

Lipschitz functions on Euclidean spaces

Tommaso Russo tommaso.russo.math@gmail.com

P. Hájek and T. Russo Projecting Lipschitz functions onto spaces of polynomials Mediterr. J. Math. **19** (2022), 190.

Infinite-dimensional convexity and geometry of Banach spaces Università Cattolica del Sacro Cuore Milan, November 10, 2023

Dramatis personae

- Let (M, d, 0_M) be a pointed metric space, with distinguished point 0_M.
- ▶ $\operatorname{Lip}_0(\mathcal{M}) \coloneqq \{f: \mathcal{M} \to \mathbb{R}: f \text{ is Lipschitz, } f(0_{\mathcal{M}}) = 0\}.$

$$\|f\|_{\mathrm{Lip}} = \mathrm{Lip}(f) = \sup\left\{\frac{|f(x) - f(y)|}{d(x, y)} \colon x \neq y \in \mathcal{M}\right\}.$$

- ▶ $(Lip_0(\mathcal{M}), \|\cdot\|_{Lip})$ is a Banach space.
- ▶ Define $\delta_p \in \operatorname{Lip}_0(\mathcal{M})^*$ by $\langle \delta_p, f \rangle = f(p)$. Then $\|\delta_p\| = d(0_{\mathcal{M}}, p)$.
- ► $\mathcal{F}(\mathcal{M}) := \overline{\operatorname{span}} \{ \delta_p \colon p \in \mathcal{M} \} \subseteq \operatorname{Lip}_0(\mathcal{M})^*$ is the Lipschitz-free space over \mathcal{M} .
- ▶ $\mathcal{F}(\mathcal{M})^* = \operatorname{Lip}_0(\mathcal{M})$ and $\mathcal{F}(\mathcal{M})$ linearises Lipschitz functions on \mathcal{M} .
- Henceforth, \mathcal{M} is a Banach space and $0_{\mathcal{M}}$ is the origin.

Problem (Candido-Cúth-Doucha)

Are there two separable, infinite-dimensional Banach spaces \mathcal{X} and \mathcal{Y} such that $\operatorname{Lip}_0(\mathcal{X})$ and $\operatorname{Lip}_0(\mathcal{Y})$ are not isomorphic?

- **Candido–Kaufmann ('21).** w^* -dens($\operatorname{Lip}_0(\mathcal{X})^*$) = dens(\mathcal{X}).
- $\blacktriangleright \operatorname{Lip}_0(\mathbb{R}) \simeq \ell_{\infty}.$
- Kisljakov ('75), Cúth–Doucha–Wojtaszczyk ('16). If dim(X) ≥ 2, there is no onto map from a C(K) space to Lip₀(X).
- ▶ Is $\operatorname{Lip}_0(\mathbb{R}^k) \simeq \operatorname{Lip}_0(\mathbb{R}^n)$, for $k, n \ge 2$ distinct?

▶ Is there an infinite-dimensional \mathcal{X} with $\operatorname{Lip}_0(\mathcal{X}) \simeq \operatorname{Lip}_0(\mathbb{R}^2)$?

- ▶ Candido-Cúth-Doucha ('19). If \mathcal{X} is a separable, inf.-dim. \mathscr{L}_p -space, then $\operatorname{Lip}_0(\mathcal{X}) \simeq \operatorname{Lip}_0(\ell_p)$ when $p < \infty$ and $\operatorname{Lip}_0(\mathcal{X}) \simeq \operatorname{Lip}_0(c_0)$ when $p = \infty$.
 - **Dutrieux–Ferenczi ('05).** The case $\mathcal{X} = \mathcal{C}(\mathcal{K})$.
- ▶ Candido-Cúth-Doucha ('19). Is $Lip_0(L_p) \simeq Lip_0(L_q)$ for $p \neq q$?

Approximation properties at our service

- A Banach space X has the approximation property (AP) if for every compact set K ⊆ X and ε > 0 there exists a finite-rank operator T: X → X such that ||Tx − x|| < ε (x ∈ K).</p>
- ▶ \mathcal{X} has the λ -**BAP** if additionally $||T|| \leq \lambda$. **MAP** \equiv 1-**BAP**.
- ▶ AP and BAP pass to complemented subspaces and from \mathcal{X}^* to \mathcal{X} .
- ▶ Johnson ('75). If $\operatorname{Lip}_0(\mathcal{X})$ has AP/BAP, then \mathcal{X} has it too.
 - **Lindenstrauss ('64)** \mathcal{X}^* is 1-complemented in $\operatorname{Lip}_0(\mathcal{X})$.
- However, the converse fails.
 - There exists X with MAP such that X* fails AP.
- So, just take \mathcal{X} infinite-dimensional such that $\operatorname{Lip}_0(\mathcal{X})$ has AP.
- Well, "just"...
- **Godefroy.** Does $\operatorname{Lip}_0(\ell_2)$ have the AP?
- ▶ Actually, does $\operatorname{Lip}_0(\mathbb{R}^n)$ have the AP/BAP, for $n \ge 2$?
- **Godefroy–Kalton ('03).** $\mathcal{F}(\mathcal{X})$ has λ -BAP if and only if \mathcal{X} has it.

Problem (Godefroy)

Does $\operatorname{Lip}_0(\ell_2)$ have the AP?

Let's try to disprove it, judiciously.

▶ Candidates complemented subspaces of $Lip_0(\ell_2)$ that fail the AP?

- **Szankowski ('81).** $\mathcal{L}(\ell_2)$ fails the AP.
- Floret ('97), Dineed–Mujica ('15). $\mathcal{P}(^{2}\ell_{2})$ fails the AP.

▶ In fact, $\mathcal{P}(^{2}\ell_{2}) \simeq \mathcal{B}(\ell_{2})$.

▶ $\mathcal{P}(^2\mathcal{X})$ is the space of bounded 2-homogeneous polynomials on \mathcal{X} .

- ▶ $P \in \mathcal{P}(^2 \mathcal{X})$ if there is a bounded bilinear map $M: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that P(x) = M(x, x);
- There is a unique symmetric such bilinear map;
- $||P||_{\mathcal{P}} = \sup_{x \in B_{\mathcal{X}}} |P(x)|.$

But polynomials are **not** Lipschitz functions!

Polynomial vs. Lipschitz

However, they are Lipschitz on the unit ball.

- ▶ Therefore, $\mathcal{P}(^2\mathcal{X})$ is a natural subspace of $\operatorname{Lip}_0(\mathcal{B}_{\mathcal{X}})$.
- Moreover, $\|\cdot\|_{\mathcal{P}}$ is equivalent to $\|\cdot\|_{\text{Lip}}$.

Consequently, P(²X) is naturally isomorphic to a subspace of Lip₀(B_X), via the restriction map

$$P\mapsto P\!\!\upharpoonright_{B_{\mathcal{X}}}.$$

(Another) Problem

Is $\mathcal{P}({}^{2}\ell_{2}) \subseteq \operatorname{Lip}_{0}(\mathcal{B}_{\ell_{2}})$ a complemented subspace?

Kaufmann ('15).
$$\operatorname{Lip}_0(\mathcal{X}) \simeq \operatorname{Lip}_0(\mathcal{B}_{\mathcal{X}}).$$

Summary:

If $\mathcal{P}(^2\ell_2)\subseteq {\rm Lip}_0(\mathcal{B}_{\ell_2})$ is complemented, then ${\rm Lip}_0(\ell_2)$ fails to have the AP.

T. Russo (Universität Innsbruck, tommaso.russo.math@gmail.com) | Lipschitz functions on Euclidean spaces

Problem (Repetita iuvant)

Is $\mathcal{P}({}^{2}\ell_{2}) \subseteq Lip_{0}(B_{\ell_{2}})$ a complemented subspace?

- ▶ Lindenstrauss ('64). $\mathcal{X}^* = \mathcal{P}(^1\mathcal{X})$ is 1-complemented in $Lip_0(\mathcal{X})$.
- ▶ No wonder, $\mathcal{P}(^{d}\mathcal{X}) \equiv \text{bdd}$, *d*-homogeneous poly on \mathcal{X} .
- Is there a version of Lindenstrauss' result for polynomials?
- Pełczyński ('57). Every *d*-homogeneous polynomial from *l_p* to *l_q* is compact if *dq < p*.
- Polynomial Schur and Dunford-Pettis properties.
- Norm-attaining polynomials.
- Hahn-Banach extensions of polynomials.
- Can you, please, state something?

Theorem (Hájek, R., '22)

 $\mathcal{P}(^{2}\ell_{2}) \subseteq \operatorname{Lip}_{0}(\mathcal{B}_{\ell_{2}})$ is not complemented.

- ▶ We still don't know if $\operatorname{Lip}_0(\ell_2)$ has the AP.
 - Maybe, that's an indication that it does.
 - At least, we **know** that this is not the correct approach.

Theorem (Hájek, R., '22)

If \mathcal{X} contains uniformly complemented $(\ell_2^n)_{n=1}^{\infty}$, then $\mathcal{P}(^2\mathcal{X})$ is not complemented in $\operatorname{Lip}_0(B_{\mathcal{X}})$.

- ▶ In particular, if X has non-trivial type...
- Moreover, for every d≥ 2, P(^dX) and P^d₀(X) are not complemented in Lip₀(B_X).

▶ $\mathcal{P}^{d}(\mathcal{X})$ is the space of polynomials of degree at most d on \mathcal{X} .

- ▶ **Problem.** Is $\mathcal{P}(^2c_0)$ is complemented in $\operatorname{Lip}_0(B_{c_0})$?
 - Alencar ('75). $\mathcal{P}(^2c_0)$ has a Schauder basis (so BAP).
- Aron–Schottenloher ('76). $\mathcal{P}({}^{d}\ell_{1}) \simeq \ell_{\infty}$.
 - $\mathcal{L}({}^{d}\ell_{1}) \simeq \ell_{\infty}$ (a computation).
 - ▶ $\mathcal{P}(^{d}\ell_{1})$ is complemented in $\mathcal{L}(^{d}\ell_{1})$ (Polarisation formula).
 - ► Lindenstrauss ('67). ℓ_∞ is prime.

• Arias–Farmer ('96). If \mathcal{X} is a separable \mathscr{L}_1 -space, $\mathcal{P}(^d\mathcal{X}) \simeq \ell_{\infty}$.

(Main) Proposition

Let E be \mathbb{R}^n with Euclidean norm. If Q is any projection from $\mathrm{Lip}_0(B_E)$ onto $\mathcal{P}(^2E),$ then

 $\|Q\| \ge c \cdot n^{1/5}.$

Shank you for your attention!