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MOTZKIN DECOMPOSABLE SETS

0 # F C R" is called Motzkin decomposable
if there exist a compact convex set C
and a closed convex cone D

such that F' = C + D.

(C, D) is a Motzkin decomposition of F
with compact and conic components C' and D,
respectively.

Q (F) :— cl conv extr (F N (Iin F)J-)

If F' contains no lines, then Q (F') = clconv extr F.



THEOREM
Let F' be a nonempty closed convex set.
Then
(i) F' is Motzkin decomposable
if and only if
extr (F N (lin F)J‘) is bounded.
In this case,
Q (F’) is a compact component of F.
(ii) If F'is a Motzkin decomposable set without lines,
then @ (F) is the smallest compact component of F.

Example:
F = {(:r;,y) cR?:y > az2}
extr (F'N (lin F)) =bd F

COROLLARY
Every face of a Motzkin decomposable set is Motzkin
decomposable, too.



THEOREM
Let F' be a nonempty closed convex set.
Let K = (0+F> N (lin )+, and

M(F):={z e Fn(inF)":(z - K)NF= {x}},

Then the following statements hold:
(i) F' is Motzkin decomposable

if and only if

M (F) is bounded.

In this case,

clconv M (F') is a compact component of F.
(ii) If I is Motzkin decomposable

and contains no lines,

then clconv M (F) = Q (F) .



THEOREM.
Let C' C R™ be a nonempty closed convex set.
Then
C' is Motzkin decomposable
if and only if
C N (lin F)* is Motzkin decomposable.
In this case,
every compact component of C' N (lin F)l
Is a compact component of C, too.



A halfline L is an asymptote of F' if
FNL=0and d(F,L)=0.

If M C R? is Motzkin decomposable,
then M has no asymptote.

Example:

1
F = {(331, ey ) ER™ 1 2y > (Z?;ll x%)i}
F'is Motzkin decomposable.
The intersection of F'with H : 2o =---=x,_1=1
has two asymptotes:
the intersections of zy, = 71 and xy, = —x1 with H.
F N H is not Motzkin decomposable.



PROPOSITION

Let A be a closed convex set
and B and A + B be Motzkin decomposable sets

such that 0B C lin A.
Then A is Motzkin decomposable.

Example:

A::{(az,y)ER2:yZa}2} B::{(a:,y)ER2:

LEMMA

Let A and B be nonempty sets.

If A is convex, B is compact and A + B is closed,
then A is closed.

COROLLARY
Let A and B be convex sets such that

B is bounded and A + B is Motzkin decomposable.

Then A is Motzkin decomposable, too.



PROPOSITION.
Let C; CR™ (¢ =1,...,m) be
nonempty closed convex sets.

m

Then the Cartesian product [[ C; is Motzkin decom-
1=1

posable

if and only if

C'; is Motzkin decomposable for every 1 = 1, ..., m.



GENERALIZED MINKOWSKI SETS

A nonempty closed convex set C' C R" is called a

generalized Minkowski set

if it is the convex hull of its minimal faces.

THEOREM.

Let C' C R™ be a nonempty closed convex set and
U C R™ be a supplementary subspace to lin C.
Then, C' is a generalized Minkowski set

if and only if

C' N U is a Minkowski set.
In particular, C is a generalized Minkowski set

if and only if

C N (lin C)+ is a Minkowski set.



THEOREM.
Let C C R™ be a nonempty closed convex set.
Then, C' is a generalized Minkowski set

if and only if

there exist a Minkowski set Cy C R",

a supplementary subspace V' C R" to aff Cy— aff Cj
and a linear subspace L C V

such that

C=Cpy+ L.

In particular, C is a generalized Minkowski set

if and only if

there exist a Minkowski set Cy C R"
and a linear subspace L C (aff Cy — aff C’O)J‘
such that

C=Cpy+ L.

Example:

A::{(:U,y)ER2:y2x2} B::{(:U,y)ER2:y:O}



V' subspace of R"
SC R" is said to be V-invariant if S+V = S.

PROPOSITION.

For a nonempty closed convex set C' C R",

the following statements are equivalent:

1. C is generalized Minkowski.

2. There exists a smallest (lin C')-invariant set S C C
such that conv S = C.

3. There exists a minimal (lin C')-invariant set S C C
such that conv S = C.

PROPOSITION.
Every face of a generalized Minkowski set
is a generalized Minkowski set, too.

PROPOSITION.
Let C; CR™ (¢ =1,...,m) be
nonempty closed convex sets.
m
Then the Cartesian product [] C; is a generalized

1=1
Minkowski set

if and only if
C); is a generalized Minkowski set for every: =1, ..., m.



MdgM SETS AND THEIR CHARACTERIZATIONS

A nonempty closed convex set C' C R" is
a MdgM set

if it is both Motzkin decomposable and

a generalized Minkowski set.

THEOREM.

Let C' C R™ be a nonempty closed convex set and

U C R™ be a supplementary subspace to lin C.

Then the following statements are equivalent:

a) C'is MdgM.

b) C NU is compact.

c) There exist a compact (convex) set K C R" and
a linear subspace L C R" such that

C =K+ L.

d) The total normal cone N (R™) is a linear
subspace.

e) The barrier cone bar (C) is a linear subspace.

f) The recession cone 07 (C) is a linear subspace.



COROLLARY.
Let C' C R™ be a nonempty closed convex set.
Then the following statements are equivalent:
a) C'is MdgM.
b) N¢ (R™) = (lin C)*.
1
c) N¢ (R™) = (0% (C)) ™.
1
d) bar (C) = (07 (C)) ™.
e) bar (C) = (lin C)*.

PROPOSITION.

If the sets C; C R"™ (¢ = 1,...,m) are MdgM,
m

then their sum > C; is MdgM, too.
=1

7

PROPOSITION.

Let C; CR™ (¢ =1,...,m) be

nonempty closed convex sets.

Then the Cartesian product ﬁ C; is a MdgM set

=1

if and only if
C; is a MdgM set for every 1 =1, ..., m.



FIXED POINT TYPE THEOREMS ON MdgM
SETS

C' C R™ nonempty closed convex set, S C C

x € S is a lin-fixed point of F': S = C
(of f: S — C)

if 2 € F (x) +lin C

(if x € f(x)+ lin C, respectively).

x € S is a lin-fixed point of F': S = C

(of f: S5 — C)

if and only if

[z] € [F ()]

(if and only if [z] = [f (x)], respectively),
with [z] =z + lin C

(the equivalence class of z € C' in C/lin C)
and [F'(z)] := {[y] - y € F' ()}

This is not equivalent to saying that [x] is a fixed point
for a certain self map on the quotient space R™/lin C.



THEOREM.

Let C C R™ be a MdgM set and

U C R" be a supplementary subspace to lin C.
If F': C NU = C has a closed graph and

has nonempty, convex and compact images,
then it has a lin-fixed point.

COROLLARY.

Let C' C R™ be a MdgM set and

U C R" be a supplementary subspace to lin C.
If f:C NU — C'is continuous,

then it has a lin-fixed point.

n it has a lin-fixed point.

COROLLARY.

Let C C R™ be a non compact MdgM set and
U C R" be a supplementary subspace to lin C.
If F': C'NU = C has a closed graph and

has nonempty, convex and compact images,
then it has infinitely many lin-fixed points.



COROLLARY.

Let C' C R™ be a non compact MdgM set and
U C R™ be a supplementary subspace to lin C.
If f:C NU — C'is continuous,

then it has infinitely many lin-fixed points.

PROPOSITION.

Let C' C R"™ be a closed convex set and f : C — C.

For x € C, the following statements are equivalent:

a) f¥(z) € z+lin C for every k > 1

b) f* (z) is a lin-fixed point of f for every k > 0.
(with the convention that £ is the identity).

C' C R™ nonempty closed convex set.

x € C is a strongly lin-fixed point of f : C — C

if it satisfies the equivalent conditions a) and b) of the
preceding proposition.



PROPOSITION.
Let C' C R™ be a nonempty closed convex set and

f : C"— (' be such that
f(x+1linC) C f(x)+lin C, Vx € C.

Then every lin-fixed point of f
is a strongly lin-fixed point of f.

U supplementary subspace to lin C
g: CNU — C, 7:(C — R, h:linC —linC

f=go (pU)|C + 7 - (h ° (Plin C’)|C)

PROPOSITION.

Let C' C R™ be a nonempty closed convex set,
f:C — C, and

U C R"™ be a supplementary subspace to lin C.
Then

f(x+linC)C f(x)+lin C, Vx € C
if and only if

pue folpu)c=pruelf



THEOREM.

Let C C R"™ be a nonempty closed convex set and
f : C — C be such that pj;, ¢ o f is a contraction.
Then, for every strongly lin-fixed point = of f,

(fk (w))k converges to a fixed point of f.

COROLLARY.
Let C' C R"™ be a MdgM set and
f : C"— (' be a continuous mapping satisfying

f(x+1lin C) C f(x)+lin C, Vx € C.

and such that pj;, ¢ o f is a contraction.
Then f has a fixed point.
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