pplication

etworks GNEP

Parametric network game

Network games with bounded strategies: properties, algorithms, extensions

Mauro Passacantando

University of Milan-Bicocca, Italy

(joint works with Fabio Raciti, University of Catania, Italy)

April 4, 2024

M. Passacantando

Network games with bounded strategies: properties, algorithms, extensions 1

1 / 35 -

Network	games

Outline

- Network games
- The linear-quadratic model with bounded strategies
- Variational inequality reformulation and properties of Nash equilibria
- A solution algorithm with finite convergence
- Application to a network-game model of delinquency with random data
- Extension to Generalized Nash Equilibrium Problems
- Extension to parametric network games

Network games	Properties and algorithm	Application	Parametric network games	
0000				

Given a simple undirected graph (V, E), a network game is a non-cooperative game where

- the set of players is the set of nodes $V = \{1, \ldots, n\}$
- the action space of player i is $A_i \subset \mathbb{R}$
- player *i* has a payoff function $u_i : A = \prod_{i=1}^n A_i \to \mathbb{R}$ to be maximized that depends only on the strategies of its neighbors

Network	games
0000	

roperties and algorithm

Application

Networks GNEF

Parametric network games

Parametric quadratic model 00000

The linear-quadratic model

In the linear-quadratic model¹ we assume that

- the strategy space is $A_i = \mathbb{R}_+$
- the payoff function is

$$u_i(a) = -rac{1}{2}a_i^2 + lpha_i a_i + \phi a_i \sum_{j=1}^n g_{ij}a_j, \qquad lpha_i, \phi > 0,$$

where G is the adjacency matrix of graph (V, E). $\phi > 0 \implies$ strategic complements.

 $a^* \in A$ is a Nash equilibrium if

$$u_i(a_i^*,a_{-i}^*) \geq u_i(a_i,a_{-i}^*), \quad \forall a_i \in A_i$$

holds for any $i = 1, \ldots, n$.

¹Ballester, Calvo-Armengol, Zenou, *Who's Who in Networks. Wanted: The Key Player*, Econometrica 74 (2006), 1403–1417.

M. Passacantando

operties and algorithm

pplication

letworks GNEP DO Parametric network games 0000000 Parametric quadratic model 00000

The linear-quadratic model: existence of Nash equilibria

Nash equilibria are the solutions of the affine variational inequality VI(F, A), where $F(a) = (I - \phi G)a - \alpha$ and $A = \mathbb{R}^{n}_{+}$.

Theorem [Ballester et al. 2006]

Let $\rho(G) = \lambda_{max}(G)$ be the spectral radius of G. If $\phi \rho(G) < 1$, then

- a unique Nash equilibrium a* exists
- a^* is the solution of a linear system: $a^* = (I \phi G)^{-1} \alpha$

•
$$a^* = \sum_{p=0}^{\infty} \phi^p G^p \alpha$$
 (Katz-Bonacich centrality measure)

The (i, j) entry of G^p gives the number of walks of length p between i and j. If $\alpha_i = 1$, then Katz-Bonacich centrality measure² a_i^* counts the total number of walks which start at node i, exponentially damped by ϕ .

²Bonacich, Power and centrality: a family of measures, Am. J. Sociol. 92 (1987), 1170–1182.

M. Passacantando

5/35 -

The linear-quadratic model: key player

Given the Nash equilibrium a^* , consider the equilibrium aggregate $\sum_{i=1}^n a_i^*$.

Suppose to remove a player k from the network. The game will then have a new equilibrium $a' = (a'_1, \ldots, a'_{k-1}, a'_{k+1}, \ldots, a'_n)$ with corresponding aggregate

$$EA_k = \sum_{i \neq k} a'_i.$$

A key player is a player such that, after its removal, the new equilibrium aggregate is the minimum possible with respect to all possible removals of one player.

Properties and algorithm ••••••

pplication

Vetworks GNEP 00 Parametric network games 0000000 Parametric quadratic model 00000

The linear-quadratic model with bounded strategies³

From now on we assume that the strategies have an upper bound: $A_i = [0, U_i]$.

Theorem

Assume that $\phi\rho(G) < 1$ and exactly k components of the Nash equilibrium a^* take on their maximum value: $a_{i_1}^* = U_{i_1}, \ldots, a_{i_k}^* = U_{i_k}$. Then the subvector $\tilde{a}^* = (\tilde{a}_{i_{k+1}}^*, \ldots, \tilde{a}_{i_n}^*)$ of the nonboundary components of a^* is

$$\tilde{a}^* = (I_{n-k} - \phi G_1)^{-1} w,$$

where G_1 is the submatrix obtained from G choosing the rows i_{k+1}, \ldots, i_n and the columns i_{k+1}, \ldots, i_n , $w = \alpha \mathbf{1}_{n-k} + \phi G_2 U$, G_2 is the submatrix obtained from G choosing the rows i_{k+1}, \ldots, i_n and the columns i_1, \ldots, i_k , and $U = (U_{i_1}, \ldots, U_{i_k})$.

³P., Raciti, *A note on network games with strategic complements and the Katz-Bonacich centrality measure*, in "Optimization and Decision Science", R. Cerulli, M. Dell'Amico, F. Guerriero, D. Pacciarelli, A. Sforza (eds.), AIRO Springer Series, vol. 7 (2021), 51–61.

M. Passacantando

7 / 35 -

Properties and algorithm

Application

Networks GNEF 00 Parametric network games

Parametric quadratic model 00000

The linear-quadratic model with bounded strategies⁴

Theorem

If $\phi \rho(G) < 1/2$, then

- a unique Nash equilibrium a* exists
- the best-response dynamics converges to a^{*}
- a_i^{*} ≤ a_i^{so} for any i = 1,..., n, where a^{so} = arg max ∑_{i=1}ⁿ u_i(a) is the unique social optimum of the game.

M. Passacantando

8 / 35

1

⁴P., Raciti, *A note on network games with strategic complements and the Katz-Bonacich centrality measure*, in "Optimization and Decision Science", R. Cerulli, M. Dell'Amico, F. Guerriero, D. Pacciarelli, A. Sforza (eds.), AIRO Springer Series, vol. 7 (2021), 51–61.

Properties and algorithm

oplication

etworks GNEP 0

Parametric network games 0000000 Parametric quadratic model 00000

The linear-quadratic model with bounded strategies

The Nash equilibrium can be found by solving a finite number of linear systems.

Algorithm 1

- **1.** Solve the linear system $(I \phi G) \bar{a} = \alpha$
- 2. If $\bar{a}_i \leq U_i$ for any i = 1, ..., n then STOP: \bar{a} is the Nash equilibrium else set $V_0 := \{i : \bar{a}_i > U_i\}$, $S_0 := \{i : \bar{a}_i \leq U_i\}$ and k = 0
- 3. Solve the linear system

$$(I_{S_kS_k} - \phi G_{S_kS_k}) z^k = \alpha_{S_k} + \phi G_{S_kV_k} U_{V_k}$$

and define the vector $a_i^k := \begin{cases} U_i & \text{if } i \in V_k \\ z_i^k & \text{if } i \in S_k \end{cases}$

4. Compute $\mu^{k} = \alpha_{V_{k}} - (I_{V_{k}V_{k}} - \phi G_{V_{k}V_{k}})U_{V_{k}} + \phi G_{V_{k}S_{k}}z^{k}$ If $\mu^{k} \ge 0$ then STOP: a^{k} is the Nash equilibrium else set $N_{k} := \{i \in V_{k} : \mu_{i}^{k} < 0\}$ $V_{k+1} := V_{k} \setminus N_{k}, \quad S_{k+1} := S_{k} \cup N_{k}$ k = k + 1 and go to Step 3

Properties and algorithm

pplication

Networks GNEP 00 Parametric network game 0000000 Parametric quadratic model 00000

The linear-quadratic model with bounded strategies⁵

Theorem

If $\phi \rho(G) < 1$, then Algorithm 1 finds the Nash equilibrium after at most *n* iterations.

Proof

- The linear systems at Steps 1 and 3 admit a unique solution.
- The sequence $\{a^k\}$ generated by the algorithm is feasible (by induction).
- The cardinality of the set V_k is decreasing at each iteration, thus µ^k ≥ 0 holds after at most n iterations.
- When μ^k ≥ 0 holds, the vector a^k is the Nash equilibrium since it solves the KKT system associated to the VI.

10 / 35 -

1

⁵P., Raciti, A finite convergence algorithm for solving linear-quadratic network games with strategic complements and bounded strategies, Optim. Methods Soft. 38 (2023), 1105–1128.

A network-game model of delinquency with random data

Given a network of *n* players, the action $a_i \in [0, U_i]$ of each player represents her/his effort in delinquent activities. The utility function of each player is

$$u_i(a) = \left(\pi_i + \phi \sum_{j=1}^n g_{ij}a_j\right)a_i - \left(pa_i + \frac{1}{2}a_i^2\right),$$

where π_i represents the specific ability of player *i* in criminal activities and can be partially estimated with the help of statistical analysis of data⁶.

To take into account the contributions which are not observable to the econometrician, we model π_i as the sum of a deterministic term β_i and a random perturbation $\gamma_i r$, where γ_i is a fixed number and r is a random variable following a given distribution:

$$\pi_i = \beta_i + \gamma_i r.$$

⁶Lee, Liu, Patacchini, Zenou, *Who is the Key Player? A Network Analysis of Juvenile Delinquency*, J. Bus. Econ. Stat. 39 (2021), 849–857.

M. Passacantando

11 / 35 –

.

Application 0000000000

A network-game model of delinguency with random data

The Nash equilibrium is the solution of the following stochastic variational inequality:

for each $r \in \mathbb{R}$, find $a^*(r) \in A$ such that for each $a \in A$ we have:

$$\sum_{i=1}^{n} [a_{i}^{*}(r) - \phi \sum_{j=1}^{n} g_{ij} a_{j}^{*}(r)] [a_{i} - a_{i}^{*}(r)] \ge \sum_{i=1}^{n} [\beta_{i} + \gamma_{i} r - p] [a_{i} - a_{i}^{*}(r)].$$
(1)

To compute the expected value of the Nash equilibrium $a^*(r)$ with respect to the probability measure P, we follow the so-called L^2 approach which consists of considering an integral version of (1): Find $a^* \in L^2(\mathbb{R}, P, \mathbb{R}^n)$ such that for all the functions $a \in L^2(\mathbb{R}, P, \mathbb{R}^n)$, with $0 \le a_i(r) \le U_i$ *P*-almost surely, we have:

$$\int_{-\infty}^{+\infty} \sum_{i=1}^{n} [a_{i}^{*}(r) - \phi \sum_{j=1}^{n} g_{ij}a_{j}^{*}(r)] [a_{i}(r) - a_{i}^{*}(r)]dP$$

$$\geq \int_{-\infty}^{+\infty} \sum_{i=1}^{n} [\beta_{i} + \gamma_{i}r - \rho] [a_{i}(r) - a_{i}^{*}(r)]dP.$$
(2)

A network-game model of delinquency with random data

The expectation of the Nash equilibrium

$$E_P[a^*(r)] = \int_{-\infty}^{+\infty} a^*(r) dP$$

can be found by the following approximation procedure⁷:

- Discretize the (compact) support of the probability measure P in N subintervals and denote L_N^2 the space of step functions on the partition of the support.
- Solve (2) in L_N^2 to get the step function $a_N^*(r)$, i.e., solve N finite-dimensional variational inequalities on \mathbb{R}^n .

If $N \to \infty$, then the sequence of step functions $\{a_N^*(r)\}$ is norm-convergent to $a^*(r)$ and the approximated mean values $E_P[a_N^*(r)]$ converge to the exact mean value $E_P[a^*(r)]$.

13 / 35 –

⁷J. Gwinner, B. Jadamba, A.A. Khan, and F. Raciti, *Uncertainty Quantification in Variational Inequalities: Theory, Numerics, and Applications*, Chapman and Hall/CRC, 2021.

Network games	Properties and algorithm	Application	Networks GNEP	Parametric network games	Parametric quadratic model
0000	0000	0000000000	00	0000000	00000

Numerical experiments

We consider the following network with 11 nodes (players):

The spectral radius of G is $\rho(G) \simeq 4.4040$. We set $\phi = 0.2$ so that $I - \phi G$ is positive definite. We set $\beta = (10, \dots, 10), \ \gamma = (1, \dots, 1), \ p = 1$ and $U = (100, \dots, 100)$.

We assume the random variable r varies in the interval [-5, 5] with uniform distribution. The approximation procedure considers a uniform partition of the interval [-5, 5] into N subintervals and solves a deterministic network game for any subinterval by exploiting Algorithm 1.

Convergence of the approximate mean values of the equilibrium aggregate

Convergence of the approximate mean values of the equilibrium aggregate for different values of N, when r varies in the interval [-5,5] with uniform distribution and $\phi = 0.1$.

Equilibrium	Ν			
aggregate	100	1,000	10,000	100,000
EA_1	149.167	149.917	149.992	149.999
EA_2	145.929	146.663	146.736	146.744
EA ₃	150.360	151.116	151.192	151.199
EA_4	150.360	151.116	151.192	151.199
EA_5	150.360	151.116	151.192	151.199
EA_6	145.929	146.663	146.736	146.744
EA ₇	145.929	146.663	146.736	146.744
EA ₈	150.360	151.116	151.192	151.199
EA_9	150.360	151.116	151.192	151.199
EA_{10}	150.360	151.116	151.192	151.199
EA_{11}	145.929	146.663	146.736	146.744

The key players are the nodes most connected to the others.

Convergence of the approximate mean values of the equilibrium aggregate

Convergence of the approximate mean values of the equilibrium aggregate for different values of N, when r varies in the interval [-5,5] with uniform distribution and $\phi = 0.2$.

Equilibrium	Ν			
aggregate	100	1,000	10,000	100,000
EA_1	447.500	449.750	449.975	449.998
EA ₂	459.267	461.525	461.750 526 542	461.773 526 567
EA ₄	523.915	526.304	526.543	526.567
EA_5	523.915	526.304	526.543	526.567
EA ₆	459.267	461.525	461.750	461.773
EA ₇	459.267	461.525	461.750	461.773
EA ₈	523.915	526.304	526.543	526.567
EA_9	523.915	526.304	526.543	526.567
EA_{10}	523.915	526.304	526.543	526.567
EA_{11}	459.267	461.525	461.750	461.773

The unique key player is the bridge connecting the two complete subgraphs.

Scalability of Algorithm 1

We consider a set of random instances, where # players varies from 10 to 10,000.

The adjacency matrix of any random network is generated according to the following code:

$$G = rand(n);$$

$$G = floor((G+G')/2 + \delta);$$

G = G - diag(diag(G));

so that G is an $n \times n$ zero-diagonal binary symmetric matrix and the parameter $\delta \in (0, 1)$ represents the density of the network ($\delta = 0$ corresponds to an empty network, while $\delta = 1$ to a complete network).

We set $\beta = (4, ..., 4)$, $\gamma = (1, ..., 1)$ and p = 1.

We assume r varies in [-1, 1] with uniform distribution and the approximation procedure considers a uniform partition of [-1, 1] into N = 100 subintervals.

Application

Scalability of Algorithm 1 - number of linear systems solved

Average number of linear systems solved by Algorithm 1.

[The figures are the average values obtained on a set of five random instances.]

		$\delta = 0.2$			$\delta=$ 0.5	
n	$\phi = -0.1$	$\phi = -0.5$	$\phi = -0.9$	$\phi = -0.1$	$\phi = -0.5$	$\phi = -0.9$
	$\rho(G)$	$\rho(G)$	$\rho(G)$	$ \rho(G)$	$\rho(G)$	$\rho(G)$
10	1.94	2.18	2.38	2.05	2.26	2.54
20	2.05	2.20	2.94	2.12	2.42	2.97
50	2.16	2.73	3.15	2.30	2.78	3.43
100	2.37	2.90	3.77	2.49	2.99	3.83
200	2.59	3.07	4.05	2.64	3.09	4.04
500	2.85	3.21	4.21	2.83	3.30	4.31
1,000	2.94	3.45	4.46	2.94	3.42	4.54
2,000	2.97	3.59	4.64	2.99	3.63	4.68
5,000	3.02	3.77	4.82	3.02	3.78	4.82
10,000	3.03	3.86	4.89	3.03	3.88	4.89

The average number of linear systems solved by Algorithm 1 is very low and quite stable (between 2 to 5).

Scalability of Algorithm 1 - Comparison with other solution approaches

For any subinterval of the discretization, the deterministic network game can also be solved by the following well-known methods:

- exploit the potential function: the game is first reformulated as a convex quadratic optimization problem and then solved by an optimization solver
- exploit the classic best-response method⁸.

We compare the performance of Algorithm 1 with the performances of

- the potential-based approach exploiting three different solvers:
 - Gurobi (with default options)
 - the MATLAB quadprog function with the 'interior-point-convex' algorithm
 - the MATLAB quadprog function with the 'trust-region-reflective' algorithm.
- the best-response method with starting point (U_1, \ldots, U_n) :
 - Jacobi variant
 - Gauss-Seidel variant, where the order of play is 1, 2, ..., n.

⁸Sagratella, Computing equilibria of Cournot oligopoly models with mixed-integer quantities, Math. Meth. Oper. Res. 86 (2017), 549–565.

Scalability of Algorithm 1 - Comparison with other solution approaches

Find the approximated stochastic Nash equilibrium, with $\delta = 0.5$ (CPU times in seconds).

			Potential-based	d approach	Best-re	sponse method
n	Algorithm 1	Gurobi	quadprog interior-point	quadprog trust-region	Jacobi	Gauss-Seidel
100	0.031	1.018	0.100	0.574	0.045	0.027
200	0.162	3.168	0.899	0.879	0.140	0.082
300	0.316	5.609	2.189	1.485	0.290	0.170
400	0.472	11.615	4.235	2.228	0.474	0.281
500	0.561	14.638	9.232	3.102	0.706	0.421
600	0.682	18.530	15.711	4.389	1.552	0.900
700	0.933	23.384	22.033	5.864	2.065	1.195
800	1.102	28.769	30.683	7.767	3.105	1.814
900	1.139	35.450	40.387	9.538	3.398	2.006
1,000	1.319	42.587	47.510	11.332	4.786	2.816
2,000	3.052			39.689		12.917
3,000	6.163			79.893		46.715
4,000	10.069			135.675		68.777
5,000	14.298			218.514		453.096
6,000	19.006			311.270		575.458
7,000	24.688			405.576		758.007
8,000	31.279			534.597		710.733
9,000	38.238			933.030		941.853
10,000	56.980			1,163.213		1,119.356

Scalability of Algorithm 1 - Comparison with other solution approaches

Find the approximated stochastic key player, with $\delta = 0.5$ (CPU times in seconds).

			Potential-based	approach	Best-re	sponse method
n	Algorithm 1	Gurobi	quadprog interior-point	quadprog trust-region	Jacobi	Gauss-Seidel
10	0.021	5.882	0.307	3.484	0.025	0.013
20	0.062	11.924	0.654	7.611	0.118	0.059
30	0.138	18.634	1.088	12.481	0.256	0.134
40	0.251	25.993	1.580	17.471	0.445	0.241
50	0.399	34.005	2.143	21.991	0.857	0.472
60	0.624	43.515	2.951	27.570	1.233	0.674
70	0.952	54.180	4.121	33.312	1.773	0.956
80	1.432	66.265	5.376	39.578	2.643	1.456
90	2.021	80.751	6.987	46.149	3.459	1.945
100	2.883	97.537	10.277	54.596	4.372	2.426
200	29.644	630.424	169.477	173.197	27.461	15.983
300	91.677	1,637.397	621.744	445.772	91.666	51.738
400	192.747			827.213		111.295
500	257.223			1,478.674		209.505
600	381.021			2,718.983		478.374
700	629.128			3,989.585		888.171
800	736.379			6,032.577		1,397.354
900	960.393			8,565.410		1,796.690
1,000	1,243.579			11,498.981		2,064.835

Network games	Properties and algorithm	Application	Networks GNEP	Parametric network games	Parametric quadratic model	
0000	0000	00000000000	●O	0000000	00000	

GNEP on networks

Assume the players have a global shared constraint:

$$\mathcal{K} = \left\{ \mathbf{a} \in \mathbb{R}^n_+ : \sum_{j=1}^n \mathbf{a}_j \leq C
ight\}.$$

 $a^* \text{ is a generalized Nash equilibrium if for any } i = 1, \dots, n \text{ we have}$ $u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*), \qquad \forall \ a_i \in K_i(a_{-i}^*),$ where $K_i(a_{-i}^*) = \left\{a_i \in \mathbb{R}_+: \ a_i + \sum_{j \neq i} a_j^* \le C\right\}.$

GNE are solutions of a quasi-variational inequality. Variational equilibria are solutions of VI(F, K), where $F(a) = (I - \phi G)a - \alpha$.

Network	games

perties and algorithm

Application 0000000000 Networks GNEP

Parametric network games 0000000 Parametric quadratic model 00000

GNEP on networks⁹

Theorem

If $\phi \rho(G) < 1$, then the unique variational equilibrium is

$$\bar{a} = \begin{cases} a^* = \sum_{p=0}^{\infty} \phi^p G^p \alpha & \text{if } \sum_{i=1}^n a_i^* \le C, \\ \frac{Ca^*}{\sum\limits_{i=1}^n a_i^*} = \frac{C\sum\limits_{p=0}^{\infty} \phi^p G^p \alpha}{\sum\limits_{p=0}^\infty \phi^p \alpha^\top G^p \alpha} & \text{if } \sum\limits_{i=1}^n a_i^* > C, \end{cases}$$

where $a^* = (I - \phi G)^{-1} \alpha$ is the (non-generalized) Nash equilibrium.

M. Passacantando

⁹P., Raciti, *A note on generalized Nash games played on networks*, in "Nonlinear Analysis, Differential Equations, and Applications", T.M. Rassias (ed.), Springer Optimization and Its Applications, vol. 173 (2021), 365–380.

Parametric network games¹⁰

Suppose the strategy set $A_i(t) = [0, U_i(t)]$ and the payoff function

$$u_i(t,a) = -\frac{1}{2}a_i^2 + \frac{\alpha_i(t)a_i}{\alpha_i} + \phi \sum_{j=1}^n g_{ij}a_ia_j,$$

where U_i and α_i are positive Lipschitz continuous functions of a parameter $t \in [0, T]$.

Nash equilibria $a^*(t)$ are solutions of $VI(F(t, \cdot), A(t))$, where

$$F(t,a) = (I - \phi G)a - \alpha(t)$$

and $A(t) = \prod_{i=1}^{n} [0, U_i(t)].$

M. Passacantando

24 / 35 -

¹⁰P., Raciti, *Lipschitz continuity results for a class of parametric variational inequalities and applications to network games*, Algorithms 16 (2023), Article 458.

olication

Networks GNEP 00 Parametric network games

Parametric quadratic model 00000

Parametric network games - Lipschitz equilibrium

Theorem

Assume F is uniformly τ -strongly monotone on \mathbb{R}^n , F is Lipschitz continuous with constant L, i.e.,

 $\|F(t_1,a_1) - F(t_2,a_2)\| \leq L(|t_1 - t_2| + \|a_1 - a_2\|), \qquad \forall a_1,a_2 \in \mathbb{R}^n, \ \forall \ t_1,t_2 \in [0,T],$

A(t) is a closed and convex set for any $t \in [0, T]$ and there exists $M \ge 0$ such that

$$\|p_{A(t_1)}(a) - p_{A(t_2)}(a)\| \le M |t_1 - t_2|, \quad \forall a \in \mathbb{R}^n, \ \forall t_1, t_2 \in [0, T],$$

where $p_{A(t)}(a)$ denotes the projection of a on the closed convex set K(t). Then, for any $t \in [0, T]$, VI(F, A(t)) has a unique solution $a^*(t)$ which is Lipschitz continuous on [0, T] with estimated constant equal to

$$\Lambda_1 = \begin{cases} \inf_{z \in (0,2\widetilde{\tau})} \left[\frac{M}{1-s} + \frac{z(1+z)}{s(1-s)} \right], & \text{if } \widetilde{\tau} < 1, \\ \\ M + 2\sqrt{2M} + 1, & \text{if } \widetilde{\tau} = 1, \end{cases}$$

where $\tilde{\tau} = \tau/L$ and $s = \sqrt{z^2 - 2\tilde{\tau}z + 1}$.

letwork	games
0000	

operties and algorithm

pplication

Networks GNEP 00 Parametric network games

Parametric quadratic model 00000

Parametric network games - Lipschitz equilibrium

Theorem

Assume F(t, a) = G(a) + H(t) holds for any $t \in [0, T]$, $a \in \mathbb{R}^n$, where $G : \mathbb{R}^n \to \mathbb{R}^n$ is τ -strongly monotone on \mathbb{R}^n and Lipschitz continuous on \mathbb{R}^n with constant L_a , and H is Lipschitz continuous on \mathbb{R}^n with constant L_t . Moreover, we assume that A(t) is a closed and convex set for any $t \in [0, T]$ and there exists $M \ge 0$ such that

$$\|p_{A(t_1)}(a) - p_{A(t_2)}(a)\| \le M |t_1 - t_2|, \quad \forall a \in \mathbb{R}^n, \forall t_1, t_2 \in [0, T].$$

Then, for any $t \in [0, T]$, VI(F, A(t)) has a unique solution $a^*(t)$ which is Lipschitz continuous on [0, T] with estimated constant equal to

$$\Lambda_2 = \begin{cases} \inf_{z \in (0,2\hat{\tau})} \left[\frac{M}{1-\hat{s}} + \frac{\hat{L}z(1+z)}{\hat{s}(1-\hat{s})} \right], & \text{if } \hat{\tau} < 1, \\ M + 2\sqrt{2M\hat{L}} + \hat{L}, & \text{if } \hat{\tau} = 1, \end{cases}$$

where $\hat{\tau} = \tau/L_a$, $\hat{L} = L_t/L_a$ and $\hat{s} = \sqrt{z^2 - 2\hat{\tau}z + 1}$.

operties and algorithm 000 pplication

Networks GNE

Parametric network games

Parametric quadratic model 00000

Parametric network games - Lipschitz equilibrium

Remark

When $\phi\rho(G) < 1$, the map $F(t, a) = (I - \phi G)a - \alpha(t)$, satisfies the assumptions of above Theorems with constants $\tau = 1 - \phi\rho(G)$, $L_a = ||I - \phi G||_2$, $L_t = L_\alpha \sqrt{n}$, where L_α is the Lipschitz constant of $\alpha(t)$, and $L = \max\{L_a, L_t\}$. Moreover, the feasible region A(t) satisfies the assumption

$$\|p_{A(t_1)}(a) - p_{A(t_2)}(a)\| \le M|t_1 - t_2|, \quad \forall a \in \mathbb{R}^n, \ \forall t_1, t_2 \in [0, T]$$

with $M = ||(L_1, ..., L_n)||_2$, where L_i is the Lipschitz constant of $U_i(t)$ for any i = 1, ..., n.

Parametric network games - Approximation algorithm

Estimate of the Lipschitz constant of Nash equilibrium
$$a^*(t) \downarrow$$

approximate $a^*(t)$ and its mean value on [0, T]

Parametric network games

Network games	Properties and algorithm	Application	Networks GNEP	Parametric network games	Parametric quadratic model
0000		00000000000	00	00000●0	00000

Parametric network games

Approximation algorithm

- **0.** Set $\varepsilon > 0$, evaluate $a_i^*(t)$ at 0 and T, compute the area of parallelogram $P_{0,T}$.
- 1. Find the parallelogram P_{t_1,t_2} with the largest area, add the new evaluation point $p = (t_1 + t_2)/2$, compute the Lipschitz constants of $a_j^*(t)$ in $[t_1, p]$ and $[p, t_2]$, update the parallelograms' areas list by removing the area of P_{t_1,t_2} and inserting the areas of $P_{t_1,p}$ and P_{p,t_2} .
- 2. Compute the worst case error $E_{tot} = (\text{sum of areas of all parallelograms})/2$. If $E_{tot} \leq \varepsilon$ then stop; otherwise go to Step 1.

Theorem

The algorithm stops after at most $\lceil 2E_0/\varepsilon \rceil$ iterations, where

$$E_0 = rac{\Lambda^2 T^2 - [a_j^*(0) - a_j^*(T)]^2}{4\Lambda}$$

is the worst case error before the algorithm starts.

Parametric network GNEPs

The previous results can be applied to approximate variational equilibria of network GNEPs where players share a global constraint:

$${\mathcal A}(t)=\left\{{oldsymbol a}\in{\mathbb R}^n_+:\;\sum_{i=1}^n{oldsymbol a}_i\leq C(t)
ight\}.$$

The assumption

$$\|p_{A(t_1)}(a) - p_{A(t_2)}(a)\| \le M |t_1 - t_2|, \quad \forall a \in \mathbb{R}^n, \forall t_1, t_2 \in [0, T]$$

is satisfied with M equal to the Lipschitz constant of the function C(t).

The parametric quadratic model¹¹

Suppose the strategy set $A_i = [0, U_i]$ and the payoff of player *i* is

$$u_i(a) = -rac{\beta}{2}a_i^2 + \alpha_i a_i + \sum_{\substack{j=1\ j \neq i}}^n f_{ij}(\alpha)a_i a_j, \qquad lpha, eta > 0.$$

If $f_{ij}(\alpha) \ge 0$, then the game falls in the class of games with strategic complements; if $f_{ij}(\alpha) \le 0$, then it falls in the class of games with strategic substitutes.

The pseudo-gradient of this game is

$$T(a) = [\beta I - \mathcal{F}(\alpha)]a - \alpha,$$

where $\mathcal{F}(\alpha)$ is a zero-diagonal matrix whose off-diagonal entries are equal to $f_{ij}(\alpha)$. We assume $\mathcal{F}(\alpha)$ is symmetric for any α .

M. Passacantando

31 / 35 -

1

¹¹P., Raciti, *Some properties of a class of Network Games with strategic complements or substitutes*, in "Mathematical Analysis, Differential Equations and Applications", T.M. Rassias and P.M. Pardalos (eds.), in press, doi: 10.1142/9789811267048_0023.

perties and algorithm OO Application

Networks GNE 00 Parametric network games 0000000 Parametric quadratic model 00000

The parametric quadratic model

Theorem

• Let $f_{ij}(\alpha) \ge 0$ for any i, j. The matrix $\beta I - \mathfrak{F}(\alpha)$ is positive definite iff

$$\beta > \lambda_{max}(\mathcal{F}(\alpha)) = \rho(\mathcal{F}(\alpha))$$

where $\lambda_{max}(\mathcal{F}(\alpha))$ is the maximum eigenvalue of $\mathcal{F}(\alpha)$ and $\rho(\mathcal{F}(\alpha))$ its spectral radius.

• Let $f_{ij}(\alpha) \leq 0$ for any i, j. The matrix $\beta I - \mathcal{F}(\alpha)$ is positive definite iff

 $\beta > \lambda_{\max}(\mathcal{F}(\alpha))$

Moreover, the condition $\beta > \rho(\mathcal{F}(\alpha))$ is, in general, stronger than the latter condition.

The parametric quadratic model

Theorem

Let $\beta > \rho(\mathcal{F}(\alpha))$ and a^* be the unique Nash equilibrium.

Assume that f_{ij}(α) ≥ 0 for any i, j ∈ {1,...,n}. Then a^{*}_i > 0 for any i ∈ {1,...,n}. Moreover, if exactly k components of a^{*} take on their maximum value: a^{*}_{i1} = L_{i1},...,x^{*}_{ik} = L_{ik}, then the subvector ã^{*} = (ã^{*}_{ik+1},...,ã^{*}_{in}) of the non-boundary components is

$$\tilde{\boldsymbol{a}}^* = [\beta \boldsymbol{I}_{n-k} - \mathcal{F}_1(\alpha)]^{-1} \boldsymbol{w}$$
(3)

where $\mathcal{F}_1(\alpha)$ is the submatrix obtained from $\mathcal{F}(\alpha)$ choosing the rows i_{k+1}, \ldots, i_n and the columns i_{k+1}, \ldots, i_n ; $w = \alpha_{n-k} + \mathcal{F}_2(\alpha) U$; $\mathcal{F}_2(\alpha)$ is the submatrix obtained from $\mathcal{F}(\alpha)$ choosing the rows i_{k+1}, \ldots, i_n and the columns i_1, \ldots, i_k ; $U = (U_{i_1}, \ldots, U_{i_k}), \alpha_{n-k} = (\alpha_{i_{k+1}}, \ldots, \alpha_{i_n})$.

Assume now that f_{ij}(α) ≤ 0 for any i, j ∈ {1,..., n}, and there are no zero components of a*. If exactly k components of a* take on their maximum value, then formula (3) also applies to this case.

Network games	Properties and algorithm	Application	Networks GNEP	Parametric network games	Parametric quadratic model
0000		000000000000	00	0000000	000●0

The parametric quadratic model

Theorem

Assume that
$$f_{ij}(\alpha) \ge 0$$
 for any i, j , and $\beta > 2\rho(\mathcal{F}(\alpha))$.
Then,

$$a_i^* \leq a_i^{so} \qquad \forall \ i=1,\ldots,n,$$

where a^{so} is the social optimum of the game.

Inequality (4) does not hold in general in the case of strategic substitutes. Consider a game with n = 5 players, U = (1, 1, 1, 1, 1), $\alpha = (1, 2, 1, 2, 1)$, $\beta = 2.5$ and the interaction matrix given by

$$f_{ij}(\alpha) = -\frac{1}{2} |\alpha_i - \alpha_j| \quad \forall i, j = 1, \dots, 5.$$

Player	Constrained NE	Social Optimum
1	0.1053	0.0000
2	0.7368	0.8000
3	0.1053	0.0000
4	0.7368	0.8000
5	0.1053	0.0000

(4)

Network games	Properties and algorithm	Application	Networks GNEP	Parametric network games	Parametric quadratic model
0000	0000	00000000000	00		0000●

References

- Belhaj M., Bramoullé Y., Deroïan F., Network games under strategic complementarities, Games Econ. Behav. 88 (2014), pp. 310–319.
- Ballester C., Calvo-Armengol A., Zenou Y., *Who's Who in Networks. Wanted: The Key Player*, Econometrica 74 (2006), 1403–1417.
- Bonacich P., *Power and centrality: a family of measures*, Am. J. Sociol. 92 (1987), pp. 1170–1182.
- Jackson M.O., Zenou Y., *Games on Networks*, in: Handbook of Game Theory with Economic Applications, H.P. Young and S. Zamir (eds.), 2015, 95–163.
- Parise F., Ozdaglar A., *A variational inequality framework for network games: Existence, uniqueness, convergence and sensitivity analysis*, Games Econ. Behav. 114 (2019), 47–82.