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Abstract

In this paper we suggest the use of robust GM-SETAR (Self Exciting Threshold Au-

toRegressive) processes to model and forecast electricity prices observed on deregulated

markets. The robustness of the model is achieved by extending to time series the general-

ized M-type (GM) estimator first introduced for independent multivariate data. As it has

been shown in a very recent paper [5], the polynomial weighting function over-performs

the classical ordinary least squares method when extreme observations are present. The

main advantage of estimating robust SETAR models is the possibility to capture two

very well-known stylized facts of electricity prices: nonlinearity produced by changes of

regimes and the presence of sudden spikes due to inelasticity of demand. The forecasting

performance of the model applied to the Italian electricity market (IPEX) is improved by

the introduction of predicted demand as an exogenous regressor. The availability of this

regressor is a particular feature of the Italian market. By means of prediction performance

indexes and tests, it will be shown that this regressor plays a crucial role and that robust

methods improve the overall forecasting performance of the model.
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1 Introduction

A very well known stylized fact of electricity prices is the presence of isolated jumps as

a consequence of sudden grid congestions which reflect immediately on prices because

of lack of flexibility of the supply and demand curves [6]. This feature must be consid-

ered very carefully and robust techniques must be applied to avoid that few jumps could

dramatically affect parameter estimates. Although many papers have applied quite so-

phisticated time series models to prices and demand time series of electricity and gas only

few have considered the strong influence of jumps on estimates and the need to move to

robust estimators [7], [10]. Among robust techniques for electricity prices, robust SETAR

models have never been estimated. The reasons could be summarized by two main points:

1) properties of robust SETAR estimators have not been completely studied and there

isn’t a clear accordance on the best estimator, at least with reference to the best weighting

function [4];

2) robust estimators are not implemented within the most popular statistical software

platforms such as Matlab and R.

[5] have addressed the two points through a massive Monte Carlo experiment which

compares the performances of classical SETAR estimator and robust estimator using

different weighting functions. All the estimators (classical and robust) have been im-

plemented in R language resulting in a set of functions which hopefully will become a

library soon. The main result obtained by the authors is a quite clear prevalence of the

generalized M-estimator (GM-estimator) based on the polynomial weighting function [9]

with respect to the ordinary least squares (OLS) estimator when dealing with some well

known features of electricity prices time series: large sample size and presence of several

isolated and big spikes.

In this paper, using the results contained in [5], classical and robust GM polynomial-
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based estimators are applied to obtain parameters of SETAR models on Italian electricity

price data (PUN, prezzo unico nazionale). The model is enriched by the introduction of

exogenous regressors which should improve the forecasting performances. Crucial vari-

ables in predicting electricity prices are dummies for the intra-day seasonality and de-

manded volumes [3]. Comparisons will be made among different estimators and between

pure SETAR models and nonlinear specifications with exogenous regressors.

The paper is organized as follows. In the next section, the general SETAR model is

introduced and the main weighting functions are discussed to move to robust estimators.

Section three contains summary and comments of the forecasting results. Conclusions

and final remarks are reported in section four.

2 Robust SETAR models with exogenous regressors

Given a time series yt, a general two-regime Self-Exciting Threshold AutoRegressive model

SETAR(p,d) with exogenous regressors is specified as

yt = (xtβ1 + ztλ1)I(yt−d ≤ γ) + (xtβ2 + ztλ2)I(yt−d > γ) + εt (1)

for t = 1, ..., N , where I(·) is an indicator function, yt−d is the threshold variable with

d ≥ 1 and γ is the threshold value. The relation between yt−d and γ states if yt is observed

in regime 1 or 2. βj is the vector of auto-regressive parameters for regime j = 1, 2 and xt

is the t-th row of the (N×p) matrix X comprising p lagged variables of yt (and possibly a

constant). λj is the vector corresponding to exogenous regressors contained in the (N×r)

matrix Z whose t-th row is zt. Errors εt are assumed to follow an iid(0, σε) distribution.

In general the value of the threshold γ is unknown, so that the parameters to estimate

become θ = (β′1, β
′
2, λ
′
1, λ
′
2), γ and σε. Parameters can be estimated by sequential condi-
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tional least squares: for a fixed threshold γ the model is linear, θ can be estimated by OLS

and σ̂ε =
∑N

t=1 r
2
t /N , with rt = yt−x∗tθ̂, where x∗t = (xt, zt). The least squares estimate

of γ is obtained by minimizing the residual sum of squares γ = arg minγ∈Γ

∑N
t=1 r

2
t over a

set Γ of allowable threshold values so that each regime contains at least a given fraction

(ranging from 0.05 to 0.3) of all observations.

In the case of robust two-regime SETAR model, for a fixed threshold γ the GM esti-

mate of the autoregressive parameters can be obtained by applying the iterative weighted

least squares:

θ̂
(n+1)
j =

(
X∗′jW

(n)X∗j
)−1

X∗′jW
(n)yj (2)

where θ̂
(n+1)
j is the GM estimate for the parameter vector in regime j = 1, 2 after the

n-th iteration from an initial estimate θ̂
(0)
j , and W(n) is a weight diagonal matrix, whose

elements depend on a weighting function w(θ̂
(n)
j , σ̂

(n)
ε,j ) ranging between 0 and 1. The

threshold γ can be estimate by minimizing an objective function (see 2.1 ) over the set Γ

of allowable threshold values.

2.1 Weighting methods

Three different weighting functions have been discussed in the literature on robust esti-

mators for nonlinear time series models. The first function is described in [1]. Weights

are calculated as

w(θ̂j, σ̂ε,j) = ψ

(
yt −my,j

Cyσ̂y,j

)
ψ

(
yt − x∗tθ̂j
Cεσ̂ε,j

)

where ψ is the Tukey bisquare weighting function ([9], p.216) and my,j is a robust

estimate of the location parameter (sample median) in the j-th regime. σ̂y,j and σ̂ε,j are

robust estimates of the scale parameters σy and σε respectively, obtained by the median
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absolute deviation multiplied by 1.483. Cy and Cε are tuning constants fixed at 6.0 and

3.9 respectively.

The objective function to minimize for the search of the threshold depends on Tukey

bisquare weights. We use the same function described in [1].

For the second method, we follow [2]. The GM weights are presented in Schweppe’s

form w(θ̂j, σ̂ε,j) = ψ(rt)/rt with standardized residuals rt = (yt − x∗tθ̂j)/(σ̂ε,jw(x∗t)) and

w(x∗t) = ψ(d(x∗t)
α)/d(x∗t)

α. d(x∗t) = |x∗t − my,j|/σ̂y,j is the Mahalanobis distance

and α is a constant usually set equal to 2 to obtain robustness of standard errors. The

chosen weighting function is the polynomial ψ function. The threshold γ is estimated by

minimizing the objective function
∑N

t=1w(θ̂, σ̂ε)(yt − x∗tθ̂)
2 over the set Γ of allowable

threshold values.

The third method is based on the same methodologies of the second but with ψ being

the Huber weighting function which is a convex non-negative function. The consistency

of GM estimators of autoregressive parameters in each regime of SETAR models when

the threshold is unknown and using the Huber weights has been proven by [13].

The estimation performances of the three methods have been studied through an

extensive Monte Carlo simulation experiment in [5]. From the experiment a prevalence

of the polynomial (POL from now on) has been pointed out, which will be then used

throughout the present paper.

3 Application: Italian electricity price

In this section, we apply LS and the robust POL weighting functions, presented in the

previous section, to estimate parameters of SETAR models on the Italian electricity price

data (PUN, prezzo unico nazionale). Moreover, a comparison of prediction accuracy

among the methods is conducted.
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The time series of prices used in the present work covers the period from January 1st,

2010 to December 31th, 2012 (26,304 data points, for N = 1,096 days): year 2012 has been

left for out-of-sample forecasting. The data have an hourly frequency, therefore each day

consists of 24 load periods with 00:00–01:00am defined as period 1. Spot price is denoted

as Ptj, where t specifies the day and j the load period (t = 1, 2, ..., N ; j = 1, 2, ..., 24).

In this study, following a widespread practice in literature, each hourly time series is

modeled separately.

Differences in load periods can cause significant variations in price time series. A first

inspection, based on graphs, spectra and ACFs (Figures are not reported for lack of space

but can be obtained from the authors) for different hours, shows that the series have

long-run behaviour and annual dynamics, which change according to the load period. A

common characteristic of price time series is the weekly periodic component (of period

7), suggested by the spectra that show three peaks at the frequencies 1/7, 2/7 and 3/7,

and a very persistent autocorrelation function.

We assume that the dynamics of log prices can be represented by a nonstationary level

component Ltj, accounting for level changes and/or long-term behaviour, and a residual

stationary component ptj, formally, logPtj = Ltj + ptj.
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Figure 1: logPtj for hour 11, with the estimated nonstationary level component superim-
posed.
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To estimate Ltj we used the wavelets approach ([11]). Wavelets have been used in many

studies, including [8] and [12]. We considered the Daubechies least asymmetric wavelet

family, LA(8), and the coefficients were estimated via the maximal overlap discrete wavelet

transform (MODWT) method (for details, see [11]). As an example of the time series of

prices and corresponding estimated long-term component, Figure 1 shows logPtj for hour

11, with the estimated nonstationary level component superimposed. After removing

the long-term component, we estimated on the stationary time series ptj the SETAR(p,d)

model with exogenous regressors, as reported in eq. (1). According to the empirical ACFs,

a SETAR(7,1) model has been estimated over all the price series to highlight differences

in the estimation given by different dynamics characterizing each load period. Matrix Z

of exogenous regressors could contain day-of-the-week dummies, Dk, with k = 1, ..., 6 and

the day-ahead predicted demand of electricity made available by GME (Gestore Mercato

Elettrico). Next step of the analysis will be to compare the forecasting performances of

the robust methods with the forecasting performance of the LS estimator. The base model

contains only autoregressive components, excluding in eq. (1) matrix Z. The second model

we consider is a SETAR(7,1) with day-of-the-week dummies, Dk, with k = 1, ..., 6. In the

third model, matrix Z contains the detrended day-ahead predicted demand of electricity

made available by GME (Gestore Mercato Elettrico). As for the price series, the level

component of the predicted demand has been estimated using the wavelets approach.

For comparing our robust/non robust SETAR models, we reproduced 366 one day-

ahead forecasts p̂t+1 for each model estimated on a rolling window of 2 years. Comparisons

are based on the predictions of the original spot prices that are given by P̂t+1 = exp(L̂t+1+

p̂t+1), where L̂t+1 and p̂t+1 are predictions of the components, which are based only on the

information available in t. In particular, we set L̂t+1 = L̂t, that is, we used the estimated

value in t as a forecast for t+1. Besides its simplicity, the motivation to use this equation

comes from the fact that the long-term component, by definition, should be basically the
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same for two contiguous days. Forecasts have been compared in terms of MSE (Mean

Square Error) and MAE (Mean Absolute Error), and of the Diebold and Mariano test,

that are based on the forecasting errors etj = Ptj − P̂tj, (t = 1, 2, ...,M ; j = 1, 2, ..., 24)

for each method. We used the one-tailed Diebold and Mariano test (DM), whose null

hypothesis is that the prediction accuracy of procedure (say) A is equal or lower than

that of procedure B. The test has been performed both with MSE and MAE using data

observed in three hours which can be considered as representative of the main patterns

during the day: 11, 18 and 21. Table 1 shows MSE and MAE values on the whole year

2012 and on the four quarters. A SETAR model with dummies for days of the week

has been estimated with LS and POL methods. In the last two columns we reported

an indicator variable which assumes two values: 1 when the robust (POL) forecasts are

statistically better than the non robust (LS) forecasts using the Diebold and Mariano test

at 5% significance level, 2 when the opposite event happens (LS forecasts are better than

POL).

For example, for hour 11 LS are statistically better in the fourth quarter, both con-

sidering MSE and MAE, while, for hour 21, POL is statistically better than LS in the

second quarter, considering MSE, and in the second, third and whole period, considering

the MAE loss function.

In order to summarize the results contained in Table 1, we have reported the number

of hours (out of the three we have analyzed) the LS forecasts are better than the POL

(Table 2) and the number of hours the POL forecasts are better than LS (Table 3). To

help interpreting the tables, the first column of each table shows the number of hours the

MSE value of an estimator is the lowest, the second column gives the same information

but with reference to MAE, the third and fourth column show the number of hours in

which the prevalence of an estimator is statistically significant looking at the MSE and

the MAE, respectively.
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Table 1: MSE and MAE of forecasts obtained with LS and POL models with dummies
on the four estimation periods and on the whole year. Last two columns: 1 indicates
that forecasts obtained with POL are statistically better than predictions of LS, 2 indicates
that forecasts obtained with LS are statistically better than predictions of POL, 0 indicates
that forecasts are not significantly different (1-tailed Diebold and Mariano test at 5%
significance level, MSE and MAE loss functions).

Period MSE MAE D-M (MSE) D-M (MAE)

LS POL LS POL

Hour 11

Jan-Mar 406.51 451.88 12.21 12.1 0 0

Apr-Jun 213.99 216.83 11.3 11.49 0 0

Jul-Sep 75 71.47 6.86 6.6 0 0

Oct-Dec 65.97 73.49 5.85 6.28 2 2

Year 189.71 202.7 9.04 9.1 0 0

Hour 18

Jan-Mar 422.54 357.16 16.25 14.49 1 1

Apr-Jun 159.95 160.66 9.51 9.33 0 0

Jul-Sep 97.72 108.53 6.52 6.96 2 0

Oct-Dec 245.43 250.92 11.13 11.24 0 0

Year 231.08 219.1 10.84 10.5 0 0

Hour 21

Jan-Mar 209.89 217.7 9.59 9.6 0 0

Apr-Jun 171.39 160.18 10.43 9.97 1 1

Jul-Sep 723.46 711.44 14.57 13.57 0 1

Oct-Dec 61.1 59.6 5.65 5.55 0 0

Year 292.01 287.77 10.06 9.67 0 1

Table 2: Number of cases LS model with dummies gives better results than POL model
with dummies, considering the three analyzed hours.

Period MSE MAE D-M (MSE) D-M (MAE)

Jan-Mar 2 1 0 0

Apr-Jun 2 1 0 0

Jul-Sep 1 1 1 0

Oct-Dec 2 2 1 1

Year 1 1 0 0
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Table 3: Number of cases POL model with dummies gives better results than LS model
with dummies, considering the three analyzed hours.

Period MSE MAE D-M (MSE) D-M (MAE)

Jan-Mar 1 2 1 1

Apr-Jun 1 2 1 1

Jul-Sep 2 2 0 1

Oct-Dec 1 1 0 0

Year 2 2 0 1

Table 4: Ratios of MSE and MAE of forecasts obtained with models with dummies to
MSE and MAE of forecasts obtained with models with a pure SETAR (four estimation
periods and whole year). Last two columns: 1 indicates that forecasts obtained with dum-
mies are statistically better than predictions with pure SETAR model, 2 indicates that
forecasts obtained with AR are statistically better than predictions with dummies, 0 in-
dicates that forecasts are not significantly different (1-tailed Diebold and Mariano test at
5% significance level, MSE and MAE loss functions).

Period MSE MAE D-M (MSE) D-M (MAE)

LS POL LS POL LS POL LS POL

Hour 11

Jan-Mar 0.934 1.104 0.886 0.915 0 0 1 0

Apr-Jun 0.988 0.958 1.007 0.985 0 0 0 0

Jul-Sep 0.877 0.771 1.017 0.95 0 1 0 0

Oct-Dec 0.8 0.868 0.871 0.951 1 0 1 0

Year 0.929 1 0.942 0.949 0 0 1 0

Hour 18

Jan-Mar 0.94 0.904 0.97 0.932 0 0 0 0

Apr-Jun 0.896 0.928 0.984 0.953 1 0 0 0

Jul-Sep 0.715 0.807 0.847 0.893 1 1 1 1

Oct-Dec 0.919 0.903 0.924 0.932 0 0 1 1

Year 0.897 0.894 0.94 0.93 1 1 1 1

Hour 21

Jan-Mar 1.046 1.015 0.953 0.967 0 0 0 0

Apr-Jun 1.077 1.081 1.085 1.051 0 0 2 0

Jul-Sep 1.051 1.021 1 1.006 0 0 0 0

Oct-Dec 0.908 0.914 0.937 0.973 1 0 0 0

Year 1.045 1.021 0.999 1.002 0 0 0 0

10



Table 5: Number of cases models with a pure SETAR give better results than models with
dummies, considering the three analyzed hours.

Period MSE MAE D-M (MSE) D-M (MAE)

LS POL LS POL LS POL LS POL

Jan-Mar 1 2 0 0 0 0 0 0

Apr-Jun 1 1 2 1 0 0 1 0

Jul-Sep 1 1 1 1 0 0 0 0

Oct-Dec 0 0 0 0 0 0 0 0

Year 1 1 0 1 0 0 0 0

Table 6: Number of cases models with dummies give better results than models with a pure
SETAR, considering the three analyzed hours.

Period MSE MAE D-M (MSE) D-M (MAE)

LS POL LS POL LS POL LS POL

Jan-Mar 2 1 3 3 0 0 1 0

Apr-Jun 2 2 1 2 1 0 0 0

Jul-Sep 2 2 1 2 1 2 1 1

Oct-Dec 3 3 3 3 2 0 2 1

Year 2 1 3 2 1 1 2 1
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A further point we have explored is the effectiveness of dummies in the improvement

of the model forecasting performance with respect to a pure SETAR model. Results are

reported in Table 4. Values shown in the Table 4 are ratios of MSE (MAE) of the SETAR

with dummies and pure SETAR estimated both with LS and POL. Values less than 1 mean

that the model with dummies performs better than the pure autoregressive model. For

example, the first value of the table at the top left corner is 0.934 and means that SETAR

model with dummies estimated by LS is 6.66% better than the pure SETAR estimated

with LS. The last four columns of the table contain, as before, an indicator variable which

is 1 when the model with dummies is statistically better, using the Diebold-Mariano test,

than the pure SETAR model, while is 2 in the opposite case. As can be seen, the indicator

variable is 1 in many cases while is 2 only in one case, showing that the dummies improve

the forecasting performance of the model. Summaries contained, as done earlier, in Table

5 and 6 confirm the prevalence of the model with dummies.

Finally, the forecasted demand has been introduced in the model to see whether the

robust POL estimator is still better than the LS in presence of spikes and if this exogenous

variable can help improving the forecasting performance of the model. The comparison

between robust and non-robust estimator is reported in Table 7 and results are summa-

rized, as usual, in 8 and 9. Last two columns of Table 7 contains some 1 and are never

equal 2, showing the prevalence of the robust estimator even in complex models when

dummies and exogenous variables are introduced.

4 Conclusions

In this paper the forecasting performances of the robust GM estimator based on the

polynomial weighting function and of the classical Least Squares estimator applied to

electricity prices have been studied. Dummy variables have been included in the model
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Table 7: MSE and MAE of forecasts obtained with LS and POL models on the four
estimation periods and on the whole year. Last two columns: 1 indicates that forecasts
obtained with POL are statistically better than predictions of LS, 2 indicates that forecasts
obtained with LS are statistically better than predictions of POL, 0 indicates that forecasts
are not significantly different (1-tailed Diebold and Mariano test at 5% significance level,
MSE and MAE loss functions).

Period MSE MAE D-M (MSE) D-M (MAE)

LS POL LS POL

Hour 11

Jan-Mar 453.85 456.64 12.37 12.28 0 0

Apr-Jun 158.61 171.46 9.72 10.09 0 0

Jul-Sep 61.47 65.58 6.1 6.05 0 0

Oct-Dec 57.97 61.64 5.28 5.43 0 0

Year 196.28 202.37 8.7 8.79 0 0

Hour 18

Jan-Mar 397.22 374.12 15.41 14.6 0 1

Apr-Jun 122.95 122.13 8.05 8.12 0 0

Jul-Sep 110.58 115.72 7.4 7.28 0 0

Oct-Dec 166.25 157.19 8.67 8.57 0 0

Year 202.59 195.9 10.01 9.75 0 0

Hour 21

Jan-Mar 210.59 209.32 9.82 9.61 0 0

Apr-Jun 159.42 155.74 9.89 9.55 0 0

Jul-Sep 716.16 691.46 13.8 12.89 1 1

Oct-Dec 63.36 59.18 5.83 5.58 0 1

Year 313.2 304.22 10.29 9.84 1 1

Table 8: Exo1: number of cases LS model gives better results than POL model.

Period MSE MAE D-M (MSE) D-M (MAE)

Jan-Mar 1 0 0 0

Apr-Jun 1 2 0 0

Jul-Sep 2 0 0 0

Oct-Dec 1 1 0 0

Year 1 1 0 0
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Table 9: Exo1: number of cases POL model gives better results than LS model.

Period MSE MAE D-M (MSE) D-M (MAE)

Jan-Mar 2 3 0 1

Apr-Jun 2 1 0 0

Jul-Sep 1 3 1 1

Oct-Dec 2 2 0 1

Year 2 2 1 1

in order to account for the presence of seasonality in the data and day-ahead predicted

demand has been considered to test its relevance in predicting day-ahead prices. Sum-

marizing the main results we could say that robust estimators over-perform the classical

Least Squares estimator both when simple SETAR models are considered and when ex-

ogenous variables are included in the model. The use of regressors seems to increase the

forecasting power of models when dummies and forecasted demand are included as exter-

nal regressors compared to pure SETAR models. Other comparisons have been carried

out but results have not been reported for lack of space. Summarizing briefly we could say

that the model with forecasted demand as exogenous variable has better performances

not only than the pure SETAR model, but also than the SETAR model with dummies.

Moreover we have also tried to model directly the original series of prices including the

trend estimated by wavelets as regressor, but the corresponding forecasting performance

is worse than the model estimated directly on the de-trended prices.
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