Closed convex sets that are both Motzkin decomposable and generalized Minkowski sets

Juan Enrique Martínez-Legaz (UAB, Spain) Cornel Pintea (Babeș-Bolyai University, Romania)

Variational Analysis and Optimization II

Milan, May 30, 2024

OUTLINE

- MOTZKIN DECOMPOSABLE SETS
- GENERALIZED MINKOWSKI SETS
- MdgM SETS AND THEIR CHARACTERIZATIONS
- FIXED POINT TYPE THEOREMS ON MdgM SETS
- SOME REFERENCES

MOTZKIN DECOMPOSABLE SETS

 $\emptyset \neq F \subset \mathbb{R}^n$ is called *Motzkin decomposable* if there exist a compact convex set Cand a closed convex cone Dsuch that F = C + D.

(C, D) is a Motzkin decomposition of Fwith compact and conic components C and D, respectively.

$$D = \mathbf{0}^+ F := \{ d \in \mathbb{R}^n : d + F \subset F \}$$

 $Q(F) := \operatorname{cl}\operatorname{conv}\operatorname{extr}\left(F \cap (\operatorname{lin} F)^{\perp}\right)$

If F contains no lines, then $Q(F) = \operatorname{cl}\operatorname{conv}\operatorname{extr} F$.

THEOREM

Let F be a nonempty closed convex set.

Then

(i) F is Motzkin decomposable

if and only if

$$extr(F \cap (\lim F)^{\perp})$$
 is bounded.
In this case.

Q(F) is a compact component of F.

(ii) If F is a Motzkin decomposable set without lines, then Q(F) is the smallest compact component of F.

Example: $F := \left\{ (x, y) \in \mathbb{R}^2 : y \ge x^2 \right\}$ $\operatorname{extr} \left(F \cap (\operatorname{lin} F)^{\perp} \right) = \operatorname{bd} F$

COROLLARY

Every face of a Motzkin decomposable set is Motzkin decomposable, too.

THEOREM

Let F be a nonempty closed convex set. Let $K := (0^+F) \cap (\lim F)^{\perp}$, and

$$M(F) := \left\{ x \in F \cap (\lim F)^{\perp} : (x - K) \cap F = \{x\} \right\}.$$

Then the following statements hold:

(i) F is Motzkin decomposable if and only if M(F) is bounded. In this case, cl conv M(F) is a compact component of F.
(ii) If F is Motzkin decomposable and contains no lines, then cl conv M(F) = Q(F). THEOREM.

Let $C \subseteq \mathbb{R}^n$ be a nonempty closed convex set. Then

C is Motzkin decomposable

if and only if

 $C \cap (\lim F)^{\perp}$ is Motzkin decomposable.

In this case,

every compact component of $C \cap (\lim F)^{\perp}$

is a compact component of C, too.

A halfline L is an *asymptote* of F if $F \cap L = \emptyset$ and d(F, L) = 0.

If $M \subseteq \mathbb{R}^2$ is Motzkin decomposable, then M has no asymptote.

Example: $F := \left\{ (x_1, ..., x_n) \in \mathbb{R}^n : x_n \ge \left(\sum_{i=1}^{n-1} x_i^2 \right)^{\frac{1}{2}} \right\}$ F is Motzkin decomposable.

The intersection of F with $H : x_2 = \cdots = x_{n-1} = 1$ has two asymptotes:

the intersections of $x_n = x_1$ and $x_n = -x_1$ with H. $F \cap H$ is not Motzkin decomposable.

PROPOSITION

Let A be a closed convex set and B and A + B be Motzkin decomposable sets such that $0^+B \subset \lim A$. Then A is Motzkin decomposable.

Example: $A := \left\{ (x, y) \in \mathbb{R}^2 : y \ge x^2 \right\} \qquad B := \left\{ (x, y) \in \mathbb{R}^2 : y = \mathbf{0} \right\}$

LEMMA

Let A and B be nonempty sets. If A is convex, B is compact and A + B is closed, then A is closed.

COROLLARY

Let A and B be convex sets such that

B is bounded and A + B is Motzkin decomposable.

Then A is Motzkin decomposable, too.

PROPOSITION. Let $C_i \subseteq \mathbb{R}^{n_i}$ (i = 1, ..., m) be nonempty closed convex sets. Then the Cartesian product $\prod_{i=1}^m C_i$ is Motzkin decomposable

if and only if

 C_i is Motzkin decomposable for every i = 1, ..., m.

GENERALIZED MINKOWSKI SETS

A nonempty closed convex set $C\subseteq \mathbb{R}^n$ is called a

generalized Minkowski set

if it is the convex hull of its minimal faces.

THEOREM. Let $C \subseteq \mathbb{R}^n$ be a nonempty closed convex set and $U \subseteq \mathbb{R}^n$ be a supplementary subspace to lin C. Then, C is a generalized Minkowski set

if and only if

 $C \cap U$ is a Minkowski set. In particular, C is a generalized Minkowski set

if and only if

 $C \cap (\lim C)^{\perp}$ is a Minkowski set.

THEOREM.

Let $C \subseteq \mathbb{R}^n$ be a nonempty closed convex set. Then, C is a generalized Minkowski set

if and only if

there exist a Minkowski set $C_0 \subseteq \mathbb{R}^n$, a supplementary subspace $V \subseteq \mathbb{R}^n$ to aff C_0 – aff C_0 and a linear subspace $L \subseteq V$ such that

$$C = C_0 + L.$$

In particular, C is a generalized Minkowski set

if and only if

there exist a Minkowski set $C_0 \subseteq \mathbb{R}^n$ and a linear subspace $L \subseteq (\text{aff } C_0 - \text{aff } C_0)^{\perp}$ such that

$$C = C_0 + L.$$

Example: $A := \left\{ (x, y) \in \mathbb{R}^2 : y \ge x^2 \right\} \qquad B := \left\{ (x, y) \in \mathbb{R}^2 : y = \mathbf{0} \right\}$

V subspace of \mathbb{R}^n

 $S \subseteq \mathbb{R}^n$ is said to be *V*-invariant if S + V = S.

PROPOSITION.

For a nonempty closed convex set $C \subseteq \mathbb{R}^n$,

the following statements are equivalent:

- 1. C is generalized Minkowski.
- 2. There exists a smallest (lin C)-invariant set $S \subseteq C$ such that conv S = C.
- 3. There exists a minimal (lin C)-invariant set $S \subseteq C$ such that conv S = C.

PROPOSITION.

Every face of a generalized *Minkowski* set is a generalized *Minkowski* set, too.

PROPOSITION. Let $C_i \subseteq \mathbb{R}^{n_i}$ (i = 1, ..., m) be nonempty closed convex sets. Then the Cartesian product $\prod_{i=1}^m C_i$ is a generalized Minkowski set if and only if

 C_i is a generalized Minkowski set for every i = 1, ..., m.

MdgM SETS AND THEIR CHARACTERIZATIONS

- A nonempty closed convex set $C \subseteq \mathbb{R}^n$ is
- a MdgM set
- if it is both Motzkin decomposable and
- a generalized Minkowski set.

THEOREM.

Let $C \subseteq \mathbb{R}^n$ be a nonempty closed convex set and $U \subseteq \mathbb{R}^n$ be a supplementary subspace to lin C. Then the following statements are equivalent:

- a) C is MdgM.
- b) $C \cap U$ is compact.
- c) There exist a compact (convex) set $K \subseteq \mathbb{R}^n$ and a linear subspace $L \subseteq \mathbb{R}^n$ such that

$$C = K + L.$$

- d) The total normal cone $N_C(\mathbb{R}^n)$ is a linear subspace.
- e) The barrier cone bar(C) is a linear subspace.
- f) The recession cone $0^+(C)$ is a linear subspace.

COROLLARY.

Let $C \subseteq \mathbb{R}^n$ be a nonempty closed convex set. Then the following statements are equivalent: a) C is MdgM.

b)
$$N_C(\mathbb{R}^n) = (\lim C)^{\perp}$$
.
c) $N_C(\mathbb{R}^n) = (0^+(C))^{\perp}$.
d) $bar(C) = (0^+(C))^{\perp}$.
e) $bar(C) = (\lim C)^{\perp}$.

PROPOSITION.

If the sets $C_i \subseteq \mathbb{R}^n$ (i = 1, ..., m) are MdgM, then their sum $\sum_{i=1}^m C_i$ is MdgM, too.

PROPOSITION. Let $C_i \subseteq \mathbb{R}^{n_i}$ (i = 1, ..., m) be nonempty closed convex sets. Then the Cartesian product $\prod_{i=1}^m C_i$ is a *MdgM* set if and only if C_i is a *MdgM* set for every i = 1, ..., m.

FIXED POINT TYPE THEOREMS ON MdgM SETS

 $C\subseteq \mathbb{R}^n$ nonempty closed convex set, $S\subseteq C$

$$x \in S$$
 is a *lin-fixed point* of $F : S \rightrightarrows C$
(of $f : S \longrightarrow C$)
if $x \in F(x) + \text{lin } C$
(if $x \in f(x) + \text{lin } C$, respectively).

```
x \in S is a lin-fixed point of F : S \rightrightarrows C
(of f : S \longrightarrow C)
if and only if
[x] \in [F(x)]
(if and only if [x] = [f(x)], respectively),
with [z] = z + \lim C
(the equivalence class of z \in C in C/\lim C)
and [F(x)] := \{[y] : y \in F(x)\}.
```

This is **not** equivalent to saying that [x] is a fixed point for a certain self map on the quotient space $\mathbb{R}^n/\text{lin } C$. THEOREM. Let $C \subseteq \mathbb{R}^n$ be a MdgM set and $U \subseteq \mathbb{R}^n$ be a supplementary subspace to lin C. If $F: C \cap U \rightrightarrows C$ has a closed graph and has nonempty, convex and compact images, then it has a lin-fixed point.

COROLLARY.

Let $C \subseteq \mathbb{R}^n$ be a MdgM set and $U \subseteq \mathbb{R}^n$ be a supplementary subspace to lin C. If $f: C \cap U \longrightarrow C$ is continuous, then it has a lin-fixed point.

n it has a lin-fixed point.

COROLLARY.

Let $C \subseteq \mathbb{R}^n$ be a non compact MdgM set and $U \subseteq \mathbb{R}^n$ be a supplementary subspace to lin C. If $F: C \cap U \rightrightarrows C$ has a closed graph and has nonempty, convex and compact images, then it has infinitely many lin-fixed points.

COROLLARY.

Let $C \subseteq \mathbb{R}^n$ be a non compact MdgM set and $U \subseteq \mathbb{R}^n$ be a supplementary subspace to lin C. If $f: C \cap U \longrightarrow C$ is continuous,

then it has infinitely many lin-fixed points.

PROPOSITION.

Let $C \subseteq \mathbb{R}^n$ be a closed convex set and $f : C \longrightarrow C$. For $x \in C$, the following statements are equivalent: a) $f^k(x) \in x + \text{lin } C$ for every $k \ge 1$ b) $f^k(x)$ is a lin-fixed point of f for every $k \ge 0$. (with the convention that f^0 is the identity).

 $C \subseteq \mathbb{R}^n$ nonempty closed convex set. $x \in C$ is a strongly lin-fixed point of $f : C \longrightarrow C$ if it satisfies the equivalent conditions a) and b) of the preceding proposition.

PROPOSITION.

Let $C \subseteq \mathbb{R}^n$ be a nonempty closed convex set and $f: C \longrightarrow C$ be such that

$$f(x + \lim C) \subseteq f(x) + \lim C, \ \forall x \in C.$$

Then every lin-fixed point of f is a strongly lin-fixed point of f.

 $\begin{array}{l} U \text{ supplementary subspace to } \lim C \\ g: C \cap U \to C, \qquad \tau: C \to \mathbb{R}, \qquad h: \lim C \to \lim C \\ \mathsf{f=g} \circ (p_U)_{|C} + \tau \cdot \left(h \circ (p_{\mathsf{lin } C})_{|C}\right) \end{array}$

PROPOSITION.

Let $C \subseteq \mathbb{R}^n$ be a nonempty closed convex set, $f: C \longrightarrow C$, and $U \subseteq \mathbb{R}^n$ be a supplementary subspace to lin C. Then

$$f(x + \ln C) \subseteq f(x) + \ln C, \ \forall x \in C$$

if and only if

$$p_U \circ f \circ (p_U)_{|C} = p_U \circ f.$$

THEOREM.

Let $C \subseteq \mathbb{R}^n$ be a nonempty closed convex set and $f: C \longrightarrow C$ be such that $p_{\text{lin } C} \circ f$ is a contraction. Then, for every strongly lin-fixed point x of f, $(f^k(x))_k$ converges to a fixed point of f.

COROLLARY. Let $C \subseteq \mathbb{R}^n$ be a MdgM set and $f: C \longrightarrow C$ be a continuous mapping satisfying $f(x + \lim C) \subseteq f(x) + \lim C, \ \forall x \in C.$ and such that $p_{\lim C} \circ f$ is a contraction.

Then f has a fixed point.

SOME REFERENCES

Goberna, M.A.; González, E.; Martínez-Legaz, J.E.; Todorov, M.I.

Motzkin decomposition of closed convex sets.

J. Math. Anal. Appl. 364, No. 1, 209-221 (2010).

Goberna, M.A.; Martínez-Legaz, J.E.; Todorov, M.I. On Motzkin decomposable sets and functions. J. Math. Anal. Appl. 372 (2010), No. 2, 525–537.

Martínez-Legaz, J.E., Pintea, C. Closed convex sets of Minkowski type. J. Math. Anal. Appl. 444, No. 2, 1195-1202 (2016).

Martínez-Legaz, J.E.; Pintea, C. Closed convex sets of Motzkin, generalized Minkowski, and Pareto bordered types. Commun. Optim. Theory 2024 (2024) 2, 17 pp.

Martínez-Legaz, J.E.; Pintea, C. Closed convex sets that are both Motzkin decomposable and generalized Minkowski sets. J. Nonlinear Var. Anal. 8, No. 4, 571-579 (2024).