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The Banach-Mazur distance between two isomorphic

Banach spaces X and Y is defined by

d(X ,Y ) = inf
{

𝜙

 

𝜙−1

 : 𝜙 is an isomorphism from X onto Y

}
.

For a locally compact Hausdorff space K , C0(K ) denotes the

Banach space of all continuous real-valued functions

vanishing at infinity on K , endowed with the supremum

norm. We recall that a function f : K → R is said to vanish

at infinity on K if for every 𝜀 > 0 the set {x ∈ K : |f (x)| ≥ 𝜀}
is compact.

As usual, if K is compact, we denote C0(K ) by C(K ).
If 𝛼 is an ordinal number, [1, 𝛼] denotes the set of all

ordinals 𝜆 such that 1 ≤ 𝜆 ≤ 𝛼, provided with the order

topology.



Theorem (S. Mazurkiewicz, W. Sierpiński, Fund. Math. (1920))

Every compact countable metric space K is homeomorphic to the
interval of ordinals [1, 𝛼] for some countable ordinal 𝛼.

Theorem (C. Bessaga, A. Pełczyński, Studia Math. (1960))

If 𝜔 ≤ 𝛼 ≤ 𝛽 < 𝜔1, then C([1, 𝛼]) is isomorphic to C([1, 𝛽]) if and
only if 𝛽 < 𝛼𝜔, where 𝜔 denotes the first infinite ordinal and 𝜔1
denotes the first uncountable ordinal.

Theorem (A. A. Miljutin, Teor. Funkc. Anal. i Pril. (1966))

If K and L are uncountable compact metric spaces, then C(K ) and
C(L) are isomorphic.



Theorem (Banach–Stone)

If K and L are compact Hausdorff spaces, then C(K ) is isometrically
isomorphic to C(L) if and only if K and L are homeomorphic.

Theorem (D. Amir, Israel J. Math. (1965))

Let K and L be compact Hausdorff spaces. If there exists an
isomorphism T of C(K ) onto C(L) with ∥T ∥ ∥T−1∥ < 2, then K and L
are homeomorphic.

Theorem (M. Cambern, Proc. Amer. Math. Soc. (1966))

Let K and L be locally compact Hausdorff spaces. If there exists an
isomorphism T of C0(K ) onto C0(L) with ∥T ∥ ∥T−1∥ < 2, then K and
L are homeomorphic.

Observation

There are no two isomorphic C0(K ) spaces for which the
Banach–Mazur distance belongs to the interval (1, 2).



Theorem (Banach–Stone)

If K and L are compact Hausdorff spaces, then C(K ) is isometrically
isomorphic to C(L) if and only if K and L are homeomorphic.

Theorem (D. Amir, Israel J. Math. (1965))

Let K and L be compact Hausdorff spaces. If there exists an
isomorphism T of C(K ) onto C(L) with ∥T ∥ ∥T−1∥ < 2, then K and L
are homeomorphic.

Theorem (M. Cambern, Proc. Amer. Math. Soc. (1966))

Let K and L be locally compact Hausdorff spaces. If there exists an
isomorphism T of C0(K ) onto C0(L) with ∥T ∥ ∥T−1∥ < 2, then K and
L are homeomorphic.

Observation

There are no two isomorphic C0(K ) spaces for which the
Banach–Mazur distance belongs to the interval (1, 2).



Theorem (Banach–Stone)

If K and L are compact Hausdorff spaces, then C(K ) is isometrically
isomorphic to C(L) if and only if K and L are homeomorphic.

Theorem (D. Amir, Israel J. Math. (1965))

Let K and L be compact Hausdorff spaces. If there exists an
isomorphism T of C(K ) onto C(L) with ∥T ∥ ∥T−1∥ < 2, then K and L
are homeomorphic.

Theorem (M. Cambern, Proc. Amer. Math. Soc. (1966))

Let K and L be locally compact Hausdorff spaces. If there exists an
isomorphism T of C0(K ) onto C0(L) with ∥T ∥ ∥T−1∥ < 2, then K and
L are homeomorphic.

Observation

There are no two isomorphic C0(K ) spaces for which the
Banach–Mazur distance belongs to the interval (1, 2).



Theorem (Banach–Stone)

If K and L are compact Hausdorff spaces, then C(K ) is isometrically
isomorphic to C(L) if and only if K and L are homeomorphic.

Theorem (D. Amir, Israel J. Math. (1965))

Let K and L be compact Hausdorff spaces. If there exists an
isomorphism T of C(K ) onto C(L) with ∥T ∥ ∥T−1∥ < 2, then K and L
are homeomorphic.

Theorem (M. Cambern, Proc. Amer. Math. Soc. (1966))

Let K and L be locally compact Hausdorff spaces. If there exists an
isomorphism T of C0(K ) onto C0(L) with ∥T ∥ ∥T−1∥ < 2, then K and
L are homeomorphic.

Observation

There are no two isomorphic C0(K ) spaces for which the
Banach–Mazur distance belongs to the interval (1, 2).



In 1968, Aleksander Pełczyński posed the following question:

Problem 28 in Dissertationes Math. (1968)

Let K and L be compact Hausdorff spaces such that C(K ) is
isomorphic to C(L). Is it true that d(C(K ),C(L)) = n for some n ∈ N?



Example (M. Cambern, Notices Amer. Math. Soc. (1969))

In 1969, Cambern gave an example of metric spaces K and L
such that K is compact, L is locally compact but noncompact,

and an isomorphism T of C(K ) onto C0(L) with ∥T ∥∥T−1∥ = 2.

For this purpose, he considered the spaces C([1, 𝜔]) and

C0([1, 𝜔2)).

Example (H. B. Cohen, Proc. Amer. Math. Soc. (1975))

In 1975, Cohen conctructed nonhomeomorphic uncountable

compact Hausdorff spaces K and L and an isomorphism T of

C(K ) onto C(L) such that ∥T ∥∥T−1∥ = 2.



Theorem (M. Cambern, Studia Math. (1968))

d(c0 , c) = 3.

Theorem (M. Cambern, Math. Ann. (1970))

Let Γ be an infinite set with the discrete topology.
1 If K is any locally compact Hausdorff space which contains a

point of accumulation, and if T is any isomorphism of C0(K )
onto C0(Γ), then ∥T ∥ ∥T−1∥ ≥ 3.

2 If Γ∗ denotes the one-point compactification of Γ, then there exists
an isomorphism T of C(Γ∗) onto C0(Γ) satisfying
∥T ∥ ∥T−1∥ = 3.
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For any ordinal number 𝛼, the 𝛼th derivative of K , K (𝛼)
, is

defined by transfinite induction: K (0) = K , K (1)
is the set of

non-isolated points of K , and

K (𝛼) =

{
(K (𝛽))(1) if 𝛼 = 𝛽 + 1⋂

𝛽<𝛼 K (𝛽)
otherwise.

|K | denotes the cardinality of a set K .

Theorem (Y. Gordon, Israel J. Math. (1970))

Let K , L be locally compact Hausdorff spaces and let T be an
isomorphism of C0(K ) into C0(L). If there is an ordinal 𝛼 such that��K (𝛼)�� > ��L(𝛼)��, then ∥T ∥ ∥T−1∥ ≥ 3.
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Theorem (Y. Gordon, Israel J. Math. (1970))

d(C([0, 1]),C0([0, 1) ∪ {2})) = 3.

Remark

The same reasoning gives

d(C(Δ),C0(Δ \ {1} ∪ {2})) = 3,

where Δ denotes the Cantor set.

Theorem (Ł. Piasecki, J. Villada (2022))

d(C(Δ),C0(Δ \ {1})) = 2.
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Theorem (L. Candido, E. M. Galego, Fund. Math. (2012))

Suppose that 1 < n, k < 𝜔. Then

d(c0 ,C([1, 𝜔nk])) = 2n + 1.



Theorem (Y. Gordon, Israel J. Math. (1970))

d(c,C([1, 𝜔2])) = 3.

Theorem (L. Candido, E. M. Galego, Studia Math. (2013))

Suppose that 1 < n, k < 𝜔. Then
3 ≤ d(c,C([1, 𝜔k])) ≤ 2 +

√
5,

2n − 1 ≤ d(c,C([1, 𝜔n])) ≤ n +
√
(n − 1)(n + 3),

2n + 1 ≤ d(c,C([1, 𝜔nk])) ≤ n + 1 +
√

n(n + 4).

Conjecture (L. Candido, E. M. Galego, Studia Math. (2013))

Let n ≥ 2 and k ≥ 2 be integers. Then:
d(c,C([1, 𝜔(k + 1)])) is equal to 3, 4 or 2 +

√
5,

d(c,C([1, 𝜔n])) is equal to 2n − 1, 2n or n +
√
(n − 1)(n + 3),

d(c,C([1, 𝜔nk])) is equal to 2n+ 1, 2n+ 2 or n+ 1+
√

n(n + 4).
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Theorem (A. Gergont, Ł. Piasecki (2023))

Let 3 ≤ k < 𝜔. Then

d(c,C([1, 𝜔k])) ≥ 3 +
√

3k2 − 2k + 1 − k − 1
k

.

In particular, for k = 3 we have

d(c,C([1, 𝜔3])) ≥ 3 +
√

22 − 4
3

≈ 3.23.

Remark

Observe that if k tends to infinity, then 3 +
√

3k2−2k+1−k−1
k increases to

2 +
√

3 ≈ 3.73.



Proof.

Let T be an isomorphism from C([1, 𝜔k]) onto C([1, 𝜔]).
Without loss of generality we may assume that ∥T−1∥ = 1
(otherwise, we replace T by S = ∥T−1∥T ). Then T is

norm-increasing, that is, ∥T (f )∥ ≥ ∥f ∥ for every f ∈ C([1, 𝜔k]).
Since T is onto, there exists g ∈ C([1, 𝜔k]) such that T (g) = 1,
where 1 denotes the constant function equal to 1 on [1, 𝜔].
Since ∥T−1∥ = 1, we have ∥g∥ ≤ 1.





Step 1. We claim that there exist i1 , i2 , . . . , ik−2 ∈ {0, 1, . . . , k − 1}
such that im ≠ in for m ≠ n and

T

(
k−2∑
j=1

g𝜒[𝜔ij+1,𝜔(ij+1)]

)
(𝜔) ≥ k − 2

k
,

where 𝜒A denotes the characteristic function of A ⊂ [1, 𝜔k].
Suppose it is not true. Then, for any i1 , i2 , . . . , ik−2 ∈ {0, 1, . . . , k − 1}
such that im ≠ in for m ≠ n, we have

T

(
k−2∑
j=1

g𝜒[𝜔ij+1,𝜔(ij+1)]

)
(𝜔) < k − 2

k
.

Therefore, for any i , j ∈ {0, 1, . . . , k − 1} such that i ≠ j, we have

T
(
g𝜒[𝜔i+1,𝜔(i+1)] + g𝜒[𝜔j+1,𝜔(j+1)]

)
(𝜔) > 2

k
.



Hence, if k is an even number, we get a contradiction,

1 = 1(𝜔) = T

(
k−1∑
i=0

g𝜒[𝜔i+1,𝜔(i+1)]

)
(𝜔) =

k−1∑
i=0

T
(
g𝜒[𝜔i+1,𝜔(i+1)]

)
(𝜔)

=

k
2−1∑
i=0

T
(
g𝜒[𝜔(2i)+1,𝜔(2i+1)] + g𝜒[𝜔(2i+1)+1,𝜔(2i+2)]

)
(𝜔) > k

2
· 2

k
= 1.

If, on the other hand, k is an odd number,

2 = T

(
k−1∑
i=0

2g𝜒[𝜔i+1,𝜔(i+1)]

)
(𝜔) = T (g𝜒[1,𝜔] + g𝜒[𝜔(k−1)+1,𝜔k])(𝜔)

+
k−2∑
i=0

T (g𝜒[𝜔i+1,𝜔(i+1)] + g𝜒[𝜔(i+1)+1,𝜔(i+2)])(𝜔) > k · 2
k
= 2,

a contradiction. The proof of our claim is completed. In what

follows, without loss of generality we can assume that

T (g𝜒[𝜔2+1,𝜔k])(𝜔) ≥
k − 2

k
.







Step 2. Let X be a linear subspace of C([1, 𝜔k]) spanned by

𝜒[1,𝜔] and 𝜒[𝜔+1,𝜔2],

X = {𝛼1𝜒[1,𝜔] + 𝛼2𝜒[𝜔+1,𝜔2] : 𝛼1 , 𝛼2 ∈ R}.

Consider a function x∗ : X → R defined by

x∗(𝛼1𝜒[1,𝜔] + 𝛼2𝜒[𝜔+1,𝜔2]) = T (𝛼1𝜒[1,𝜔] + 𝛼2𝜒[𝜔+1,𝜔2])(𝜔).

Clearly, x∗
is a linear functional. Since dim X = 2 > dim x∗(X),

there exists a = (a1 , a2) with max{|a1 |, |a2 |} = 1 such that

x∗(a1𝜒[1,𝜔] + a2𝜒[𝜔+1,𝜔2]) = 0.

In what follows, w.l.o.g. we can assume that a1 = 1, that is,

x∗(𝜒[1,𝜔] + a2𝜒[𝜔+1,𝜔2]) = T (𝜒[1,𝜔] + a2𝜒[𝜔+1,𝜔2])(𝜔) = 0.







Step 3. We claim that for every 𝜀 > 0 and every M ∈ N there is

only a finite number of elements of {𝜒{l} : l ∈ N} for which the

following condition holds: for at least one n ∈ {1, 2, . . . ,M}��T (𝜒{l})(n)
�� ≥ 𝜀.



Step 3. We claim that for every 𝜀 > 0 and every M ∈ N there is

only a finite number of elements of {𝜒{l} : l ∈ N} for which the

following condition holds: for at least one n ∈ {1, 2, . . . ,M}��T (𝜒{l})(n)
�� ≥ 𝜀.



Step 3. We claim that for every 𝜀 > 0 and every M ∈ N there is

only a finite number of elements of {𝜒{l} : l ∈ N} for which the

following condition holds: for at least one n ∈ {1, 2, . . . ,M}��T (𝜒{l})(n)
�� ≥ 𝜀.



Step 3. We claim that for every 𝜀 > 0 and every M ∈ N there is

only a finite number of elements of {𝜒{l} : l ∈ N} for which the

following condition holds: for at least one n ∈ {1, 2, . . . ,M}��T (𝜒{l})(n)
�� ≥ 𝜀.



Step 3. We claim that for every 𝜀 > 0 and every M ∈ N there is

only a finite number of elements of {𝜒{l} : l ∈ N} for which the

following condition holds: for at least one n ∈ {1, 2, . . . ,M}��T (𝜒{l})(n)
�� ≥ 𝜀.



Suppose it is not true. Then there exist 𝜀 > 0 and n0 ∈ N s.t.��T (𝜒{l})(n0)
�� ≥ 𝜀 for infinitely many l ∈ N.

For N ∈ N we define fN =
∑N

l=1 sign

(
T (𝜒{l})(n0)

)
· 𝜒{l} . Then

∥fN ∥ = 1 and

∥T (fN)∥ ≥ |T (fN)(n0)| =
∑N

l=1
��T (𝜒{l})(n0)

�� .
Letting N → ∞, we get a contradiction with boundedness of T .



Suppose it is not true. Then there exist 𝜀 > 0 and n0 ∈ N s.t.��T (𝜒{l})(n0)
�� ≥ 𝜀 for infinitely many l ∈ N.

For N ∈ N we define fN =
∑N

l=1 sign

(
T (𝜒{l})(n0)

)
· 𝜒{l} . Then

∥fN ∥ = 1 and

∥T (fN)∥ ≥ |T (fN)(n0)| =
∑N

l=1
��T (𝜒{l})(n0)

�� .
Letting N → ∞, we get a contradiction with boundedness of T .



Suppose it is not true. Then there exist 𝜀 > 0 and n0 ∈ N s.t.��T (𝜒{l})(n0)
�� ≥ 𝜀 for infinitely many l ∈ N.

For N ∈ N we define fN =
∑N

l=1 sign

(
T (𝜒{l})(n0)

)
· 𝜒{l} . Then

∥fN ∥ = 1 and

∥T (fN)∥ ≥ |T (fN)(n0)| =
∑N

l=1
��T (𝜒{l})(n0)

�� .
Letting N → ∞, we get a contradiction with boundedness of T .



Suppose it is not true. Then there exist 𝜀 > 0 and n0 ∈ N s.t.��T (𝜒{l})(n0)
�� ≥ 𝜀 for infinitely many l ∈ N.

For N ∈ N we define fN =
∑N

l=1 sign

(
T (𝜒{l})(n0)

)
· 𝜒{l} . Then

∥fN ∥ = 1 and

∥T (fN)∥ ≥ |T (fN)(n0)| =
∑N

l=1
��T (𝜒{l})(n0)

�� .
Letting N → ∞, we get a contradiction with boundedness of T .



Suppose it is not true. Then there exist 𝜀 > 0 and n0 ∈ N s.t.��T (𝜒{l})(n0)
�� ≥ 𝜀 for infinitely many l ∈ N.

For N ∈ N we define fN =
∑N

l=1 sign

(
T (𝜒{l})(n0)

)
· 𝜒{l} . Then

∥fN ∥ = 1 and

∥T (fN)∥ ≥ |T (fN)(n0)| =
∑N

l=1
��T (𝜒{l})(n0)

�� .
Letting N → ∞, we get a contradiction with boundedness of T .



Suppose it is not true. Then there exist 𝜀 > 0 and n0 ∈ N s.t.��T (𝜒{l})(n0)
�� ≥ 𝜀 for infinitely many l ∈ N.

For N ∈ N we define fN =
∑N

l=1 sign

(
T (𝜒{l})(n0)

)
· 𝜒{l} . Then

∥fN ∥ = 1 and

∥T (fN)∥ ≥ |T (fN)(n0)| =
∑N

l=1
��T (𝜒{l})(n0)

�� .
Letting N → ∞, we get a contradiction with boundedness of T .



Suppose it is not true. Then there exist 𝜀 > 0 and n0 ∈ N s.t.��T (𝜒{l})(n0)
�� ≥ 𝜀 for infinitely many l ∈ N.

For N ∈ N we define fN =
∑N

l=1 sign

(
T (𝜒{l})(n0)

)
· 𝜒{l} . Then

∥fN ∥ = 1 and

∥T (fN)∥ ≥ |T (fN)(n0)| =
∑N

l=1
��T (𝜒{l})(n0)

�� .
Letting N → ∞, we get a contradiction with boundedness of T .



Suppose it is not true. Then there exist 𝜀 > 0 and n0 ∈ N s.t.��T (𝜒{l})(n0)
�� ≥ 𝜀 for infinitely many l ∈ N.

For N ∈ N we define fN =
∑N

l=1 sign

(
T (𝜒{l})(n0)

)
· 𝜒{l} . Then

∥fN ∥ = 1 and

∥T (fN)∥ ≥ |T (fN)(n0)| =
∑N

l=1
��T (𝜒{l})(n0)

�� .
Letting N → ∞, we get a contradiction with boundedness of T .



Step 4. Suppose now that

∥T ∥ < 3 +
√

3k2 − 2k + 1 − k − 1
k

.

We show that this assumption leads to a contradiction. Put

A =

√
3k2 − 2k + 1 − k − 1

k
.





































Example 1 (A. Gergont, Ł. Piasecki (2023))

Consider a mapping T : C([1, 𝜔3]) → C([1, 𝜔]) defined for

every f ∈ C([1, 𝜔3]) as follows:

T (f )(1) = −f (𝜔2) − f (𝜔3),

T (f )(2) = f (𝜔) + 15
30

f (𝜔2) − 14
30

f (𝜔3),

T (f )(𝜔) = − 8
30

f (𝜔) + 9
30

f (𝜔2) − 9
30

f (𝜔3),

T (f )(3m) = −25
30

f (m) + 17
30

f (𝜔) + 9
30

f (𝜔2) − 9
30

f (𝜔3),

T (f )(3m + 1) =
26
30

f (𝜔 + m) − 8
30

f (𝜔) − 17
30

f (𝜔2) − 9
30

f (𝜔3),

T (f )(3m + 2) = −26
30

f (𝜔2 + m) − 8
30

f (𝜔) + 9
30

f (𝜔2) + 17
30

f (𝜔3),

where 1 ≤ m < 𝜔. Standard calculations show that T is an

isomorphism and ∥T ∥∥T−1∥ = 7659
1930 . Therefore,

d(C([1, 𝜔]),C([1, 𝜔3])) ≤ 7659
1930

< 4.



Remark

Isomorphism in Example 1 is a particular case of a mapping

T : C([1, 𝜔3]) → C([1, 𝜔]) defined for every f ∈ C([1, 𝜔3]) as

follows:

T (f )(1) = a1f (𝜔) + b1f (𝜔2) + c1f (𝜔3),
T (f )(2) = a2f (𝜔) + b2f (𝜔2) + c2f (𝜔3),
T (f )(𝜔) = a3f (𝜔) + b3f (𝜔2) + c3f (𝜔3),

T (f )(3m) = a4f (m) + b4f (𝜔 + m) + c4f (𝜔2 + m) + (a3 − a4)f (𝜔)
+ (b3 − b4)f (𝜔2) + (c3 − c4)f (𝜔3),

T (f )(3m + 1) = a5f (m) + b5f (𝜔 + m) + c5f (𝜔2 + m) + (a3 − a5)f (𝜔)
+ (b3 − b5)f (𝜔2) + (c3 − c5)f (𝜔3),

T (f )(3m + 2) = a6f (m) + b6f (𝜔 + m) + c6f (𝜔2 + m) + (a3 − a6)f (𝜔)
+ (b3 − b6)f (𝜔2) + (c3 − c6)f (𝜔3),

where 1 ≤ m < 𝜔. It is possible to find coefficients ai , bi , ci , where

i = 1, . . . , 6, such that ∥T ∥∥T−1∥ < 3.88. For this purpose, the

following code can be used:

https://github.com/agnieszkagergont/Isomorphism-model-no.1



3.23 < d(C([1, 𝜔]),C([1, 𝜔3])) < 3.88.



Thank You


