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Abstract: In this paper we analyze the relationship between firm size distribution and 
stochastic processes. Three main models have been suggested by Gibrat, Kalecki and 
Champernowne. The first two lead to lognormal distribution and the last to Pareto 
distribution. We fitted lognormal and Pareto distribution to two Italian sectors: ICT and 
mechanical. For ICT we found that lognormal distribution must be rejected and Pareto 
fit reasonably well to the last 30% of largest companies. For mechanical we can not 
reject lognormal distribution. Furthermore, we perform some experiments to 
corroborate the theoretical models. By means of similarity analysis and transition 
matrices we found that Kalecki’s model strongly fit to mechanical, while ICT shows 
features very close to the remaining two models. 
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1 Introduction. 
The analysis of firm size distribution in an industrial sector answers a double need. 
The first more immediate one, is to supply an analytical description of a structural 
feature of the sector. Scale and therefore technology, market structure, perspective of 
growth and decline are only a few of the aspects strictly related to the problem of firm 
size. On the other hand means, variability and concentration indexes are no doubt 
important but far from exhaustive tools for the study of size. 
The second purpose for which the study of distribution is particularly suitable, concerns 
the necessity to fit the process of growth of the sector. 
There is, in fact, a specific relation between peculiar stochastic models of firm growth 
and statistical models of firm size. 
The problems focused by this family of stochastic models are essentially two: 

- the existence and persistence of stochastic factors affecting the operating of 
firms; 

- the possibility of a process of inequality and eventually of concentration among 
firms. 

Pitfalls of concentration indexes and correspondence between true distribution of the 
sector and related growth model explain the considerable work devoted to the topic of 
true distribution in the second post-war period starting from the contributions of Hart 
and Prais (1956), to the now classic book by Ijiri and Simon (1977), the paper by Barca 
(1985) and the recent contribution by Hart and Oulton (1999 and 2001).  
As for the possibility of moulding firm size with known statistical distributions the 
mainstream of applied economics can be summarized by three different phases: 
‘50- ‘70: a strong conviction (Hart and Prais, 1956; Steindl, 1965; Quandt, 1966; Ijiri 

and Simon, 1977); 
‘80-’90: growing skepticism (Schmalensee, 1992; Sutton,1998); 
nowadays: renewed optimism in the light of the improvement in computational statistics 

(Dosi, Riccaboni, Varaldo 2001,Cipollini and Ganugi 2000; Axtell, 2001; Marsili, 
2001; Marsili and Salter, 2002). 

The present paper is divided into three parts: 
- in the first we present three classical stochastic models: Gibrat, Kalecki and 

Champernowne; 
- in the second part of the paper: a) we study the fitting of Lognormal and Pareto 

distributions in ICT and mechanical industries; b) through an analysis of 
residuals we test the validity of Gibrat and Kalecki’s models for the two 
industries;  

- in the third we develop two experiments: a) a similarity analysis of an index of 
growth in the partitioned - by means of percentiles - data sets; b) the 
computation of Champernowne’s transition matrices. Through these 
experiments we want both to corroborate the previous results and to evaluate the 
holding of Champernowne’s model for the two industries. 

 
 
2 The data 
Our paper is based on two important fix panels represented by the universe of 
Mechanical and ICT companies in Italy for the years 1997-1998-1999. Data are 
constituted by Companies Accounts of the same firms, respectively of 12296 for ICT 
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(Table 1 reports the branches we have selected to identify the Italian ICT) and 11250 for 
Mechanics (branch Dk29, construction of machines and mechanical device). 
To exclude self-employment companies and not proper firms, we have removed from 
our panel companies with personnel expenditure equal to zero in the considered 
interval. After this trimming our data set is represented by 9822 units for Mechanical 
and 7887 for ICT. It is worth noting that reducing of dataset is far stronger in ICT than 
in Mechanical. 
Table 1 Branches which, in this paper, identify New Economy, making resort to the ATECO911 
classification 

ATECO 91 Code Branches 
I064200 Telecommunication; 
K072000 Informatics and related business; 
K072100 Computer installation and consulting; 
K072200 Software supplying and computer consulting; 
K072300 Electronic data processing; 
K072400 Database activities; 
K072500 Computer maintenance and repair; 
K072600 Other business related to informatics; 
K072601 Telematics and robotics services, computer graphics; 
K072602 Other services related to informatics. 

 
The choice of working on fix panels must not be considered reductive for at least two 
reasons: 

- focusing the analysis on fix panel makes it possible to analyse the core of the 
sector represented by companies active at least for a short time interval: “despite 
the large number of births and deaths, a preponderating influence is had by the 
changes in the sizes of those firms that are alive throughout the period” (Hart 
and Prais 1956 p.168); 

- the three stochastic models presented in this paper are based on a constant 
number of firms. The introduction of demography makes it necessary to refer to 
the model of Simon (1955,1960) which deserves an autonomous paper we are 
going to develop. 

 
As highlighted in an old contribution by Boeri (1989) the variables most often used to 
mould firm size distribution are assets, sales, equity, employees. 
A comparative work on the distribution of the same group of firms according to 
different variables would be of great interest. In particular it would be really useful to 
compare the firm size distribution according to budget variables - after all present in the 
SCI as well - together with the number of employees or personnel. 
The variables we have used are sales and assets. Nevertheless, since sales present 
remarkable problems of time-stability we have devoted more attention to assets.  
 
 
 
 

                                                 
1 The ATECO91 classification is used by Istat, the Italian Statistical Institute and is closely derived from 
NACE Rev.1 Classification.  
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PART I: THREE STOCHASTIC MODELS 
 
3 Gibrat: lognormality, increasing variance and increasing concentration 
The first process we will describe is the one by Gibrat, who started the study of the link 
between stochastic processes, statistical distributions and laws of economics.  
Let Xj, the firm size, be a random variable, the result of the combined action of different 
causes, independent one each other, which continue to act in time. 
Let the initial j firm size be equal to Xj0 and after the t-th step of the process let it be 
equal to Xjt, reaching its final value Xjn after n steps.  
We shall say a variable subject to a variation process satisfies the Gibrat law if at step t 
of the process the variation in the variable is a random proportion of the value attained 
by the variable at step t-1.  
In this case we have that 
 
X jt -Xjt-1=εjt Xjt-1 (1) 
 
where the εjt are identically and independently distributed (i.i.d.) with mean μ and 
variance σ2; furthermore εjt are independent of Xjt as well. 
Now we can write (1) as 
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Now, supposing that the effects at each step are small, the sum becomes an integral: 
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it follows that: 
 

log Xjn = log Xj0 + .
1

jt
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t
ε∑

=

 (5) 

 
Since log Xjn is the sum of i.i.d. variables with constant mean and variance, it follows, 
from the central limit theorem, that it is asymptotically distributed as a normal and 
therefore Xjn is asymptotically lognormal. 
It is also clear, referring to (5) that, increasing the number of the process steps, the 
logarithmic variance of the variable increases with a consequent enlargement of 
concentration. 
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In their classical work on Gibrat’s law Hart and Prais (1956) analyze concentration of a 
growth process by means of the logarithmic variance of the size. They stress that 
variance-based concentration measures are very effective and particularly suitable to 
highlight, in the distribution structure itself, the very causes of (possible) changes in 
concentration.  
It can besides be shown (Aitchison and Brown, 1957) that the Lorenz concentration 
measure is monotonically dependent on the logarithmic variance value of the considered 
variable, and consequently the mean-difference coefficient of Gini behaves likewise. 
 
 
4 Gibrat’s law and Italian economy 
It is now necessary to remark two important aspects of Gibrat’s model:  

1) the growth of firms is a stochastic process i.e. it is not fostered by a particular 
scale of the same productive units because: 
a. in the different markets of money, commodities and labour, the firms of a 

given industrial sector have the same chances independently of their scale;  
b. given the nature of technology faced by the firms, the sector has no optimal 

scale by which unit costs are minimized and profit maximized; 
2) given the same opportunities of growth in firms of different sizes, growth of 

firms is proportionate to their size and a concentration process is unavoidable. 
The relation between the family of stochastic models and the neoclassical theory of 
production is hinted by Quandt (1963) and Simon and Bonini (1958). While Quandt 
advocates the necessity to reconcile the two approaches, Simon and Bonini are much 
more cautious. An empirical research comparing production theory and stochastic 
process of growth might contribute to explore the distance between two theoretical 
frameworks on the problem of firm growth. 
The Italian economic history of ‘70s,‘80s, and ‘90s does not apparently confirm Gibrat 
law given the structural impediments to growth of large firms, hence the much faster 
growth rates of small and medium size productive units. Econometric and applied work 
produced on this topic for Italy has corroborated this result (Brusco et al., 1979, Solinas, 
1996, Audretsch, Santarelli e Vivarelli, 1999). Recently however, Piergiovanni et al., 
2002, showed that Gibrat law holds for some business groups in Italian Hospitality 
services.  
In spite of this, unanimously refusing Gibrat law, also with reference to Italy, some 
authors have been careful to separate the first aspect of the law - the stochastic nature of 
growth process - from the second - the tendency to concentration or at least to higher 
inequality (Barca, 1985). On the basis of a good fitting of a Pareto distribution on Italian 
firms by two censuses, Barca (1985) concludes that “la forma della distribuzione 
dimensionale degli stabilimenti è influenzata molto fortemente dall’operare nel tempo, 
in modo cumulato, di fattori stocastici”. 
 
 
5 Kalecki: lognormality, constant variance and non increasing concentration 
We have seen that the Gibrat law involves lognormal size and increasing logarithmic 
variance. 
Kalecki (1945) formulates a stochastic model of growth in which it is assumed that the 
logarithmic variance of size is constant: this implies a negative correlation between the 
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logarithm of size and the logarithm of random variables describing the variation, that is 
the εjt. 
Let μX,t-1 be the arithmetic mean of the distribution of the log-size at step t-1, and με,t the 
arithmetic mean of the distribution of the log-increments occurred from step t-1 to step 
t.  
Suppose that the variance is constant before and after the occurred increment. 
The arithmetic mean of logXjt-1+log(εjt+1) is then given by μX,t-1 + με,t and the 
hypothesis of constant variance is formally given by the following equation: 
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Putting 
 
Yjt-1 = logXjt-1- μX,t-1, 
yjt = log(εjt +1) - με,t, 
 
and substituting in (6), we get: 
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Therefore a negative correlation between the random increment of size and the size 
itself is proven.  
The simplest hypothesis concerning the shape of this relation is its linearity, that is: 
 
yt=-αtYt-1+zt (9) 
 
where αt is a constant parameter and zt a random variable independent of Yt-1. (We have 
cancelled the j index to simplify the notation.) 
Substituting (9) in the first member of (8), we obtain 
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As the second moment of yt is smaller than that of Yt-1, we have 
0 <1-αt <1 
  
and rewriting (9) 
 
Yt-1 + yt = (1-αt)Yt-1 + zt (11) 
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Therefore, at each step, we have 
 
Y1= Y0+y1= Y0(1-α1)+z1 
Y2= Y0 +y1+y2= Y0(1-α1) (1-α2)+z1(1-α2)+z2 

.................... 

Yn=Y0+y1+y2+...+yn =Y0(1-α1) (1-α2)…(1-αn)+ z1(1-α2) ...(1-αn)+… +zn-1(1-αn) + zn.  
 (12) 
Since 0 <1-αk <1 for each k between 1 and n, if n→ ∞ the absolute value of all 
components in (12) is small if compared to the variance of Yn (unless zk tend to zero at 
the same time). 
We have therefore obtained Yn as a sum of small random increments zkΠ(1-αk), 
independent of each other and of the initial value Y0. For the central limit theorem the 
distribution of the Yt will therefore be normal. 
 
It is now important to underline two aspects of Kalecki’s model: 

1) the stochastic nature of the process of growth of firms with the same meaning 
above specified for Gibrat; 

2) the existence of impediments for large firms to grow proportionately to their 
size, avoiding, in such way, an increase of concentration. 

 
 
6 Champernowne: Paretian size, decreasing concentration 
We are now describing a stochastic process leading to the Pareto distribution, originally 
proposed by Champernowne in 1937 regarding income distribution, and referred to by 
Steindl (1965) and Simon (1955). The application of Champernowne’s model of income 
distributions to the asset distribution of firms was suggested by Quandt (1966, p. 418). 
Suppose that firm size develops over time according to a Markovian process, in which 
the state of the process is the annual firm size: each state is completely determined by 
its previous state and a random element.  
The possibility to pass from state r to state s is called transition probability and is 
generally indicated by prs. All possible transitions from one year to the next are stored in 
a matrix, called transition matrix, whose elements prs must satisfy the following 
properties: 
i) 0≥rsp ; 
ii) 1=∑

s
rsp . 

In this case the matrix rows will be the size classes in a certain year, the columns the 
size classes of the next year and prs gives the probability of a shift from size class r to 
size class s from year to year. 
The size intervals are equally spaced on a logarithmic scale, therefore of uniform 
proportionate extent. It follows that the j state will correspond to a size in the interval 
(10jhYmin, 10(j+1)hYmin), where Ymin is the minimum considered size and h is a positive real 
number, equal to class width on a logarithmic scale.  
The relevance of equally spaced classes on a logarithmic scale is that, for firms being in 
similar positions in different classes, proportionate variations will imply equal class 
jumps. 
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Champernowne imposes to transition probabilities the hypothesis that the probability of 
a transition from a size range to another does not depend on the position we start from, 
but only on the jump width.  
In other words, the probability prs is a function of s-r only, therefore putting s-r=u we 
can determine the whole matrix from the knowledge of pu, which is independent of r. 
As a consequence, the process will develop according to the formula 
 

∑
−∞=

−−=+
s

u
sususs tptXtX )()()1( ,  (13) 

 
In the model, though, it stands out that, when n is fixed, transitions are possible only 
between –n and 1: in this hypothesis pu represents the probability a firm has to diminish 
its size of u levels downwards (for a maximum of n and given that u>-r) or increase of 
1 level upwards or remain in the same class: p1, for instance, represents the probability 
to increase of one class upwards, p-1 the probability to diminish of one class 
downwards, p0 the probability to remain in the same class.  
It is therefore taken that pu=0 if u>1 o u<-n.  
Should the process go on for a sufficiently long period, the size distribution would reach 
an equilibrium, in which the action of the transition matrix would leave the distribution 
unchanged: at this point the distribution would take the name of stationary distribution. 
We will therefore have 

∑
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Equation (14) is a finite difference equation whose solution is obtained by putting 
Xs=zs; thus we get the characteristic equation  
 

∑
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1

1 0)(
nu

u
u zzpzg  . (16) 

 
Observe that, since g(0)=p1>0 and g(1)=0, for Descartes’ rule of signes, the 
characteristic equation has only two real positive roots one of which is clearly unity.  
If we indicate the other one with b, the equilibrium distribution required is  

s
s bX = . (17) 

To have b change between 0 and 1 it is necessary to introduce the following stability 
condition: 
 

g’(1)= ∑
−=

>−
1

0
nu

uup  (18) 

 
By summing up both members of (17), s tending to the infinite we get that the total 
number of firms is equal to 1/(1-b). 
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It follows that for any given number of firms N the equilibrium distribution becomes 
 

s
s bbNX )1( −= .  (19) 

 
We have seen that the proportionate width of size classes is 10h and the minimum size 
considered is Ymin; Xs is thus the number of firms in size class s whose lower bound is 
given by  
 
Ys=10shYmin (20) 
 
and passing to logarithms 
 
logYs=sh+logYmin. (21) 
 
The number of firms with size exceeding Ys (i.e. the cumulative right distribution 
function) is obtained by the geometrical progression of (19) 
 
F(Ys)=Nbs. (22) 
 
Going back to logarithms again 

log F(Ys)=logN+slogb= b
h

YY
N s log)

loglog
(log min−

+ , (23) 

 
whence, putting  
 

minloglog,log1 YNb
h

αγα +=−=  (24)  

 
we get at last the Pareto law  
 
logF(Ys)=γ -αlogYs. (25) 

 
 
PART II: THE FITTING OF THE DISTRIBUTIONS 
 
Before presenting our empirical analysis, with reference to the relationship between 
process of growth and concentration, it may be worth underlining: 

- in each of the three models described in part I every firm faces a proper rate of 
growth which is a random variate; 

- in Gibrat’s model the rate of growth is independent of size with a consequent 
increase of variance and concentration; 

- in Kalecki’s model the process of growth is non-dissipative because 
concentration does not increase, given negative correlation between size and 
growth; 

- Champernowne’s model has features which are common to previous models: 
a) the rate of growth is independent of size like in Gibrat’s; 
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b) the process of “growth” remains non-dissipative as in Kalecki but in a much 
more restrictive sense: the expected value of variation is negative for all 
firms with a consequent decrease of concentration (stability condition). 

 
7 ICT: fitting the Pareto 
 
7.1 Size-Rank  
Considering sales and total assets of ICT companies we found that hypothesis of 
lognormality must be rejected, both using statistical tests and graphical representations.  
According to Ijiri and Simon (1964,1977), but also to Steindl (1965) an alternative 
method to corroborate the law of proportionate effects is to measure the fitness of a 
Pareto curve to the largest companies of the distribution. 
In this work we estimate the Pareto cumulative distribution of firm size starting from 
the relation between firm size and rank in the ordered data set. The technique, known as 
Zipf plot, is a plot of the log of the rank vs. the log of the variable being analyzed. Let 
( Nxxx ,...,, 21 ) be a set of N companies on a random variable X for which the cumulative 
distribution function is F(x) and suppose that the observations are ordered from largest 
to smallest so that the index i is the rank of the i-th company. The Zipf plot of the 
sample is the graph of )ln( ix  against )ln(i . Because of the ranking, )(1/ ixFNi −= , so 

)ln()](1ln[)ln( NxFi i +−= . 
Thus, the log of the rank is simply a transformation of the cumulative distribution 
function. It accentuates the upper tail of the distribution and therefore makes it easier to 
detect deviations in the upper tail from the theoretical prediction of a particular 
distribution. Since there has been interest in the upper tail of the size distribution of 
firms, the Zipf plot is particularly useful for analyzing this question. 
The Pareto’s curve can be formulated as (see Johnson and Kotz, 1972, pp. 573-627): 
 

NiiMSi ,...,2,10 =>= − ββ  (26) 
 

where Si is the size of the i-th firm (Sales or Total Assets), i the rank of the i-th firm, 
while β and M are parameters. This relation can be estimated taking logs: 
 

NiiMSi ,...,2,1)log(loglog =−= β . (27) 
 
which is a straight line in the Zipf plot. 
The parameter β, the slope of the log-line, is a measure of concentration. The larger the 
β, the greater the relative size of a large firm (small rank) compared with a smaller firm 
(large rank) (see Ijiri and Simon, 1977, p. 196). 
Pareto’s curve has been estimated selecting companies with size over the 70-th 
percentile. The choice of this threshold is justified by Figure 1. Plots report p-value of 
Kolmogorov-Smirnov test for Pareto distribution for the portion of companies with 
dimension over a given quantile. As it can be seen, p-value is very close to zero until 
70-th quantile and the hypothesis of Pareto distribution can not be rejected considering 
the largest 30% of companies both for sales and total assets. 
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Figure 1. P-values of Kolmogorov test for Pareto distribution with respect to different sample size. 
ICT, Sales 1999. 

 
 
It is useful to analyze the estimates of β for different years to highlight possible changes 
of concentration during time. Estimates of β (obtained by OLS) in (3) are reported in 
Table 2 for years 1997-99. 
 
Table 2. Concentration indexes (β) computed by log(size)-log(rank) regression on the last 30% of 
companies in ICT 

  1997 1998 1999 
  Sales Total assets Sales Total assets Sales Total assets 
LogM 21.539 21.835 21.886 22.100 22.157 22.314 
β  1.048 1.121 1.071 1.134 1.090 1.144 

 
It is interesting to remark that concentration is higher for Total Asset than for Sales.  
 
 
7.2  Residuals on Pareto: the absence of impediments for large companies 
As emphasized by Ijiri and Simon (1964) the fitting of Pareto can reveal the presence of 
a systematic difference between effective and fitted values in the extreme tail of the 
distribution. 
From an economic point of view the same discrepancy is extremely meaningful: 
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- in the case of negative difference between effective and fitted values in the tail of 
distribution, we have that, for a given value of the rank, the corresponding effective 
size rank is lower than that estimated. The economic consequence on the process of 
growth is important: large firms - which are in the tail of the distribution and then with 
very low rank - meet impediments to their growth. Thus, we deduce the stochastic 
nature of the growth process, but also the existence of impediments to growth for 
companies of this portion of the distribution. According to Barca (1985) this is the 
situation of the Italian Industry resulting from the Censuses of 1971 and 1981. 

- In the opposite case - positive residuals in the tail of the distribution - we conclude that 
large size firms do not find particular impediments to their growth. Given the 
stochastic nature of the growth process, if repeated in time, the absence of 
impediments involves a process of concentration. 

 
Figure 2. Relative residuals of log(size)-log(rank) model for sales and total assets of ICT (1997-
1999) 

 

 
From our estimates we have positive residuals for the largest four companies (having 
the lowest ranks) in each year (see Figure 2). 
Table 3 supplies a clear picture of the importance of these 4 companies. 
Our estimates provide evidence of the existence of favourable conditions to 
concentration for this sector. This does not imply that ICT is consistent with Gibrat’s 
law. As we showed in the first part, Gibrat’s law implies lognormality of firm size 
which cannot be proved for ICT. 
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Table 3. Amounts of sales, total assets and employment costs of four greatest companies in ICT 
(1997-1999) 

  1997 1998 1999 

  Percentage Euro (mln) Percentage Euro (mln) Percentage 
Euro 
(mln) 

Total assets 79.39% 45004.10 77.72% 49683.88 79.10% 54913.62
Sales 67.50% 25704.89 64.66% 28411.89 65.50% 34316.93
Personnel 
costs 56.21% 4405.24 52.24% 4300.49 50.95% 4530.49

 
 
8 Mechanical: Lognormality and Pareto  
 
8.1 Lognormality: a bootstrap procedure 
To test the lognormality hypothesis of firm size (sales and total assets) we have firstly 
applied two well-known tests: Kolmogorov-Smirnov and chi-squared. In all cases the 
tests reject the hypothesis of lognormality. Nevertheless, it is well known that statistical 
tests are strongly influenced by the sample size and that results of chi-squared test 
depend on the choice of the number of classes. For this reason, we have performed a 
bootstrap procedure which is described as follows. 
Given a sample of n firms, we randomly choose, by reintroduction, k samples of size m, 
2m, …, sm, n, with m<n, where )/(integer mns = . For each sample of size m we 
compute the p-value of Kolmogorov-Smirnov and chi-squared test for lognormality of 
size variable (total assets, sales, employees). P-values are indexed by pvj, j=1, 2, …, k. 
For each size mr, sr ...,,2,1=  we compute the median of p-values indexed by )(Me rpv . 
We performed the experiment for total assets and sales of mechanical in 1997, 1998, 
1999. As an example we report the result of the experiment for total assets in 1999 with 
k=100 (see Table 4). As can be seen, lognormality cannot be rejected at least until 
m=800 at 5%. 
 
Table 4. Median of p-values of Kolmogorov-Smirnov (KS) test and  Chi-Squared (CS) test 
from bootstrap procedure on Total Assets of mechanical in 1999. k=100 

  Sample size (m) 
  100 200 300 400 500 600 700 800 900 1000

median p-value
of KS test 0.294 0.198 0.137 0.114 0.105 0.103 0.093 0.055 0.022 0.020

median p-value 
of CS test 0.509 0.286 0.225 0.181 0.132 0.114 0.107 0.073 0.053 0.039

 
Furthermore, we found that dividing the data with respect to geographical macro-
regions (North-western, North-Eastern, Central and Southern Italy) the hypothesis of 
lognormality cannot be rejected for the macro-region with the lowest number of firms 
(Grossi, Ganugi, Gozzi, 2003). 
Because, as it is well-known and as it has been proved by the bootstrap experiment, the 
greater the sample size the greater is the probability to reject the null hypothesis of 
lognormality, we chose to adopt alternative descriptive tools which are independent of 
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sample size. We then compare histograms and kernel densities with the density of a 
normal distribution with the same parameters. Results are reported for total assets in 
Figure 3. 
As can be seen, the empirical distribution of log-size is very near to normal with same 
discrepancies in the central classes. Thus, we can say that lognormality can be accepted 
apart from slight differences of central values, while tails – very important for economic 
models of growth – are consistent with lognormality. 
 
 
8.2 Pareto 
The fitting of rank-size regression for mechanical is much less easy than in ICT. 
Looking at plots of p-values of Kolmogorov-Smirnov test for Pareto (not reported for 
lack of space, but similar to Figure 1) p-values become different from zeros only after 
the 90th percentile. For this, we fit Pareto through model (3) on the largest 10% of total 
companies. This narrower percentage covers however a relevant stock of 1000 
companies, the largest firms of the sector. 
The fitting of the Pareto confirms again the stochastic nature of the growth process.  
 
Figure 3. Histograms and kernel densities of log-transformed data compared with normal density. 
Mechanics, total assets 1997-1999 
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Figure 4. Relative residuals of log(size)-log(rank) model for sales and total assets of mechanichs 
(1997-1999) 

 
 
8.3 Residuals on Pareto: the presence of impediments for large companies 
The observation of residuals in the tail of the distribution reveals the existence of a 
structure opposite to ICT for Mechanical: for a given rank the effective size is lower 
than that shown by the model and so large firms meet serious impediment to their 
growth. It is interesting to note (see Figure 4) that, differently form ICT, in the tail of 
the distribution we find a lot of large relative residuals which are now almost all 
negative (compare Figure 4 with Figure 1). 

 
 

THIRD PART: TWO EXPERIMENTS 
 

We want now to corroborate the previous analysis by means of two experiments: 
a) the analysis of the distributions of the index of growth, size(t)/size(t-1), in the 8 

portions of our data set (of each industry) defined by 7 equally spaced 
percentiles (12.5th, 25th, …, 87,5th) with respect to total assets and sales; 

b) the construction of Champernowne-based transition matrices whose classes are 
formed, as previously explained, keeping the proportionate extent uniform. 

 
9 The distributions of the index of growth  
The choice of studying the distribution of the growth index arises from the necessity to 
supply a satisfactory measurement of the process of growth in the 8 portions of the 
distribution defined by the 7 percentiles. 



 16

Relevance of studying the mean of the distribution of growth index is immediate: the 
holding of Gibrat’s law requires the presence of, at least, equal average rates of growth 
in each portion of firms, regardless of their size. Conversely, the rejection of the law is 
corroborated by decreasing rates of growth. 
The analysis of variability of the distribution of growth index is important as well. 
In the works of the ‘60s and the ‘70s the necessity to study not only the mean but also 
the variance of growth is clearly underlined (Hart and Prais ,1956; Simon and Bonini, 
1958; Mansfield, 1962; Singh and Whittinghton, 1975; Brusco, 1979). 
Hart and Prais have then stressed the absence of an impact of size on the variability of 
growth. On the contrary, Mansfield, Singh and Whittinghton have found a decreasing 
path of variability with respect to size. 
It is then evident that equal variability of the growth index in the different classes 
implies a lesser degree of stability in size: large firms have the same chances as small 
ones to jump to higher size classes, as well as to more modest size. 
From the point of view of Gibrat’s law, it is remarkable that, with respect to their size, 
large firms are not more stable than small firms. According to Scherer (1980), statistical 
evidence points out that variability is more curbed in large firms than in small ones. 
Brusco reaches the same conclusion for several Emilian industries of the ‘70s. It is a 
credit of the above quoted works to focus attention on the necessity to study distribution 
of an index (rate) of growth.  
In this work we aim to develop a refinement of this approach by three steps: 
- we produce robust measures of the same distributions. For all the ‘70s and ‘80s the 

problem of robustness has yet not been well grounded. To this aim we substitute mean 
with median, standard error with MAD which is the median of the differences from 
median;  

- we supply kernel estimates of the 8 distributions: as it is well-known, equal synthetic 
measures of the distributions are not sufficient to guarantee that the same distributions 
are similar or overlapping. The inspection of the kernel shapes produces further 
evidence on this aspect; 

- we calculate an index of similarity between each distribution and all the other 7 
combining the results in a matrix of similarity. Similarity between two distributions 
can be measured through different approaches. The affinity approach is well known 
and rich in intuitive appeal (Krzanowski 2000). In this work we prefer to use an index 
of Gini’s which has the great advantage of not requiring the knowledge of 
distributions. Given a variable X observed in two populations A and B, we can 
measure the dissimilarity of the corresponding cumulative distribution functions 
(FA(X) and FB(X)) by the Gini’s index G, which is computed as follows (see Leti, 
1983, pp. 534-550): 

 

( )∑
−

=
+ −−=

1

1
1

N

i
BiAiii FFxxG  (28) 

 
where xi is the i-th value of X, in a non decreasing order and N is obtained by 
summing the size of A and B. Gini’s index implies that population A and B have the 
same size. This assumption is satisfied giving, in each distribution, null frequency 
when value xi is not present. 
It can be proved that G=0 when CDF in A and B are perfectly equal, and G=max(X)-
min(X) in the case of maximum dissimilarity, that is when all units in one population 
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assume the minimum value and all units in the other population assume the maximum 
value. Thus, the relative Gini’s index G ′  is given by [ ])min()max(/ XXGG −=′  which 
goes from 0 (maximum similarity) to 1 (maximum dissimilarity). 

 
9.1 Medians of growth indexes 
From Table 6, we note that 1998 medians of the first and also of the second groups 
(formed by smallest firms) of our empirical distribution of ICT - calculated on Assets - 
are higher than the other six medians. But starting from the third group the median 
reveals a strong stability with an increase in the last one. 
In 1998-99 medians of the first and also second group of ICT continue to be higher than 
the other 6 portions but the differences with the same are now much more modest. 
The importance of these results is much clearer if we observe the values of the 
percentiles which represent the limits of each group (see Table 5). 
 
Table 5.  Percentiles of total assets of each industry in 1997 

  I II III IV V VI VII 
Mechanical 2.78E+05 5.15E+05 8.35E+05 1.28E+06 2.02E+06 3.51E+06 7.95E+06

ICT 6.45E+04 1.10E+05 1.71E+05 2.54E+05 3.85E+05 6.18E+05 1.34E+06
 
Table 6. Median and Mean Absolute Deviation for indexes of growth of Sales and Total assets of 
ICT divided in eight groups using percentiles of Sales and Total assets in 1997 

Sales   Total Assets 

1998-97 1999-98   1998-97 1999-98 

Groups median MAD 
MAD/ 
median median MAD 

MAD/ 
median median MAD 

MAD/ 
median median MAD 

MAD/ 
median 

I  117.67 38.87 0.33 109.63 28.04 0.26 120.83 35.13 0.29 111.46 30.14 0.27
II 108.00 22.11 0.20 105.90 19.12 0.18 113.80 26.81 0.24 110.24 25.96 0.24
III 108.07 19.52 0.18 105.68 17.29 0.16 111.77 26.94 0.24 107.32 25.38 0.24
IV 107.58 19.65 0.18 107.01 19.92 0.19 110.83 24.54 0.22 108.58 23.94 0.22
V 107.36 20.64 0.19 107.54 21.03 0.20 109.40 22.11 0.20 106.41 22.77 0.21
VI 108.78 22.20 0.20 108.86 20.88 0.19 109.98 23.56 0.21 108.46 23.31 0.21
VII 111.14 23.44 0.21 108.89 22.46 0.21 108.58 23.01 0.21 106.98 22.46 0.21
VIII 113.27 25.52 0.23 112.22 24.67 0.22 110.67 23.70 0.21 108.33 21.54 0.20

 
Table 7. Median and Mean Absolute Deviation for indexes of growth of Sales and Total assets of 
mechanical divided in eight groups using percentiles of Sales and Total assets in 1997 

Sales  Total Assets 

1998-97 1999-98  1998-97 1999-98 

Groups median MAD 
MAD/ 
median median MAD 

MAD/ 
median median MAD 

MAD/ 
median median MAD 

MAD/ 
median 

I 130.42 60.1 0.4612 106.04 35.8 0.3376 121.51 39.1 0.322 111.33 31.3 0.2815 
II 112.75 27.8 0.2466 106.18 25.3 0.2382 112.02 27.2 0.2431 107.52 24.9 0.232 
III 110.79 24.5 0.2215 104.71 23.5 0.2245 107.3 19.3 0.1801 106.62 20.5 0.1921 
IV 108.51 23.2 0.2138 103.31 20.2 0.1958 106.88 19.9 0.1862 104.77 19.9 0.1895
V 108.48 20.8 0.1915 102.89 19.4 0.1882 107.05 18.9 0.1769 104.7 19.3 0.1842
VI 107.91 18.5 0.1715 102.91 17.7 0.1719 106.99 16.6 0.155 103.62 15.7 0.1515
VII 107.3 17.1 0.1589 103.32 17.4 0.1684 106.93 15.4 0.1441 105.33 15.6 0.1484
VIII 105.38 15.6 0.1484 101.84 15.6 0.153 104.81 14.2 0.1353 104.25 14.8 0.1424
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Because all the companies we have considered in this work have employees, also the 
units included in the first group are proper firms. However, the first group includes 
companies whose size is very modest. For this class of companies, it is evident that even 
very small investments involve a substantial increase of growth rate. Furthermore, 
literature has showed that many companies have the urgent need to grow in order to 
reach MES (Minimum Efficient Size; Audretsch et al., 1999). However, from the third 
class onwards, the medians of the index are stable: for instance, companies whose size 
is included between 100.000 and 170.000 euros and companies whose size is over 
1.345.000 euros present the same median (the last group has a median greater than the 
previous one). 
In Mechanical medians are much higher in the first two classes and decrease slightly in 
the next ones (see Table 7). 
 
 
9.2 MAD  
It is on MAD that the two industrial sectors differ broadly (see Table 6 and Table 7). 
From the first to the last class its size decreases of 1/3 in ICT for both years while it is 
curbed of 1/2 in 1999 and more than 1/2 in 1998 for mechanical.  
If instead of an absolute measure of variability we consider a relative one - the MAD 
divided by median - on the same classes we get the same result. 
 
9.3 Kernel distributions of the index of growth  
Even if robust, median, MAD, MAD/median represent a synthesis of the distributions of 
our growth index. 
By means of the reconstruction of the entire distributions of our index of growth in each 
class we are allowed to focus analytically the different patterns of growth associated 
with different firm sizes. 
For this aim we use a kernel approach (Figure 5 and Figure 6). 
Figure 5. Distribution of growth rates (1998-99) for total assets of ICT. Groups are detected by 
quantiles of total assets in 1997. 



 19

 
Figure 6. Distribution of growth rates (1998-99) for total assets of mechanical. Groups are detected 
by quantiles of total assets in 1997. 
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It is now evident that with the expected result of the first class, the distributions are 
almost the same in each class of ICT. 
On the contrary Mechanical presents progressively more narrow distributions.  
Referring to the classical quotations we have made above, we can then conclude that 
ICT is far closer to the results obtained by Hart and Prais than those of Mansfield, 
Whittinghton and Brusco and with this to the operating of Gibrat’s law. The opposite 
holds for mechanical. 
Even if the picture supplied by the kernel has a strong intuitive appeal we want now to 
use a synthetic measure of similarity to verify our conclusions on both sectors.   
 
 
9.4 Similarity analysis 
 
As we have hinted above (see equation 27), Gini’s index is articulated on the difference 
of the cumulative distributions. It is an index of “dissimilarity”. As a consequence, 
small values imply strong similarity. In Table 8 and Table 9 Gini’s indexes on total 
assets have been multiplied by 1000 to make figure more legible. 
 
Table 8. Similarity matrices for total assets of ICT in 1999 

 ICT - Total assets (1998-99)      

 
I 

group II group III group IV group V group VI group VII group 
VIII 

group 
I group  7.778974 14.94291 16.29488 16.78602 19.21378 16.92112 20.99415
II group   6.843035 6.720662 8.518207 8.490543 8.737101 9.976101
III group    2.6417 3.414634 4.92334 4.083618 6.659701
IV group     3.772457 3.870457 3.693389 6.772879
V group      3.34305 2.708344 4.575375

VI group   3.200187 2.686766
VII group    3.719558
VIII group    
 
Table 9. Similarity matrices for total assets of  mechanical in 1999 

 Mechanics - Total assets (1998-99)     

  I group II group III group IV group V group VI group VII group 
VIII 
group 

I group  12.69361 16.38432 19.03491 20.81868 24.06598 23.33458 25.83124
II group   6.451305 11.04344 12.89788 19.5057 18.65965 22.69289
III group   5.187542 7.480622 11.69474 10.24287 13.81563
IV group   3.749566 9.848199 11.92265 18.50227
V group   5.875576 5.50953 8.269595
VI group   4.653195 4.237481
VII group    6.95521
VIII 
group    
 
The results supplied by the matrices are particularly interesting. 
First of all, we stress the strong dissimilarity of the first class with respect to the other 
ones for ICT (see Table 8). For mechanical we note a high dissimilarity of the first two 
classes with respect to the others (see Table 9). In ICT the index on assets shows a 
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strong similarity through the last three classes in 1998 (not reported for lack of space) 
and through the last four in 1999. On the contrary, in mechanical the eighth class does 
not show similarity with any class in 1998 and in 1999 just with the seventh. 
 
10 Transition matrixes according to Champernowne.  
In this section we explore transition matrices (described analytically in section 6) from 
1998 to 1999 built on the basis of total assets. 
To be brief, we shall report only those of the second biennium. The classes are ten in the 
starting year (number of rows) and 10 in the final year (number of columns), of the 
same proportional width, precisely equal to 4,6 in Mechanical and to 6,1 in ICT. The 
elements of the matrix are the relative frequencies of shift between classes from one 
year to the next (tables of absolute frequencies are not reported for lack of space). 
The first remark to be made on the obtained classes, common to the two sectors, is that, 
if class width does not change in relative terms, in terms of absolute difference it greatly  
increases from the first classes to the last ones, creating, in the latter, a problem due to 
the corresponding small frequencies. This fact is to be considered while drawing 
conclusions: in the last classes, the probabilities depend on one or few firms, in 
particular in ICT; at the same time these firms represent the majority of the Assets of 
the whole sector. It is interesting to observe, first of all, that in the last three classes, ICT 
has only 4 firms in each of the three years against 13 (‘97), 12 (‘98) and 11 (‘99) of 
Mechanical: these results allow us to realize how different the growth processes are in 
the two sectors: in the very heavy size classes - the last three involving a percentage of 
the Total Assets between 77% and 79% - the ICT has lost no firms while the 
Mechanical has lost one per year. 
 
10.1 Mechanical 
Observing the transition matrices for the Mechanical (Table 10) results achieved 
through the other techniques are completely confirmed: suffice it to think that in both 
matrices (‘97-‘98 and ‘98-‘99) there is a firm in the largest size classes which jumps a 
class back, in the first two-year period from the ninth to the eighth and in the second 
from the tenth to the ninth. These two firms hold 18.8% of the total assets in 1997 and 
7.7% in 1999. 
The observations below confirm what we have previously seen: persistence probability 
in ‘97-‘98 increases rapidly as far as the fourth class, then remains more or less constant 
as far as the eighth; in the second matrix instead the growth stops at the fifth class while 
we notice an opposite trend from the seventh class onwards. At the same time in both 
matrixes the probability of going one class up decreases manifestly while the 
probability of going one class down increases. It can also be observed that in both 
matrices, from the fifth class onwards, the probabilities of a class transition are greater 
downwards than upwards (they are equal in one case only). 
 
10.2 ICT 
In ICT (see Table 11), the probability to remain in the same class from ‘97 to ‘98 
stabilizes after the third class, contrary to mechanical; from ‘98 to ‘99 the trend shows a 
downward peak in the eighth class due, however, to the forward jump of a firm ( not a 
backward one as in mechanical): hence there are no impediments to growth in largest 
firms. 
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In ICT, the probability of shifting to a lower class, hence of negative percentage 
variations, is in practice constant with size increase in both biennia and therefore 
represents a full validation of the hypothesis of size shift. 
As regards the probability of  shifting to a higher class, its trend is similar to that of 
mechanical in both biennia. It must be specified, though, that in the second biennium, as 
many as one firm out of three passes from the eighth to the ninth class in ICT, whereas 
the other two remain in the same position; in mechanical, instead, only one firm out of 
eleven has the same jump, as another firm belonging in the same class has a jump 
downwards.  
Besides, comparing for each class the probability of a jump upwards with that of a jump 
downwards, contrariwise to what we have seen in the mechanical, in ICT, in the second 
biennium, they remain unaltered starting from the fifth class, with the meaningful 
exception of the eighth class, in which the former outdoes the latter. 
We can conclude, according to what we have been considering, that, in ICT, there are 
no impediments to growth in major size classes, quite the opposite. 
Even if we have some elements supporting a good fitting of Champernowne model to 
ICT, the results in favour of major firms’ growth and therefore of a concentration 
process exclude the suitability of the same model to this sector. 
This fact cannot be compatible with the non-dissipative character imposed by 
Champernowne to his model. 
 
Table 10. transition matrix on Total Assets for Mechanical(’98-’99) 

  Mechanics - Total assets 1998-99 
 T\t+1 I II III IV V VI VII VIII IX X 
I 0.5 0.5 0 0 0 0 0 0 0 0 
II 0.0295 0.6841 0.2773 0.0068 0.0023 0 0 0 0 0 
III 0.0007 0.0298 0.8271 0.1424 0 0 0 0 0 0 
IV 0.0003 0.0003 0.0475 0.8972 0.0543 0.0003 0.0003 0 0 0 
V 0 0 0.0005 0.0523 0.911 0.0361 0 0 0 0 
VI 0 0 0 0 0.0474 0.9165 0.0361 0 0 0 
VII 0 0 0 0 0 0.1236 0.8764 0 0 0 
VIII 0 0 0 0 0 0 0.0909 0.8182 0.0909 0 
IX 0 0 0 0 0 0 0 0 0 0 
X 0 0 0 0 0 0 0 0 1 0 

 
Table 11. transition matrix on Total Assets for ICT (’98-’99) 

  ICT - Total assets 1998-99 
t\t+1 I II III IV V VI VII VIII IX X 
I 0.5424 0.4576 0 0 0 0 0 0 0 0 
II 0.0138 0.7996 0.186 0.0006 0 0 0 0 0 0 
III 0.0002 0.0348 0.8827 0.0815 0.0007 0 0 0 0 0 
IV 0 0 0.0612 0.8866 0.0515 0.0006 0 0 0 0 
V 0 0 0 0.0665 0.8703 0.0633 0 0 0 0 
VI 0 0 0 0 0.0143 0.9714 0.0143 0 0 0 
VII 0 0 0 0 0 0 1 0 0 0 
VIII 0 0 0 0 0 0 0 0.6667 0.3333 0 
IX 0 0 0 0 0 0 0 0 0 0 
X 0 0 0 0 0 0 0 0 0 1 
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11 Conclusions  
 
In this paper we have analyzed and applied three classical models of stochastic growth: 
Gibrat, Kalecki, Champernowne to Italian economy. 
All the three models have a common feature: opportunities for firm growth are largely 
determined by stochastic factors, with the same distributional result for Gibrat and 
Kalecki (lognormal) and a different one for Champernowne (Pareto). 
If this is the common feature of the three models, the path of growth described by each 
of them is completely different: increase of concentration in Gibrat’s, impediment to 
growth for large firms and a constant level of concentration in Kalecki’s; decrease of 
concentration in Champernowne, the expected value of variations being negative. 
On the basis of these three models we have analysed the universe of Companies for 
mechanical and ICT. To this purpose we have used the File of Companies accounts of 
Cerved-Pitagora respectively for a total of 9822 and 7887. 
The approaches we have used have been the fitting of Lognormal and Pareto 
distributions to the data, the analysis of an index of growth, the construction of 
transition matrices according to Champernowne. 
By means of a bootstrap procedure we have observed that sample size influences the p-
value of classic distribution tests (chi-squared and Kolmogorov-Smirnov) leading to an 
increasing probability to reject the null hypothesis as the size increases. This is true for 
mechanical where lognormal distribution cannot be refused for sample size until 800. 
This is not the same for ICT. Thus, we have looked at the fitting of empirical 
distribution to lognormal in mechanical by means of histograms and kernel density 
estimation and we have observed a good fitting. 
We have then been able to fit Pareto to both sectors even if on different bases: last 10% 
of the universe for mechanical and last 30% for ICT. 
The analysis of residuals obtained in the log size/log rank regression - used to fit Pareto 
distribution to the data - has emphasized a tendency of the 4 largest companies of ICT - 
which represent roughly 60% of the whole Sales of the sector - to maintain an effective 
size above the estimated and an opposite behaviour of the largest companies of 
Mechanical.   
The conclusions we draw by fitting the distributions are:  

a) the prevailing stochastic nature of growth in the two sectors; 
b) the existence of impediments to growth for the largest companies of Mechanical 

and, conversely, the tendency for the largest units of ICT to reach levels of size 
above the estimated; 

c) the conforming of Mechanical to Kalecki’s model; 
d) the presence of a process of concentration in ICT which has to be interpreted 

neither as consistent with Gibrat law, given the impossibility to fit lognormal to 
the same sector, nor conforming to Champernowne. Even if ICT is well 
moulded by Pareto - which is the referring distribution of Champernowne’s - it 
does show a dissipative process. 

To corroborate these results we have developed two experiments. 
- Through the first we have studied the distributions of the index of growth in the 8 
portions of our empirical distributions obtained by means of the percentiles. On each of 
these eight portions we have studied the distributions of the index of growth. 
This analysis has been developed using median, robust measures of variability, a kernel 
approach and a Gini index of similarity. 
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- By means of the second experiment we have constructed transition matrices à la 
Champernowne by which we analyze the persistence/migration of companies from one 
class to another. 
Migration and persistence in Champernowne transition matrices confirm the above 
results. 
Although the considered years are not many, the largeness of our data set and the 
methodology we have used, confer a considerable robustness to the results we have 
obtained. 
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