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Network games

Given a simple undirected graph (V ,E ), a network game is a non-cooperative
game where

• the set of players is the set of nodes V = {1, . . . , n}
• the action space of player i is Ai ⊂ R

• player i has a payoff function ui : A =
n∏

i=1

Ai → R to be maximized that

depends only on the strategies of its neighbors
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The linear-quadratic model

In the linear-quadratic model1 we assume that

• the strategy space is Ai = R+

• the payoff function is

ui (a) = −1

2
a2i + αiai + ϕai

n∑
j=1

gijaj , αi , ϕ > 0,

where G is the adjacency matrix of graph (V ,E ).

ϕ > 0 =⇒ strategic complements.

a∗ ∈ A is a Nash equilibrium if

ui (a
∗
i , a

∗
−i ) ≥ ui (ai , a

∗
−i ), ∀ ai ∈ Ai

holds for any i = 1, . . . , n.

1Ballester, Calvo-Armengol, Zenou, Who’s Who in Networks. Wanted: The Key Player,
Econometrica 74 (2006), 1403–1417.
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The linear-quadratic model: existence of Nash equilibria

Nash equilibria are the solutions of the affine variational inequality VI (F ,A), where
F (a) = (I − ϕG)a− α and A = Rn

+.

Theorem [Ballester et al. 2006]

Let ρ(G) = λmax(G) be the spectral radius of G . If ϕρ(G) < 1, then

• a unique Nash equilibrium a∗ exists

• a∗ is the solution of a linear system: a∗ = (I − ϕG)−1α

• a∗ =
∞∑
p=0

ϕpG pα (Katz-Bonacich centrality measure)

The (i , j) entry of G p gives the number of walks of length p between i and j .
If αi = 1, then Katz-Bonacich centrality measure2 a∗i counts the total number of walks
which start at node i , exponentially damped by ϕ.

2Bonacich, Power and centrality: a family of measures, Am. J. Sociol. 92 (1987), 1170–1182.
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The linear-quadratic model: key player

Given the Nash equilibrium a∗, consider the equilibrium aggregate
n∑

i=1

a∗i .

Suppose to remove a player k from the network. The game will then have a new
equilibrium a′ = (a′1, . . . , a

′
k−1, a

′
k+1, . . . , a

′
n) with corresponding aggregate

EAk =
∑
i ̸=k

a′i .

A key player is a player such that, after its removal, the new equilibrium aggregate
is the minimum possible with respect to all possible removals of one player.

M. Passacantando Network games with bounded strategies: properties, algorithms, extensions 6 / 35 – :



Network games Properties and algorithm Application Networks GNEP Parametric network games Parametric quadratic model

The linear-quadratic model with bounded strategies3

From now on we assume that the strategies have an upper bound: Ai = [0,Ui ].

Theorem

Assume that ϕρ(G ) < 1 and exactly k components of the Nash equilibrium a∗

take on their maximum value: a∗i1 = Ui1 , . . . , a
∗
ik
= Uik .

Then the subvector ã∗ = (ã∗ik+1
, . . . , ã∗in) of the nonboundary components of a∗ is

ã∗ = (In−k − ϕG1)
−1w ,

where G1 is the submatrix obtained from G choosing the rows ik+1, . . . , in and the
columns ik+1, . . . , in, w = α1n−k + ϕG2 U, G2 is the submatrix obtained from G
choosing the rows ik+1, . . . , in and the columns i1, . . . , ik , and U = (Ui1 , . . . ,Uik ).

3P., Raciti, A note on network games with strategic complements and the Katz-Bonacich
centrality measure, in “Optimization and Decision Science”, R. Cerulli, M. Dell’Amico, F.
Guerriero, D. Pacciarelli, A. Sforza (eds.), AIRO Springer Series, vol. 7 (2021), 51–61.
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The linear-quadratic model with bounded strategies4

Theorem

If ϕρ(G ) < 1/2, then

• a unique Nash equilibrium a∗ exists

• the best-response dynamics converges to a∗

• a∗i ≤ asoi for any i = 1, . . . , n, where aso = argmax
a

n∑
i=1

ui (a) is the unique

social optimum of the game.

4P., Raciti, A note on network games with strategic complements and the Katz-Bonacich
centrality measure, in “Optimization and Decision Science”, R. Cerulli, M. Dell’Amico, F.
Guerriero, D. Pacciarelli, A. Sforza (eds.), AIRO Springer Series, vol. 7 (2021), 51–61.
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The linear-quadratic model with bounded strategies

The Nash equilibrium can be found by solving a finite number of linear systems.

Algorithm 1

1. Solve the linear system (I − ϕG ) ā = α

2. If āi ≤ Ui for any i = 1, . . . , n then STOP: ā is the Nash equilibrium

else set V0 := {i : āi > Ui}, S0 := {i : āi ≤ Ui} and k = 0

3. Solve the linear system

(ISkSk
− ϕGSkSk

) zk = αSk
+ ϕGSkVk

UVk

and define the vector aki :=

{
Ui if i ∈ Vk

zki if i ∈ Sk

4. Compute µk = αVk
− (IVkVk

− ϕGVkVk
)UVk

+ ϕGVkSk
zk

If µk ≥ 0 then STOP: ak is the Nash equilibrium
else set Nk := {i ∈ Vk : µk

i < 0}
Vk+1 := Vk \ Nk , Sk+1 := Sk ∪ Nk

k = k + 1 and go to Step 3
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The linear-quadratic model with bounded strategies5

Theorem

If ϕρ(G ) < 1, then Algorithm 1 finds the Nash equilibrium after at most n
iterations.

Proof

• The linear systems at Steps 1 and 3 admit a unique solution.

• The sequence {ak} generated by the algorithm is feasible (by induction).

• The cardinality of the set Vk is decreasing at each iteration, thus µk ≥ 0
holds after at most n iterations.

• When µk ≥ 0 holds, the vector ak is the Nash equilibrium since it solves the
KKT system associated to the VI.

5P., Raciti, A finite convergence algorithm for solving linear-quadratic network games with
strategic complements and bounded strategies, Optim. Methods Soft. 38 (2023), 1105–1128.
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A network-game model of delinquency with random data

Given a network of n players, the action ai ∈ [0,Ui ] of each player represents
her/his effort in delinquent activities.
The utility function of each player is

ui (a) =

πi + ϕ

n∑
j=1

gijaj

 ai −
(
pai +

1

2
a2i

)
,

where πi represents the specific ability of player i in criminal activities and can be
partially estimated with the help of statistical analysis of data6.

To take into account the contributions which are not observable to the
econometrician, we model πi as the sum of a deterministic term βi and a random
perturbation γi r , where γi is a fixed number and r is a random variable following
a given distribution:

πi = βi + γi r .

6Lee, Liu, Patacchini, Zenou, Who is the Key Player? A Network Analysis of Juvenile
Delinquency, J. Bus. Econ. Stat. 39 (2021), 849–857.
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A network-game model of delinquency with random data

The Nash equilibrium is the solution of the following stochastic variational
inequality:
for each r ∈ R, find a∗(r) ∈ A such that for each a ∈ A we have:

n∑
i=1

[a∗i (r)− ϕ

n∑
j=1

gija
∗
j (r)] [ai − a∗i (r)] ≥

n∑
i=1

[βi + γi r − p] [ai − a∗i (r)]. (1)

To compute the expected value of the Nash equilibrium a∗(r) with respect to the
probability measure P, we follow the so-called L2 approach which consists of
considering an integral version of (1):
Find a∗ ∈ L2(R,P,Rn) such that for all the functions a ∈ L2(R,P,Rn), with
0 ≤ ai (r) ≤ Ui P-almost surely, we have:∫ +∞

−∞

n∑
i=1

[a∗i (r)− ϕ

n∑
j=1

gija
∗
j (r)] [ai (r)− a∗i (r)]dP

≥
∫ +∞

−∞

n∑
i=1

[βi + γi r − p] [ai (r)− a∗i (r)]dP.

(2)
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A network-game model of delinquency with random data

The expectation of the Nash equilibrium

EP [a
∗(r)] =

∫ +∞

−∞
a∗(r)dP

can be found by the following approximation procedure7:

• Discretize the (compact) support of the probability measure P in N
subintervals and denote L2N the space of step functions on the partition of the
support.

• Solve (2) in L2N to get the step function a∗N(r), i.e., solve N finite-dimensional
variational inequalities on Rn.

If N → ∞, then the sequence of step functions {a∗N(r)} is norm-convergent to
a∗(r) and the approximated mean values EP [a

∗
N(r)] converge to the exact mean

value EP [a
∗(r)].

7J. Gwinner, B. Jadamba, A.A. Khan, and F. Raciti, Uncertainty Quantification in Variational
Inequalities: Theory, Numerics, and Applications, Chapman and Hall/CRC, 2021.
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Numerical experiments

We consider the following network with 11 nodes (players):

1

2

3

4

5

6

7

8

9

10

11

The spectral radius of G is ρ(G) ≃ 4.4040.
We set ϕ = 0.2 so that I − ϕG is positive definite.
We set β = (10, . . . , 10), γ = (1, . . . , 1), p = 1 and U = (100, . . . , 100).

We assume the random variable r varies in the interval [−5, 5] with uniform distribution.
The approximation procedure considers a uniform partition of the interval [−5, 5] into N
subintervals and solves a deterministic network game for any subinterval by exploiting
Algorithm 1.
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Convergence of the approximate mean values of the equilibrium aggregate

Convergence of the approximate mean values of the equilibrium aggregate for different
values of N, when r varies in the interval [−5, 5] with uniform distribution and ϕ = 0.1.

Equilibrium N

aggregate 100 1,000 10,000 100,000

EA1 149.167 149.917 149.992 149.999
EA2 145.929 146.663 146.736 146.744
EA3 150.360 151.116 151.192 151.199
EA4 150.360 151.116 151.192 151.199
EA5 150.360 151.116 151.192 151.199
EA6 145.929 146.663 146.736 146.744
EA7 145.929 146.663 146.736 146.744
EA8 150.360 151.116 151.192 151.199
EA9 150.360 151.116 151.192 151.199
EA10 150.360 151.116 151.192 151.199
EA11 145.929 146.663 146.736 146.744

The key players are the nodes most connected to the others.

1

2

3

4

5

6

7

8

9

10

11

M. Passacantando Network games with bounded strategies: properties, algorithms, extensions 15 / 35 – :



Network games Properties and algorithm Application Networks GNEP Parametric network games Parametric quadratic model

Convergence of the approximate mean values of the equilibrium aggregate

Convergence of the approximate mean values of the equilibrium aggregate for different
values of N, when r varies in the interval [−5, 5] with uniform distribution and ϕ = 0.2.

Equilibrium N

aggregate 100 1,000 10,000 100,000

EA1 447.500 449.750 449.975 449.998
EA2 459.267 461.525 461.750 461.773
EA3 523.915 526.304 526.543 526.567
EA4 523.915 526.304 526.543 526.567
EA5 523.915 526.304 526.543 526.567
EA6 459.267 461.525 461.750 461.773
EA7 459.267 461.525 461.750 461.773
EA8 523.915 526.304 526.543 526.567
EA9 523.915 526.304 526.543 526.567
EA10 523.915 526.304 526.543 526.567
EA11 459.267 461.525 461.750 461.773

The unique key player is the bridge connecting the two complete subgraphs.
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Scalability of Algorithm 1

We consider a set of random instances, where # players varies from 10 to 10,000.

The adjacency matrix of any random network is generated according to the
following code:
G = rand(n);

G = floor((G+G’)/2 + δ);
G = G - diag(diag(G));

so that G is an n × n zero-diagonal binary symmetric matrix and the parameter
δ ∈ (0, 1) represents the density of the network (δ = 0 corresponds to an empty
network, while δ = 1 to a complete network).

We set β = (4, . . . , 4), γ = (1, . . . , 1) and p = 1.
We assume r varies in [−1, 1] with uniform distribution and the approximation
procedure considers a uniform partition of [−1, 1] into N = 100 subintervals.
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Scalability of Algorithm 1 - number of linear systems solved

Average number of linear systems solved by Algorithm 1.
[The figures are the average values obtained on a set of five random instances.]

n
δ = 0.2 δ = 0.5

ϕ =
0.1

ρ(G)
ϕ =

0.5

ρ(G)
ϕ =

0.9

ρ(G)
ϕ =

0.1

ρ(G)
ϕ =

0.5

ρ(G)
ϕ =

0.9

ρ(G)

10 1.94 2.18 2.38 2.05 2.26 2.54
20 2.05 2.20 2.94 2.12 2.42 2.97
50 2.16 2.73 3.15 2.30 2.78 3.43

100 2.37 2.90 3.77 2.49 2.99 3.83
200 2.59 3.07 4.05 2.64 3.09 4.04
500 2.85 3.21 4.21 2.83 3.30 4.31

1,000 2.94 3.45 4.46 2.94 3.42 4.54
2,000 2.97 3.59 4.64 2.99 3.63 4.68
5,000 3.02 3.77 4.82 3.02 3.78 4.82

10,000 3.03 3.86 4.89 3.03 3.88 4.89

The average number of linear systems solved by Algorithm 1 is very low and quite stable
(between 2 to 5).
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Scalability of Algorithm 1 - Comparison with other solution approaches

For any subinterval of the discretization, the deterministic network game can also be
solved by the following well-known methods:

• exploit the potential function: the game is first reformulated as a convex quadratic
optimization problem and then solved by an optimization solver

• exploit the classic best-response method8.

We compare the performance of Algorithm 1 with the performances of

• the potential-based approach exploiting three different solvers:

• Gurobi (with default options)
• the MATLAB quadprog function with the ’interior-point-convex’ algorithm
• the MATLAB quadprog function with the ’trust-region-reflective’ algorithm.

• the best-response method with starting point (U1, . . . ,Un):

• Jacobi variant
• Gauss-Seidel variant, where the order of play is 1, 2, . . . , n.

8Sagratella, Computing equilibria of Cournot oligopoly models with mixed-integer quantities,
Math. Meth. Oper. Res. 86 (2017), 549–565.
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Scalability of Algorithm 1 - Comparison with other solution approaches

Find the approximated stochastic Nash equilibrium, with δ = 0.5 (CPU times in seconds).

n Algorithm 1

Potential-based approach Best-response method

Gurobi quadprog quadprog Jacobi Gauss-Seidel
interior-point trust-region

100 0.031 1.018 0.100 0.574 0.045 0.027
200 0.162 3.168 0.899 0.879 0.140 0.082
300 0.316 5.609 2.189 1.485 0.290 0.170
400 0.472 11.615 4.235 2.228 0.474 0.281
500 0.561 14.638 9.232 3.102 0.706 0.421
600 0.682 18.530 15.711 4.389 1.552 0.900
700 0.933 23.384 22.033 5.864 2.065 1.195
800 1.102 28.769 30.683 7.767 3.105 1.814
900 1.139 35.450 40.387 9.538 3.398 2.006

1,000 1.319 42.587 47.510 11.332 4.786 2.816

2,000 3.052 39.689 12.917
3,000 6.163 79.893 46.715
4,000 10.069 135.675 68.777
5,000 14.298 218.514 453.096
6,000 19.006 311.270 575.458
7,000 24.688 405.576 758.007
8,000 31.279 534.597 710.733
9,000 38.238 933.030 941.853

10,000 56.980 1,163.213 1,119.356
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Scalability of Algorithm 1 - Comparison with other solution approaches

Find the approximated stochastic key player, with δ = 0.5 (CPU times in seconds).

n Algorithm 1

Potential-based approach Best-response method

Gurobi quadprog quadprog Jacobi Gauss-Seidel
interior-point trust-region

10 0.021 5.882 0.307 3.484 0.025 0.013
20 0.062 11.924 0.654 7.611 0.118 0.059
30 0.138 18.634 1.088 12.481 0.256 0.134
40 0.251 25.993 1.580 17.471 0.445 0.241
50 0.399 34.005 2.143 21.991 0.857 0.472
60 0.624 43.515 2.951 27.570 1.233 0.674
70 0.952 54.180 4.121 33.312 1.773 0.956
80 1.432 66.265 5.376 39.578 2.643 1.456
90 2.021 80.751 6.987 46.149 3.459 1.945

100 2.883 97.537 10.277 54.596 4.372 2.426
200 29.644 630.424 169.477 173.197 27.461 15.983
300 91.677 1,637.397 621.744 445.772 91.666 51.738

400 192.747 827.213 111.295
500 257.223 1,478.674 209.505
600 381.021 2,718.983 478.374
700 629.128 3,989.585 888.171
800 736.379 6,032.577 1,397.354
900 960.393 8,565.410 1,796.690

1,000 1,243.579 11,498.981 2,064.835
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GNEP on networks

Assume the players have a global shared constraint:

K =

a ∈ Rn
+ :

n∑
j=1

aj ≤ C

 .

a∗ is a generalized Nash equilibrium if for any i = 1, . . . , n we have

ui (a
∗
i , a

∗
−i ) ≥ ui (ai , a

∗
−i ), ∀ ai ∈ Ki (a

∗
−i ),

where Ki (a
∗
−i ) =

{
ai ∈ R+ : ai +

∑
j ̸=i

a∗j ≤ C

}
.

GNE are solutions of a quasi-variational inequality.
Variational equilibria are solutions of VI (F ,K ), where F (a) = (I − ϕG )a− α.
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GNEP on networks9

Theorem

If ϕρ(G ) < 1, then the unique variational equilibrium is

ā =



a∗ =
∞∑
p=0

ϕpG pα if
n∑

i=1

a∗i ≤ C ,

Ca∗

n∑
i=1

a∗i

=

C
∞∑
p=0

ϕpG pα

∞∑
p=0

ϕpα⊤G pα
if

n∑
i=1

a∗i > C ,

where a∗ = (I − ϕG )−1α is the (non-generalized) Nash equilibrium.

9P., Raciti, A note on generalized Nash games played on networks, in “Nonlinear Analysis,
Differential Equations, and Applications”, T.M. Rassias (ed.), Springer Optimization and Its
Applications, vol. 173 (2021), 365–380.
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Parametric network games10

Suppose the strategy set Ai (t) = [0,Ui (t)] and the payoff function

ui (t, a) = −1

2
a2i + αi (t)ai + ϕ

n∑
j=1

gijaiaj ,

where Ui and αi are positive Lipschitz continuous functions of a parameter
t ∈ [0,T ].

Nash equilibria a∗(t) are solutions of VI (F (t, ·),A(t)), where

F (t, a) = (I − ϕG )a− α(t)

and A(t) =
∏n

i=1[0,Ui (t)].

10P., Raciti, Lipschitz continuity results for a class of parametric variational inequalities and
applications to network games, Algorithms 16 (2023), Article 458.
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Parametric network games - Lipschitz equilibrium

Theorem

Assume F is uniformly τ -strongly monotone on Rn, F is Lipschitz continuous with
constant L, i.e.,

∥F (t1, a1)− F (t2, a2)∥ ≤ L(|t1 − t2|+ ∥a1 − a2∥), ∀a1, a2 ∈ Rn, ∀ t1, t2 ∈ [0,T ],

A(t) is a closed and convex set for any t ∈ [0,T ] and there exists M ≥ 0 such that

∥pA(t1)(a)− pA(t2)(a)∥ ≤ M|t1 − t2|, ∀ a ∈ Rn, ∀ t1, t2 ∈ [0,T ],

where pA(t)(a) denotes the projection of a on the closed convex set K(t).
Then, for any t ∈ [0,T ], VI (F ,A(t)) has a unique solution a∗(t) which is Lipschitz
continuous on [0,T ] with estimated constant equal to

Λ1 =


inf

z∈(0,2τ̃)

[
M

1− s
+

z(1 + z)

s(1− s)

]
, if τ̃ < 1,

M + 2
√
2M + 1, if τ̃ = 1,

where τ̃ = τ/L and s =
√
z2 − 2τ̃z + 1.
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Parametric network games - Lipschitz equilibrium

Theorem

Assume F (t, a) = G(a) + H(t) holds for any t ∈ [0,T ], a ∈ Rn, where G : Rn → Rn is
τ -strongly monotone on Rn and Lipschitz continuous on Rn with constant La, and H is
Lipschitz continuous on Rn with constant Lt . Moreover, we assume that A(t) is a closed
and convex set for any t ∈ [0,T ] and there exists M ≥ 0 such that

∥pA(t1)(a)− pA(t2)(a)∥ ≤ M|t1 − t2|, ∀ a ∈ Rn, ∀ t1, t2 ∈ [0,T ].

Then, for any t ∈ [0,T ], VI (F ,A(t)) has a unique solution a∗(t) which is Lipschitz
continuous on [0,T ] with estimated constant equal to

Λ2 =


inf

z∈(0,2τ̂)

[
M

1− ŝ
+

L̂z(1 + z)

ŝ(1− ŝ)

]
, if τ̂ < 1,

M + 2
√

2ML̂+ L̂, if τ̂ = 1,

where τ̂ = τ/La, L̂ = Lt/La and ŝ =
√
z2 − 2τ̂z + 1.
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Parametric network games - Lipschitz equilibrium

Remark

When ϕρ(G ) < 1, the map F (t, a) = (I − ϕG )a− α(t), satisfies the assumptions
of above Theorems with constants τ = 1− ϕρ(G ), La = ∥I − ϕG∥2, Lt = Lα

√
n,

where Lα is the Lipschitz constant of α(t), and L = max{La, Lt}.
Moreover, the feasible region A(t) satisfies the assumption

∥pA(t1)(a)− pA(t2)(a)∥ ≤ M|t1 − t2|, ∀ a ∈ Rn, ∀ t1, t2 ∈ [0,T ]

with M = ∥(L1, . . . , Ln)∥2, where Li is the Lipschitz constant of Ui (t) for any
i = 1, . . . , n.
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Parametric network games - Approximation algorithm

Estimate of the Lipschitz constant of Nash equilibrium a∗(t)
↓

approximate a∗(t) and its mean value on [0,T ]

0 T 0 T/2 T
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Parametric network games

Approximation algorithm

0. Set ε > 0, evaluate a∗j (t) at 0 and T , compute the area of parallelogram P0,T .

1. Find the parallelogram Pt1,t2 with the largest area,
add the new evaluation point p = (t1 + t2)/2,
compute the Lipschitz constants of a∗j (t) in [t1, p] and [p, t2],
update the parallelograms’ areas list by removing the area of Pt1,t2 and inserting the
areas of Pt1,p and Pp,t2 .

2. Compute the worst case error Etot = (sum of areas of all parallelograms)/2.
If Etot ≤ ε then stop; otherwise go to Step 1.

Theorem

The algorithm stops after at most ⌈2E0/ε⌉ iterations, where

E0 =
Λ2T 2 − [a∗j (0)− a∗j (T )]2

4Λ

is the worst case error before the algorithm starts.
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Parametric network GNEPs

The previous results can be applied to approximate variational equilibria of
network GNEPs where players share a global constraint:

A(t) =

{
a ∈ Rn

+ :
n∑

i=1

ai ≤ C (t)

}
.

The assumption

∥pA(t1)(a)− pA(t2)(a)∥ ≤ M|t1 − t2|, ∀ a ∈ Rn, ∀ t1, t2 ∈ [0,T ]

is satisfied with M equal to the Lipschitz constant of the function C (t).
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The parametric quadratic model11

Suppose the strategy set Ai = [0,Ui ] and the payoff of player i is

ui (a) = −β

2
a2i + αiai +

n∑
j=1
j ̸=i

fij(α)aiaj , α, β > 0.

If fij(α) ≥ 0, then the game falls in the class of games with strategic complements;
if fij(α) ≤ 0, then it falls in the class of games with strategic substitutes.

The pseudo-gradient of this game is

T (a) = [βI − F(α)]a− α,

where F(α) is a zero-diagonal matrix whose off-diagonal entries are equal to fij(α).
We assume F(α) is symmetric for any α.

11P., Raciti, Some properties of a class of Network Games with strategic complements or
substitutes, in “Mathematical Analysis, Differential Equations and Applications”, T.M. Rassias
and P.M. Pardalos (eds.), in press, doi: 10.1142/9789811267048 0023.
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The parametric quadratic model

Theorem

• Let fij(α) ≥ 0 for any i , j . The matrix βI − F(α) is positive definite iff

β > λmax(F(α)) = ρ(F(α))

where λmax(F(α)) is the maximum eigenvalue of F(α) and ρ(F(α)) its
spectral radius.

• Let fij(α) ≤ 0 for any i , j . The matrix βI − F(α) is positive definite iff

β > λmax(F(α))

Moreover, the condition β > ρ(F(α)) is, in general, stronger than the latter
condition.
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The parametric quadratic model

Theorem

Let β > ρ(F(α)) and a∗ be the unique Nash equilibrium.

• Assume that fij(α) ≥ 0 for any i , j ∈ {1, . . . , n}. Then a∗i > 0 for any
i ∈ {1, . . . , n}. Moreover, if exactly k components of a∗ take on their maximum
value: a∗i1 = Li1 , . . . , x

∗
ik
= Lik , then the subvector ã∗ = (ã∗ik+1

, . . . , ã∗in ) of the
non-boundary components is

ã∗ = [βIn−k − F1(α)]
−1w (3)

where F1(α) is the submatrix obtained from F(α) choosing the rows ik+1, . . . , in
and the columns ik+1, . . . , in; w = αn−k + F2(α)U; F2(α) is the submatrix obtained
from F(α) choosing the rows ik+1, . . . , in and the columns i1, . . . , ik ;
U = (Ui1 , . . . ,Uik ), αn−k = (αik+1 , . . . , αin ) .

• Assume now that fij(α) ≤ 0 for any i , j ∈ {1, . . . , n}, and there are no zero
components of a∗. If exactly k components of a∗ take on their maximum value,
then formula (3) also applies to this case.
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The parametric quadratic model

Theorem

Assume that fij(α) ≥ 0 for any i , j , and β > 2ρ(F(α)).
Then,

a∗i ≤ asoi ∀ i = 1, . . . , n, (4)

where aso is the social optimum of the game.

Inequality (4) does not hold in general in the case of strategic substitutes.
Consider a game with n = 5 players, U = (1, 1, 1, 1, 1), α = (1, 2, 1, 2, 1), β = 2.5 and
the interaction matrix given by

fij(α) = −1

2
|αi − αj | ∀ i , j = 1, . . . , 5.

Player Constrained NE Social Optimum

1 0.1053 0.0000
2 0.7368 0.8000
3 0.1053 0.0000
4 0.7368 0.8000
5 0.1053 0.0000
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