# Complexity and heterogeneity towards sustainability

#### **RISCHIO E INCERTEZZA**

March 18th, 2022

Complexity and heterogeneity towards sustainability

#### Table of Contents



#### 2 State of the art and possible development

#### 3 Conclusions

Nicolò Pecora Complexity and heterogeneity towards sustainability

#### Introduction

- The last decades have witnessed the growing influence of **complex system analysis** on physical, biological and social sciences. **Economics** has not remained indifferent.
- The possibility of explaining, in theoretical terms and by means of models, complex economic phenomena has been sparking interest.
- The theoretical and analytical tools of complex systems analysis represent a route towards remedying important **weaknesses** in the **traditional representation** and understanding of economic facts.
- There exists **several definitions** of complexity related to, e.g.: complex dynamical systems, computational complexity, complexity in the relationships between individuals, etc.

# Economies as Complex Adaptive Systems

Complex **adaptive** economies are characterized by dispersed interaction, no global controller, continual adaptation, and out-of-equilibrium dynamics (Arthur et al., 1997).

- Many morphologically diverse parts. Economies consist of a huge number of heterogeneous agents organized in groups and institutional structures.
- Variety of **nonlinear dynamics**. Aggregate behavior cannot simply be derived from the sum of the behaviors of individual components.
- Complex systems maintain themselves **out of equilibrium**.
- Complex systems **adaptively respond** to changes. Their interacting parts adapt by changing their behavior.
- **Irreversible** histories. Each event is the product of individual actions, within a given institutional setting.

### Why complexity in economics?

- Because the complexity approach allows to handle and manage the presence of heterogeneous agents (agent-based modelling).
- Because of agents' **cognitive limitations** and agents try to formulate decisions in a **boundedly rational** environment.
- Because agents react to the **patterns** they co-create.

Would the system find its way to a conventional equilibrium? Or would it find ever-new patterns, and produce perpetual novelty?

#### The environmental challenge

- National and international public policy-making have to confront the unprecedented **challenge** of effectively managing the **complex interaction** of economic development, energy systems and environmental change.
- Policy-makers often consider that important **trade-off** exist between improving the sustainability of the economy and adequately supporting economic growth.
- There are four major areas that contribute to climate policy indecisiveness: (1) the dynamics of technology adoption and diffusion; (2) macroeconomic impacts of low-carbon policies; (3) interaction between human and environmental systems; and (4) policy implementation and effectiveness.

# Why complexity and heterogeneity for sustainability transitions

- **Shortcomings** of equilibrium and optimisation-based analysis (e.g. it does not consider bounded rationality, agents interactions, path dependence, multiple solutions, etc.)
- A sustainable transition involves socio-technical changes. It is a highly **non-linear** and **self-reinforcing** process that drive expectations, propelled by diverse agents.
- Complexity and **behavioural sciences** provide a suitable analytical framework. An economic transformation towards higher or lower sustainability takes place in direct interaction with the environment and its biogeochemical cycles.
- In models accounting for agents heterogeneity, interactions among technology, society, the macroeconomy and the environment can be simulated, as in models used to simulate the climate.

#### Table of Contents



#### 2 State of the art and possible development

#### **3** Conclusions

Nicolò Pecora Complexity and heterogeneity towards sustainability

#### Green growth: employment and income impact

- The Energy-Environment-Economy Macro-Econometric model (E3ME) is a computer-based model of the worlds economic and energy systems and the environment, originally developed through the European Commission.
- It assesses the interactions between the economy and the environment. As a **global model**, based on the full structure of the economic national accounts, E3ME is capable of producing a broad range of economic indicators.
- E3ME is designed to form annual **projections** up to 2050. As such, E3ME is commonly used to compare scenario projections.

Introduction

State of the art and possible development

Conclusions

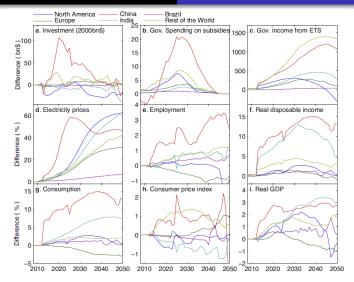



Figure: economic impacts of investment in low-carbon electricity generators (*source Mercure et al., 2015*)

Nicolò Pecora Complexity and heterogeneity towards sustainability

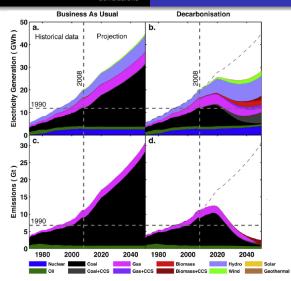



Figure: Example calculation of the environmental impacts of electricity policy instruments (*source Mercure et al., 2015*)

Nicolò Pecora

Complexity and heterogeneity towards sustainability

#### Interacting markets: analytical investigation

- Framework, e.g., of Cavalli et al. (2018, 2022) where a model of a market consisting of real, financial and monetary **interacting sectors** is studied.
- Agents populating the stock market are assumed to be heterogeneous and are updated within an **evolutionary framework**.
- Depending on the expectations structure, **multiplicity** of steady states can arise, consisting in enhanced or depressed levels of income, reflecting the optimistic or pessimistic nature of the agents' beliefs.
- Quasi-periodic dynamics resembling the business cycle fluctuations are also a relevant characteristic. Persistent trajectories provide a representation of how the **propagation of financial instability** may affect the overall pace of the economic activity.

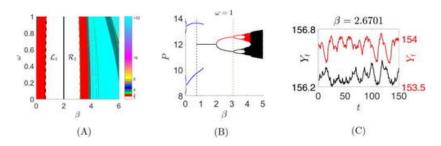



Figure: (a) two-parameters bifurcation diagram; (b) bifurcation diagram on varying the behavioral parameter  $\beta$ ; (c) Time series of the national income after the pitchfork bifurcation. (*source Cavalli et al. 2018*)

• A possible and simple extension would be the introduction of an **environmental resource** 

$$E_{t+1} = E_t(\bar{E} - E_t) + \eta Y_t$$

where  $\bar{E}$  represents the carrying capacity of the environmental resource.

- Another way of introducing the environmental related issue would be to model directly **how agents perceive** environment and climate change. It is important to understand how individuals with opposite attitudes towards climate issues interact.
- Agents can be **biased** and be **supportive** or **against** policies that try to avoid the effect of climate change. They are also allowed to **switch** among their beliefs.

- There are several ways of modelling the fraction of agents adopting a certain **attitude towards different policies** (e.g. Lux (1995), Brock and Hommes (1997)).
- The transition from a status to another can be described as

$$p^{+-} = \lambda \exp(\beta \Phi)$$

$$p^{-+} = \lambda \exp(-\beta \Phi)$$

where the parameters  $\lambda$  and  $\beta$  reflect the speed of change and the herd behavior while  $\Phi \in [-1,1]$  is a variable that reflect the **general sentiment** of the population towards environmental issues.  Alternatively, one can model the transition from a state to another linking her/his decision to the course of the economic activity or of the labour market (e.g. considering the employment level e<sub>t</sub>)

$$p^{+} = \frac{\exp\left(\beta \frac{e_t - e_{t-1}}{e_{t-1}}\right)}{\exp\left(\beta \frac{e_t - e_{t-1}}{e_{t-1}}\right) + \exp\left(-\beta \frac{e_t - e_{t-1}}{e_{t-1}}\right)}$$

where  $\beta > 0$  represents the intensity of choice.

### Network approach

- The human society can be viewed as series of **interacting and interrelated** man-made infrastructures and activities that provide a variety of services to the individuals.
- The persistence and future development of human society are constrained by the challenge of making the **transition towards sustainability** possible.
- Human systems are complex entities where multiple users and technologies interact. Therefore, information on multiple attributes must be combined to obtain a systemic view and a clear understanding.
- The issue of sustainability within human systems can thus be studied through the tools of **network analysis**, which is suitable to represent such systems characterized by a high degree of complexity and interactions.

# Geospatial Science and the Complex Nature of the Sustainable Development Goals

- The 17 **Sustainable Development Goals** formulated by the United Nations can be visualized as interrelated nodes of a network.
- There is a complex **interrelated nature** of these 17 goals: multiple causes and effects between them, feedback loops and autonomous actors.
- Hence, the consideration of network theory (link analysis potentially) would **optimise prioritisation** among these goals, driving also **decision-making**.
- How would Goal 1 (No Poverty) be achieved without consideration of Goal 3 (Good Health and Well-being) or Goal 4 (Quality Education)?

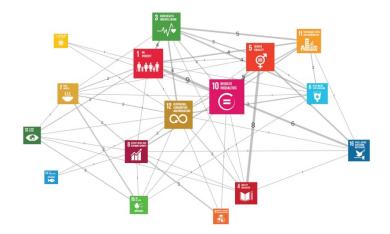



Figure: SDG Network Representation (Jeff Mohr @kumupowered)

- The application of **Geospatial Science** in studying complex systems offers far more than the mere analysis and visualisation of static or even basic temporal geographic dynamics.
- Advancement in techniques for the incorporation of these data into agent-based modelling or in network models may result in a significant advance in the understanding of how the 17 goals could be achieved.
- The adoption of **geospatial data** intervenes in several aspects, e.g. optimising the assessment of urban energy performance, aiding the sustainable management of the complex relationship between the built and natural environment, enhancing sustainable design, etc.

### Examples: SDG1 - No poverty

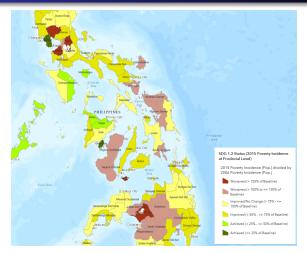
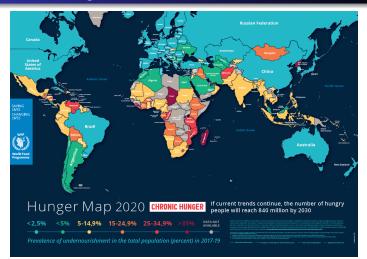
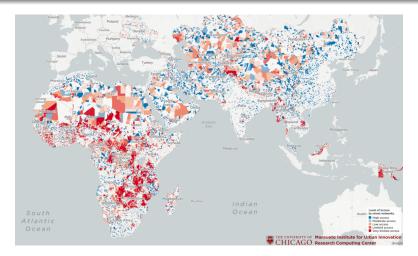




Figure: 2006-2015 Poverty Incidence at Provincial Level (© *Esri, HERE, Garmin, FAO, NOAA, USGS, Philippine Statistics Authority*)

Nicolò Pecora

Complexity and heterogeneity towards sustainability

#### SDG3 - No Hunger




#### Figure: World Hunger Map 2020 (Source: World Food Program)

Nicolò Pecora

Complexity and heterogeneity towards sustainability

#### SDG 11 Sustainable Cities and Communities



# Figure: Million Neighborhoods Map (© University of Chicago, Openstreetmap, Mapbox)

Nicolò Pecora Complexity and heterogeneity towards sustainability

#### Table of Contents

#### Introduction

#### 2 State of the art and possible development



# Concluding remarks I

- Equilibrium and optimisation-based models are appropriate to use for normative exploration and identification of desirable future configurations.
- On one hand these models may be appealing because they do not require the empirical knowledge of actual human behaviour.
- On the other hand, they can provide ambiguous information with respect to the achievement of policy goals, due to the lack of causal relationships with human behaviour.
- Instead, producing scenarios that accurately forecast the future course of events as a result of policy choices requires **fine-grained** representations of human behaviour, its diversity and multi-agent interactions.

# Concluding remarks II

- Therefore, there is a need of **different modelling techniques**, especially for sustainability-related targets, such as heterogeneous agents models that take into account the above mentioned arguments.
- The outcome of this modelling technique could be the possibility of performing **forecasts**, with an increased attention to known non-linearities and interaction effects.
- Finally, the application and integration of **geospatial data** for modelling dynamical systems (Agent-Based models) and to analyze the **complex networked relationships** among different entities will continue to play a pivotal role in sustainability and climate action.

# References I

- Cafferata, A., Dávila-Fernández, M. J., & Sordi, S. (2021). Seeing what can (not) be seen: Confirmation bias, employment dynamics and climate change. Journal of Economic Behavior & Organization, 189, 567-586.
- Cavalli, F., Naimzada, A. K., Pecora, N., & Pireddu, M. (2018). Agents' beliefs and economic regimes polarization in interacting markets. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(5), 055911.
- Cavalli, F., Naimzada, A., & Pecora, N. (2021). A stylized macro-model with interacting real, monetary and stock markets. Journal of Economic Interaction and Coordination, 1-33.

# References II

- Durlauf, S. N., Blume, L. E., & Arthur, W. B. (Eds.). (1997). The Economy as an Evolving Complex System: Proceedings volume XXVII. Oxford University Press.
- Mercure, J. F., Pollitt, H., Chewpreecha, U., Salas, P., Foley, A., Holden, P. B., & Edwards, N. R. (2015). Complexity, economic science and possible economic benefits of climate change mitigation policy. arXiv.org.
- Mercure, J. F., Pollitt, H., Bassi, A. M., Viñuales, J. E., & Edwards, N. R. (2016). Modelling complex systems of heterogeneous agents to better design sustainability transitions policy. Global environmental change, 37, 102-115.
- https://sdgs.un.org/
- https://www.camecon.com/how/e3me-model/