ x \Rightarrow y \succeq z, \forall z \in V_{x}$
[2] Campbell \& Walker: Maximal elements of weakly continuous relations.
J. Econom. Theory 50 (1990) 459-464

Comparisons

For a relation \succ

upper semicontinuity	\Rightarrow	weak upper semicontinuity
	\nLeftarrow	
lower semicontinuity	\Rightarrow	
	\nLeftarrow	
upper semicontinuity	\Rightarrow	weak lower continuity
weak upper semicontinuity	\nRightarrow	weak lower continuity
	\nLeftarrow	

\succ is weakly lower continuous $\stackrel{[2]}{\Longleftrightarrow} y \succ x \Rightarrow y \succeq z, \forall z \in V_{x}$
[2] Campbell \& Walker: Maximal elements of weakly continuous relations.
J. Econom. Theory 50 (1990) 459-464

Example

$$
u\left(x_{1}, x_{2}\right)= \begin{cases}2-x_{1}^{2}-x_{2}^{2} & \left(x_{1}, x_{2}\right) \in B \backslash(0,1) \\ 0 & \text { otherwise }\end{cases}
$$

Example

$$
u\left(x_{1}, x_{2}\right)= \begin{cases}2-x_{1}^{2}-x_{2}^{2} & \left(x_{1}, x_{2}\right) \in B \backslash(0,1) \\ 0 & \text { otherwise }\end{cases}
$$

upc
no

Example

$$
u\left(x_{1}, x_{2}\right)= \begin{cases}2-x_{1}^{2}-x_{2}^{2} & \left(x_{1}, x_{2}\right) \in B \backslash(0,1) \\ 0 & \text { otherwise }\end{cases}
$$

upc
no

$$
\begin{aligned}
& x=(0,1) \quad y=(1,0) \\
& u(y)=1>0=u(x)
\end{aligned}
$$

Example

$$
u\left(x_{1}, x_{2}\right)= \begin{cases}2-x_{1}^{2}-x_{2}^{2} & \left(x_{1}, x_{2}\right) \in B \backslash(0,1) \\ 0 & \text { otherwise }\end{cases}
$$

upc
no

$$
\begin{aligned}
& x=(0,1) \quad y=(1,0) \\
& u(y)=1>0=u(x) \\
& u(y)=1 \ngtr 1=u\left(z_{1}\right)
\end{aligned}
$$

Example

$$
u\left(x_{1}, x_{2}\right)= \begin{cases}2-x_{1}^{2}-x_{2}^{2} & \left(x_{1}, x_{2}\right) \in B \backslash(0,1) \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{array}{|l}
\left\lvert\, \begin{array}{l}
\mid \text { upc } \\
\hline \hline \text { no } \text { wo } \\
\hline
\end{array}\right. \\
x=(0,1) \quad y=(1,0) \\
u(y)=1>0=u(x) \\
u(y)=1 \ngtr 1=u\left(z_{1}\right) \\
u(y)=1 \nsupseteq 1+\delta=u\left(z_{2}\right)
\end{array}
$$

Example

$$
u\left(x_{1}, x_{2}\right)= \begin{cases}2-x_{1}^{2}-x_{2}^{2} & \left(x_{1}, x_{2}\right) \in B \backslash(0,1) \\ 0 & \text { otherwise }\end{cases}
$$

upc	wlc	lpc
no	no	no

$$
\begin{aligned}
& x=(0,1) \quad y=(1,0) \\
& u(y)=1>0=u(x) \\
& u(y)=1 \ngtr 1=u\left(z_{1}\right) \\
& u(y)=1 \nsupseteq 1+\delta=u\left(z_{2}\right)
\end{aligned}
$$

Example

$$
u\left(x_{1}, x_{2}\right)= \begin{cases}2-x_{1}^{2}-x_{2}^{2} & \left(x_{1}, x_{2}\right) \in B \backslash(0,1) \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{array}{||c||}
\hline \text { upc wlc lpc wusc } \\
\hline \hline \text { no } \quad \text { no } \quad \text { no } \quad \text { yes } \\
x=(0,1) \quad y=(1,0) \\
u(y)=1>0=u(x) \\
u(y)=1 \ngtr 1=u\left(z_{1}\right) \\
u(y)=1 \nsupseteq 1+\delta=u\left(z_{2}\right) \\
x=(0,1) \quad y \in \operatorname{int} U(x)=B \\
y \in U(z) \quad \forall z \in V_{x} \quad
\end{array}
$$

Example

$$
u\left(x_{1}, x_{2}\right)= \begin{cases}2-x_{1}^{2}-x_{2}^{2} & \left(x_{1}, x_{2}\right) \in B \backslash(0,1) \\ 0 & \text { otherwise }\end{cases}
$$

upc	wlc	lpc	wusc	solid
no	no	no	yes	yes

$$
x=(0,1) \quad y=(1,0)
$$

$$
u(y)=1>0=u(x)
$$

$$
u(y)=1 \ngtr 1=u\left(z_{1}\right)
$$

$$
u(y)=1 \nsupseteq 1+\delta=u\left(z_{2}\right)
$$

$$
\begin{aligned}
& x=(0,1) \quad y \in \operatorname{int} U(x)=B \\
& y \in U(z) \quad \forall z \in V_{x}
\end{aligned}
$$

Setting

Let
> X be a real Banach space with norm $\|\cdot\|$

Setting

Let
> X be a real Banach space with norm $\|\cdot\|$
$>X^{*}$ its topological dual with norm $\|\cdot\|_{*}$

Setting

Let
> X be a real Banach space with norm $\|\cdot\|$
$>X^{*}$ its topological dual with norm $\|\cdot\|_{*}$
$\rangle\langle\cdot, \cdot\rangle$ the duality pairing between X^{*} and X

Setting

Let
> be a real Banach space with norm $\|\cdot\|$
$>X^{*}$ its topological dual with norm $\|\cdot\|_{*}$
$\rangle\langle\cdot, \cdot\rangle$ the duality pairing between X^{*} and X

From now on

> X and X^{*} will be equipped by the norm topology and the weak* topology, respectively

Adjusted contour set

Let \succ be a preference relation and $x \in X$

$$
\begin{array}{r}
S_{\succ}^{a}(x)= \begin{cases}B\left(U(x), \rho_{x}\right) \cap L^{c}(x) & \text { if } U(x) \neq \emptyset \\
L^{c}(x) & \text { if } U(x)=\emptyset\end{cases} \\
U(x)=\{y \in X: y \succ x\} \quad \subseteq \quad L^{c}(x)=\{y \in X: y \succeq x\}
\end{array}
$$

Adjusted contour set

Let \succ be a preference relation and $x \in X$

$$
\left.\begin{array}{c}
S_{\succ}^{a}(x)= \begin{cases}B\left(U(x), \rho_{x}\right) \cap L^{c}(x) & \text { if } U(x) \neq \emptyset \\
L^{c}(x) & \text { if } U(x)=\emptyset\end{cases} \\
U(x)=\{y \in X: y \succ x\} \subseteq \quad L^{c}(x)=\{y \in X: y \succeq x\}
\end{array}\right\}
$$

Adjusted contour set

Let \succ be a preference relation and $x \in X$

$$
S_{\succ}^{a}(x)= \begin{cases}B\left(U(x), \rho_{x}\right) \cap L^{c}(x) & \text { if } U(x) \neq \emptyset \\ L^{c}(x) & \text { if } U(x)=\emptyset\end{cases}
$$

$$
\begin{aligned}
& U(x)=\{y \in X: y \succ x\} \quad \subseteq \quad L^{c}(x)=\{y \in X: y \succeq x\} \\
& \rho_{x}=\operatorname{dist}(x, U(x)) \quad B\left(U(x), \rho_{x}\right)=\left\{y \in X: \operatorname{dist}(y, U(x)) \leq \rho_{x}\right\}
\end{aligned}
$$

Basic facts
> $x \in S_{\succ}^{a}(x)$

Adjusted contour set

Let \succ be a preference relation and $x \in X$

$$
S_{\succ}^{a}(x)= \begin{cases}B\left(U(x), \rho_{x}\right) \cap L^{c}(x) & \text { if } U(x) \neq \emptyset \\ L^{c}(x) & \text { if } U(x)=\emptyset\end{cases}
$$

$U(x)=\{y \in X: y \succ x\} \quad \subseteq \quad L^{c}(x)=\{y \in X: y \succeq x\}$
$\rho_{X}=\operatorname{dist}(x, U(x)) \quad B\left(U(x), \rho_{X}\right)=\left\{y \in X: \operatorname{dist}(y, U(x)) \leq \rho_{x}\right\}$
Basic facts
$\Rightarrow x \in S_{\succ}^{a}(x)$
$\rangle(x) \neq \emptyset \quad \Rightarrow \quad x \notin \operatorname{int} S_{\succ}^{a}(x)$

Adjusted contour set

Let \succ be a preference relation and $x \in X$

$$
S_{\succ}^{a}(x)= \begin{cases}B\left(U(x), \rho_{x}\right) \cap L^{c}(x) & \text { if } U(x) \neq \emptyset \\ L^{c}(x) & \text { if } U(x)=\emptyset\end{cases}
$$

$$
\begin{aligned}
& U(x)=\{y \in X: y \succ x\} \quad \subseteq \quad L^{c}(x)=\{y \in X: y \succeq x\} \\
& \rho_{X}=\operatorname{dist}(x, U(x)) \quad B\left(U(x), \rho_{X}\right)=\left\{y \in X: \operatorname{dist}(y, U(x)) \leq \rho_{x}\right\}
\end{aligned}
$$

Basic facts
$x \in S_{\succ}^{a}(x)$
> $U(x) \neq \emptyset \quad \Rightarrow \quad x \notin \operatorname{int} S_{\succ}^{a}(x)$
$\rangle(x) \subseteq S_{\succ}^{a}(x) \subseteq L^{c}(x)$

Adjusted contour set

Let \succ be a preference relation and $x \in X$

$$
S_{\succ}^{a}(x)= \begin{cases}B\left(U(x), \rho_{x}\right) \cap L^{c}(x) & \text { if } U(x) \neq \emptyset \\ L^{c}(x) & \text { if } U(x)=\emptyset\end{cases}
$$

$$
\begin{aligned}
& U(x)=\{y \in X: y \succ x\} \quad \subseteq \quad L^{c}(x)=\{y \in X: y \succeq x\} \\
& \rho_{X}=\operatorname{dist}(x, U(x)) \quad B\left(U(x), \rho_{X}\right)=\left\{y \in X: \operatorname{dist}(y, U(x)) \leq \rho_{x}\right\}
\end{aligned}
$$

Basic facts
$\Rightarrow x \in S_{\succ}^{a}(x)$
$\geqslant U(x) \neq \emptyset \quad \Rightarrow \quad x \notin \operatorname{int} S_{\succ}^{a}(x)$
$>U(x) \subseteq S_{\succ}^{a}(x) \subseteq L^{c}(x)$
$>\succ$ convex $\Rightarrow S_{\succ}^{a}(x)$ convex

Adjusted contour set

Let \succ be a preference relation and $x \in X$

$$
S_{\succ}^{a}(x)= \begin{cases}B\left(U(x), \rho_{x}\right) \cap L^{c}(x) & \text { if } U(x) \neq \emptyset \Longleftrightarrow x \notin \operatorname{argmax} \\ L^{c}(x) & \text { if } U(x)=\emptyset \Longleftrightarrow x \in \operatorname{argmax}\end{cases}
$$

$U(x)=\{y \in X: y \succ x\} \quad \subseteq \quad L^{c}(x)=\{y \in X: y \succeq x\}$
$\rho_{X}=\operatorname{dist}(x, U(x)) \quad B\left(U(x), \rho_{X}\right)=\left\{y \in X: \operatorname{dist}(y, U(x)) \leq \rho_{x}\right\}$
Basic facts
$\Rightarrow x \in S_{\succ}^{a}(x)$
$\rangle(x) \neq \emptyset \quad \Rightarrow \quad x \notin \operatorname{int} S_{\succ}^{a}(x)$
$>U(x) \subseteq S_{\succ}^{a}(x) \subseteq L^{c}(x)$
$\rangle \succ$ convex $\Rightarrow S_{\succ}^{a}(x)$ convex
$\rangle \succ$ wusc solid \Rightarrow argmax closed

Adjusted normal cone operator

To the preference relation \succ we associate the map $N_{\succ}^{a}: X \rightrightarrows X^{*}$ defined by

$$
N_{\succ}^{a}(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, y-x\right\rangle \leq 0, \forall y \in S_{\succ}^{a}(x)\right\}
$$

Adjusted normal cone operator

To the preference relation \succ we associate the map $N_{\succ}^{a}: X \rightrightarrows X^{*}$ defined by

$$
N_{\succ}^{a}(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, y-x\right\rangle \leq 0, \forall y \in S_{\succ}^{a}(x)\right\}
$$

Basic facts
> $N_{\succ}^{a}(x)$ nonempty closed convex cone

Adjusted normal cone operator

To the preference relation \succ we associate the map $N_{\succ}^{a}: X \rightrightarrows X^{*}$ defined by

$$
N_{\succ}^{a}(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, y-x\right\rangle \leq 0, \forall y \in S_{\succ}^{a}(x)\right\}
$$

Basic facts
> $N_{\succ}^{a}(x)$ nonempty closed convex cone
$>\succ$ solid $\quad \Rightarrow \quad N_{\succ}^{a}(x)$ pointed cone $\quad \forall x \notin \operatorname{argmax}$

Adjusted normal cone operator

To the preference relation \succ we associate the map $N_{\succ}^{a}: X \rightrightarrows X^{*}$ defined by

$$
N_{\succ}^{a}(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, y-x\right\rangle \leq 0, \forall y \in S_{\succ}^{a}(x)\right\}
$$

Basic facts
$>N_{\succ}^{a}(x)$ nonempty closed convex cone
$\rangle \succ$ solid $\quad \Rightarrow \quad N_{\succ}^{a}(x)$ pointed cone $\quad \forall x \notin \operatorname{argmax}$
$>\succ$ solid convex $\quad \Rightarrow \quad N_{\succ}^{a}(x) \backslash\{0\} \neq \emptyset \quad \forall x \notin \operatorname{argmax}$

Adjusted normal cone operator

To the preference relation \succ we associate the map $N_{\succ}^{a}: X \rightrightarrows X^{*}$ defined by

$$
N_{\succ}^{a}(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, y-x\right\rangle \leq 0, \forall y \in S_{\succ}^{a}(x)\right\}
$$

Basic facts
$>N_{\succ}^{a}(x)$ nonempty closed convex cone
$>\succ$ solid $\Rightarrow N_{\succ}^{a}(x)$ pointed cone $\forall x \notin \operatorname{argmax}$
$\rangle \succ$ solid convex $\Rightarrow N_{\succ}^{a}(x) \backslash\{0\} \neq \emptyset \quad \forall x \notin \operatorname{argmax}$
$\rangle u$ represents $\succ \Rightarrow N_{\succ}^{a}(x)=N_{u}^{a}(x)$ as defined in [3]
[3] Aussel \& Hadjisavvas: Adjusted sublevel sets, normal operator, and quasi-convex
programming. SIAM J. Optim. 16 (2005) 358-367

Continuity of set-valued maps

Let $\Phi: X \rightrightarrows Y$ be a set-valued map with Y Hausdorff
ϕ is closed if

$$
\operatorname{gph} \Phi=\{(x, y) \in X \times Y: y \in \Phi(x)\} \quad \text { is closed in } X \times Y
$$

Continuity of set-valued maps

Let $\Phi: X \rightrightarrows Y$ be a set-valued map with Y Hausdorff
> is closed if

$$
\operatorname{gph} \Phi=\{(x, y) \in X \times Y: y \in \Phi(x)\} \quad \text { is closed in } X \times Y
$$

$\phi \Phi$ is lower semicontinuous if for each open set $\Omega \subseteq Y$ the lower inverse image

$$
\Phi^{\prime}(\Omega)=\{x \in X: \Phi(x) \cap \Omega \neq \emptyset\} \quad \text { is open in } X
$$

Continuity of set-valued maps

Let $\Phi: X \rightrightarrows Y$ be a set-valued map with Y Hausdorff
\rangle is closed if

$$
\operatorname{gph} \Phi=\{(x, y) \in X \times Y: y \in \Phi(x)\} \quad \text { is closed in } X \times Y
$$

$\phi \Phi$ is lower semicontinuous if for each open set $\Omega \subseteq Y$ the lower inverse image

$$
\Phi^{\prime}(\Omega)=\{x \in X: \Phi(x) \cap \Omega \neq \emptyset\} \quad \text { is open in } X
$$

ϕ is upper semicontinuous if for each open set $\Omega \subseteq Y$ the upper inverse image

$$
\Phi^{u}(\Omega)=\{x \in X: \Phi(x) \subseteq \Omega\} \quad \text { is open in } X
$$

Continuity of set-valued maps

Let $\Phi: X \rightrightarrows Y$ be a set-valued map with Y Hausdorff
> is closed if

$$
\operatorname{gph} \Phi=\{(x, y) \in X \times Y: y \in \Phi(x)\} \quad \text { is closed in } X \times Y
$$

$\phi \Phi$ is lower semicontinuous if for each open set $\Omega \subseteq Y$ the lower inverse image

$$
\Phi^{\prime}(\Omega)=\{x \in X: \Phi(x) \cap \Omega \neq \emptyset\} \quad \text { is open in } X
$$

ϕ is upper semicontinuous if for each open set $\Omega \subseteq Y$ the upper inverse image

$$
\Phi^{u}(\Omega)=\{x \in X: \Phi(x) \subseteq \Omega\} \quad \text { is open in } X
$$

δ if Φ is compact, that is maps X into a compact subset of Y then Φ is closed $\Leftrightarrow \Phi$ is upper semicontinuous and closed-valued

Upper semicontinuity of N^{a}

A subset K of X^{*} is a cone if
$\Rightarrow t x^{*} \in K$, for any $x^{*} \in K$ and $t \geq 0$

Upper semicontinuity of N^{a}

A subset K of X^{*} is a cone if
$\Rightarrow t x^{*} \in K$, for any $x^{*} \in K$ and $t \geq 0$
A convex subset A of K is a base of K if

Upper semicontinuity of N^{a}

A subset K of X^{*} is a cone if
$\Rightarrow t x^{*} \in K$, for any $x^{*} \in K$ and $t \geq 0$
A convex subset A of K is a base of K if
> $K=\left\{t x^{*}: t \geq 0, x^{*} \in A\right\}$

Upper semicontinuity of N^{a}

A subset K of X^{*} is a cone if
$\Rightarrow t x^{*} \in K$, for any $x^{*} \in K$ and $t \geq 0$
A convex subset A of K is a base of K if
$\gamma=\left\{t x^{*}: t \geq 0, x^{*} \in A\right\}$
$0 \notin w^{*}-\mathrm{cl} A$

Upper semicontinuity of N^{a}

A subset K of X^{*} is a cone if
$\Rightarrow t x^{*} \in K$, for any $x^{*} \in K$ and $t \geq 0$
A convex subset A of K is a base of K if
$\rangle=\left\{t x^{*}: t \geq 0, x^{*} \in A\right\}$
> $0 \notin W^{*}-\mathrm{cl} A$

Problem

Find a map $A: X \rightrightarrows X^{*}$ such that
8 $A(x)$ is a weak*-compact base of $N_{\succ}^{a}(x)$ for each $x \notin \operatorname{argmax}$
> A is norm-to-weak* upper semicontinuous

Finite dimensional case

u is a quasiconcave representation of \succ

$$
\begin{gathered}
N_{u}^{a}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n} \\
S=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}
\end{gathered}
$$

Finite dimensional case

u is a quasiconcave representation of \succ

$$
\begin{gathered}
N_{u}^{a}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n} \\
S=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\} \\
N_{u}^{a}(x) \cap S
\end{gathered}
$$

Finite dimensional case

u is a quasiconcave representation of \succ

$$
\begin{gathered}
N_{u}^{a}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n} \\
S=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\} \\
N_{u}^{a}(x) \cap S \\
\text { со }\left(N_{u}^{a}(x) \cap S\right)
\end{gathered}
$$

Finite dimensional case

$$
A(x)= \begin{cases}\operatorname{co}\left(N_{u}^{a}(x) \cap S\right) & \text { if } x \notin \operatorname{argmax} u \\ B & \text { if } x \in \operatorname{argmax} u\end{cases}
$$

Finite dimensional case

Finite dimensional case

Finite dimensional case

$$
A(x)= \begin{cases}\operatorname{co}\left(N_{u}^{a}(x) \cap S\right) & \text { if } x \notin \operatorname{argmax} u \\ B & \text { if } x \in \operatorname{argmax} u\end{cases}
$$

1. u solid $\Rightarrow \quad \forall x \notin \operatorname{argmax} u$
$>N_{u}^{a}(x) \backslash\{0\} \neq \emptyset \quad \Rightarrow \quad A(x) \neq \emptyset$
> $N_{u}^{a}(x)$ pointed $\Rightarrow 0 \notin A(x)$

Finite dimensional case

$$
A(x)= \begin{cases}\operatorname{co}\left(N_{u}^{a}(x) \cap S\right) & \text { if } x \notin \operatorname{argmax} u \\ B & \text { if } x \in \operatorname{argmax} u\end{cases}
$$

1. u solid $\Rightarrow \quad \forall x \notin \operatorname{argmax} u$
$\Rightarrow N_{u}^{a}(x) \backslash\{0\} \neq \emptyset \quad \Rightarrow \quad A(x) \neq \emptyset$
$>N_{u}^{a}(x)$ pointed $\Rightarrow 0 \notin A(x)$
2. u upper semicontinuous \Rightarrow
> N_{u}^{a} closed

Finite dimensional case

$$
A(x)= \begin{cases}\operatorname{co}\left(N_{u}^{a}(x) \cap S\right) & \text { if } x \notin \operatorname{argmax} u \\ B & \text { if } x \in \operatorname{argmax} u\end{cases}
$$

1. u solid $\Rightarrow \quad \forall x \notin \operatorname{argmax} u$
$\Rightarrow N_{u}^{a}(x) \backslash\{0\} \neq \emptyset \quad \Rightarrow \quad A(x) \neq \emptyset$
$>N_{u}^{a}(x)$ pointed $\Rightarrow 0 \notin A(x)$
2. u upper semicontinuous \Rightarrow
> N_{u}^{a} closed $\Rightarrow A$ usc

Finite dimensional case

$A(x)= \begin{cases}\operatorname{co}\left(N_{u}^{a}(x) \cap S\right) & \text { if } x \notin \operatorname{argmax} u \\ B & \text { if } x \in \operatorname{argmax} u\end{cases}$

1. u solid $\Rightarrow \quad \forall x \notin \operatorname{argmax} u$
$>N_{u}^{a}(x) \backslash\{0\} \neq \emptyset \quad \Rightarrow \quad A(x) \neq \emptyset$
> $N_{u}^{a}(x)$ pointed $\Rightarrow 0 \notin A(x)$
2. u upper semicontinuous \Rightarrow
> N_{u}^{a} closed $\Rightarrow A$ usc
[4] Aussel \& Cotrina: Quasimonotone
quasivariational inequalities: existence results
and applications. J. Optim. Theory Appl. 158
(2013) 637-652

Upper semicontinuity of N^{a}

Theorem 3 in [5]

Let $u: X \rightarrow \mathbb{R}$ be quasiconcave upper semicontinuous and solid. Then
(i) N_{u}^{a} is norm-to-weak* closed at any $x \notin \operatorname{argmax} u$
(ii) there exists a norm-to-weak* upper semicontinuous set-valued map $A: X \rightrightarrows B^{*}$ such that $A(x)$ is a weak*-compact base of $N_{u}^{a}(x)$, for all $x \notin \operatorname{argmax} u$
[5] Castellani \& Giuli: A continuity result for the adjusted normal cone operator.
J. Optim. Theory Appl. 200 (2024) 858-873

Upper semicontinuity of N^{a}

Corollary 4.11 in [6]

Let \succ be a weak upper semicontinuous, solid, and convex preference relation on X. Then there exists a norm-to-weak* upper semicontinuous set-valued map A : $X \rightrightarrows B^{*}$ such that $A(x)$ is a weak*-compact base of $N_{\succsim}^{a}(x)$, for all $x \notin \operatorname{argmax}$
[6] Aussel, Giuli, Milasi, Scopelliti: A variational approach to weakly continuous relations in Banach spaces. Submitted

An application

> N finite family of players

An application

> N finite family of players
For each $i \in N$
X_{i} Banach strategy space

An application

N finite family of players
For each $i \in N$
> X_{i} Banach strategy space
$C_{i} \subseteq X_{i}$ nonempty domain, $C=\prod C_{i}$

An application

N finite family of players
For each $i \in N$
> X_{i} Banach strategy space
$C_{i} \subseteq X_{i}$ nonempty domain, $C=\prod C_{i}$
$>K_{i}: C \rightrightarrows C_{i}$ feasibility map, $K=\prod K_{i}$

An application

N finite family of players
For each $i \in N$
> X_{i} Banach strategy space
$C_{i} \subseteq X_{i}$ nonempty domain, $C=\prod C_{i}$
$K_{i}: C \rightrightarrows C_{i}$ feasibility map, $K=\prod K_{i}$
$>\succ_{i}$ preference relation on X_{i}

An application

$>N$ finite family of players
For each $i \in N$
> X_{i} Banach strategy space
$\Rightarrow C_{i} \subseteq X_{i}$ nonempty domain, $C=\prod C_{i}$
$>K_{i}: C \rightrightarrows C_{i}$ feasibility map, $K=\prod K_{i}$
$\Rightarrow \succ_{i}$ preference relation on X_{i}
$>U_{i}: X_{i} \rightrightarrows X_{i}$ preference map defined by $U_{i}\left(x_{i}\right)=\left\{y_{i} \in X_{i}: y_{i} \succ_{i} x_{i}\right\}$

An application

$>N$ finite family of players
For each $i \in N$
> X_{i} Banach strategy space
$C_{i} \subseteq X_{i}$ nonempty domain, $C=\prod C_{i}$
$>K_{i}: C \rightrightarrows C_{i}$ feasibility map, $K=\prod K_{i}$
\succ_{i} preference relation on X_{i}
$>U_{i}: X_{i} \rightrightarrows X_{i}$ preference map defined by $U_{i}\left(x_{i}\right)=\left\{y_{i} \in X_{i}: y_{i} \succ_{i} x_{i}\right\}$

Preference Equilibrium Problem

Find $x \in C$ such that $x \in K(x)$ and $U_{i}\left(x_{i}\right) \cap K_{i}(x)=\emptyset, \forall i \in N$

An application

Quasi Variational Inequality Problem

Find $x \in K(x)$ such that $\exists x^{*} \in \prod\left(N_{\succ_{i}}^{a}\left(x_{i}\right) \backslash\left\{0_{i}\right\}\right)$ with $\sum\left\langle x_{i}^{*}, y_{i}-x_{i}\right\rangle \geq 0, \forall y \in K(x)$

An application

Quasi Variational Inequality Problem

Find $x \in K(x)$ such that $\exists x^{*} \in \prod\left(N_{\succ_{i}}^{a}\left(x_{i}\right) \backslash\left\{0_{i}\right\}\right)$ with $\sum\left\langle x_{i}^{*}, y_{i}-x_{i}\right\rangle \geq 0, \forall y \in K(x)$

Proposition 5.6 in [6]

For each $i \in N$, let \succ_{i} be a convex preference relation on X_{i} which is sub-boundarily constant on C_{i}. Then, any solution of the QVI is a preference equilibrium

An application

Quasi Variational Inequality Problem

Find $x \in K(x)$ such that $\exists x^{*} \in \prod\left(N_{\succ_{i}}^{a}\left(x_{i}\right) \backslash\left\{0_{i}\right\}\right)$ with $\sum\left\langle x_{i}^{*}, y_{i}-x_{i}\right\rangle \geq 0, \forall y \in K(x)$

Proposition 5.6 in [6]

For each $i \in N$, let \succ_{i} be a convex preference relation on X_{i} which is sub-boundarily constant on C_{i}. Then, any solution of the QVI is a preference equilibrium

* A preference relation \succ on X is sub-boundarily constant on $C \subseteq X$ if, for any $x, y \in C$

$$
y \in U(x) \Rightarrow[y, x) \cap \operatorname{int} S_{\succ}^{a}(x) \neq \emptyset
$$

An application

Quasi Variational Inequality Problem

Find $x \in K(x)$ such that $\exists x^{*} \in \prod\left(N_{\succ_{i}}^{a}\left(x_{i}\right) \backslash\left\{0_{i}\right\}\right)$ with $\sum\left\langle x_{i}^{*}, y_{i}-x_{i}\right\rangle \geq 0, \forall y \in K(x)$

Proposition 5.6 in [6]

For each $i \in N$, let \succ_{i} be a convex preference relation on X_{i} which is sub-boundarily constant on C_{i}. Then, any solution of the QVI is a preference equilibrium

* A preference relation \succ on X is sub-boundarily constant on $C \subseteq X$ if, for any $x, y \in C$

$$
y \in U(x) \Rightarrow[y, x) \cap \operatorname{int} S_{\succ}^{a}(x) \neq \emptyset
$$

* Any lower semicontinuous preference relation \succ is sub-boundarily constant

Existence result

Theorem 5.4 in [6]

For any $i \in N$, let
$C_{i} \subseteq X_{i}$ nonempty and convex
\succ_{i} weak upper semicontinuous solid convex preference relation on X_{i}
\succ_{i} sub-boundarily constant on C_{i}
. K_{i} lower semicontinuous compact with nonempty values in $\mathcal{D}\left(X_{i}\right)$ and fix K closed

Then there exists a preference equilibrium

Bibliography

[1] Morgan \& Scalzo: Discontinuous but well-posed optimization problems. SIAM J. Optim. 17 (2006) 861-870
[2] Campbell \& Walker: Maximal elements of weakly continuous relations. J. Econom. Theory 50 (1990) 459-464
[3] Aussel \& Hadjisavvas: Adjusted sublevel sets, normal operator, and quasi-convex programming. SIAM J. Optim. 16 (2005) 358-367
[4] Aussel \& Cotrina: Quasimonotone quasivariational inequalities: existence results and applications. J. Optim. Theory Appl. 158 (2013) 637-652
[5] Castellani \& Giuli: A continuity result for the adjusted normal cone operator. J. Optim. Theory Appl. 200 (2024) 858-873
[6] Aussel, Giuli, Milasi, Scopelliti: A variational approach to weakly continuous relations in Banach spaces. Submitted

