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The quadratic problem with cone quadratic constraints

We consider the quadratic problem

µ := inf f (x) s.t. x ∈ K := {x ∈ C : g(x) ∈ −P}, (QP)

where

f (x) :=
1
2
x>Ax +a>x + α, with A, real symmetric matrix; a ∈ Rn

and α ∈ R;

g(x) := (g1(x), . . . ,gm(x)), gi (x) :=
1
2
x>Bix +b>i x + βi , with Bi

real symmetric matrices; bi ∈ Rn and βi ∈ R for i = 1, . . . ,m.
P is a convex cone in Rm, C ⊆ Rn.
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Applications

Trust region problems;
The standard quadratic problem;
Robust optimization;
Telecommunications;
Merit functions for bimatrix games;
Biology and Economics.

See, e.g.,

Horst, R.,Pardalos, P., : Handbook of global optimization,
nonconvex optimization and its applications, Kluwer, (1995).
Ben-Tal, A., den Hertog, D.: Hidden conic quadratic representation
of some nonconvex quadratic optimization problems, Math.
Program. 143, 1–29 (2014)
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We associate with (QP) the Lagrangian function

L(λ ,x)
.

= f (x) +
m

∑
i=1

λigi (x) and its dual problem

ν := sup
λ∈P∗

inf
x∈C

L(λ ,x). (1)

We say that strong duality holds for (QP), if there exists λ ∗ ∈ P∗ such
that

inf
x∈K

f (x) = inf
x∈C

L(λ
∗,x).

In case (QP) admits an optimal solution x̄ ∈ K , then the previous
condition is equivalent to

L(λ ∗, x̄)≤ L(λ ∗,x), ∀x ∈ C ,

〈λ ∗,g(x̄)〉= 0,
g(x̄) ∈ −P, x̄ ∈ C .
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The contingent cone T (C ; x̄) of C at x̄ ∈ C is the set of all v ∈ Rn such
that there exist sequences (xk , tk) ∈ C ×R+ with xk → x̄ and
tk(xk − x̄)→ v .

Under suitable assumptions on T (C ; x̄), we first establish three general
results.

The first and the second consider the case where x̄ is a KKT point
and provide a sufficient optimality condition and a characterization
of its optimality (in the case where P = {0}m), respectively;
the third one characterizes optimality under the assumption of
strong duality.

Definition. Let C ⊆ Rn.
We say that a symmetric matrix B is positive semidefinite on the set
C if x>Bx ≥ 0, ∀x ∈ C .
co C , cl C , ri C , denote the convex hull of C , the closure and the
relative interior of C .
C ∗ := {y∗ ∈ Rn : 〈y∗,x〉 ≥ 0, ∀x ∈ C}.
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Proposition 1

Let f , g1, . . . ,gm be quadratic functions as defined. Assume that x̄ ∈ K is
a KKT point for (QP), i.e., there exists λ ∗ ∈ P∗ such that

∇xL(λ
∗, x̄) ∈ [T (C ; x̄)]∗, 〈λ ∗,g(x̄)〉= 0, (2)

and, additionally, (K − x̄)⊆ cl co T (C ; x̄). Then the following assertion
holds.
If ∇2

xL(λ ∗, x̄) is positive semidefinite on K − x̄ , then x̄ is a (global)
optimal solution for (QP).

Remark

Proposition 1 is related to Theorem 2.1 in [Bomze (2015)] when applied
to a quadratic problem. Indeed, in [Bomze (2015)], K is a convex set and
C := Rn, which guarantees that the condition (K − x̄)⊆ cl co T (C ; x̄) is
fulfilled.
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Proposition 2

Let f , g1, . . . ,gm be quadratic functions as above, let P := {0}m and
x̄ ∈ K . Assume that

(K − x̄)⊆ cl co T (C ; x̄)⊆−cl co T (C ; x̄), (3)

and that x̄ is a KKT point for (QP), i.e., there exists λ ∗ ∈ Rm such that

∇xL(λ
∗, x̄) ∈ [T (C ; x̄)]∗. (4)

Then the following conditions are equivalent:
(a) x̄ is an optimal solution for the problem (QP);
(b) ∇2

xL(λ ∗, x̄) is positive semidefinite on K − x̄ and so on
cl cone(K − x̄).

Remark

Note that the second inclusion in assumption (3) is not needed for
proving that (b) implies (a), as shown by Proposition 1.
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Strong duality

In the following proposition we characterize optimality under the strong
duality property that can be considered as a regularity condition in view
of the fulfillment of the KKT conditions.

Proposition 3

Let f , g1, . . . ,gm be quadratic functions as above, let x̄ ∈ K , and assume
that

(C − x̄)⊆ cl co T (C ; x̄)⊆−cl co T (C ; x̄). (5)

Then the following assertions are equivalent:

(a) x̄ is an optimal solution for the problem (QP) and strong duality
holds;

(b) there exists λ ∗ ∈ P∗ such that (2) is fulfilled and ∇2
xL(λ ∗, x̄) is

positive semidefinite on C − x̄ .

Remark

We note that, for the implication (b)⇒ (a) in Proposition 3, the second
inclusion in (5) is not needed.
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Example 1

inf{1
2
x>Ax +a>x : b>x = 0, x ∈ R2}, (QP)

where

A =

(
1 2
2 1

)
a =

(
3
−1

)
b =

(
1
−2

)
Here, P = {0}, C = R2. Notice that A is an indefinite matrix. The KKT
conditions are given by

x1 +2x2 +3+ λ = 0
2x1 + x2−1−2λ = 0
x1−2x2 = 0, λ ≥ 0

⇒

{
x̄ = (− 10

13 ,−
5
13 ),

λ ∗ =− 19
13

Consider the condition:

(x− x̄)>∇
2
xL(x̄ ,λ ∗)(x− x̄) = (x− x̄)>

(
1 2
2 1

)
(x− x̄)≥ 0, ∀x ∈ K ,

Noticing that K = {(x1,x2) : x1 = 2x2}, this amount to check that

(x1 +
10
13

,x2 +
5
13

)

(
1 2
2 1

)
(x1 +

10
13

,x2 +
5
13

)T ≥ 0, ∀(x1,x2) : x1 = 2x2,
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or, equivalently,

2(2x2 +
10
13

)2 +5(x2 +
5
13

)2 ≥ 0, ∀x2 ∈ R,

which obviously holds. Therefore, the point x̄ is optimal for QP.
For strong duality, we have to consider the condition:

(x− x̄)>∇
2
xL(x̄ ,λ ∗)(x− x̄) = (x− x̄)>

(
1 2
2 1

)
(x− x̄)≥ 0, ∀x ∈C = R2,

which cannot hold being the matrix A indefinite.
Therefore, strong duality does not hold for (QP).

Remark

Condition (5), i.e.,

(C − x̄)⊆ cl co T (C ; x̄)⊆−cl co T (C ; x̄)

is fulfilled under the following circumstances:
(i) x̄ ∈ intC ;
(ii) C is defined by linear equalities, i.e., C := {x ∈ Rn : Hx = d},

H ∈ Rp×n, d ∈ Rp;
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(iii) C := {x ∈ Rn : h(x) = 0}, where h is a quadratic function with
∇h(x̄) = 0.

In fact, in case (iii), it can be proved that

T (C ; x̄) = C − x̄ = {v ∈ Rn : v>Hv = 0},

and, since T (C ; x̄) =−T (C ; x̄), then (5) is fulfilled.

Case (iii) will be of interest when we will consider a quadratic problem
with two quadratic equality constraints.
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Example 2

inf{1
2
x>Ax :

1
2
x>Bx ≤ 0, x ∈ R2}, (QP)

where

A =

(
−1 2
2 0

)
B =

(
1 −1
−1 0

)
Here, P = R+, C = R2. Notice that A and B are indefinite matrices. The
KKT conditions are given by

−x1 +2x2 + λ (x1−x2) = 0
2x1−λx1 = 0
λ ( 1

2x
2
1 −x1x2) = 0

1
2x

2
1 −x1x2 ≤ 0, λ ≥ 0

⇒

{
x̄ = (0,x2), x2 ∈ R,
λ ∗ = 2

∇
2
xL(x̄ ,λ ∗) = A+ λ

∗B =

(
1 0
0 0

)
,

which is positive semidefinite. Therefore, the points (0,x2), x2 ∈ R, are
optimal and strong duality holds for (QP).
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Applications to particular cases

The previous propositions generalize optimality conditions for classical
quadratic programming to a quadratic problem with cone constraints and
a geometric constraint set.

We now present some particular cases:

We first consider the quadratic programming problem with bivalent
constraints (QP1) defined by

inf
x∈K

f (x) := x>Ax +2a>x + α,

where
K := {x ∈ C : gi (x) := x>Bix +2b>i x + βi = 0, i = 1, ..,m,
gm+j (x) := x>Em+jx−1 = 0, j = 1, . . . ,n},
Em+j = diag(ej ) and ej is a vector in Rn whose j-th element is equal
to 1 and all the other entries are equal to 0.

Let L(λ ,γ,x) := f (x) + ∑
m
i=1 λigi (x) + ∑

n
j=1 γjgm+j (x), be the Lagrangian

function associated with (QP1).
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By Proposition 2 we recover Lemma 3.1 of [Li G. (2012)] which can be
stated as follows.

Proposition 4

Let C := Rn and x̄ ∈ K . Assume that there exist λ ∈ Rm and γ ∈ Rn

such that ∇xL(λ ,γ, x̄) = 0 . Then x̄ is an optimal solution for (QP1) if
and only if ∇2

xL(λ ,γ, x̄) is positive semidefinite on Z (x̄) defined by

Z (x̄) :=
m+n⋂
i=1

Zi (x̄). (6)

where, Zi (x̄) := {v ∈ Rn : ∇gi (x̄)>v +
1
2
v>Biv = 0}, for i = 1, . . . ,m+n.

Remark
In fact, it is possible to show that

Z (x̄) = K − x̄ . (7)

where K := {x ∈ Rn : gi (x) = 0, i = 1, . . . ,m+n}.
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Next result follows from Proposition 3. It is inspired by Theorem 3.1 of
[Li G. (2012)] and provides a characterization and a sufficient condition
for strong duality for (QP1).

Proposition 5

Let x̄ ∈ K with C := Rn. Consider the following assertions:
(a) x̄ is an optimal solution for (QP1) and strong duality holds;
(b) there exist λ ∈ Rm and γ ∈ Rn such that ∇xL(λ ,γ, x̄) = 0 and

∇2
xL(λ ,γ, x̄) is positive semidefinite;

(c) A−diag(X̄Ax̄ + X̄ a) is positive semidefinite, where
X̄ := diag(x̄1, . . . , x̄n).

Then (c)⇒ (b)⇔ (a).
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Conditions (3) and (5), i.e.,

(K − x̄)⊆ cl co T (C ; x̄)⊆−cl co T (C ; x̄),

(C − x̄)⊆ cl co T (C ; x̄)⊆−cl co T (C ; x̄),

in general are not fulfilled for a quadratic problem with bivalent
constraints.

Example 3

Let C := {x ∈ R2 : x2
1 = 1}, K := {x ∈ R2 : x2

1 = 1,x2
2 = 1},

x̄ = (1,1) ∈ K . Then,

T (C , x̄) = {x ∈ R2 : x1 = 0}= clco T (C ; x̄),

K − x̄ = {(0,0),(0,−2),(−2,−2),(−2,0)} 6⊆ clco T (C ; x̄).

This also implies that C − x̄ 6⊆ cl co T (C ; x̄) so that Propositions 2 and 3
in general cannot be applied to problem (QP1).
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Consider the problem

µ := inf{f (x) : g1(x)≤ 0, . . . ,gm(x)≤ 0, x ∈ C}, (8)

where C := {x ∈ Rn : Hx = d}, H is a (p×n) matrix and
f ,gi , i = 1, . . . ,m, are quadratic functions defined as in the beginning.

Recalling that for the above C , condition (5) is fulfilled, the following
results are all particular cases of Proposition 3.

Corollary ( [Jeyakumar- Li (2015)(Theorem 2.1)] and [Zheng, Sun, Li, Xu
(2011) (Theorem 1)]

Let x̄ be feasible for (8). The following assertions are equivalent:
(a) x̄ is an optimal solution and strong duality holds for (8);
(b) there exists λ ∗ ∈ Rm

+ such that ∇xL(x̄ ,λ ∗) ∈ H>(Rp),
λ ∗i gi (x̄) = 0, i = 1, . . . ,m, and ∇2

xL(x̄ ,λ ∗) is positive semidefinite on
Ker H.

When C := Rn, then (b) reduces to the following:
(b′) there exists λ ∗ ∈ Rm

+ such that ∇xL(x̄ ,λ ∗) = 0,
λ ∗i gi (x̄) = 0, i = 1, . . . ,m and ∇2

xL(x̄ ,λ ∗) is positive semidefinite.
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The Case with Two Quadratic Equality Constraints

Consider a quadratic problem with two quadratic equality constraints:

µ := inf{f (x) : g1(x) = 0, g2(x) = 0}, (9)

where f ,gi , i = 1,2 are quadratic functions as previously defined.
Let K := {x ∈ Rn : g1(x) = 0, g2(x) = 0}.

The standard Lagrangian associated with (9) LS : R2×Rn 7−→ R is:

LS(λ1,λ2,x) := f (x) + λ1g1(x) + λ2g2(x).

The following result is a consequence of Proposition 2.

Proposition 6

Let f , g1,g2 be defined as above, let x̄ ∈ K be a KKT point for (9), i.e.,
there exists λ1,λ2 ∈ R such that ∇f (x̄) + λ1∇g1(x̄) + λ2∇g2(x̄) = 0.
Then the following conditions are equivalent:
(a) x̄ is an optimal solution for (9);
(b) A+ λ1B1 + λ2B2 is positive semidefinite on K − x̄ .
If, additionally, ∇g2(x̄) = 0 then (b) is equivalent to:

(b1) A+ λ1B1 is positive semidefinite on K − x̄ .
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Duality

In the following we set C := {x ∈ Rn : g2(x) = 0}, so that
K = {x ∈ C : g1(x) = 0}.
The dual problem and the standard dual problem associated with (9) are,
respectively, defined by:

ν := sup
λ1∈R

inf
x∈C
{L(λ1,x)}; (10)

νS := sup
λ1,λ2∈R

inf
x∈Rn
{LS(λ1,λ2,x)}. (11)

We say that standard strong duality (SSD) holds for problem (9) if
µ = νS and problem (11) admits solution.

Remark
It easy to check that νS ≤ ν ≤ µ.
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Next theorem provides a characterization of strong duality for a quadratic
problem with two quadratic equality constraints.

Theorem 1
Let x̄ ∈ K be feasible for (9) and suppose that µ ∈ R.
(a) Assume that ∇g2(x̄) 6= 0. Then the following assertions are

equivalent
(a1) x̄ is an optimal solution and strong duality holds for problem (9);
(a2) ∃ λ1, λ2 ∈ R such that ∇xLS (λ1,λ2, x̄) = 0 and A+ λ1B1 + λ2B2 is

positive semidefinite on C − x̄ (and so on clcone(C − x̄)).

(b) Assume that ∇g2(x̄) = 0, and B2 positive (or negative) semidefinite.
Then, (a1) is equivalent to
(b1) ∃ λ1 ∈ R and ∃y ∈ Rn s.t. ∇f (x̄) + λ1∇g1(x̄) +B2y = 0 and

A+ λ1B1 is positive semidefinite on ker B2 = C − x̄ .

(c) Assume that ∇g2(x̄) = 0, and B2 indefinite. Then, (a1) is equivalent
to
(c1) ∃ λ1 ∈ R s.t. ∇f (x̄) + λ1∇g1(x̄) = 0 and A+ λ1B1 is positive

semidefinite on C − x̄ (and so on clcone(C − x̄)).
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Further developments

Local optimality conditions
Applications to quadratically constrained equilibrium problems (in
particular, variational inequalities)
Extensions to multiobjective quadratic optimization problems
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Applications to equilibrium problems

Consider the following equilibrium problem (EP), which consists in finding

x̄ ∈ K s.t. f (x̄ ,y)≥ 0, ∀y ∈ K ,

where f : K ×K → R, K ⊆ Rn and f (x ,x) = 0, ∀x ∈ K .

Lemma

x̄ is a solution of (EP) if and only if x̄ is an optimal solution of the
following constrained extremum problem:

min
y∈K

f (x̄ ,y) (P(x̄))

Remark

If we assume that f (x , ·) is a quadratic function for every x ∈ K and K is
defined by means of quadratic constraints plus a geometric one (x ∈ C ),
then we can apply the results obtained for problem (QP).
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The equilibrium problem with cone quadratic constraints

We consider the quadratic equilibrium problem which consists in finding

x̄ ∈ K := {x ∈ C : g(x) ∈ −P} s.t. f (x̄ ,y)≥ 0, ∀y ∈ K , (EP)

where

f (x ,y) :=
1
2
y>A(x)y +a(x)>y + α(x), with A(x) real symmetric

matrix, a(x) ∈ Rn and α(x) ∈ R, for every x ∈ K ;

g(x) := (g1(x), . . . ,gm(x)), gi (x) :=
1
2
x>Bix +b>i x + βi , with Bi

real symmetric matrices; bi ∈ Rn and βi ∈ R for i = 1, . . . ,m.
P is a convex cone in Rm, C ⊆ Rn.

Remark

If A(x)≡ 0, α(x) :=−a(x)T x , then (EP) collapses to the VI :

a(x̄)T (y − x̄)≥ 0, ∀y ∈ K .
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Are there other interesting cases to be considered?

The condition to be fulfilled is

f (x ,x) =
1
2
x>A(x)x +a(x)>x + α(x) = 0, ∀x ∈ K .

Let us go back to optimality conditions for (EP). To this aim, consider
problem P(x̄) under the given assumptions. By the previous Lemma, we
have that

Proposition

x̄ is a solution of (EP) if and only if x̄ is an optimal solution of

min
y∈K
{1
2
y>A(x̄)y +a(x̄)>y + α(x̄)} (P(x̄))

The Lagrangian function associated with P(x̄) is defined by:

Lx̄ (λ ,y) := f (x̄ ,y) +
m

∑
i=1

λigi (y) =

=
1
2
y>A(x̄)y +a(x̄)>y + α(x̄) +

m

∑
i=1

λi (
1
2
y>Biy +b>i y + βi )
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Proposition 1 applied to problem P(x̄) becomes:

Proposition 1a

Let f (x , ·), g1, . . . ,gm be quadratic functions as defined, for every x ∈ K .
Assume that x̄ ∈ K is a KKT point for (P(x̄)), i.e., there exists λ ∗ ∈ P∗

such that
∇yLx̄ (λ

∗, x̄) ∈ [T (C ; x̄)]∗, 〈λ ∗,g(x̄)〉= 0,

and, additionally, (K − x̄)⊆ cl co T (C ; x̄). Then, the following assertion
holds:
If ∇2

yLx̄ (λ ∗, x̄) is positive semidefinite on K − x̄ , then x̄ is a solution of
(EP).

Remark
In the present case

∇yLx̄ (λ ∗, x̄) = A(x̄)x̄ +a(x̄) +
m

∑
i=1

λ
∗
i (Bi x̄ +bi )

∇2
yLx̄ (λ ∗, x̄) = A(x̄) +

m

∑
i=1

λ
∗
i Bi
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Similarly, Proposition 2, applied to P(x̄), becomes:

Proposition 2a

Let f (x , ·), g1, . . . ,gm be quadratic functions as defined above.
Let P := {0}m, x̄ ∈ K and assume that

(K − x̄)⊆ cl co T (C ; x̄)⊆−cl co T (C ; x̄), (12)

and that x̄ is a KKT point for (P(x̄)), i.e., there exists λ ∗ ∈Rm such that

∇yLx̄ (λ
∗, x̄) ∈ [T (C ; x̄)]∗. (13)

Then the following conditions are equivalent:
(a) x̄ is a solution of (EP);
(b) ∇2

yLx̄ (λ ∗, x̄) is positive semidefinite on K − x̄ (and so on
cl cone(K − x̄)).

Remark

Note that the second inclusion in assumption (3) is not needed for
proving that (b) implies (a), as shown by Proposition 1a.
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An equilibrium problem with two quadratic equality constraints

Consider an equilibrium problem with two quadratic equality constraints:

f (x̄ ,y)≥ 0, ∀y ∈ K := {x ∈ Rn : g1(x) = 0, g2(x) = 0} (14)

where f (x , ·),gi , i = 1,2 are quadratic functions as previously defined.

The standard Lagrangian associated with P(x̄) is:

Lx̄ (λ1,λ2,x) := f (x̄ ,y) + λ1g1(y) + λ2g2(y).

The following result is the analogous of Proposition 6.

Proposition 6a

Let f (x , ·),g1,g2 be quadratic functions as above, let x̄ ∈ K be a KKT
point for (14), i.e., there exists λ1,λ2 ∈ R such that
∇y f (x̄ , x̄) + λ1∇g1(x̄) + λ2∇g2(x̄) = 0.
Then the following conditions are equivalent:
(a) x̄ is a solution of (EP) defined by (14);
(b) A(x̄) + λ1B1 + λ2B2 is positive semidefinite on K − x̄ .
If, additionally, ∇g2(x̄) = 0 then (b) is equivalent to:

(b1) A(x̄) + λ1B1 is positive semidefinite on K − x̄ .
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Further remarks

It would be of interest to

Investigate the possible applications of Proposition 3 and Theorem 1
in the context of the analysis of duality for a quadratically
constrained quadratic equilibrium problem;
Analyse the applications to vector quadratic equilibrium problems.

Giandomenico Mastroeni Optimality conditions for quadratic problems



References

[IB1] Bomze, I. M.: Copositivity for second-order optimality
conditions in general smooth optimization problems, Optimization
65 (4), 779–795 (2015)
[FBM] Flores Bazán F., Mastroeni G.: First and second order
optimality conditions for quadratically constrained quadratic
problems, J. Optim. Theory Appl. 193, 118–138 (2022)
[G1] Giannessi, F.: Constrained Optimization and Image Space
Analysis, Springer, (2005)
[Li12] Li, G.: Global quadratic optimization over bivalent
constraints: necessary and sufficient global optimality conditions, J.
Optim. Theory Appl. 152, 710–726 (2012)
[VJ-GL] Jeyakumar, V., Li, G.: Regularized Lagrangian duality for
linearly constrained quadratic optimization and trust-region
problems, J. Glob. Optim. 49, 1–14 (2011)
[XZ-XS-DL-YX] Zheng, X.J., Sun, X.L., Li, D., Xu, Y.F.: On zero
duality gap in nonconvex quadratic programming problems, J.
Global Optim. 52, 229–242 (2011)

Giandomenico Mastroeni Optimality conditions for quadratic problems


