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Quasiconvexity

Definition

Let A be a convex set in a (real) vector space, and
f : A → R ∪ {+∞}.

f is convex if ∀x , y ∈ A, ∀t ∈ (0, 1),
f ((1− t)x + ty) ≤ (1− t)f (x) + tf (y).

f is quasiconvex if ∀x , y ∈ A, ∀t ∈ (0, 1),
f ((1− t)x + ty) ≤ max{f (x), f (y)}.

It is clear that:
f is quasiconvex
iff all its sub-level sets [f ≤ α], α ∈ R, are convex
iff all its strict sub-level sets [f < α], α ∈ R, are convex.

“Convex” implies “quasiconvex”, but not vice versa (e.g.,
f (x) =

√
∥x∥ on a normed space).
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L. Veselý UC sets and extendability of Lipschitz qc. functions



Quasiconvexity

Definition

Let A be a convex set in a (real) vector space, and
f : A → R ∪ {+∞}.

f is convex if ∀x , y ∈ A, ∀t ∈ (0, 1),
f ((1− t)x + ty) ≤ (1− t)f (x) + tf (y).

f is quasiconvex if ∀x , y ∈ A, ∀t ∈ (0, 1),
f ((1− t)x + ty) ≤ max{f (x), f (y)}.

It is clear that:
f is quasiconvex
iff all its sub-level sets [f ≤ α], α ∈ R, are convex
iff all its strict sub-level sets [f < α], α ∈ R, are convex.

“Convex” implies “quasiconvex”, but not vice versa (e.g.,
f (x) =

√
∥x∥ on a normed space).
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Quasiconvex functions are useful

Quasiconvex functions are important in Mathematical
programming, in Mathematical economics, and in various other
areas of Mathematical analysis.

A classical example of an application:
X a reflexive Banach space (e.g., a Hilbert space), C ⊂ X a closed
convex set, f : C → R continuous quasiconvex function. If f is
coercive (i.e., f (x) → ∞ as x ∈ C, ∥x∥ → ∞) then there exists
min f (C ).
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Lipschitz convex functions are always extendable

Theorem (Classical result)

Let X be a normed space, A ⊂ X a convex set, and f : A → R an
L-Lipschitz (i.e., with a Lipschitz constant L ≥ 0) convex function.
Then the formula

F (x) := inf
a∈A

{
f (a) + L∥x − a∥

}
, x ∈ X ,

defines an L-Lipschitz convex extension of f to the whole X .

(Due to E.J. McShane, 1934, for X metric and without “convex”.
Independently, [a particular form of] the same formula appears as a

footnote in a paper by H. Whitney, 1934.

The convex case belongs essentially to the mathematical folklore.)

L. Veselý UC sets and extendability of Lipschitz qc. functions



Lipschitz convex functions are always extendable

Theorem (Classical result)

Let X be a normed space, A ⊂ X a convex set, and f : A → R an
L-Lipschitz (i.e., with a Lipschitz constant L ≥ 0) convex function.

Then the formula

F (x) := inf
a∈A

{
f (a) + L∥x − a∥

}
, x ∈ X ,

defines an L-Lipschitz convex extension of f to the whole X .

(Due to E.J. McShane, 1934, for X metric and without “convex”.
Independently, [a particular form of] the same formula appears as a

footnote in a paper by H. Whitney, 1934.

The convex case belongs essentially to the mathematical folklore.)
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What about extending Lipschitz quasiconvex functions?

Let f : A → R be an L-Lipschitz quasiconvex function, where
A ⊂ X is a convex set.

Unfortunately, McShane’s extension formula does not
necessarily give a quasiconvex function.

Maybe, the result is still true?
In general, NO, not even for X = R2, A = the unit disc.
(But sometimes yes.)

If we cannot always get a Lipschitz quasiconvex extension,
maybe there exists at least a continuous qc. extension?
Not always! It depends drastically on the shape (i.e., the
geometric properties) of A.

Let’s observe that f can always be extended to an L-Lipschitz
quasiconvex function to A (by continuity).
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L. Veselý UC sets and extendability of Lipschitz qc. functions



What about extending Lipschitz quasiconvex functions?

Let f : A → R be an L-Lipschitz quasiconvex function, where
A ⊂ X is a convex set.

Unfortunately, McShane’s extension formula does not
necessarily give a quasiconvex function.

Maybe, the result is still true?
In general, NO, not even for X = R2, A = the unit disc.
(But sometimes yes.)

If we cannot always get a Lipschitz quasiconvex extension,
maybe there exists at least a continuous qc. extension?
Not always! It depends drastically on the shape (i.e., the
geometric properties) of A.

Let’s observe that f can always be extended to an L-Lipschitz
quasiconvex function to A (by continuity).
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A terminology

In what follows, X is a (real) normed space of dimension ≥ 2, and
A ⊂ X is a (nonempty) convex set.

Definition

An Ω(A)-family is a family of sets {Dα}α∈R such that:

α < β ⇒ D
A
α ⊂ Dβ ;

⋂
α∈R

Dα = ∅ ;
⋃
α∈R

Dα = A .
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Continuous qc. functions and their sublevel sets

Proposition

(a) [Easy, math. folklore.] If {Dα}α be an Ω(A)-family of
relatively open convex subsets of A, then the formula
f (x) = sup{α ∈ R : x /∈ Dα} defines a continuous (R-valued)
quasiconvex function on A such that

[f < α] =
⋃

β<αDβ and [f ≤ α] =
⋂

β>αDβ ≡
⋂

β>αD
A
β .

(b) [Trivial.] Vice-versa, if g is a continuous quasiconvex function
on A, then the sets Dα := [g < α] (α ∈ R) form an
Ω(A)-family of relatively open convex subsets of A. Moreover,
if f is defined as in (a) then f = g.

(c) [Easy exercise.] For {Dα}α and f as in (a), f is L-Lipschitz
(with L > 0) if and only if d(Dα,A \ Dβ) ≥ (1/L)(β − α) for
α < β. More generally, f is uniformly continuous with an
invertible modulus of continuity ω if and only if
d(Dα,A \ Dβ) ≥ ω−1(β − α) whenever α < β.
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Some notations

In what follows:

UX and BX are the open unit ball and the closed unit ball,
respectively.

If C ⊂ X is an open convex set, δ > 0, and δUX ⊂ C , then the
Minkowski gauge of C

µC (x) := inf{t > 0 : x ∈ tC} (x ∈ X )

has the following properties:

1 µC is a nonnegative, finite and sublinear (i.e., positively
homogeneous and subadditive; hence convex) function;

2 µC is (1/δ)-Lipschitz;

3 [µC < 1] = C and [µC ≤ 1] = C .
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How to construct counterexamples?

Lemma (Construction Lemma)

Let A be an open convex set containig 0, and let Dn (n ∈ N) be
open convex sets such that:

1 Dn ↗ A;

2 (1/L)UX ⊂ D1 for some L > 0;

3 A ∩ νn+1Dn ⊂ Dn+1 (n ∈ N) for some νn+1 > 1.

Define α1 = 1, αn = 1 +
∑n

2(νk − 1) for n ≥ 2, and for x ∈ A,

f (x) =


µD1(x), x ∈ D1,

αn − 1 + µDn(x), x ∈ (A ∩ νn+1Dn) \ Dn,

αn+1, x ∈ Dn+1 \ νn+1Dn.

Then f is an L-Lipschitz quasiconvex function on A such that

[f < αn] = Dn for each n ∈ N.
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L. Veselý UC sets and extendability of Lipschitz qc. functions



How to construct counterexamples?

Lemma (Construction Lemma)

Let A be an open convex set containig 0, and let Dn (n ∈ N) be
open convex sets such that:

1 Dn ↗ A;

2 (1/L)UX ⊂ D1 for some L > 0;

3 A ∩ νn+1Dn ⊂ Dn+1 (n ∈ N) for some νn+1 > 1.

Define α1 = 1, αn = 1 +
∑n

2(νk − 1) for n ≥ 2, and for x ∈ A,

f (x) =


µD1(x), x ∈ D1,

αn − 1 + µDn(x), x ∈ (A ∩ νn+1Dn) \ Dn,

αn+1, x ∈ Dn+1 \ νn+1Dn.

Then f is an L-Lipschitz quasiconvex function on A such that

[f < αn] = Dn for each n ∈ N.
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Counterexample 1

Simple counterexample

Let A ⊂ R2 be an open convex set which is not strictly convex.
Then there exists a Lipschitz quasiconvex function f on A such
that f admits no continuous quasiconvex extension to R2.
(Not even to any open convex set containing A ∪ {x0} for a given
x0 /∈ ext(A).)

Let (0, 0) ∈ A and ∂A contain the segment
[
(−1,−1), (1.− 1)

]
.

(0, bn) such that bn ↗ −1,
(cn,−1) such that 0 < c1 < 1 and {cn}n is strictly increasing.

∃f Lipschitz qc. on A such that [f < αn] = Dn for some increasing
sequence {αn}n. Assume that f has a continuous qc. extension F .

(0,−1) ∈ D1, hence F (0,−1) ≤ α1 < α2.

By convexity, F (0, bn) ≥ αn ≥ α2 for n ≥ 2. So F (0,−1) ≥ α2 by
continuity. Contradiction!
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Counterexample 2

Theorem

There exists a Lipschitz quasiconvex function on the open unit disc
A in the Euclidean plane R2 that admits no Lipschitz quasiconvex
extension to R2. (Not even to any open convex set containing A.)

A rough sketch of proof.

A := {(x , y) ∈ R2 : x2 + y2 < 1}.
Take an increasing sequence bn > 1 such that bn+1/bn → ∞, and
a sequence tn ↘ 0 with t1 = 1/2 and bn+1tn → 0.
For n ∈ N consider:

the points wn := (
√
1− t2n , tn ) ∈ ∂A;

the open half-planes
Hn :=

{
(x , y) : y − tn − bn(x −

√
1− t2n) > 0

}
;

the lines Ln := ∂Hn ∋ wn;

the open convex sets Dn := A ∩ Hn.
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Counterexample 2 – continuation

Thorough calculations give that:

1 Dn ↗ A;

2 0 ∈ D1 (and hence 1
LUX ⊂ D1 for some L > 0);

3 A ∩ νn+1Dn ⊂ Dn+1 for certain νn+1 > 1.

By our Construction Lemma, there exist

a sequence 1 = α1 < α2 < . . . (depending on νk ’s), and

an L-Lipschitz quasiconvex function f on A

such that [f < αn] = Dn for each n.

The construction of f also gives

[f ≤ αn] = D
A
n , n ∈ N.
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Counterexample 2 – continuation 2

Proceeding by contradiction, assume that f admits an M-Lipschitz
quasiconvex extension F , defined on B = rA for some r > 1. And
denote En := [F ≤ αn]B .

Since A ∩ En = [f ≤ αn]A = D
A
n ⊂ Hn, by convexity we must have

En ⊂ Hn for each n.
Since F is M-Lipschitz on B, it easily follows that

d(En,B \ En+1) = d
(
[F ≤ αn]B , [F > αn+1]B

)
≥ 1

M (αn+1 − αn).

Then

1

M
≤ d(En,B \ En+1)

αn+1 − αn
≤ d(wn,B \ Hn+1)

αn+1 − αn
=

d(wn, Ln+1)

αn+1 − αn
=: ∆n .

A precise calculation gives that ∆n → 0, which is a contradiction.
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Good news: extending from a subspace works!

Theorem

Let Y be a subspace of a normed space X . Then each L-Lipschitz
qc. function on Y admits an L-lipschitz (the same constant!) qc.
extension to the whole X .

More generally, each uniformly continuous quasiconvex function f
on Y admits a uniformly continuous quasiconvex extension F
defined on X , having the same invertible modulus of continuity.

Rough idea. Cα := [f < α], α ∈ R, forms an Ω(Y )-family of
open convex subsets of Y s.t. d(cα,Y \ Cβ) ≥ ω−1(β − α),
α < β. Consider the sets

Dα :=
⋃
y∈Y

UX

[
y , d(y ,Y \ Cα)

]
.

They extend Cα’s in an appropriate way. Define
F (x) := sup{α : x /∈ Dα}.
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Extending from uniformly convex sets

The result, not as good as for subspaces, is as follows. The
definitions and a more precise statement will be given later.

Theorem

Let A ⊊ X be a nonempty open convex set. If A is uniformly
convex, then every Lipschitz quasiconvex function f on A admits a
uniformly continuous (but not necessarily Lipschitz) quasiconvex
extension F to the whole X .
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Uniformly convex sets

Definition

Let C ⊂ X be a convex set whose interior and boudary are
nonempty. We say that C is uniformly convex if

xn, yn ∈ ∂C (n ∈ N), d( xn+yn
2 , ∂C ) → 0 ⇒ ∥xn − yn∥ → 0.

Or equivalently:
δC (ε) > 0 for each 0 < ε < diamC , where

δC (ε) := inf
{
d( x+y

2 , ∂C ) : x , y ∈ ∂C , ∥x − y∥ ≥ ε
}

= inf
{
d( x+y

2 , ∂C ) : x , y ∈ ∂C , ∥x − y∥ = ε
}

= inf
{
d( x+y

2 , ∂C ) : x , y ∈ C , ∥x − y∥ ≥ ε
}

= inf
{
d( x+y

2 , ∂C ) : x , y ∈ C , ∥x − y∥ = ε
}
.

The above equalities (known for C = BX [Day, 1944]), except for
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L. Veselý UC sets and extendability of Lipschitz qc. functions



Uniformly convex sets

Definition

Let C ⊂ X be a convex set whose interior and boudary are
nonempty. We say that C is uniformly convex if

xn, yn ∈ ∂C (n ∈ N), d( xn+yn
2 , ∂C ) → 0 ⇒ ∥xn − yn∥ → 0.

Or equivalently:
δC (ε) > 0 for each 0 < ε < diamC , where

δC (ε) := inf
{
d( x+y

2 , ∂C ) : x , y ∈ ∂C , ∥x − y∥ ≥ ε
}

= inf
{
d( x+y

2 , ∂C ) : x , y ∈ ∂C , ∥x − y∥ = ε
}

= inf
{
d( x+y

2 , ∂C ) : x , y ∈ C , ∥x − y∥ ≥ ε
}

= inf
{
d( x+y

2 , ∂C ) : x , y ∈ C , ∥x − y∥ = ε
}
.

The above equalities (known for C = BX [Day, 1944]), except for
the the last one, are not trivial for a general C .
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Some properties

Easy: δC (0) = 0, and δC (ε) ≤ 1
2ε for 0 ≤ ε < diam(C ).

Known: H Hilbert ⇒ δBH
(ε) = 1−

√
1− (ε2/4) ∼ 1

8ε
2 as ε ↘ 0.

Theorem (Balashov-Repovš 2009, and a bit more)

Let C be a convex set in a normed space X , int(C ) ̸= ∅ ≠ ∂C.

1 If δC (ε0) > 0 for some ε0 ∈ (0,diam(C)) (e.g., if C is
uniformly convex), then C is bounded.

2 X contains a uniformly convex set if and only if its completion
X̂ is superreflexive.

3 δC (ε) ≤ kC · ε2 for 0 ≤ ε < diam(C ).

4 If C is uniformly convex, then the function ε 7→ δC (ε) is
strictly increasing and continuous.

5 If X is finite-dimensional, then: C is uniformly convex if and
only if C is bounded and strictly convex.

Consequently, if C is uniformly convex then δC can be extended to
a homeomorphism of [0,∞) onto itself.
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Theorem (Balashov-Repovš 2009, and a bit more)

Let C be a convex set in a normed space X , int(C ) ̸= ∅ ≠ ∂C.
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Theorem (Balashov-Repovš 2009, and a bit more)

Let C be a convex set in a normed space X , int(C ) ̸= ∅ ≠ ∂C.
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The result

Theorem

Let A ⊊ X be a nonempty open convex set. If A is uniformly
convex, then every Lipschitz quasiconvex function f on A admits a
uniformly continuous (but not necessarily Lipschitz) quasiconvex
extension F to the whole X .

More precisely, if f is L-Lipschitz and δA : [0,∞) → [0,∞) is a
homeomorphism that extends the corresponding modulus of
convexity δA, then the qc. extension F is uniformly continuous
with the invertible modulus of continuity ω̃(t) = L · δ−1

A (t).

More general statement: if f is uniformly continuous with an
invertible modulus of continuity ω, then F is uniformly continuous
with the invertible modulus of continuity ω̃(t) = ω

(
δ−1
A (t)

)
.

Moreover F (X ) ⊂ f (A).
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Idea of the proof

The proof goes in a similar way, but it uses a different extension
method. W.r.t. the previous proof, this one is much more technical.

The strict sublevel sets

Cα := [f < α], α ∈ R,

are extended to Dα := ∅ if Cα = ∅; Dα := X if Cα = A; otherwise

Dα :=
⋂

y∈A∩∂Cα

K (y ,Cα) .

Here:
K (y ,Cα) =

⋂
[f ≤ f (y)]

where the intersection is w.r.t. all nonzero supporting functionals
to Cα at y .
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A general non-extendability result

Theorem

Let A ⊊ X be a nonempty open convex set. If A is not LUR
(locally uniformly convex/rotund), then there exists a Lipschitz
quasiconvex function f : A → R that does not admit any
continuous quasiconvex extension to X .

Remains open:
if every Lipschitz qc. function on A admits a uniformly continuous
qc. extension to the whole X , is then A necessarily uniformly
convex?
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LUR points and the local modulus of convexity

Definition

Let C ⊂ X be a convex set whose interior and boudary are
nonempty, x ∈ ∂C . We say that C is LUR (locally uniformly
convex/rotund) at x if

yn ∈ ∂C (n ∈ N), d( x+yn
2 , ∂C ) → 0 ⇒ ∥x − yn∥ → 0.

Or equivalently:
δC (x , ε) > 0 for each 0 < ε < ∆x(C ) := supy∈∂C ∥x − y∥, where

δC (x , ε) := inf
{
d( x+y

2 , ∂C ) : y ∈ ∂C , ∥x − y∥ ≥ ε
}

= inf
{
d( x+y

2 , ∂C ) : y ∈ ∂C , ∥x − y∥ = ε
}

= inf
{
d( x+y

2 , ∂C ) : y ∈ C , ∥x − y∥ ≥ ε
}

= inf
{
d( x+y

2 , ∂C ) : y ∈ C , ∥x − y∥ = ε
}
.

For C = BX , the first complete proof is due to J. Daneš, 1976.

We say that C is LUR if C is LUR at each point x ∈ ∂C .
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– THE END –

Thank you for your attention!
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