Uniformly convex sets and extendability of Lipschitz quasiconvex functions Joint work with Carlo A. De Bernardi

Libor Veselý

Università degli Studi di Milano Libor.Vesely@unimi.it

"Infinite-dim. convexity and geometry of Banach spaces" Milano, Università Cattolica, November 9, 2023

・ロト ・ 御 ト ・ 道 ト ・ 道 ト

Research of the speaker has been supported by:

INdAM - Istituto Nazionale di Alta Matematica (GNAMPA, Research Project 2020),

Università degli Studi di Milano (Research Support Plans PSR 2020, 2021).

イロト イポト イヨト イヨト 二日

Let A be a convex set in a (real) vector space, and $f: A \to \mathbb{R} \cup \{+\infty\}.$

L. Veselý UC sets and extendability of Lipschitz qc. functions

(4 同 ト 4 ヨ ト 4 ヨ ト

Э

nar

Let A be a convex set in a (real) vector space, and $f: A \to \mathbb{R} \cup \{+\infty\}.$

•
$$f$$
 is convex if $\forall x, y \in A$, $\forall t \in (0, 1)$,
 $f((1-t)x + ty) \leq (1-t)f(x) + tf(y)$.

(4 同 ト 4 ヨ ト 4 ヨ ト

Э

nar

Let A be a convex set in a (real) vector space, and $f: A \to \mathbb{R} \cup \{+\infty\}.$

•
$$f$$
 is convex if $\forall x, y \in A$, $\forall t \in (0, 1)$,
 $f((1-t)x + ty) \leq (1-t)f(x) + tf(y)$.

• f is quasiconvex if $\forall x, y \in A$, $\forall t \in (0, 1)$, $f((1 - t)x + ty) \leq \max\{f(x), f(y)\}.$

< 同 > < 三 > < 三 >

э

Let A be a convex set in a (real) vector space, and $f: A \to \mathbb{R} \cup \{+\infty\}.$

•
$$f$$
 is convex if $\forall x, y \in A$, $\forall t \in (0, 1)$,
 $f((1-t)x + ty) \leq (1-t)f(x) + tf(y)$.

• f is quasiconvex if $\forall x, y \in A$, $\forall t \in (0, 1)$, $f((1 - t)x + ty) \leq \max\{f(x), f(y)\}.$

It is clear that: f is quasiconvex iff all its sub-level sets $[f \le \alpha]$, $\alpha \in \mathbb{R}$, are convex

伺下 イヨト イヨト

Let A be a convex set in a (real) vector space, and $f: A \to \mathbb{R} \cup \{+\infty\}.$

•
$$f$$
 is convex if $\forall x, y \in A$, $\forall t \in (0, 1)$,
 $f((1-t)x + ty) \leq (1-t)f(x) + tf(y)$.

• f is quasiconvex if $\forall x, y \in A$, $\forall t \in (0, 1)$, $f((1 - t)x + ty) \leq \max\{f(x), f(y)\}.$

It is clear that: f is quasiconvex iff all its sub-level sets $[f \le \alpha]$, $\alpha \in \mathbb{R}$, are convex iff all its strict sub-level sets $[f < \alpha]$, $\alpha \in \mathbb{R}$, are convex.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let A be a convex set in a (real) vector space, and $f: A \to \mathbb{R} \cup \{+\infty\}.$

•
$$f$$
 is convex if $\forall x, y \in A$, $\forall t \in (0, 1)$,
 $f((1-t)x + ty) \leq (1-t)f(x) + tf(y)$.

• f is quasiconvex if $\forall x, y \in A$, $\forall t \in (0, 1)$, $f((1 - t)x + ty) \leq \max\{f(x), f(y)\}.$

It is clear that: f is quasiconvex iff all its sub-level sets $[f \le \alpha]$, $\alpha \in \mathbb{R}$, are convex iff all its strict sub-level sets $[f < \alpha]$, $\alpha \in \mathbb{R}$, are convex. "Convex" implies "quasiconvex", but not vice versa (e.g., $f(x) = \sqrt{||x||}$ on a normed space).

| 4 同 ト 4 三 ト 4 三 ト

Quasiconvex functions are important in Mathematical programming, in Mathematical economics, and in various other areas of Mathematical analysis.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

SQA

Quasiconvex functions are important in Mathematical programming, in Mathematical economics, and in various other areas of Mathematical analysis.

A classical example of an application: X a reflexive Banach space (e.g., a Hilbert space), $C \subset X$ a closed convex set, $f: C \to \mathbb{R}$ continuous quasiconvex function. If f is <u>coercive</u> (i.e., $f(x) \to \infty$ as $x \in C$, $||x|| \to \infty$) then there exists min f(C).

(人間) トイヨト イヨト ニヨ

SOR

Lipschitz **convex** functions are always extendable

L. Veselý UC sets and extendability of Lipschitz qc. functions

<ロト <回ト < 注ト < 注ト -

Э

Let X be a normed space, $A \subset X$ a convex set, and $f : A \to \mathbb{R}$ an L-Lipschitz (i.e., with a Lipschitz constant $L \ge 0$) convex function.

L. Veselý UC sets and extendability of Lipschitz qc. functions

・ 同 ト ・ ヨ ト ・ ヨ ト

Let X be a normed space, $A \subset X$ a convex set, and $f : A \to \mathbb{R}$ an L-Lipschitz (i.e., with a Lipschitz constant $L \ge 0$) convex function. Then the formula

$$F(x) := \inf_{a \in A} \left\{ f(a) + L \| x - a \| \right\}, \quad x \in X,$$

< 同 > < 国 > < 国 >

Let X be a normed space, $A \subset X$ a convex set, and $f : A \to \mathbb{R}$ an L-Lipschitz (i.e., with a Lipschitz constant $L \ge 0$) convex function. Then the formula

$$F(x) := \inf_{a \in A} \left\{ f(a) + L \| x - a \| \right\}, \quad x \in X,$$

defines an L-Lipschitz convex extension of f to the whole X.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let X be a normed space, $A \subset X$ a convex set, and $f : A \to \mathbb{R}$ an L-Lipschitz (i.e., with a Lipschitz constant $L \ge 0$) convex function. Then the formula

$$F(x) := \inf_{a \in A} \left\{ f(a) + L \| x - a \| \right\}, \quad x \in X,$$

defines an L-Lipschitz convex extension of f to the whole X.

(Due to E.J. McShane, 1934, for X metric and without "convex".

・ 同 ト ・ ヨ ト ・ ヨ ト

Let X be a normed space, $A \subset X$ a convex set, and $f : A \to \mathbb{R}$ an L-Lipschitz (i.e., with a Lipschitz constant $L \ge 0$) convex function. Then the formula

$$F(x) := \inf_{a \in A} \left\{ f(a) + L \| x - a \| \right\}, \quad x \in X,$$

defines an L-Lipschitz convex extension of f to the whole X.

(Due to E.J. McShane, 1934, for X metric and without "convex". Independently, [a particular form of] the same formula appears as a footnote in a paper by H. Whitney, 1934. The convex case belongs essentially to the mathematical folklore.)

イロト イボト イヨト イヨト

Let $f: A \to \mathbb{R}$ be an *L*-Lipschitz quasiconvex function, where $A \subset X$ is a convex set.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Let $f: A \to \mathbb{R}$ be an *L*-Lipschitz quasiconvex function, where $A \subset X$ is a convex set.

• Unfortunately, McShane's extension formula does **not** necessarily give a quasiconvex function.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Let $f: A \to \mathbb{R}$ be an *L*-Lipschitz quasiconvex function, where $A \subset X$ is a convex set.

- Unfortunately, McShane's extension formula does **not** necessarily give a quasiconvex function.
- Maybe, the result is still true?

- 4 同 ト 4 回 ト - - 回

Let $f: A \to \mathbb{R}$ be an *L*-Lipschitz quasiconvex function, where $A \subset X$ is a convex set.

- Unfortunately, McShane's extension formula does **not** necessarily give a quasiconvex function.
- Maybe, the result is still true?
 In general, NO, not even for X = R², A = the unit disc. (But sometimes yes.)

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

Let $f: A \to \mathbb{R}$ be an *L*-Lipschitz quasiconvex function, where $A \subset X$ is a convex set.

- Unfortunately, McShane's extension formula does **not** necessarily give a quasiconvex function.
- Maybe, the result is still true?
 In general, NO, not even for X = R², A = the unit disc. (But sometimes yes.)
- If we cannot always get a *Lipschitz* quasiconvex extension, maybe there exists at least a <u>continuous</u> qc. extension?

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

~ ~ ~ ~

Let $f: A \to \mathbb{R}$ be an *L*-Lipschitz quasiconvex function, where $A \subset X$ is a convex set.

- Unfortunately, McShane's extension formula does **not** necessarily give a quasiconvex function.
- Maybe, the result is still true?
 In general, NO, not even for X = R², A = the unit disc. (But sometimes yes.)
- If we cannot always get a *Lipschitz* quasiconvex extension, maybe there exists at least a <u>continuous</u> qc. extension?
 Not always! It depends drastically on the shape (i.e., the geometric properties) of A.

イロト イポト イヨト イヨト 三日

Let $f: A \to \mathbb{R}$ be an *L*-Lipschitz quasiconvex function, where $A \subset X$ is a convex set.

- Unfortunately, McShane's extension formula does **not** necessarily give a quasiconvex function.
- Maybe, the result is still true?
 In general, NO, not even for X = R², A = the unit disc. (But sometimes yes.)
- If we cannot always get a *Lipschitz* quasiconvex extension, maybe there exists at least a <u>continuous</u> qc. extension?
 Not always! It depends drastically on the shape (i.e., the geometric properties) of A.

Let's observe that f can always be extended to an L-Lipschitz quasiconvex function to \overline{A} (by continuity).

イロト イポト イヨト イヨト 二日

In what follows, X is a (real) normed space of dimension ≥ 2 , and $A \subset X$ is a (nonempty) convex set.

< 同 > < 回 > < 回 >

SQC

In what follows, X is a (real) normed space of dimension ≥ 2 , and $A \subset X$ is a (nonempty) convex set.

Definition

An $\Omega(A)$ -family is a family of sets $\{D_{\alpha}\}_{\alpha \in \mathbb{R}}$ such that:

$$\alpha < \beta \implies \overline{D}_{\alpha}^{\mathcal{A}} \subset D_{\beta}; \qquad \bigcap_{\alpha \in \mathbb{R}} D_{\alpha} = \emptyset; \qquad \bigcup_{\alpha \in \mathbb{R}} D_{\alpha} = \mathcal{A}.$$

< 同 > < 回 > < 回 >

SQA

L. Veselý UC sets and extendability of Lipschitz qc. functions

Proposition

(a) [Easy, math. folklore.] If {D_α}_α be an Ω(A)-family of relatively open convex subsets of A, then the formula f(x) = sup{α ∈ ℝ : x ∉ D_α} defines a continuous (ℝ-valued) quasiconvex function on A such that

 $[f < \alpha] = \bigcup_{\beta < \alpha} D_{\beta}$ and $[f \le \alpha] = \bigcap_{\beta > \alpha} D_{\beta} \equiv \bigcap_{\beta > \alpha} \overline{D}_{\beta}^{A}$.

Proposition

(a) [Easy, math. folklore.] If {D_α}_α be an Ω(A)-family of relatively open convex subsets of A, then the formula f(x) = sup{α ∈ ℝ : x ∉ D_α} defines a continuous (ℝ-valued) quasiconvex function on A such that

$$[f < \alpha] = \bigcup_{\beta < \alpha} D_{\beta}$$
 and $[f \le \alpha] = \bigcap_{\beta > \alpha} D_{\beta} \equiv \bigcap_{\beta > \alpha} \overline{D}_{\beta}^{\mathcal{A}}$.

(b) [Trivial.] Vice-versa, if g is a continuous quasiconvex function on A, then the sets $D_{\alpha} := [g < \alpha] \ (\alpha \in \mathbb{R})$ form an $\Omega(A)$ -family of relatively open convex subsets of A. Moreover, if f is defined as in (a) then f = g.

Proposition

(a) [Easy, math. folklore.] If {D_α}_α be an Ω(A)-family of relatively open convex subsets of A, then the formula f(x) = sup{α ∈ ℝ : x ∉ D_α} defines a continuous (ℝ-valued) quasiconvex function on A such that

$$[f < \alpha] = \bigcup_{\beta < \alpha} D_{\beta}$$
 and $[f \le \alpha] = \bigcap_{\beta > \alpha} D_{\beta} \equiv \bigcap_{\beta > \alpha} \overline{D}_{\beta}^{A}$.

(b) [Trivial.] Vice-versa, if g is a continuous quasiconvex function on A, then the sets $D_{\alpha} := [g < \alpha] \ (\alpha \in \mathbb{R})$ form an $\Omega(A)$ -family of relatively open convex subsets of A. Moreover, if f is defined as in (a) then f = g.

(c) [Easy exercise.] For {D_α}_α and f as in (a), f is L-Lipschitz (with L > 0) if and only if d(D_α, A \ D_β) ≥ (1/L)(β − α) for α < β.</p>

Proposition

(a) [Easy, math. folklore.] If {D_α}_α be an Ω(A)-family of relatively open convex subsets of A, then the formula f(x) = sup{α ∈ ℝ : x ∉ D_α} defines a continuous (ℝ-valued) quasiconvex function on A such that

$$[f < \alpha] = \bigcup_{\beta < \alpha} D_{\beta}$$
 and $[f \le \alpha] = \bigcap_{\beta > \alpha} D_{\beta} \equiv \bigcap_{\beta > \alpha} \overline{D}_{\beta}^{\mathcal{A}}$.

(b) [Trivial.] Vice-versa, if g is a continuous quasiconvex function on A, then the sets $D_{\alpha} := [g < \alpha] \ (\alpha \in \mathbb{R})$ form an $\Omega(A)$ -family of relatively open convex subsets of A. Moreover, if f is defined as in (a) then f = g.

(c) [Easy exercise.] For $\{D_{\alpha}\}_{\alpha}$ and f as in (a), f is L-Lipschitz (with L > 0) if and only if $d(D_{\alpha}, A \setminus D_{\beta}) \ge (1/L)(\beta - \alpha)$ for $\alpha < \beta$. More generally, f is uniformly continuous with an invertible modulus of continuity ω if and only if $d(D_{\alpha}, A \setminus D_{\beta}) \ge \omega^{-1}(\beta - \alpha)$ whenever $\alpha < \beta$.

L. Veselý

UC sets and extendability of Lipschitz qc. functions

In what follows:

• U_X and B_X are the open unit ball and the closed unit ball, respectively.

イロト イポト イヨト イヨト 三日

SQC

In what follows:

• U_X and B_X are the open unit ball and the closed unit ball, respectively.

If $C \subset X$ is an open convex set, $\delta > 0$, and $\delta U_X \subset C$, then the *Minkowski gauge* of *C*

 $\mu_C(x) := \inf\{t > 0 : x \in tC\} \qquad (x \in X)$

has the following properties:

- 4 同 ト 4 回 ト - - 回

In what follows:

• U_X and B_X are the open unit ball and the closed unit ball, respectively.

If $C \subset X$ is an open convex set, $\delta > 0$, and $\delta U_X \subset C$, then the *Minkowski gauge* of *C*

 $\mu_C(x) := \inf\{t > 0 : x \in tC\} \qquad (x \in X)$

has the following properties:

- μ_C is a nonnegative, finite and sublinear (i.e., positively homogeneous and subadditive; hence convex) function;
- 2 μ_C is $(1/\delta)$ -Lipschitz;

$$\ \, {\bf 0} \ \, [\mu_{\mathcal C} < 1] = \mathcal C \ \, {\rm and} \ \, [\mu_{\mathcal C} \leq 1] = \overline{\mathcal C}.$$

イロト イポト イヨト イヨト 三日

~ ~ ~ ~

How to construct counterexamples?

Lemma (Construction Lemma)

How to construct counterexamples?

Lemma (Construction Lemma)

Let A be an open convex set containig 0, and let D_n $(n \in \mathbb{N})$ be open convex sets such that:

How to construct counterexamples?

Lemma (Construction Lemma)

Let A be an open convex set containig 0, and let D_n $(n \in \mathbb{N})$ be open convex sets such that:

 $D_n \nearrow A;$
Lemma (Construction Lemma)

Let A be an open convex set containig 0, and let D_n $(n \in \mathbb{N})$ be open convex sets such that:

- $D_n \nearrow A;$
- ② $(1/L)U_X ⊂ D_1$ for some L > 0;

Lemma (Construction Lemma)

Let A be an open convex set containig 0, and let D_n $(n \in \mathbb{N})$ be open convex sets such that:

- $D_n \nearrow A;$
- ② $(1/L)U_X ⊂ D_1$ for some L > 0;
- $A \cap \nu_{n+1}D_n \subset D_{n+1} \ (n \in \mathbb{N})$ for some $\nu_{n+1} > 1$.

Lemma (Construction Lemma)

Let A be an open convex set containig 0, and let D_n $(n \in \mathbb{N})$ be open convex sets such that:

- $D_n \nearrow A;$
- ② $(1/L)U_X ⊂ D_1$ for some L > 0;
- $A \cap \nu_{n+1}D_n \subset D_{n+1} \ (n \in \mathbb{N})$ for some $\nu_{n+1} > 1$.

Define $\alpha_1 = 1$, $\alpha_n = 1 + \sum_{k=1}^{n} (\nu_k - 1)$ for $n \ge 2$, and for $x \in A$,

Lemma (Construction Lemma)

Let A be an open convex set containig 0, and let D_n $(n \in \mathbb{N})$ be open convex sets such that:

■
$$D_n \nearrow A$$
;
■ $(1/L)U_X \subset D_1$ for some $L > 0$.

• $A \cap \nu_{n+1}D_n \subset D_{n+1} \ (n \in \mathbb{N})$ for some $\nu_{n+1} > 1$.

Define $\alpha_1 = 1$, $\alpha_n = 1 + \sum_{k=1}^{n} (\nu_k - 1)$ for $n \ge 2$, and for $x \in A$,

$$f(x) = \begin{cases} \mu_{D_1}(x), & x \in D_1, \\ \alpha_n - 1 + \mu_{D_n}(x), & x \in (A \cap \nu_{n+1}D_n) \setminus D_n, \\ \alpha_{n+1}, & x \in D_{n+1} \setminus \nu_{n+1}D_n. \end{cases}$$

Lemma (Construction Lemma)

Let A be an open convex set containig 0, and let D_n $(n \in \mathbb{N})$ be open convex sets such that:

$$D_n \nearrow A;$$

2
$$(1/L)U_X \subset D_1$$
 for some $L > 0$;

• $A \cap \nu_{n+1}D_n \subset D_{n+1} \ (n \in \mathbb{N})$ for some $\nu_{n+1} > 1$.

Define $\alpha_1 = 1$, $\alpha_n = 1 + \sum_{k=1}^{n} (\nu_k - 1)$ for $n \ge 2$, and for $x \in A$,

$$f(x) = \begin{cases} \mu_{D_1}(x), & x \in D_1, \\ \alpha_n - 1 + \mu_{D_n}(x), & x \in (A \cap \nu_{n+1}D_n) \setminus D_n, \\ \alpha_{n+1}, & x \in D_{n+1} \setminus \nu_{n+1}D_n. \end{cases}$$

Then f is an L-Lipschitz quasiconvex function on A such that

$$[f < \alpha_n] = D_n$$
 for each $n \in \mathbb{N}$.

Let $A \subset \mathbb{R}^2$ be an open convex set which is not strictly convex. Then there exists a Lipschitz quasiconvex function f on A such that f admits <u>no continuous</u> quasiconvex extension to \mathbb{R}^2 . (Not even to any open convex set containing $A \cup \{x_0\}$ for a given $x_0 \notin \text{ext}(A)$.)

白マイド・トレ

Let $A \subset \mathbb{R}^2$ be an open convex set which is not strictly convex. Then there exists a Lipschitz quasiconvex function f on A such that f admits <u>no continuous</u> quasiconvex extension to \mathbb{R}^2 . (Not even to any open convex set containing $A \cup \{x_0\}$ for a given $x_0 \notin \text{ext}(A)$.)

Let $(0,0) \in A$ and ∂A contain the segment [(-1,-1),(1,-1)]. $(0, b_n)$ such that $b_n \nearrow -1$, $(c_n,-1)$ such that $0 < c_1 < 1$ and $\{c_n\}_n$ is strictly increasing.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $A \subset \mathbb{R}^2$ be an open convex set which is not strictly convex. Then there exists a Lipschitz quasiconvex function f on A such that f admits <u>no continuous</u> quasiconvex extension to \mathbb{R}^2 . (Not even to any open convex set containing $A \cup \{x_0\}$ for a given $x_0 \notin \text{ext}(A)$.)

Let $(0,0) \in A$ and ∂A contain the segment [(-1,-1),(1,-1)]. $(0, b_n)$ such that $b_n \nearrow -1$, $(c_n,-1)$ such that $0 < c_1 < 1$ and $\{c_n\}_n$ is strictly increasing. $\exists f$ Lipschitz qc. on A such that $[f < \alpha_n] = D_n$ for some increasing sequence $\{\alpha_n\}_n$. Assume that f has a continuous qc. extension F.

イロト イポト イヨト イヨト 三日

Let $A \subset \mathbb{R}^2$ be an open convex set which is not strictly convex. Then there exists a Lipschitz quasiconvex function f on A such that f admits <u>no continuous</u> quasiconvex extension to \mathbb{R}^2 . (Not even to any open convex set containing $A \cup \{x_0\}$ for a given $x_0 \notin \text{ext}(A)$.)

Let $(0,0) \in A$ and ∂A contain the segment [(-1,-1), (1,-1)]. $(0, b_n)$ such that $b_n \nearrow -1$, $(c_n, -1)$ such that $0 < c_1 < 1$ and $\{c_n\}_n$ is strictly increasing. $\exists f$ Lipschitz qc. on A such that $[f < \alpha_n] = D_n$ for some increasing sequence $\{\alpha_n\}_n$. Assume that f has a continuous qc. extension F. $(0, -1) \in \overline{D}_1$, hence $F(0, -1) \le \alpha_1 < \alpha_2$.

イロト イポト イヨト イヨト 三日

Let $A \subset \mathbb{R}^2$ be an open convex set which is not strictly convex. Then there exists a Lipschitz quasiconvex function f on A such that f admits <u>no continuous</u> quasiconvex extension to \mathbb{R}^2 . (Not even to any open convex set containing $A \cup \{x_0\}$ for a given $x_0 \notin \text{ext}(A)$.)

Let $(0,0) \in A$ and ∂A contain the segment [(-1,-1),(1,-1)]. $(0, b_n)$ such that $b_n \nearrow -1$, $(c_n, -1)$ such that $0 < c_1 < 1$ and $\{c_n\}_n$ is strictly increasing. $\exists f$ Lipschitz qc. on A such that $[f < \alpha_n] = D_n$ for some increasing sequence $\{\alpha_n\}_n$. Assume that f has a continuous qc. extension F. $(0, -1) \in \overline{D}_1$, hence $F(0, -1) \le \alpha_1 < \alpha_2$. By convexity, $F(0, b_n) \ge \alpha_n \ge \alpha_2$ for $n \ge 2$. So $F(0, -1) \ge \alpha_2$ by continuity. *Contradiction!*

Counterexample 2

Theorem

There exists a Lipschitz quasiconvex function on the open unit disc A in the Euclidean plane \mathbb{R}^2 that admits **no** Lipschitz quasiconvex extension to \mathbb{R}^2 . (Not even to any open convex set containing \overline{A} .)

Counterexample 2

Theorem

There exists a Lipschitz quasiconvex function on the open unit disc A in the Euclidean plane \mathbb{R}^2 that admits **no** Lipschitz quasiconvex extension to \mathbb{R}^2 . (Not even to any open convex set containing \overline{A} .)

A rough sketch of proof.

白マイド・トレ

Counterexample 2

Theorem

There exists a Lipschitz quasiconvex function on the open unit disc A in the Euclidean plane \mathbb{R}^2 that admits **no** Lipschitz quasiconvex extension to \mathbb{R}^2 . (Not even to any open convex set containing \overline{A} .)

A rough sketch of proof.

 $A := \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1 \}.$

Theorem

There exists a Lipschitz quasiconvex function on the open unit disc A in the Euclidean plane \mathbb{R}^2 that admits **no** Lipschitz quasiconvex extension to \mathbb{R}^2 . (Not even to any open convex set containing \overline{A} .)

A rough sketch of proof.

 $A := \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1 \}.$

Take an increasing sequence $b_n > 1$ such that $\frac{b_{n+1}}{b_n} \to \infty$, and a sequence $t_n \searrow 0$ with $t_1 = 1/2$ and $\frac{b_{n+1}}{t_n} \to 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

There exists a Lipschitz quasiconvex function on the open unit disc A in the Euclidean plane \mathbb{R}^2 that admits **no** Lipschitz quasiconvex extension to \mathbb{R}^2 . (Not even to any open convex set containing \overline{A} .)

A rough sketch of proof.

 $A := \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1 \}.$

Take an increasing sequence $b_n > 1$ such that $\frac{b_{n+1}}{b_n} \to \infty$, and a sequence $t_n \searrow 0$ with $t_1 = 1/2$ and $\frac{b_{n+1}}{t_n} \to 0$. For $n \in \mathbb{N}$ consider:

- the points $w_n := (\sqrt{1-t_n^2}, t_n) \in \partial A;$
- the open half-planes $H_n := \{(x, y) : y - t_n - b_n(x - \sqrt{1 - t_n^2}) > 0\};$
- the lines $L_n := \partial H_n \ni w_n$;
- the open convex sets $D_n := A \cap H_n$.

イロト イボト イヨト イヨト

Э

Sac

- $D_n \nearrow A;$
- **2** $0 \in D_1$ (and hence $\frac{1}{L}U_X \subset D_1$ for some L > 0);
- $A \cap \nu_{n+1} D_n \subset D_{n+1}$ for certain $\nu_{n+1} > 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

$$D_n \nearrow A;$$

- **2** $0 \in D_1$ (and hence $\frac{1}{L}U_X \subset D_1$ for some L > 0);
- $A \cap \nu_{n+1} D_n \subset D_{n+1}$ for certain $\nu_{n+1} > 1$.

By our Construction Lemma, there exist

- a sequence $1 = \alpha_1 < \alpha_2 < \dots$ (depending on ν_k 's), and
- an *L*-Lipschitz quasiconvex function f on A such that $[f < \alpha_n] = D_n$ for each n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

$$D_n \nearrow A;$$

- **2** $0 \in D_1$ (and hence $\frac{1}{L}U_X \subset D_1$ for some L > 0);
- $\ \, {\bf S} \ \, A\cap \nu_{n+1}D_n\subset D_{n+1} \ \, {\rm for \ certain} \ \, \nu_{n+1}>1.$

By our Construction Lemma, there exist

• a sequence $1 = \alpha_1 < \alpha_2 < \dots$ (depending on ν_k 's), and

• an *L*-Lipschitz quasiconvex function f on A such that $[f < \alpha_n] = D_n$ for each n.

The construction of f also gives

$$[f \leq \alpha_n] = \overline{D}_n^A, \quad n \in \mathbb{N}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

SQA

Since $A \cap E_n = [f \le \alpha_n]_A = \overline{D}_n^A \subset \overline{H}_n$, by convexity we must have $\overline{E}_n \subset \overline{H}_n$ for each *n*.

Since $A \cap E_n = [f \le \alpha_n]_A = \overline{D}_n^A \subset \overline{H}_n$, by convexity we must have $\overline{E}_n \subset \overline{H}_n$ for each n. Since F is M-Lipschitz on B, it easily follows that

$$d(E_n, B \setminus E_{n+1}) = d([F \le \alpha_n]_B, [F > \alpha_{n+1}]_B) \ge \frac{1}{M}(\alpha_{n+1} - \alpha_n).$$

Then

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Since $A \cap E_n = [f \le \alpha_n]_A = \overline{D}_n^A \subset \overline{H}_n$, by convexity we must have $\overline{E}_n \subset \overline{H}_n$ for each n. Since F is M-Lipschitz on B, it easily follows that

$$d(E_n, B \setminus E_{n+1}) = d([F \le \alpha_n]_B, [F > \alpha_{n+1}]_B) \ge \frac{1}{M}(\alpha_{n+1} - \alpha_n).$$

Then

$$\frac{1}{M} \leq \frac{d(E_n, B \setminus E_{n+1})}{\alpha_{n+1} - \alpha_n} \leq \frac{d(w_n, B \setminus \overline{H}_{n+1})}{\alpha_{n+1} - \alpha_n} = \frac{d(w_n, L_{n+1})}{\alpha_{n+1} - \alpha_n} =: \Delta_n.$$

L. Veselý UC sets and extendability of Lipschitz qc. functions

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

SOR

Since $A \cap E_n = [f \le \alpha_n]_A = \overline{D}_n^A \subset \overline{H}_n$, by convexity we must have $\overline{E}_n \subset \overline{H}_n$ for each n. Since F is M-Lipschitz on B, it easily follows that

$$d(E_n, B \setminus E_{n+1}) = d([F \le \alpha_n]_B, [F > \alpha_{n+1}]_B) \ge \frac{1}{M}(\alpha_{n+1} - \alpha_n).$$

Then

$$\frac{1}{M} \leq \frac{d(E_n, B \setminus E_{n+1})}{\alpha_{n+1} - \alpha_n} \leq \frac{d(w_n, B \setminus \overline{H}_{n+1})}{\alpha_{n+1} - \alpha_n} = \frac{d(w_n, L_{n+1})}{\alpha_{n+1} - \alpha_n} =: \Delta_n.$$

A precise calculation gives that $\Delta_n \rightarrow 0$, which is a contradiction.

イロト イポト イヨト イヨト 三日

SOR

Good news: extending from a subspace works!

L. Veselý UC sets and extendability of Lipschitz qc. functions

<ロト < 部ト < 注ト < 注ト = 注

990

Good news: extending from a subspace works!

Theorem

Let Y be a subspace of a normed space X. Then each L-Lipschitz qc. function on Y admits an L-lipschitz (the same constant!) qc. extension to the whole X.

More generally, each uniformly continuous quasiconvex function f on Y admits a uniformly continuous quasiconvex extension F defined on X, having the same invertible modulus of continuity.

・ 同 ト ・ ヨ ト ・ ヨ ト

Good news: extending from a subspace works!

Theorem

Let Y be a subspace of a normed space X. Then each L-Lipschitz qc. function on Y admits an L-lipschitz (the same constant!) qc. extension to the whole X.

More generally, each uniformly continuous quasiconvex function f on Y admits a uniformly continuous quasiconvex extension F defined on X, having the same invertible modulus of continuity.

Rough idea. $C_{\alpha} := [f < \alpha], \ \alpha \in \mathbb{R}$, forms an $\Omega(Y)$ -family of open convex subsets of Y s.t. $d(c_{\alpha}, Y \setminus C_{\beta}) \ge \omega^{-1}(\beta - \alpha)$, $\alpha < \beta$. Consider the sets

$$D_{\alpha} := \bigcup_{y \in Y} U_X[y, d(y, Y \setminus C_{\alpha})].$$

They extend C_{α} 's in an appropriate way. Define $F(x) := \sup\{\alpha : x \notin D_{\alpha}\}.$ The result, *not as good as for subspaces*, is as follows. The definitions and a more precise statement will be given later.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

SQA

The result, *not as good as for subspaces*, is as follows. The definitions and a more precise statement will be given later.

Theorem

Let $A \subsetneq X$ be a nonempty open convex set. If A is <u>uniformly</u> <u>convex</u>, then every Lipschitz quasiconvex function f on A admits a <u>uniformly</u> <u>continuous</u> (but not necessarily Lipschitz) quasiconvex extension F to the whole X.

・ 同 ト ・ ヨ ト ・ ヨ ト

L. Veselý UC sets and extendability of Lipschitz qc. functions

・ロト ・四ト ・ヨト ・ヨト

E

990

Definition

Let $C \subset X$ be a convex set whose interior and boudary are nonempty. We say that *C* is *uniformly convex* if

 $x_n, y_n \in \partial C \ (n \in \mathbb{N}), \ d(\frac{x_n+y_n}{2}, \partial C) \to 0 \quad \Rightarrow \quad \|x_n-y_n\| \to 0.$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

SQA

Definition

Let $C \subset X$ be a convex set whose interior and boudary are nonempty. We say that *C* is *uniformly convex* if

$$x_n, y_n \in \partial C \ (n \in \mathbb{N}), \ d(\frac{x_n+y_n}{2}, \partial C) \to 0 \quad \Rightarrow \quad \|x_n-y_n\| \to 0.$$

Or equivalently: $\delta_C(\varepsilon) > 0$ for each $0 < \varepsilon < \operatorname{diam} C$, where

$$\delta_{\mathcal{C}}(\varepsilon) := \inf \left\{ d(\frac{x+y}{2}, \partial \mathcal{C}) : \ x, y \in \partial \mathcal{C}, \ \|x-y\| \ge \varepsilon \right\}$$

< 同 > < 回 > < 回 >

Definition

Let $C \subset X$ be a convex set whose interior and boudary are nonempty. We say that *C* is *uniformly convex* if

$$x_n, y_n \in \partial C \ (n \in \mathbb{N}), \ d(\frac{x_n+y_n}{2}, \partial C) \to 0 \quad \Rightarrow \quad \|x_n-y_n\| \to 0.$$

Or equivalently: $\delta_C(\varepsilon) > 0$ for each $0 < \varepsilon < \operatorname{diam} C$, where

$$\delta_{C}(\varepsilon) := \inf \left\{ d(\frac{x+y}{2}, \partial C) : x, y \in \partial C, \|x-y\| \ge \varepsilon \right\}$$
$$= \inf \left\{ d(\frac{x+y}{2}, \partial C) : x, y \in \partial C, \|x-y\| = \varepsilon \right\}$$

Definition

Let $C \subset X$ be a convex set whose interior and boudary are nonempty. We say that *C* is *uniformly convex* if

$$x_n, y_n \in \partial C \ (n \in \mathbb{N}), \ d(\frac{x_n+y_n}{2}, \partial C) \to 0 \quad \Rightarrow \quad \|x_n-y_n\| \to 0.$$

Or equivalently: $\delta_C(\varepsilon) > 0$ for each $0 < \varepsilon < \operatorname{diam} C$, where

$$\begin{split} \delta_{\mathcal{C}}(\varepsilon) &:= \inf \left\{ d(\frac{x+y}{2}, \partial C) : \ x, y \in \partial C, \ \|x-y\| \ge \varepsilon \right\} \\ &= \inf \left\{ d(\frac{x+y}{2}, \partial C) : \ x, y \in \partial C, \ \|x-y\| = \varepsilon \right\} \\ &= \inf \left\{ d(\frac{x+y}{2}, \partial C) : \ x, y \in \overline{C}, \ \|x-y\| \ge \varepsilon \right\} \end{split}$$

Definition

Let $C \subset X$ be a convex set whose interior and boudary are nonempty. We say that *C* is *uniformly convex* if

$$x_n, y_n \in \partial C \ (n \in \mathbb{N}), \ d(\frac{x_n+y_n}{2}, \partial C) \to 0 \quad \Rightarrow \quad \|x_n-y_n\| \to 0.$$

Or equivalently: $\delta_C(\varepsilon) > 0$ for each $0 < \varepsilon < \operatorname{diam} C$, where

$$\delta_{C}(\varepsilon) := \inf \left\{ d(\frac{x+y}{2}, \partial C) : x, y \in \partial C, \|x-y\| \ge \varepsilon \right\}$$

= $\inf \left\{ d(\frac{x+y}{2}, \partial C) : x, y \in \partial C, \|x-y\| = \varepsilon \right\}$
= $\inf \left\{ d(\frac{x+y}{2}, \partial C) : x, y \in \overline{C}, \|x-y\| \ge \varepsilon \right\}$
= $\inf \left\{ d(\frac{x+y}{2}, \partial C) : x, y \in \overline{C}, \|x-y\| = \varepsilon \right\}.$

Definition

Let $C \subset X$ be a convex set whose interior and boudary are nonempty. We say that *C* is *uniformly convex* if

$$x_n, y_n \in \partial C \ (n \in \mathbb{N}), \ d(\frac{x_n+y_n}{2}, \partial C) \to 0 \quad \Rightarrow \quad \|x_n-y_n\| \to 0.$$

Or equivalently: $\delta_C(\varepsilon) > 0$ for each $0 < \varepsilon < \operatorname{diam} C$, where

$$\begin{split} \delta_{\mathcal{C}}(\varepsilon) &:= \inf \left\{ d(\frac{x+y}{2}, \partial C) : \ x, y \in \partial C, \ \|x-y\| \ge \varepsilon \right\} \\ &= \inf \left\{ d(\frac{x+y}{2}, \partial C) : \ x, y \in \partial C, \ \|x-y\| = \varepsilon \right\} \\ &= \inf \left\{ d(\frac{x+y}{2}, \partial C) : \ x, y \in \overline{C}, \ \|x-y\| \ge \varepsilon \right\} \\ &= \inf \left\{ d(\frac{x+y}{2}, \partial C) : \ x, y \in \overline{C}, \ \|x-y\| = \varepsilon \right\}. \end{split}$$

The above equalities (known for $C = B_X$ [Day, 1944]), except for the the last one, are *not* trivial for a general C.
$\mathsf{Easy:} \ \delta_{\mathsf{C}}(\mathsf{0}) = \mathsf{0}, \ \mathsf{and} \ \delta_{\mathsf{C}}(\varepsilon) \leq \frac{1}{2}\varepsilon \ \mathsf{for} \ \mathsf{0} \leq \varepsilon < \mathrm{diam}(\mathsf{C}).$

L. Veselý UC sets and extendability of Lipschitz qc. functions

イロト イポト イヨト イヨト 二日

SQC

Easy: $\delta_C(0) = 0$, and $\delta_C(\varepsilon) \le \frac{1}{2}\varepsilon$ for $0 \le \varepsilon < \operatorname{diam}(C)$. Known: *H* Hilbert $\Rightarrow \delta_{B_H}(\varepsilon) = 1 - \sqrt{1 - (\varepsilon^2/4)} \sim \frac{1}{8}\varepsilon^2$ as $\varepsilon \searrow 0$.

イロト 不得 トイヨト イヨト 二日

SQC

Easy: $\delta_C(0) = 0$, and $\delta_C(\varepsilon) \le \frac{1}{2}\varepsilon$ for $0 \le \varepsilon < \operatorname{diam}(C)$. Known: *H* Hilbert $\Rightarrow \delta_{B_H}(\varepsilon) = 1 - \sqrt{1 - (\varepsilon^2/4)} \sim \frac{1}{8}\varepsilon^2$ as $\varepsilon \searrow 0$.

Theorem (Balashov-Repovš 2009, and a bit more)

Let C be a convex set in a normed space X, $int(C) \neq \emptyset \neq \partial C$.

• If $\delta_C(\varepsilon_0) > 0$ for some $\varepsilon_0 \in (0, \operatorname{diam}(C))$ (e.g., if C is uniformly convex), then C is bounded.

・ 同下 ・ 三下 ・ 三下

Easy: $\delta_C(0) = 0$, and $\delta_C(\varepsilon) \le \frac{1}{2}\varepsilon$ for $0 \le \varepsilon < \operatorname{diam}(C)$. Known: *H* Hilbert $\Rightarrow \delta_{B_H}(\varepsilon) = 1 - \sqrt{1 - (\varepsilon^2/4)} \sim \frac{1}{8}\varepsilon^2$ as $\varepsilon \searrow 0$.

Theorem (Balashov-Repovš 2009, and a bit more)

Let C be a convex set in a normed space X, $int(C) \neq \emptyset \neq \partial C$.

- If $\delta_C(\varepsilon_0) > 0$ for some $\varepsilon_0 \in (0, \operatorname{diam}(C))$ (e.g., if C is uniformly convex), then C is bounded.

- 4 周 ト 4 戸 ト 4 戸 ト

Easy: $\delta_C(0) = 0$, and $\delta_C(\varepsilon) \le \frac{1}{2}\varepsilon$ for $0 \le \varepsilon < \operatorname{diam}(C)$. Known: *H* Hilbert $\Rightarrow \delta_{B_H}(\varepsilon) = 1 - \sqrt{1 - (\varepsilon^2/4)} \sim \frac{1}{8}\varepsilon^2$ as $\varepsilon \searrow 0$.

Theorem (Balashov-Repovš 2009, and a bit more)

Let C be a convex set in a normed space X, $int(C) \neq \emptyset \neq \partial C$.

- If $\delta_C(\varepsilon_0) > 0$ for some $\varepsilon_0 \in (0, \operatorname{diam}(C))$ (e.g., if C is uniformly convex), then C is bounded.
- X contains a uniformly convex set if and only if its completion \hat{X} is superreflexive.
- $\delta_C(\varepsilon) \leq k_C \cdot \varepsilon^2$ for $0 \leq \varepsilon < \operatorname{diam}(C)$.

イロト イポト イラト イラト

Easy: $\delta_C(0) = 0$, and $\delta_C(\varepsilon) \le \frac{1}{2}\varepsilon$ for $0 \le \varepsilon < \operatorname{diam}(C)$. Known: *H* Hilbert $\Rightarrow \delta_{B_H}(\varepsilon) = 1 - \sqrt{1 - (\varepsilon^2/4)} \sim \frac{1}{8}\varepsilon^2$ as $\varepsilon \searrow 0$.

Theorem (Balashov-Repovš 2009, and a bit more)

Let C be a convex set in a normed space X, $int(C) \neq \emptyset \neq \partial C$.

- If $\delta_C(\varepsilon_0) > 0$ for some $\varepsilon_0 \in (0, \operatorname{diam}(C))$ (e.g., if C is uniformly convex), then C is bounded.
- X contains a uniformly convex set if and only if its completion \hat{X} is superreflexive.
- $\delta_C(\varepsilon) \leq k_C \cdot \varepsilon^2$ for $0 \leq \varepsilon < \operatorname{diam}(C)$.
- If C is uniformly convex, then the function $\varepsilon \mapsto \delta_C(\varepsilon)$ is strictly increasing and continuous.

イロト イボト イヨト イヨト

Easy: $\delta_C(0) = 0$, and $\delta_C(\varepsilon) \le \frac{1}{2}\varepsilon$ for $0 \le \varepsilon < \operatorname{diam}(C)$. Known: *H* Hilbert $\Rightarrow \delta_{B_H}(\varepsilon) = 1 - \sqrt{1 - (\varepsilon^2/4)} \sim \frac{1}{8}\varepsilon^2$ as $\varepsilon \searrow 0$.

Theorem (Balashov-Repovš 2009, and a bit more)

Let C be a convex set in a normed space X, $int(C) \neq \emptyset \neq \partial C$.

- If $\delta_C(\varepsilon_0) > 0$ for some $\varepsilon_0 \in (0, \operatorname{diam}(C))$ (e.g., if C is uniformly convex), then C is bounded.
- $\delta_C(\varepsilon) \leq k_C \cdot \varepsilon^2$ for $0 \leq \varepsilon < \operatorname{diam}(C)$.
- If C is uniformly convex, then the function ε → δ_C(ε) is strictly increasing and continuous.
- If X is finite-dimensional, then: C is uniformly convex if and only if C is bounded and strictly convex.

イロト イボト イヨト イヨト

Easy: $\delta_C(0) = 0$, and $\delta_C(\varepsilon) \le \frac{1}{2}\varepsilon$ for $0 \le \varepsilon < \operatorname{diam}(C)$. Known: *H* Hilbert $\Rightarrow \delta_{B_H}(\varepsilon) = 1 - \sqrt{1 - (\varepsilon^2/4)} \sim \frac{1}{8}\varepsilon^2$ as $\varepsilon \searrow 0$.

Theorem (Balashov-Repovš 2009, and a bit more)

Let C be a convex set in a normed space X, $int(C) \neq \emptyset \neq \partial C$.

- If $\delta_C(\varepsilon_0) > 0$ for some $\varepsilon_0 \in (0, \operatorname{diam}(C))$ (e.g., if C is uniformly convex), then C is bounded.
- X contains a uniformly convex set if and only if its completion \hat{X} is superreflexive.
- $\delta_C(\varepsilon) \leq k_C \cdot \varepsilon^2$ for $0 \leq \varepsilon < \operatorname{diam}(C)$.
- If C is uniformly convex, then the function $\varepsilon \mapsto \delta_C(\varepsilon)$ is strictly increasing and continuous.
- If X is finite-dimensional, then: C is uniformly convex if and only if C is bounded and strictly convex.

Theorem

Let $A \subsetneq X$ be a nonempty open convex set. If A is <u>uniformly</u> <u>convex</u>, then every Lipschitz quasiconvex function f on A admits a <u>uniformly continuous</u> (but not necessarily Lipschitz) quasiconvex extension F to the whole X.

More precisely, if f is L-Lipschitz and $\delta_A: [0, \infty) \to [0, \infty)$ is a homeomorphism that extends the corresponding modulus of convexity δ_A , then the qc. extension F is uniformly continuous with the invertible modulus of continuity $\tilde{\omega}(t) = L \cdot \delta_A^{-1}(t)$.

< ロ > < 同 > < 三 > < 三 >

Theorem

Let $A \subsetneq X$ be a nonempty open convex set. If A is <u>uniformly</u> <u>convex</u>, then every Lipschitz quasiconvex function f on A admits a <u>uniformly</u> <u>continuous</u> (but not necessarily Lipschitz) quasiconvex extension F to the whole X.

More precisely, if f is L-Lipschitz and $\delta_A: [0, \infty) \to [0, \infty)$ is a homeomorphism that extends the corresponding modulus of convexity δ_A , then the qc. extension F is uniformly continuous with the invertible modulus of continuity $\tilde{\omega}(t) = L \cdot \delta_A^{-1}(t)$.

More general statement: if f is uniformly continuous with an invertible modulus of continuity ω , then F is uniformly continuous with the invertible modulus of continuity $\tilde{\omega}(t) = \omega(\delta_A^{-1}(t))$. Moreover $F(X) \subset \overline{f(A)}$.

・ロト ・ 雪 ト ・ ヨ ト ・

Idea of the proof

The proof goes in a similar way, but it uses a *different extension method*. W.r.t. the previous proof, this one is much more technical.

・ 同 ト ・ ヨ ト ・ ヨ ト

SQC

Idea of the proof

The proof goes in a similar way, but it uses *a different extension method.* W.r.t. the previous proof, this one is much more technical. The strict sublevel sets

$$C_{\alpha} := [f < \alpha], \quad \alpha \in \mathbb{R},$$

are extended to $D_{\alpha} := \emptyset$ if $C_{\alpha} = \emptyset$; $D_{\alpha} := X$ if $C_{\alpha} = A$; otherwise

$$D_{\alpha} := \bigcap_{y \in \overline{\mathcal{A} \cap \partial \mathcal{C}_{\alpha}}} \mathcal{K}(y, \mathcal{C}_{\alpha}).$$

Here:

$$K(y, C_{\alpha}) = \bigcap [f \leq f(y)]$$

where the intersection is w.r.t. all nonzero supporting functionals to C_{α} at y.

イロト イポト イヨト イヨト 三日

SOR

Theorem

Let $A \subsetneq X$ be a nonempty open convex set. If A is not LUR (locally uniformly convex/rotund), then there exists a Lipschitz quasiconvex function $f : A \to \mathbb{R}$ that does not admit any continuous quasiconvex extension to X.

< 同 > < 三 > < 三 > <

Theorem

Let $A \subsetneq X$ be a nonempty open convex set. If A is not LUR (locally uniformly convex/rotund), then there exists a Lipschitz quasiconvex function $f : A \to \mathbb{R}$ that does not admit any continuous quasiconvex extension to X.

Remains open:

if every Lipschitz qc. function on A admits a uniformly continuous qc. extension to the whole X, is then A necessarily uniformly convex?

L. Veselý UC sets and extendability of Lipschitz qc. functions

(日) (四) (E) (E) (E) (E)

Definition

Let $C \subset X$ be a convex set whose interior and boudary are nonempty, $x \in \partial C$. We say that *C* is *LUR* (locally uniformly convex/rotund) at x if

 $y_n \in \partial C \ (n \in \mathbb{N}), \ d(\frac{x+y_n}{2}, \partial C) \to 0 \Rightarrow ||x-y_n|| \to 0.$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Definition

Let $C \subset X$ be a convex set whose interior and boudary are nonempty, $x \in \partial C$. We say that *C* is *LUR* (locally uniformly convex/rotund) at *x* if

 $y_n \in \partial C \ (n \in \mathbb{N}), \ d(\frac{x+y_n}{2}, \partial C) \to 0 \Rightarrow ||x-y_n|| \to 0.$ Or equivalently:

 $\delta_{\mathcal{C}}(x,\varepsilon) > 0 \text{ for each } 0 < \varepsilon < \Delta_x(\mathcal{C}) := \sup_{y \in \partial \mathcal{C}} \|x - y\|, \text{ where }$

$$\delta_{\mathcal{C}}(x,\varepsilon) := \inf \left\{ d(\frac{x+y}{2},\partial \mathcal{C}): \ y \in \partial \mathcal{C}, \ \|x-y\| \ge \varepsilon \right\}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let $C \subset X$ be a convex set whose interior and boudary are nonempty, $x \in \partial C$. We say that *C* is *LUR* (locally uniformly convex/rotund) at *x* if

 $y_n \in \partial C \ (n \in \mathbb{N}), \ d(\frac{x+y_n}{2}, \partial C) \to 0 \Rightarrow ||x-y_n|| \to 0.$ Or equivalently:

 $\delta_{\mathcal{C}}(x,\varepsilon) > 0 \text{ for each } 0 < \varepsilon < \Delta_x(\mathcal{C}) := \sup_{y \in \partial \mathcal{C}} \|x - y\|, \text{ where }$

$$\delta_{\mathcal{C}}(x,\varepsilon) := \inf \left\{ d(\frac{x+y}{2},\partial \mathcal{C}) : y \in \partial \mathcal{C}, \|x-y\| \ge \varepsilon \right\}$$
$$= \inf \left\{ d(\frac{x+y}{2},\partial \mathcal{C}) : y \in \partial \mathcal{C}, \|x-y\| = \varepsilon \right\}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let $C \subset X$ be a convex set whose interior and boudary are nonempty, $x \in \partial C$. We say that *C* is *LUR* (locally uniformly convex/rotund) at *x* if

 $y_n \in \partial C \ (n \in \mathbb{N}), \ d(\frac{x+y_n}{2}, \partial C) \to 0 \Rightarrow ||x-y_n|| \to 0.$ Or equivalently:

 $\delta_{\mathcal{C}}(x,\varepsilon) > 0 \text{ for each } 0 < \varepsilon < \Delta_x(\mathcal{C}) := \sup_{y \in \partial \mathcal{C}} \|x - y\|, \text{ where }$

$$\begin{split} \delta_{C}(x,\varepsilon) &:= \inf \left\{ d(\frac{x+y}{2},\partial C) : \ y \in \partial C, \ \|x-y\| \ge \varepsilon \right\} \\ &= \inf \left\{ d(\frac{x+y}{2},\partial C) : \ y \in \partial C, \ \|x-y\| = \varepsilon \right\} \\ &= \inf \left\{ d(\frac{x+y}{2},\partial C) : \ y \in \overline{C}, \ \|x-y\| \ge \varepsilon \right\} \end{split}$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Definition

Let $C \subset X$ be a convex set whose interior and boudary are nonempty, $x \in \partial C$. We say that *C* is *LUR* (locally uniformly convex/rotund) at *x* if

 $y_n \in \partial C \ (n \in \mathbb{N}), \ d(\frac{x+y_n}{2}, \partial C) \to 0 \Rightarrow ||x-y_n|| \to 0.$ Or equivalently:

 $\delta_{\mathcal{C}}(x,\varepsilon) > 0 \text{ for each } 0 < \varepsilon < \Delta_x(\mathcal{C}) := \sup_{y \in \partial \mathcal{C}} \|x - y\|, \text{ where }$

$$\begin{split} \delta_{C}(x,\varepsilon) &:= \inf \left\{ d(\frac{x+y}{2},\partial C) : \ y \in \partial C, \ \|x-y\| \ge \varepsilon \right\} \\ &= \inf \left\{ d(\frac{x+y}{2},\partial C) : \ y \in \partial C, \ \|x-y\| = \varepsilon \right\} \\ &= \inf \left\{ d(\frac{x+y}{2},\partial C) : \ y \in \overline{C}, \ \|x-y\| \ge \varepsilon \right\} \\ &= \inf \left\{ d(\frac{x+y}{2},\partial C) : \ y \in \overline{C}, \ \|x-y\| = \varepsilon \right\}. \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let $C \subset X$ be a convex set whose interior and boudary are nonempty, $x \in \partial C$. We say that *C* is *LUR* (locally uniformly convex/rotund) at x if

 $y_n \in \partial C \ (n \in \mathbb{N}), \ d(\frac{x+y_n}{2}, \partial C) \to 0 \Rightarrow ||x-y_n|| \to 0.$ Or equivalently:

 $\delta_{\mathcal{C}}(x,\varepsilon) > 0 \text{ for each } 0 < \varepsilon < \Delta_x(\mathcal{C}) := \sup_{y \in \partial \mathcal{C}} \|x - y\|, \text{ where }$

$$\delta_{C}(x,\varepsilon) := \inf \left\{ d(\frac{x+y}{2},\partial C) : y \in \partial C, ||x-y|| \ge \varepsilon \right\}$$

= $\inf \left\{ d(\frac{x+y}{2},\partial C) : y \in \partial C, ||x-y|| = \varepsilon \right\}$
= $\inf \left\{ d(\frac{x+y}{2},\partial C) : y \in \overline{C}, ||x-y|| \ge \varepsilon \right\}$
= $\inf \left\{ d(\frac{x+y}{2},\partial C) : y \in \overline{C}, ||x-y|| = \varepsilon \right\}.$

For $C = B_X$, the first complete proof is due to J. Daneš, 1976.

・ロト ・雪 ト ・ ヨ ト ・

Definition

Let $C \subset X$ be a convex set whose interior and boudary are nonempty, $x \in \partial C$. We say that *C* is *LUR* (locally uniformly convex/rotund) at x if

 $y_n \in \partial C \ (n \in \mathbb{N}), \ d(\frac{x+y_n}{2}, \partial C) \to 0 \Rightarrow ||x-y_n|| \to 0.$ Or equivalently:

 $\delta_{\mathcal{C}}(x,\varepsilon) > 0 \text{ for each } 0 < \varepsilon < \Delta_x(\mathcal{C}) := \sup_{y \in \partial \mathcal{C}} \|x - y\|, \text{ where }$

$$\begin{split} \delta_{C}(x,\varepsilon) &:= \inf \left\{ d(\frac{x+y}{2},\partial C) : \ y \in \partial C, \ \|x-y\| \geq \varepsilon \right\} \\ &= \inf \left\{ d(\frac{x+y}{2},\partial C) : \ y \in \partial C, \ \|x-y\| = \varepsilon \right\} \\ &= \inf \left\{ d(\frac{x+y}{2},\partial C) : \ y \in \overline{C}, \ \|x-y\| \geq \varepsilon \right\} \\ &= \inf \left\{ d(\frac{x+y}{2},\partial C) : \ y \in \overline{C}, \ \|x-y\| = \varepsilon \right\}. \end{split}$$

For $C = B_X$, the first complete proof is due to J. Daneš, 1976. We say that C is LUR if C is LUR at each point $x \in \partial C$.

Papers

- C.A. De Bernardi and L. V., Rotundity properties, and non-extendability of Lipschitz quasiconvex functions,
 J. Conv. Anal. 30 (2023), 329–342.
- C.A. De Bernardi and L. V., On extension of uniformly continuous quasiconvex functions, Proc. Amer. Math. Soc. **151** (2023), 1705–1716.

・ 同 ト ・ ヨ ト ・ ヨ ト

Papers

- C.A. De Bernardi and L. V., Rotundity properties, and non-extendability of Lipschitz quasiconvex functions, J. Conv. Anal. **30** (2023), 329–342.
- C.A. De Bernardi and L. V., On extension of uniformly continuous quasiconvex functions, Proc. Amer. Math. Soc. **151** (2023), 1705–1716.
- C.A. De Bernardi and L. V., *Global moduli of convexity of convex sets*, preprint in preparation.
- C.A. De Bernardi and L. V., *Local moduli of convexity of convex sets*, preprint in preparation.

イロト イポト イヨト イヨト 三日

- THE END -

Thank you for your attention!

L. Veselý UC sets and extendability of Lipschitz qc. functions

<ロト < 部 > < 注 > < 注 > < 注</p>