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Abstract

This paper proposes a novel approach to directional forecasts for carry trade strate-

gies based on Support Vector Machines (SVMs), a learning algorithm that delivers ex-

tremely promising results. Building on recent findings in the literature on carry trade,

we condition the SVM on indicators of uncertainty and risk. We show that this provides

a dramatic performance improvement in strategy, particularly during periods of finan-

cial distress such as the recent financial crises. Disentangling the measures of risk, we

show that conditioning the SVM on measures of liquidity risk rather than on market

volatility yields the best performance.
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1 Introduction

Uncovered interest parity (UIP) is probably one of the simplest and most intuitive equilib-

rium conditions in financial markets. For risk neutral investors with rational expectations,

the expected exchange rate change has to compensate for the interest differential that may

arise between two currencies. Such an equilibrium condition is most likely to hold in the

FX market because it is the closest approximation to the notion of market efficiency. Yet the

empirical evidence fails to support the UIP. On the contrary, the evidence shows the oppo-

site: high yielding currencies tend to appreciate rather than depreciate, as theory predicts.

This is known as the “forward bias puzzle”1 and has a natural implication: the possibility

of realizing excess returns from carry trade, that is, the practice of investing in high yield

currencies by going short on low yield ones.

Simple carry trade strategies deliver positive average excess returns for substantially

long periods, coupled with Sharpe ratios significantly higher than those measured in other

financial markets (such as the US stock market), spurring considerable attention from economists

and practitioners alike. During the last decades, a large body of literature has investigated

the reasons underlying the UIP puzzle and explanations for the excess of returns from carry

trade.2

As an equilibrium condition, the carry trade does not require any model. As such, it is

a rather naïve strategy and we know that more sophisticated investors would use any infor-

mation that they may find useful, particularly if it is from some established model. Unfortu-

nately, the literature is of little help in this respect. In fact, in a carry trade strategy, the only

unknown is the exchange rate and improving the strategy necessarily implies making a cor-

rect guess about the future change in the exchange rate. However, since the seminal work

by Meese and Rogoff (1983), researchers struggled to find a model capable of sufficient pre-

dictive power for the exchange rate. Recently, there has been some improvements; Della

Corte, Sarno, and Tsiakas (2009) show that forward premia and stochastic volatility have

predictive ability for exchange rates; Li, Tsiakas, and Wang (2014) reaffirm the out of sam-

ple predictive power of economic fundamentals; and Molodtsova and Papell (2009) stress

the role of Taylor rule fundamentals. Nonetheless, as shown by the recent survey by Rossi

(2013), we are far from having a good predictive model for exchange rates.

In explaining excess returns from carry trade, prior studies follow two main approaches.

1The name derives from the fact that the failure of UIP results in the forward rate being a biased predictor
of future spot rates.

2See Engel (2014) for a recent survey.
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On the one hand, the “traditional view” emphasizes the importance of fundamentals in

providing useful information for exchange rate forecasting; in particular, Jordà and Taylor

(2012) show that conditioning the carry trade strategy on the predictions of a simple fun-

damental equilibrium exchange rate model yields a better performance with a significant

improvement in the Sharpe ratio. On the other hand, building on the fact that carry trade

returns are negatively skewed, the “risk view” posits that they are essentially a compensa-

tion for currency crashes, reflecting a sort of “Peso problem.” Indeed, Brunnermeier, Nagel,

and Pedersen (2009), Burnside et al. (2011), and Farhi et al. (2015) show that crash risk has

accounted for a high proportion of the carry trade risk premium in advanced countries

over the last 20 years.3 Menkhoff et al. (2012) find that excess returns to carry trades are a

compensation for time-varying risk, and in particular, for global foreign exchange volatility

risk. More recently, Cenedese, Sarno, and Tsiakas (2014) provide some theoretical under-

pinnings to the relationship between volatility and carry trade returns using an intertem-

poral capital asset pricing model and show that conditioning the carry trade strategy on FX

risk measures results in a clear performance improvement, even accounting for transaction

costs.

Our paper contributes to this line of research providing innovative contributions in sev-

eral domains: first, we propose a novel approach to directional forecasts for carry trade

strategies based on Support Vector Machines (SVM), a learning algorithm that provides

extremely promising results and a wide range of possible applications in finance. To our

knowledge, this is the first application of these tools to exchange rate modelling and carry

trade. Second, we condition the SVM model on indicators of uncertainty and risk. We show

that this provides a dramatic performance improvement in the strategy, particularly during

periods of financial distress, such as the recent financial crises. This provides clear support

for the view that considers excess returns from carry trade as compensation for risk. Third,

we disentangle different measures of risk, showing that measures of liquidity risk rather

than measures of market volatility yield the best performance.

The remainder of the paper is structured as follows: section 2 illustrates the methods

and data, section 3 presents the results, and section 4 concludes.

3Using different techniques, Jurek (2014) downsizes the importance of crash risk. See also Smales and
Kininmonth (2016), who stress the role of investorsâĂŹ fear.
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2 Methods and data

There are two general approaches to constructing the carry trade. The traditional approach

defines the carry strategy in terms of interest rate differentials, an approach followed by

Brunnermeier, Nagel, and Pedersen (2009) and Jordà and Taylor (2012), among others. An

alternative approach casts the carry trade in terms of forward currency contracts; see, for

example, Burnside et al. (2011), Cenedese, Sarno, and Tsiakas (2014), and Bakshi and Panay-

otov (2013). Clearly, the two approaches are equivalent if the Covered Interest Parity holds,

which is an assumption well supported by empirical evidence.

We follow the latter approach, which has the major advantage of allowing researchers

to incorporate transaction costs simply, which are crucial in determining the real return on

carry trade strategies.4

The return on the carry trade strategy can be briefly illustrated as follows:

zt+1 =


(

F b
t ,t+1

Sa
t+1

)γt

−1 if γt > 0(
F a

t ,t+1

Sb
t+1

)γt

−1 if γt < 0
(1)

where5:

γt =

+1 if Ft ,t+1 > St

−1 if Ft ,t+1 < St

(2)

Clearly, given that we consider several currency pairs among the countries this study

examines, there is an issue of identifying the “best” strategy. To avoid the problem of data

snooping, we concentrate only on two portfolios: one is an equally-weighted portfolio con-

sisting of placing a uniform bet of size 1/N where N is the number of currency pairs. The

second is a dynamically rebalanced portfolio, in which each periodâĂŹs currencies are

ranked by their interest rate differential, with the investment in only the first three curren-

cies. Therefore we go long (with equal weights) on the top three interest rate differentials

and short (with equal weights) on the bottom three interest rate differentials. Given that

the US dollar is the reference currency against which returns are calculated whenever the

US dollar is among, for example, the lowest-yielding currencies in a given period, we do not

short any other currency against it and adjust the weights accordingly, in order to main-

4As Lyons (2001) shows, bid ask spreads quoted by standard data providers are approximately twice the
size of inter-dealer spreads. Therefore, our transaction cost estimates are very conservative.

5In the formulas, subscripts a and b represent bid and ask, respectively.
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tain a zero-cost strategy. We determine the direction of the forward (long or short USD)

following equations 1 and 2 in the text (naïve Carry Trade) or using the SVM as explained

below.

2.1 Carry trade and Support Vector Machines

As stated in the introduction, the standard carry trade strategy is rather simple and naïve,

and could be ideally improved by adding information that helps predict future exchange

rate changes. We do so by conditioning the long-short trade choices of a carry trade strat-

egy on the prediction of a model. Instead of using the direction of the forecast of a standard

regression model, we use an SVM in which the input variables are indicators of market un-

certainty. Thus, conditional on observing indicators of market uncertainty at time t, the

SVM yields a prediction about whether to continue the carry trade strategy or to invert it at

time t+1. SVM is currently one of the most popular machine learning algorithms and has

been applied in numerous fields successfully, and recently to financial market forecasts.6

The SVM is a binary classification algorithm that classifies observations with certain fea-

tures into two classes. This is particularly interesting for purpose carry trades, since what

really matters for the investor or the trader is the ability to predict the direction of the trade,

not its magnitude. In order to gain excess returns from the carry trade, one in fact has to

guess the direction of the change in exchange rates correctly rather than accurately forecast

the exchange rate itself. In this respect, binary classification systems may work better than

standard econometric tools such as Probit or Logit regressions.

Intuitively, the Support Vector is an algorithm that constructs the hyperplane that max-

imizes the distance between two classes of observations (positive and negative returns, in

our case). When the two classes are clearly separable, the SVM is analogous to a linear

optimization problem that we can solve with standard tools (i.e. Lagrange multiplier). Fig-

ure 1 helps to refine the intuition. In the figure, we represent two classes of observations

(black and grey dots), each of which is defined by two variables (X1, X2); there are infinite

possible linear separating hyperplanes we can use as classifiers (the figure in the left panel

shows three). SVMs select the optimal separating hyperplane in the following way: first, the

perpendicular distance between any observation and the given hyperplane is computed;

second, it is identified the smallest distance from the observation to the hyperplane, which

defines the margin, that is, the maximal width of the slab parallel to the hyperplane that

has no interior data points. The optimal separating hyperplane maximizes the margin. The

6See, for example, Huerta, Corbacho, and Elkan (2013) and Papadimitriou, Gogas, and Stathakis (2014).
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Figure 1: Support Vector Machine: Optimal separating hyperplane
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right panel of Figure 1 has three observations (two black and one grey) with minimum dis-

tances from the hyperplane. These observations are called support vectors, and they iden-

tify the margin (the distance between the two dashed lines). The intuition underlying the

margin maximization is that a large margin on the training data is expected to deliver a

good classification of the test data.

A classification based on the optimal separating hyperplane could be extremely effi-

cient, but with a drawback: it could be too sensitive to individual observations, as Figure 1

illustrates. A change in the support vectors would imply a potentially large change in the

position of the maximal margin hyperplane. SVMs are flexible instruments that solve this

problem by introducing a form of soft margin classification; in other words, they allow the

misclassification of few training observations in order to reach a better classification for

most of the training observations.

The example in Figure 1 is rather simple; however, there are several cases where a lin-

ear separation is not possible, for instance, when the relationship between the predictors

and the outcome is non-linear. This is indeed the case with exchange rates, where a grow-

ing body of literature stresses the presence of non-linearities in their dynamic adjustments

(Sarno, Valente, and Leon, 2006). The left panel of Figure 2 shows one such example, where

a linear classifier would perform rather poorly.

In principle, it would be possible to enlarge the feature space with non-linear functions

of the predictors. However, this would result in a large number of features and an unman-

ageable computational cost.

Fortunately, a useful result from Cortes and Vapnik (1995) shows that it is possible to
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Figure 2: Support Vector Machines: The kernel principle
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project the dataset through a kernel function into a higher dimensional space (i.e., feature

space), where the dataset is linearly separable (see the right panel of the figure).

More formally, let x be a p element vector of variables (in our case, the returns from

carry trade and the conditioning factors such as uncertainty) and let n be the number of

training observations. The SVM is a classification function (James et al., 2013):

f (x) =
n∑

i=1
αi yi K (x, xi )+β0 (3)

where xi defines the vector of variables in the training set; yi is a classifier that takes

values of +1 or −1, formally assigning each observation in one of the two groups; β0 is a

constant that shifts the SVM output; αi are parameters that are non-zero only for the sup-

port vectors and depend on the tuning parameter for the soft margin classification. Both

β0 and αi are chosen optimally within the training period. Finally, we chose the kernel

function K following the literature, selecting the Radial Kernel:

K (x, xi ) = exp

(
−γ

p∑
(x −xi )2

)
(4)

where γ is a parameter chosen to optimize the sample fit of the model.

In practice, when a test observation x is far from a training observation xi , it implies that

over the p dimensions, the Euclidean distance (x − xi ) is large, so
∑p (x − xi )2 is large and

K (x, xi ) is extremely small. Therefore, the training observation xi plays no role in predict-

ing the class for the test observation x. Using the kernel function is computationally very
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effective since the kernel has to be computed for each possible pair x, xi , that is, n(n−1)/2.7

SVMs have several interesting features that make them potentially extremely useful for

providing a directional forecast of the exchange rate. The two main advantages are the

following.

• By construction, the SVM is optimized to discriminate around the decision margin,

while it attaches no weight to data that are easily classifiable. This is the main dif-

ference from a regression-based approach: the latter weights all observations, and

not just those close to the decision margin, making a regression-based approach less

effective in binary classification problems. In principle, a logistic regression is also

efficient as a classifier, but is limited by the fact that it estimates a linear decision

boundary.

• SVM deals with non-linearity quite naturally through the kernel function without im-

posing a particular functional form, which could be valuable in cases such as our

case, since it has no well-established theory that provides clearly testable implica-

tions.8 This could help overcome a general problem with non-linear models that are

known to perform well in-sample but fail in out-of-sample forecasting (Teräsvirta,

2006).9

As with any machine learning algorithm, the SVM needs a training period. We select the

previous 5 years as the training period. We then apply the algorithm with a rolling window

of 5 years. The rolling window approach is widespread in exchange rate modelling since the

seminal work of Meese and Rogoff (1983), and has the benefit of reducing the problem of

parameter instability over time (a known issue in this field), at the cost of not considering

possible efficiency gains from an increasing sample size over time.

2.2 Measuring performance

In comparing the results of a SVM strategy with the standard carry trade, we use a number

of measures. In a mean-variance setting, we provide, alongside with the average return,

standard deviation, skewness, and the Sharpe ratio. It is well known that standard tests

7The technical appendix provides a more formal explanation of the maximization problem underlying the
SVM and illustrates differences from and similarities to a logistic regression.

8Indeed, Jordà and Taylor (2012) show that their augmented carry trade strategy improves the most when
they use a non-linear model.

9In theory, kernel functions can also be applied to logistic regressions, but so far, no application has been
developed for this purpose.
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comparing the Sharpe ratios of different investment strategies fail when the tails are heavier

than the normal distribution or display time series correlation. We therefore use the Ledoit

and Wolf (2008) test, which is robust to non-normality and serial correlation in returns.

Given the skewness in carry trade returns, we compute additional measures common in

finance and particularly suitable for non-normal returns: the Omega ratio, Sortino Index,

and upside potential. The Omega ratio measures the probability-weighted ratio of gains

versus losses for some threshold return target, and it employs all information contained

within the distribution of returns, not assuming normality in the distribution of returns.

Ω=
1
T

∑T
t=1 i+(rt −Rmi n)

1
T

∑T
t=1 i−(rt −Rmi n)

(5)

where Rmi n is the minimum acceptable return (0 in our case), T is the total number of

periods, i+ and i− are two indicator functions constructed as follows: i+ = 1 if rt >= Rmi n

and i+ = 0 if rt < Rmi n ; i− = 1 if rt <= Rmi n , and i− = 0 if rt > Rmi n

The Sortino Index is analogous to the Sharpe ratio with the difference that in computing

the standard deviation of excess returns, it considers only negative returns.

SI = R −T

DR
, (6)

where R is the average return and DR = ( 1
T

∑T
t=1 i−(rt −Rmi n)2

)1/2
is the downside risk.

When return distributions are symmetrical and the target return is close to the median

of the distribution, the Sortino and Sharpe ratios provide similar results. However, in the

presence of skewness of returns, there can be substantial differences. Generally, the larger

the Sortino index is, the lower is the risk of large losses.

We also include the upside potential, which measures the upside potential relative to

the downside risk.

U P =
1
T

∑T
t=1 i+(rt −Rmi n)√

1
T

∑T
t=1 i−(rt −Rmi n)2

(7)

Finally, following Della Corte and Tsiakas (2012), Fleming, Kirby, and Ostdiek (2001),

and Thornton and Valente (2012), we compute a utility-based measure of performance. In

particular, we calculate the performance fee, that is, the maximum fee that an investor is

willing to pay to switch from the standard carry trade strategy to the improved SVM strat-

egy. We derive the fee (F ) by equating the average utility of the portfolios based on the two
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investment strategies. Formally, F solves the following equation:10

T−1∑
t=0

{(
RC T SV M

t+1 −F
)− λ

2(1+λ)

(
RC T SV M

t+1 −F
)2

}
=

T−1∑
t=0

{
RC T

t+1 −
λ

2(1+λ)

(
RC T

t+1

)2
}

(8)

Clearly, the measure above depends on the shape of the utility function, particularly the

relative risk aversion parameter λ.11

2.3 Data

We extracted exchange rate data from Factset, which provides bid, ask, and mid quotes

for spot and forward contracts on a daily basis. We conducted our analysis using both

monthly and weekly forward rates and our sample period starts in October 1997 and ends

in June 2017.12 In terms of currency selection, in order to compare our results with those

reported in most of the literature, we consider only the most liquid currencies, that is, the

so called G10 currencies. Specifically, we selected the Australian Dollar (AUD), Canadian

Dollar (CAD), Swiss Franc (CHF), Euro (EUR), UK Pound (GBP), Japanese Yen (JPY), Norwe-

gian Krona (NOK), New Zealand Dollar (NZD), Swedish Krona (SEK), and US Dollar (USD).

In computing the returns to carry trade, we must define a reference currency in terms of

which they are calculated. As in most studies, we select the US Dollar, so we express each

exchange rate as a unit of currency per USD.

In calculating the carry trade return, we build two kinds of strategies. The first is based

on weekly rolling of one-week forward, so the forecast is for the one-week-ahead spot ex-

change rate. The second aims to forecast the one-month ahead movements in exchange

rates using one-month forward.

We use different variables as measures of uncertainty in the SVM. First, we consider

the well-known VIX index, that is, the measure of implied volatility in the S&P 500 index

10Following Della Corte, Sarno, and Tsiakas (2009), we can derive the equation below considering quadratic
utility as good second-order approximation of investorsâĂŹ true utility functions. Thus U (Wt+1) = Wt Rp

t+1 −
1
2αW 2

t (Rp
t+1)2, where W is the investors’ wealth, α is the investorsâĂŹ absolute risk aversion, and Rp is the re-

turn on the investorsâĂŹ portfolios. Assuming constant αWt , defining the coefficient of relative risk aversion
λ=αWt /(1−αWt ) and defining W0 as initial wealth, we can derive the average utility as a consistent estimate
of expected utility:

Ū (·) =W0

(
T−1∑
t=0

Rp
t+1 −

λ

2(1+λ)
(Rp

t+1)2

)
,

from which the equation in the text follows.
11In our calculations, we assumed a value of λ= 6.
12More specifically, the sample period for the monthly forward contracts ranges from 10-1997 to 06-2017,

while the sample for the weekly forward contract ranges from 10-1999 to 06-2017.
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options. The VIX is probably the most popular measure of expected volatility in the stock

market. Second, we consider the TED spread, the difference between the LIBOR and the

US short-term government bond rate (T-bills); it is the most popular measure of credit

risk. Third, we consider the Chicago Fed National Financial Conditions Index (NFCI), which

measures U.S. financial conditions in money, debt, and equity markets, and the traditional

and “shadow”? banking systems. Fourth, following Christiansen, Ranaldo, and Söderlind

(2011), we construct a measure of the FX Implied Volatility using the implied volatility of

the at-the-money 1-month options on the CAD, CHF, EUR, JPY, and GBP against the USD.13

We obtained the VIX, TED, and NFCI indexes from the Federal Reserve Bank of St. Louis

database and the data for the FX implied volatility measure from Bloomberg. The frequency

and time availability are the same as in the corresponding carry trade strategy (weekly and

monthly).

3 Results

The excess returns from carry trade are a direct consequence of the failure of uncovered in-

terest parity. Indeed also on our data running standard UIP tests we would get a generalized

rejection of it.14

3.1 Carry trade and uncertainty

In the previous sections we stressed before that one possible explanation for the excess

returns of carry trade is that they are a compensation for “crash risk,” where traders are

exposed to larger losses as the exchange rate increasingly deviates from fundamentals. In

fact, Brunnermeier, Nagel, and Pedersen (2009) and Clarida, Davis, and Pedersen (2009)

document that carry trades are characterized by negative skewness. By linking funding and

market liquidity, Brunnermeier and Pedersen (2009) provide a theoretical rationalization

for this. On the one hand, tradersâĂŹ ability to provide market liquidity depends on their

availability of funding; on the other hand, traders’ funding depends on assets’ market liq-

uidity. In this context in a period of high volatility, liquidity can dry up, generating liquidity

spirals that can cause large losses from the carry trade. More importantly, the relationship

between volatility and market return is asymmetric, determining a negatively skewed distri-

bution of asset returns. In periods of high volatility and market uncertainty, large negative

13We use the simple average across these measures; using the 1st principal component instead of the simple
average would not change our results.

14Results are available upon request.
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shocks generate losses and make traders’ funding constraints binding, forcing them to sell

assets, which in turn worsen volatility and the funding problem. On the contrary, funding

constraints are not binding in the case of positive shocks, and the amplification mechanism

would not occur.

In this setting, the relationship between carry trades returns and market uncertainty

differs from that traditionally posited by the standard intertemporal capital asset pricing

model - ICAPM - (Merton, 1973): Et [rt+1] =α+βV art [rt+1].

According to the ICAPM, the condition above should hold for the full conditional distri-

bution of asset returns. On the contrary, with a skewed distribution of returns, the coeffi-

cient β varies along the distribution of expected returns, possibly assuming different signs

at its extremes.

Following Cenedese, Sarno, and Tsiakas (2014), we document this by estimating pre-

dictive regressions where the expected returns on a carry trade at different quantiles are

regressed on measures of volatility. Our approach differs from that of Cenedese, Sarno, and

Tsiakas (2014) in one important aspect: they use a measure of ex-post realized volatility

in the exchange rate, while we use forward looking measures of market uncertainty. We

believe that this is the most correct approach to frame the intertemporal capital asset rela-

tionship, which holds ex-ante in expected terms.

Specifically, we estimate the following regression:

Qrt+1 (k|Unct ) =α(k)+β(k)Unct +εt+1, (9)

where Qrt+1 (k|·) is the k-th quantile of the distribution of returns from carry trade and

Unc are the following measures of uncertainty/risk: Ted spread, VIX, NFCI, and FX-implied

volatility, as described in section 2.3.

Figure 3 reports values of standardised β coefficients from equation (9).15 Following the

argument by Brunnermeier and Pedersen (2009), we expect a negative relationship between

market uncertainty and returns from carry trade at lower quantiles, and positive at higher

quantiles of the return distribution. The figure fully confirms our prior for all measures of

uncertainty we use, for both monthly and weekly data. In addition, Figure 4 reports the

R2 of the regressions at different quantiles, revealing that at lower quantiles, not only does

market uncertainty have a negative effect on carry trade returns, but its explanatory power

is particularly high.

15All coefficients reported in the figure are highly significant. Results available upon request.
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3.2 SVM strategies

If market uncertainty is so important in predicting large negative returns, we could use this

information to improve carry trade strategies. We do so by implementing the SVM tool de-

scribed in section 2.1; we therefore augment the carry trade strategies on the prediction of

an SVM algorithm conditioned on the set of variables capturing market uncertainty. Our

strategy is extremely simple: for any pair of currencies, given a direction of trade identified

by the standard carry trade, we confirm it if the prediction of the SVM suggests it; other-

wise, we invert it. We therefore use the SVM for a directional forecast, for which it is more

efficient.

In order to compare our results with those in the literature, we implement the invest-

ment strategy for both monthly and weekly forward rates and compute two portfolios. The

first is an equally weighted portfolio that places a uniform bet on every currency pair in the

sample (Jordà and Taylor, 2012; Burnside, Eichenbaum, and Rebelo, 2008); the second is a

dynamic portfolio that invests in the 3 currency pairs that display the largest forward-spot

differential in each period (Bakshi and Panayotov, 2013). In every case, we compare the

results of the SVM corrected model with the standard classic carry trade strategy.

Table 1 presents the results. A classic carry trade strategy conducted over the entire

period 2002-201716 yields an average yearly return of 2.67% (considering transaction costs),

in line with the results reported in the literature. We confirm that carry trade returns are also

characterized by negative skewness, stressing the importance of considering measures that

account for more than just the first two moments.

Transaction costs can make a big difference in terms of average returns;17 in fact, they

explain a large part of the difference between the strategies conducted in 1 week and 1

month forward contracts (the average return drops from 2.67 to -0.04%). This is because

with weekly forward contracts, transaction frequency is higher, and hence so are the costs.

Turning to the main innovation of the paper, the use of the SVM conditioned on un-

certainty and risk, which improves the returns from carry trade spectacularly. Considering

the equally weighted portfolio, the average return jumps from 2.67 to 9.68% with monthly

data and from -0.04 to 11.17% with weekly data. Additionally, the Sharpe ratio improves

significantly and the negative skewness disappears; Omega, Sortino, and upside potential

all increase significantly. In particular, the strong increase in the Sortino Index suggests that

the SVM-based strategy minimizes the risk of heavy losses.

16As we stressed in section 2, we use the period before 2002 in the sample to train the SVM algorithm.
17In our sample, accounting for transaction costs reduces the average annualized return by approximately

1%.
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Finally, turning to utility-based performance measures, an investor would be willing to

pay a fee of up to 9% to switch from the standard carry trade strategy to the SVM-based

strategy for the equally weighted portfolio with monthly forward rates. The fact that the fee

is close to or even higher than the returns on the SVM model itself indicates the attractive-

ness of this strategy: the investor is willing to pay a lot, not only to capture the higher return,

but also as a reward for the lower risk and a lesser exposure to negative outcomes.

To better understand the origin of this performance improvement, Figure 5 splits the

results between cases where the SVM and the standard carry trade model agree (thus im-

plying the same strategy) and where they disagree (implying a different strategy). In the

first case, the results are identical by construction. However, when the models disagree, the

differences are strong. The standard carry trade model yields negative returns, while the

SVM model does the opposite. The same applies to the skewness, negative in case of agree-

ment, which turns strongly positive for the SVM in case of disagreement. It is evident that

accounting for market uncertainty allows investors to hedge against negative draw-downs.

This is clearly shown in Figure 6, which plots the distribution of returns from the SVM

model and the standard carry trade for periods where the latter are positive and negative.

Using the SVM model allows traders to gain in negative periods rather than improve perfor-

mance in positive ones.

Figures 8 - 9 show the cumulative returns from carry trade strategies over the sample

period. While the risk-based SVM does not improve the performance prior to the financial

crisis dramatically (where the standard carry trade is highly profitable), it makes a huge

difference during and after the crisis.

3.3 Inspecting the mechanism

The results of the previous section show that using the SVM algorithm conditioned on mea-

sures of market uncertainty improves the returns from carry trade significantly and in par-

ticular, allows investors to hedge against large negative drawdowns. The extremely positive

result of the SVM model, however, comes at a price. As with any other machine learning al-

gorithm, the SVM is a bit of a black box since it does not provide the information economists

are accustomed to, such as the standard output from a regression (i.e. coefficients, degree

of significance, goodness of fit, etc.). In this section, we provide additional analysis that

sheds more light on the factors that drive the results.
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3.3.1 Splitting time periods

With a dynamic perspective, Figure 7 plots the returns from the standard carry trade and

from the SVM model during the sample period. It is striking that during periods of finan-

cial turbulence, such as the global financial crisis, the SVM model can hedge against large

drawdowns of carry trade considerably.

In order to analyse these issues more thoroughly we have split the time horizon in three

periods: one (2003-2007) which is the period leading up to the financial crisis with rising in-

terest rates and emerging market boom, the period of the great financial crisis itself (2008-

2012) which includes also the European debt crises, and the more recent period (2013-2017)

characterised by slow recovery with globally flat rates. The Table 2 shows that indeed, the

major gains from the SVM model are obtained during and after the financial crisis, when,

in the presence of low or negative returns from carry trade, correcting the strategy for un-

certainty yields consistently higher returns coupled with substantially higher Sharpe and

Omega ratios. This seems the period in which the learning algorithm uses information

about market uncertainty more efficiently.

3.3.2 Disentangling uncertainty measures

As stated above, the SVM model uses information from four indicators of market uncer-

tainty to improve the carry trade strategy. As a matter of fact, the SVM is more efficient

in using disaggregated rather than aggregated information; thus, its performance worsens

slightly if we collapse the four indicators by, for example, a principal component or factor

analysis.

However, the measures we considered for market uncertainty capture somewhat differ-

ent aspects and it would be interesting to understand what effect the SVM model is really

capturing. To shed light on this issue, we split the measures of market uncertainty in two

groups: one comprising the VIX and the FX volatility index, and another comprising the

TED and the NFCI index. While the former captures market volatility, the latter captures

uncertainty linked to liquidity issues, and as such, are more in line with the Brunnermeier,

Nagel, and Pedersen (2009) argument. Table 2 shows that both groups provide useful in-

formation to the SVM model: using only one group of indicators instead of both reduces

the average returns significantly. However, it seems that conditioning the SVM on liquidity

measures yields better performance than conditioning on volatility measures only, particu-

larly during the financial crises, where the differences in the Sharpe ratios and Sortino index

are extremely relevant.
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In addition, we performed predictive regressions where the realized returns of SVM

carry trade are regressed on lagged uncertainty measures. This analysis is very stylized,

as we cannot interpret the coefficients as proper factor loadings since the SVM can by con-

struction use a non-linear approach, whereas here we are using a linear regression model.

Nevertheless, despite its limitations, this approach can be fruitful in shedding light on the

relative role of the different indicators of market uncertainty. Table 3 shows that in the

whole sample both Forex volatility and NFCI are significant. Comparing the indicators of

volatility and liquidity (2nd and 3rd column), the former seem to be less relevant than the

latter, both in terms of significance and the explained variance of the returns. The analysis

by time periods reveals that before the global financial crisis, indicators of market volatil-

ity are predictive of carry trade returns, while during the crisis, they become insignificant

while market liquidity becomes significant (NFCI). The last column of the table we reports

the results of predictive regressions of the difference between the returns from the SVM

carry trade and from the standard carry trade on lagged uncertainty measures. The anal-

ysis shows that the outperformance of the SVM is explained mainly by liquidity variables

confirming the results of Table 2.

4 Conclusions

This paper has contributed to the literature on carry trade by proposing a novel approach

to provide directional forecasts for carry trade strategies. This approach is based on SVMs,

a binary classification mechanism with potential for application in several fields in eco-

nomic forecasting with extremely promising results. This is particularly interesting for carry

trades since, where the investorsâĂŹ or tradersâĂŹ ability to predict the direction of the

trade rather than its magnitude matters most. We condition the SVM model on indicators

of uncertainty and risk. We show that this provides a dramatic performance improvement

in the strategy, particularly during periods of financial distress, such as the recent financial

crises. Finally, we show that the relative contribution of liquidity variables is more relevant

than that of the volatility variables.

Albeit at its infancy, the use of machine learning algorithms can help researchers under-

stand several aspects of international finance, where standard tools perform rather poorly.

Further research on these issues is certainly needed.
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Table 1: Alternative carry trade strategies

Mean StDev Skew Sharpe Fees Omega Sortino Upside

Monthly
Equal weights
Carry trade 2.67 4.81 -0.737 0.39 1.52 0.24 0.70
SVM 9.68 5.07 1.064 1.75*** 9.23 4.96 1.51 1.89
Dynamic
Carry trade 2.35 4.85 -0.974 0.32 1.46 0.20 0.63
SVM 9.31 6.10 0.042 1.39*** 9.08 3.35 0.87 1.25
Weekly
Equal weights
Carry trade -0.04 5.53 -1.237 -0.15 1.00 0.00 0.46
SVM 11.17 5.56 1.008 1.87*** 14.63 2.24 0.54 0.97
Dynamic
Carry trade -0.71 5.84 -1.878 -0.25 0.95 -0.02 0.41
SVM 11.25 6.84 0.724 1.53*** 15.44 1.94 0.40 0.82

Equal weights = equally weighted portfolio
Dynamic = carry trade on first 3 currencies rebalanced every period
All values are computed on annual basis and include transaction costs.
Significance levels for the Sharpe ratio refer to the Ledoit and Wolf (2008) test.
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Table 2: Carry trade strategies, disentangling between uncertainty measures

Mean StDev Skew Sharpe Omega Sortino Upside

All Sample
Carry Trade -0.04 5.53 -1.24 -0.15 1.00 0.00 0.46
SVM 11.17 5.56 1.01 1.87*** 2.24 0.54 0.97
SVM Liquity 8.17 5.68 0.78 1.31*** 1.77 0.34 0.79
SVM Volatility 6.16 5.33 0.07 1.01*** 1.60 0.26 0.68
2003-2007
Carry Trade 1.28 4.78 -0.33 0.03 1.10 0.05 0.57
SVM 13.03 5.13 -0.22 2.32*** 2.60 0.65 1.05
SVM Liquity 11.99 5.50 -0.12 1.97*** 2.23 0.54 0.97
SVM Volatility 7.74 4.94 -0.63 1.34*** 1.82 0.33 0.74
2008-2012
Carry Trade -1.70 7.99 -1.41 -0.23 0.91 -0.04 0.39
SVM 16.62 7.47 1.52 2.21*** 2.58 0.69 1.13
SVM Liquity 9.45 7.51 1.39 1.24*** 1.71 0.32 0.76
SVM Volatility 8.56 7.19 0.31 1.17*** 1.67 0.27 0.69
2013-2017
Carry Trade -2.71 3.77 -0.16 -0.73 0.78 -0.13 0.45
SVM 11.74 4.23 0.42 2.77*** 2.95 0.81 1.23
SVM Liquity 8.50 4.27 0.20 1.98*** 2.12 0.51 0.96
SVM Volatility 6.32 4.10 0.03 1.53*** 1.86 0.37 0.79

Values refer to weekly returns on equally weighted portfolios
SVM liquidity= carry trade with SVM conditioned on measures of liquidity (TED and NFCI)
SVM volatility= carry trade with SVM conditioned on measures of volatility (VIX and FX Vol.)
All values are computed on annual basis and include transaction costs.
Significance levels for the Sharpe ratio refer to the Ledoit and Wolf (2008) test.
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Table 3: Determinants of SVM carry trade returns

All sample All s. All s. 2003-2007 2008-2012 2013-2017 All s.
(1) (2) (3) (4) (5) (6) (7)

Forex vol -0.021 -0.006 -0.028** -0.063 0.003 -0.038
(0.016) (0.011) (0.012) (0.046) (0.014) (0.025)

VIX -0.001 0.007 0.005 0.004 -0.008* -0.006
(0.004) (0.005) (0.004) (0.008) (0.005) (0.005)

TED 0.042 0.086** -0.086 -0.007 0.136 0.177*
(0.045) (0.043) (0.099) (0.068) (0.184) (0.104)

NFCI 0.185** 0.074*** 0.194 0.344** 0.175 0.268**
(0.079) (0.028) (0.163) (0.164) (0.320) (0.127)

R2 0.047 0.016 0.040 0.017 0.098 0.014 0.060
N 742 750 742 257 255 230 742

The table reports the coefficients of regressing returns of the SVM carry trade strategy on lagged indicators
of market uncertainty.
Dependent variable: columns 1-6 returns of the SVM carry trade, column 7 the difference between the
returns of the SVM and the standard carry trade.
SVM carry trade returns refer to weekly rates on equally weighted portfolios.
The reported standard errors are based on NeweyâĂŞWest approach with optimal lag selection.
* p<0.10, ** p<0.05, *** p<0.01
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Figure 3: Standardized beta coefficients from quantile regressions on carry trade returns
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Figure 4: R2 from predictive regressions of the carry trade returns on various measures of
uncertainty
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Figure 5: Agreement and disagreement between SVM and standard carry trade strategy
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Figure 6: Distribution of returns of the carry trade and SVM model; equally weighted port-
folio, monthly forward rates.
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Figure 7: Returns from carry trade strategies; equally weighted portfolio, monthly forward
rates.
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Figure 8: Cumulative returns from carry trade strategies, monthly rates
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Figure 9: Cumulative returns from carry trade strategies, weekly rates
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