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Abstract

We consider a Cournot duopoly with isoelastic demand
function and constant marginal costs. We assume that both
producers have naive expectations but one of them reacts
with delay to the move of its competitors, due to a “less ef-
ficient” production process of a competitor with respect to
its opponent. The model is described by a 3D map having
the so-called “cube separate property”, that is its third it-
erate has separate components. We show that many cycles
may coexist and, through global analysis, we characterize
their basins of attraction. We also study t he chaotic dy-
namics generated by the model, howing that the attracting
set is either a parallelepiped or the union of coexisting par-
allelepipeds. We also prove that such attracting sets coexist
with chaotic surfaces, having the shape of generalized cylin-
ders, and with different chaotic curves.
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1 Introduction

In 2000, Bischi, Gardini and Mammana [5] have studied a class
of two-dimensional discrete maps having the property that their
second iterate is a decoupled map. The essential result of such a
study is that the dynamic properties of this kind of maps can be
deduced from the simple analysis of a components of their second
iterate, a one-dimensional map. More recently, Agliari, Fournier-
Prunaret and Taha [4] have obtained analogous results considering
a three-dimensional family of maps having third iterate with sepa-
rate components. A typical feature of such maps is the coexistence
of many invariant orbits, so that multistability situations are re-
curring. In the 3D case, for example, it is sufficient that the 1D
map has a cycle of period 2 to obtain two coexisting cycles for
the starting map. And the same holds when chaotic dynamics are
involved.

During the last years, many applications to Cournot duopoly
have been studied, considering the quantity adjustment over time
based on a two-dimensional map with separate second iterate (see,
among others, [12], [5], [13]). Indeed ”square separate maps” nat-
urally arise when producers have naive expectations.

In the present paper, we consider a Cournot model in which
producers have naive expectations about the production of the
competitor, but one of them reacts with delay to the move of its
competitor. From an economic point of view such an assumption
can be justified by the fact that one of two competitors has a
”slower” production process, meaning that its production process
is technologically less advanced and consequently requires a longer
time to react to the market demand. Stated in other words, we
can say that a competitor has a production process ”less efficient”
that its opponent.

Recently many authors have studied Cournot duopoly model
with delay; in particular they have considered markets with mem-
ory, that is the expected quantity is a weighted average of the
past quantity observations (see for example [6], [7], [14]). Here
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the framework is completely different, since we focus on the ”de-
layed production” of a competitor.

The model under scrutiny is described by a discrete 2D time-

delayed system, that can be rewrite as a 3D map M with the
“cubic separate property”, that is, its third iterate has separated
components. Our aim is to perform a global analysis of the model,
characterizing the basin of attractions of the different coexisting
attractors. Moreover, we shall extend the results in [4], deep-
ening the study of the chaotic attractors of M . In particular,
we shall analytically show that the three-dimensional chaotic sets
(parallelepipeds) coexist with chaotic surfaces, given by union of
generalized cylinders, and with chaotic curves.

The rest of the paper is organized as follows. In Section 2 we
introduce the model describing the time evolution of the produc-
tion levels of the two firms. We obtain a 3D map having third
iterate with separate components. Then, for convenience of the
reader, we recall some results achieved by Agliari et al. (see [4])
related to this kind of maps. In Section 3 we show that the model
exhibits multiplicity of cycles and characterize their basins of at-
traction. In Section 4, extending the results of [4], we study the
chaotic attractors (parallelepileds), showing that they coexist with
many chaotic surfaces and curves. Section 5 concludes.

2 The model

We consider a Cournot duopoly in which two competitors produce
perfect substitute goods. Following Puu [12], we assume an isoe-
lastic demand function and constant marginal costs. Denoting by
x and y the supplies of the competitors, the profits are given by

Π1 =
x

x+ y
− ax, Π2 =

y

x+ y
− by

where a and b are the constant marginal costs and, consequently,
positive parameters.
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The Cournot-Nash reaction functions of the two firms depend
on the expected production of the opponent and are given by:

r1

(
y(e)

)
= argmax

x
Π1

(
x, y(e)

)
=

√
y(e)

a
− y(e)

r2

(
x(e)

)
= argmax

y
Π2

(
x(e), y

)
=

√
x(e)

b
− x(e)

(1)

defined in R+.
We conjecture that the firms adopt a ”learning by doing” ap-

proach. Then in the time evolution of the production decisions, we
assume that at each stage firms optimally decide following their
reaction function, supposing that the production of the opponent
remains the same. This means that the firms have naive expecta-

tions. Furthermore, we assume that a producer reacts with delay

to the move of its opponent:

q
(e)
1,t = q2,t−1 and q

(e)
2,t = q1,t−2

In this way we obtain a discrete two dimensional time-delayed

system: ⎧⎨⎩ xt+1 =
√

yt
a
− yt

yt+1 =
√

xt−1

b
− xt−1

(2)

By means of an auxiliary variable z, we can rewrite (2) as a
three dimensional model:

T :

⎧⎪⎨⎪⎩
x′ =

√
y
a
− y

y′ =
√

z
b
− z

z′ = x

(3)

where the symbol ’ denotes the unit time advancement operator,
that is, if (x, y, z) represents the vector of choiches at time t, then
(x′, y′, z′) gives the choiches at time t+ 1.

It is easy to see that the map (3) is not defined in the whole
three dimensional phase-space. In fact the domain of T is the
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region D given by:

D = {(x, y, z) : y ≥ 0, z ≥ 0}
We are interested in a subset ofD, denoted by S, which consists

in the points (x, y, z) for which we have T n(x, y, z) ∈ D, for any
n ≥ 0. We shall call admissible such points and trajectories in S:

S = {(x, y, z) ∈ D : T n(x, y, z) ∈ D ∀n ≥ 0} .
Before to start the analysis of the map (3) in the phase-spaceD

we show that the two marginal costs (a, b) are redundant param-
eters. This follows from the observation that the maps T with
parameters (a, b) and T̃ with parameters (τa, τb) with τ > 0
are topologically conjugate via the homeomorphism Φ(x, y, z) =
(τx, τy, τz), being T = Φ◦T̃ ◦Φ−1 or, equivalently, T̃ = Φ−1◦T ◦Φ.
In the present model we have:

T̃ :

⎧⎪⎨⎪⎩
x′ =

√
y
τa
− y

y′ =
√

z
τb
− z

z′ = x

Considering τ = 1
a
and setting k = b

a
, we obtain the map:

M :

⎧⎨⎩
x′ =

√
y − y

y′ =
√

z
k
− z

z′ = x

(4)

Due to topological conjugacy, the dynamics of the map T which
depends on two parameters (a, b) and the dynamics of the map M

which depends on a unique parameter, k, have the same qualita-
tive behaviour, because they are associated by a simple coordinate
transformation (see, [2]). In other words, through the topological
conjugacy we have obtained a reduction in the number of param-
eters of the map T in (3), since only the ratio between marginal
costs has to be considered.

Henceforth, we take the analysis considering the map M in (4)
and k ∈ (0, 1], assuming that producer 1 has higher marginal costs
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than its competitor. From an economic point of view, this choice
can be motivated by the fact that producer 2 claims lower costs
having a production process ”less efficient” than its competitor,
which causes delayed reaction to the moves of its opponent.

2.1 Properties of “cube separate maps”

Related to the aim of the present paper, the fundamental property
of the map M in (4) is that its third forward iterate has separate

components, which we will call ”cube separate property”. Indeed
the map in (4) belongs to the particular class of maps:

Ψ :

⎧⎨⎩
x′ = f (y)
y′ = g (z)
z′ = h (x)

(5)

and Ψ3n(x, y, z) = (Hn(x), Fn(y), Gn(z)), for each integer n ≥ 0,
with H (x) = f(g(h(x))), F (y) = g(h(f(y))), G (z) = h(f(g(z)))
and F 0, G0, H0 identity functions.

The family of map (5) has been studied by Agliari et al. (see,
[4], [3]) and, for convenience of the reader, we recall here some
results, useful for the understanding of the subsequent analysis of
the model. These results are based on the following relationships:
for any n ≥ 1 the three one dimensional (1D) maps H, F and G

satisfy:
• h ◦Hn (x) = Gn ◦ h (x)
• g ◦Gn (z) = Fn ◦ g (z)
• f ◦ Fn (y) = Hn ◦ f (y)
and
• g ◦ h ◦Hn (x) = Fn ◦ g ◦ h (x)
• f ◦ g ◦Gn (z) = Hn ◦ f ◦ g (z)
• h ◦ f ◦ Fn (y) = Gn ◦ h ◦ f (y) .
Such properties imply that the invariant sets of the 1D maps

H, G and F are strictly correlated. As an example, we have
that any n−cycle of the map H, {x1, x2, ..., xn} admits conjugated
cycles, given by a n−cycle of the map G, i.e. {z1, z2, ..., zn} =
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{h (x1) , h (x2) , ..., h (xn)} , and a n−cycle of the map F , i.e.
{y1, y2, ..., yn} = {g (h (x1)) , ..., g (h (xn))} 1. We remark that con-
jugated cycles have all the same stability property, since their
multipliers are equal.

In the following we shall consider the map H to study the
attractors of Ψ as well as their stability properties.

As shown in [4], a correspondence exists between the cycles of
the 3D map Ψ and those of H. Indeed (x, y, z) is a periodic point
of a n-cycle of Ψ iff x is a periodic points of a cycle of H

• either of prime period n
3 or a divisor of n

3 , when n is a mul-
tiple of 3, and y, z are periodic points of F and G

• of the same prime period n, otherwise, and y, z belongs to
the conjugated cycles of F and G.

A consequence is that the set P of the periodic poins of the
map Ψ is given by:

P = X × Y × Z (6)

where X , Y and Z are the sets of periodic points of the one di-
mensional maps H, F and G.

The cycles of Ψ can be generated starting either by a unique
cycle or by periodic points belonging to different coexisting cycles
of H.

Definition 1 A cycle of the three dimensional map Ψ is said ho-

mogeneous if the components of its periodic points belong to con-

jugate cycles of H, F and G. Otherwise, it is called mixed cycle.

Remark that all cycles of Ψ having a period not multiple of 3
are homogeneous, while those having a period multiple of 3 can
be either homogeneous or mixed cycles.

More precisely, considering a single cycle of H of period n we
can obtain that

1Obviously, the same result holds starting from a cycle of G (or F ).
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• if n = 3s+1 or n = 3s+2 then Ψ has 1 homogeneous cycles
of period n and n2−1

3 homogeneous cycles of period 3n;

• if n = 3s then Ψ has n2

3 homogeneous cycles of period 3n.

It is worth to observe that if n > 1 then the map Ψ exibits coex-
istence of cycles.

Furthermore, if the map H admits coexisting cycles then, be-
sides the homogeneous cycles associated with each one of the cy-
cles of H, the map Ψ has further cycles, whose periodic points are
given by the mixing of the periodic points of different cycles, that
is of mixed type.

Any pair of coexisting cycles of the map H, of period n and m,
generate (n+m) nm

s
different mixed cycles of period 3s of the map

Ψ, being s = LCM (m,n), where LCM means the last common
multiple.

Any triplet of coexisting cycles of the map H, of period n, m
and p, generate 2nmp

S
different mixed cycles of period 3S of the

map Ψ, besides the homogeneous ones and those generated by any
pair of the three cycles of H. Here S = LCM (n,m, p).

We refer to [4] to identify the single homogeneous and mixed
cycles so obtained, and we conclude recalling how the local stabil-
ity of the different cycles can be inferred.

Starting from a n-cycle of the 1D map H with eigenvalue λ, all
the homogeneous cycles of the 3D map Ψ of period 3n have equal
eigenvalues λ1 = λ2 = λ3 = λ, while the homogeneous cycles of Ψ
of period n, when n is not a multiple of 3, have eigenvalues λ1 =
3
√
λ, λ2 =

3
√
λ
(
−1

2 −
√
3
2 i

)
and λ3 =

3
√
λ
(
−1

2 +
√
3
2 i

)
. This means

that stable (unstable) cycles of H give rise to stable (unstable)
homogeneous cycles of Ψ. Moreover, any local bifurcation of a
cycle of the mapH corresponds to a local bifurcation of 3D map at
which three eigenvalues cross simultaneously the unit circle (that
is, the local bifurcations of the Ψ map is of co-dimension 3).

Regarding the mixed cycles, we can say that when the map H

has three coexisting cycles X = {xi}, A = {αj} and Δ = {δl} with
eigenvalues λx, λα and λδ respectively, then the mixed cycles of the
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three-dimensional map Ψ generated by two coexisting cycles of H,
say X and A, have eigenvalues either (λx, λx, λα) or (λx, λα, λα),
depending on the number of their components belonging to X and
its conjugates. The mixed cycles of the three-dimensional map Ψ
generated by the three coexisting cycles of H have eigenvalues
(λx, λδ, λδ) (for major details see [4]).

3 Coexisting cycles for the map M

The aim of the present paper is to investigate the attracting sets
of the map M and their basins of attractions. As it is well known
the basin of an attractor A is defined as (see [1])

B (A) = ∪∞n=0M
−n (U (A))

where M−n(P ) represent the set of the rank−n preimages of P
and U (A) is a neighbourhood of A whose trajectories converge to
A. Then, it is clear that the invertibility/noninvertibility property
of M is very important in order to understand the structure of the
basins and their bifurcations. Indeed, when a map is noninvertible
the basins of attraction may have different structures (connected,
multiply connected, disconnected or even more complex), see, for
instance, [11]. For that reason, we start our analysis from the
study of the Riemann foliation of the space R

3
+ associated with

M (see, [9], [8]).
We recall that a map M is noninvertible if, given a point p ∈ S,

the rank-1 preimage of p′ (that is, the point p such that p′ =
M (p)) may not exist or may be not unique. In other words, a
noninvertible map is a correspondence many-to-one, that is dis-
tinct points of the space may have the same forward image and
points without preimages may exist (see [8]).

It is easy to see that M is a noninvertible map. Indeed, the
rank-1 preimages of a given point (u, v, w) ∈ R

3
+ are the solutions
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of the algebraic system ⎧⎨⎩
u =

√
y − y

v =
√

z
k
− z

w = x

(7)

in the unknow variables (x, y, z). System (7) admits four solutions
iff 0 ≤ u ≤ 1

4 and 0 ≤ v ≤ 1
4k . They are given by

M−1
1 :

⎧⎪⎨⎪⎩
y = 1−2u−

√
1−4u

2

z = 1−2kv−
√
1−4kv

2k
x = w

M−1
2 :

⎧⎪⎨⎪⎩
y = 1−2u−

√
1−4u

2

z = 1−2kv+
√
1−4kv

2k
x = w

M−1
3 :

⎧⎪⎨⎪⎩
y = 1−2u+

√
1−4u

2

z = 1−2kv−
√
1−4kv

2k
x = w

M−1
4 :

⎧⎪⎨⎪⎩
y = 1−2u+

√
1−4u

2

z = 1−2kv+
√
1−4kv

2k
x = w

The noninvertibility of the map M is so proved and its multi-
valued inverse can be represented as

M−1 = M−1
1 ∪M−1

2 ∪M−1
3 ∪M−1

4

Following the terminology introduced in [9] and [8], we can
say that M is a Z0 − Z4 map, meaning that the space R

3
+ is

divided in two regions: one of them contains points having no
preimages while the points belonging to the second one have four
distinct rank-1 preimages. Such regions, or zones, are separated
by the critical line LC, locus of points having four merging rank-
1 preimages. The direct inspection of M−1 allows us to obtain
that the critical lines LC are made up by two branches: LCa =
D ∩ {

x = 1
4

}
and LCb = D ∩ {

y = 1
4k

}
. We conclude that the

region Z4 is a cylinder whose cross section is a rectangle.

13



3.1 Analysis of the 1D map H

Besides the noninvertibility of M even its ”cube separate prop-
erty” plays an important rôle in the analysis of the long run be-
havior of the map. Indeed, as we have seen in Sec.2.1, such a
property implies that the dynamic behavior of the 3D map M can
be derived from the study of one of the components of its third iter-
ate. In particular, we shall consider the map H (x) = f(g(h(x))),
given by

H (x) =

√√
x

k
− x−

√
x

k
+ x. (8)

The mapH is defined in the interval I =
[
0, 1

k

]
, with k ∈ (0, 1], and

always admits two intersections with the x-axis: the origin O = 0
and C = 1

k
. Three critical points of H exist: two maximum points

CM
−1,a = 2−k−2

√
1−k

4k , CM
−1,b =

2−k+2
√
1−k

4k with equal critical value

(in the Julia-Fatou sense) CM
a = CM

b = 1
4 and one minimum point

Cm
−1 = 1

4k with critical value Cm = 2
√
k−1
4k . The minimum value

Cm = 2
√
k−1
4k is negative if k < 1

4 , consequently, in this case two

further intersections with the x−axis exist: a = 1−2k−
√
1−4k

2k and

b = 1−2k+
√
1−4k

2k (see Fig.1). This implies that when k > kg = 1
4

the feasible trajectories of H belong to the interval [O,C], while
in the case k < kg the feasible set is disconnected, being equal to
[O, a]∪[b, C]. Therefore k = kg corresponds to a global bifurcation
value.

Finally, it is straightforward to verify that the map H admits
x∗ = k

(1+k)2
as a fixed point, besides the trivial one O (always

unstable). The evaluation at x∗ of the derivative of the map H

allows us to conclude that x∗ is stable if 3− 2
√
2 < k < 3 + 2

√
2

and its loss of stability occurs through a flip bifurcation. Since we
are considering k ∈ (0, 1], only the bifurcation value kf = 3− 2

√
2

has to be considered.
A bifurcation diagram of map H is shown in Fig.2, and we can

observe that bounded dynamics exist if k ≥ 0.16. Indeed, when
the bifurcation parameter k decreases from 1, at k = 3 − 2

√
2 a
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Figure 1: A qualitative draft of the 1D map H when k < kg

supercritical flip bifurcation occurs. Then the usual Feingenbaum
cascade of period doubling bifurcation takes place and leads to the
chaotic behavior of H. At k = 0.16 the final bifurcation occurs,
corresponding to the homoclinic bifurcation of the repelling fixed
point. Indeed at k = 0.16 the critical point cM is mapped into the
point (0, 0), as it is simple to verify, and the chaotic dynamics of
H covers the whole interval

[
0, CM

]
(pure chaos).

3.2 Basin of attraction of the Cournot-Nash equilib-

rium

Let us come back to the map M . The existence of two fixed points
of H implies that also the map M in (4) has two fixed points, the
origin O∗ and E∗ = (x∗, y∗, x∗) , where y∗ = g(x∗) = 1

(1+k)2
as we

said in section 2.1. We also know that O∗ is unstable, while E∗ is
stable if k > kf . In order to determine the basin of attraction of
E∗, the analysis of the map H suggests that two cases have to be
taken into account, depending on the value of the parameter k.

As we have seen, when k > kg = frac14 the feasible set of
the map H is a connected set and this also holds for the map M .
Indeed, in this case the origin O of R3

+ has four different rank-1
preimages, O itself and O1

−1
(
0; 0; 1

k

)
, O2

−1
(
0; 1; 1

k

)
, O3

−1 (0; 1; 0).
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Figure 2: Bifurcation diagram of the map H

Only O2
−1 belongs to Z4 and then only further four rank-2 preim-

ages of O exist, all belonging to Z0. These preimages are the
vertex of a box B that contains all the bounded trajectories of
M (a qualitative draft is given in Fig.3a). Fig.3b confirms that
the rectangular parallelepiped B is the basin of attraction of E∗,
always stable if kg < k < 1. In particular, Fig.3b shows two cross
sections of the connected basin of attraction of E∗. More precisely,
one with the plane z = 1

k
, that is the plane through the maximum

point of H and one with z = z∗ that is the plane that get through
the fixed point E�. Besides the homogeneous cycles (fixed points),
the map M exhibits two saddle cycles of period 3, S1 and S2, of
mixed type, given by

S1 = {(0∗, y∗, 0∗), (x∗, 0∗, 0∗) , (0∗, 0∗, z∗)}
S2 = {(0∗, y∗, z∗) , (x∗, y∗, 0∗) , (x∗, 0∗, z∗)} .

In Fig.3a the mutual positions of the coexisting cycles of the map
M are represented, as well as the stable and unstable sets of the
two saddle cycles. The projection of the two branches of the curve

16



(a) Qualitative draft of B. The
squares denote the saddle cycles

(b) Two sections of the basin of attrac-
tion of E∗

Figure 3: The connected basin of attraction of E∗ when k > 1
4

LC are also represented in the same figure, to give an idea of the
Z4 region.

A completely different situation can be observed when k < kg
and the minimum point of the map H has a negative critical value,
so that two further preimages of the repelling fixed point O exist,
x = a and x = b. As we said, in this case a global bifurcation of
the map H has occurred and this has also caused an important
qualitative change in the basin of attraction of E∗. Indeed, as
shown in Fig.4a, all the four preimages of rank-1 of O∗ have further
preimages and even its preimages of rank-2 may have further
preimages. This implies the transition from a connected basin of
attraction into a disconnected one. In Fig.4b five cross sections of
the basin of attraction of E∗ are represented; in particular the two
sections z = a, z = b are the lower and upper bounds of a portion
of the unfeasible set. A further portion of the unfeasible set is
bounded by the planes x = a and x = b. Concluding, we can say
that the basin of attraction of E∗ is made up by four components,
bounded by planes parallel to the coordinate planes xy and yz

17



and passing through the preimages of 0 obtained with the map
H. Such a structure of the basin of attraction will persist as k

further decreases, associated with the attracting set containing all
the attractors of the map M .

(a) Qualitative draft (b) Sections

Figure 4: Disconnected basin of attraction of E∗

3.3 Coexistence of two stable cycles

Now, we consider k < kf , when E∗ becomes unstable. We know
that when k = kf = 3 − 2

√
2 the fixed point x∗ of the 1D map

H undergoes a period doubling bifurcation and immediately after
the bifurcation a stable cycle C = (c1, c2) of period 2 appears.
Bearing in mind section 2.1, we have that the occurrence of the
period doubling bifurcation of the fixed point x∗ of the map H

has important consequences on the map M , since it causes the
sudden appearance of 10 cycles, besides the 4 already existing. In
particular, we obtain that the map M admits:

A1) two homogeneous stable cycles: one of period 2, C, and one
of period 6, D;
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A2) four repelling cycles: the two fixed points O∗ and E∗ (ho-
mogeneous) and two mixed cycles of period 3 (mixed);

A3) eight saddles cycles of period 6 of mixed type.

The repelling cycles in A2) have been described above, be-
ing due to the existence of the two fixed points of the map H.
In order to obtain the periodic points of the new homogeneous
cycles, in A1), we recall that if (a1, ..., an) is a cycle of H (x)
then (g (a1) , ...g (an)) is the conjugate cycle of F (y) as well as
(h (a1) , ..., h (an)) = (a1, ..., an) is the conjugate cycle of G (z).
Hence we obtain that the periodic points of the stable cycle of
period 2 are given by {(c1, g (c1) , c2) , (c2, g (c2) , c1)}, while the
remaining points of the set P = {c1, c2} × {g(c1), g(c2)} × {c1, c2}
belong to the stable cycle of period 6.

Regarding the mixed cycles in A3), we have to consider the
coexistence of the cycle C with the fixed points O∗ and x�. We
obtain that, being g(0) = 0 and g(x∗) = y∗

B1) three saddle cycles of period 6 exist, due to the coexistence
of C and O�; they can be obtained starting from the periodic
points (c1, 0, c1) and (c1, 0, c2), and (c1, 0, 0), respectively

B2) three saddle cycles of period 6 exist, due to the coexistence
of C and the fixed point x�; they can be obtained by the
periodic points (c1, y

�, c1) and (c1, y
�, c2) and (c1, y

�, x�), re-
spectively

B3) two saddle cycles of period 6 exist, due to the coexistence of
C, x∗ and 0. Furthermore, the two cycles can be obtained
starting from the periodic points (c1, y

�, 0) and (c1, 0, x
�) .

Fig. 4 shown two different sections of the connected component
(immediate basins) of the basins of attraction of the two homoge-
neous stable cycles, of period 2 and of period 6. In particular we
show the sections z = c1 (Fig. 4.a) and z = c2 (Fig. 4.b).

The boundary separating the basin of attraction B (C) and
B (D) is made up by the stable sets of the three saddle cycles in
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(a) Section z = c1 (b) Section z = c2

Figure 5: Two sections of the connected component of the basins
of attraction of the two coexisting cycles C and D at k = 0.1665

B2). On the other hand, the stable sets of the cycles in B1) and
B3) bound the set of bounded trajectories, as described in the
previous section (for a more accurate description of the basins of
the two coexisting cycles see [3]).

3.4 Coexistence of two fixed points, a cycle of period

2 and a cycle of period 4

The number of cycles quickly becomes larger and larger when k is
further decreased. For example, at k = 0.1625 the map H exhibits
a stable cycle of period 4, born via period doubling bifurcation of
C = (c1, c2). Obviously, the appearance of such a cycle of period
4 is associated with new cycles of M , either of homogeneous or
mixed type. To realize how the cardinality of the set of periodic
points of M quickly increases we just consider (6). Since in the
case we are considering H has 8 periodic points (2 fixed points,
a cycle of period 2 and a cycle of period 4), the set P contains
83 = 512 periodic points.

We start describing the homogeneous cycles of the map M .
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From section 2.1, we obtain that M has 6 stable cycles of ho-
mogeneous type: one of period 4 and five of period 12. We can
derive the periodic points of these cycles starting from the cycle
C̃ = (a1, a2, a3, a4) of the 1D map H. The homogeneous cycle of
period 4 of the map M associated with the cycle C̃ of H of the
same period has only one periodic point with first component a1,
given by (a1, g (a2) , a2). Regarding the cycles of period 12 of the
map M , they can be obtained starting from the periodic points
(a1, g (aj) , aj+1) with 1 ≤ j ≤ 2 and (a1, g (aj) , aj) with 1 ≤ j ≤ 3
.

To obtain the mixed cycles we have to consider all the possible
pairs of cycles of H as well as all triplets of cycles of H containing
the cycle of period 4. We have that:

• the coexistence of the cycle C̃ with the fixed point x� gives
rise to five saddle cycles of period 12. The periodic points of
the cycles can be derived from (a1, g (x

�) , al), with 1 ≤ l ≤ 4,
and (x1, g (x

�) , x�);

• analogously, the coexistence of C̃ with the fixed point O gives
rise to five saddle cycles of period 12. Their periodic points
can be derived from (a1, 0, al), with 1 ≤ l ≤ 4, and (a1, 0, 0);

• the coexistence of C̃ with the cycle of period 2 C gives rise to
twelve saddle cycles of period 12. The periodic points of the
cycles can be derived from (a1, g (cj) , al) and (a1, g (cj) , ci),
with 1 ≤ l ≤ 4, 1 < j, i < 2;

• the coexistence of C̃ with both the fixed points gives rise to
two saddle cycles of period 12. The periodic points of such
cycles can be derived from (a1, y

�, 0), and (a1, 0, x
�) ;

• the coexistence of C̃ and C with the fixed point x� give rise
to four saddle cycles of period 12. Their periodic points
can be derived from (a1, g (cj) , x

�) and (a1, g (x
�) , cj), with

1 ≤ j ≤ 2;
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• analogously, the coexistence of C̃ and C with the fixed point
O gives rise to four saddle cycles of period 12, with periodic
points achievable from (a1, g (cj) , 0) and (a1, 0, g (cj)) with
1 ≤ j ≤ 2.

To sum up, we can conclude that the period doubling bifurca-
tion of the cycle 2 causes for the mapM the appearance of a stable
cycle of period 4, of five stable cycles of period 12 and thirty-two
saddle cycles of period 12. The stable cycles are homogeneous
while the saddle ones are of mixed type.

In the light of the previous analysis it can be inferred that
the ”cube separate” property enriches the dynamics of the model,
allowing the coexistence of umpteen attractors.

In Fig.6 we show the six stable homogeneous cycles, one of
period 4 and five of period 12 for the map M , at k = 0.1625. In
Fig. 6 we can observe that, as expected, generally producer 1 has
a higher market share, due to its more efficient production process,
but there exist cycles in which producer 2 has largest production,
in some phase of the cycle.

4 Chaotic attractors, chaotic surfaces and

invariant curves of the map M

From the bifurcation diagram of the map H in Fig.2 we can ob-
serve the existence of chaotic attractors of the 1D map. Now, we
can extend the analysis so far conducted for cycles to the case
of more complex of attractors. Analogously to the cases studied
above, we shall show that all the chaotic sets of the map M can
be obtained as Cartesian product of the chaotic intervals of H and
their conjugate, associated with the maps F and G. Then chaotic
parallelepipeds are obtained in the phase space of M . To prove
this fact, we extend at the three-dimension map, the results shown
in [5], obtained for the two-dimension case.

Let I be any invariant set of M (i.e. M (I) ⊆ I) and Ix =
projx (I), Iy = projy (I) and Iz = projz (I), where projl denotes
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Figure 6: Coexisting stable cycles at k = 0.1625. Red points
correspond to producer 1, while the blue ones to producers 2.
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the projection onto the l-axis:

Lemma 2 If Ix is an invariant set for H (x) = f (g (h (x))) then
Iz = h (Ix) is invariant for G (z) = h (f (g (z))) and Iy = g (h (Iz))
is invariant for F (y) = g (h (f (y))) . If I is invariant for M then

its projections Ix, Iy and Iz are invariant sets for H, F and G,

respectively.

Proof. Let be Ix an invariant set of H (x) = f (g (h (x))). We
start proving that Iz = h(Ix) is an invariant set of G (z), i.e.
G (Iz) ⊆ Iz. Let z ∈ G (Iz), then at least one z̄ ∈ Iz exists such
that G (z̄) = z, that is h (f (g (z̄))) = z. Since z̄ ∈ Iz = h(Ix),
there exists at least one x̄ ∈ Ix such that h (x̄) = z̄. But G (z̄) =
h (f (g (z̄))) = h (f (g (h (x̄)))) = h (H (x̄)). Then, being H (x̄) ∈
Ix, we can conclude that z = G (z̄) ∈ h (Ix) = Iz. Analogously we
can proceed for the set Iy.

Now let I an invariant set forM and (x, y, z) ∈ I. Then x ∈ Ix,
y ∈ Iy and z ∈ Iz. We know thatM3 (x, y, z) = (H (x) , F (y) , G (z))) ∈
I. Consequently, we obtain that H (x) ∈ Ix, F (y) ∈ Iy and
G (z) ∈ Iz, that is the projections of I are invariant sets for the
associated 1D maps.

Lemma 3 If Ix is an invariant set of H (x) then Ix × Iy × Iz is

an invariant set of M , where Iy = g (h (Iz)) and Iz = h(Ix).

Proof. Let x0 ∈ Ix, y0 = g(h(x0)) ∈ Iy and z0 = h(x0) ∈ Iz. We
haveM (x0, y0, z0) = (f (g(h(x0))) , g (h(x0)) , h (x0)) ∈ Ix×Iy×Iz,
since f (g(h(x0))) = H(x0) ∈ Ix. In this way we proved that
M (Ix × Iy × Iz) � Ix × Iy × Iz.

Obviously, if Ix is an invariant interval, then the associated
invariant set of M (the cartesian product Ix × Iy × Iz) is a rect-
angular parallelepiped. In particular, in our model, the map H at
k = 0.16 exhibits a chaotic interval Ix. Then the mapM exhibits a
one-piece chaotic parallelepiped given by the Ix×g(h(Ix))×h (Ix)
(Fig.7a)

In the case in which the 1D map H has a multi-band chaotic
attractor, then the same occurs for M . But, as we have seen
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(a) k = 0.16. A single chaotic attractor (b) k = 0.161. Two-pieces and
six-pieces coexisting attractors.

Figure 7: Chaotic attractors

for cycles, the coexistence of multi-band chaotic attractors occurs,
following the same rules we described in Section 3. For example,
at k = 0.161 the map H exhibits a two-pieces chaotic attractor.
This means that the map M has two coexisting attractors: a 6-
pieces chaotic attractor and a 2-pieces chaotic attractor as shown
in Fig.7b. To localize the two multi-pieces chaotic attractors we
can proceed as in section 2.1

We have seen that if the 1D map H exhibits chaotic intervals,
then the 3D map exhibits chaotic parallelepiped but, as special
cases, may also exhibit chaotic surfaces and, as we shall see, even
chaotic curves are possible outcome for the map M. In general we
can prove the following two propositions:

Proposition 4 Let

R1 = {(f (Fn (y)) , y, z) : (y, z) ∈ Iy × Iz}
R2 = {(x, g (Gn (z) , z) : (x, z) ∈ Ix × Iz}
R3 = {(x, y, h (Hn (x))) : (x, y) ∈ Ix × Iy}

The union of the surfaces R1, R2, and R3 is an invariant set of

the map M , that is M (R1 ∪R2 ∪R3) ⊆ R1 ∪R2 ∪R3.

Proof. Let (x, y, z) ∈ R1. From the property of the cycles of the
3D map associated with the cycles of the 1D maps H, F or G
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(section 2.1), we obtain that

M (f (Fn (y)) , y, z) = M((Hn (f (y)) , y, z))

= (f (y) , g (z) , h (f (Fn (y))))

= (f (y) , g (z) , Gn (h(f (y)))

= (x, ȳ, h (Hn (x))) ∈ R3

where x = f(y) ∈ Ix and ȳ = g(z) ∈ Iy, from Proposition 1.
In a similar way we can prove that the M(R2) ⊆ R1 and

M(R3) ⊆ R2. Thus, we can conclude that M (R1 ∪R2 ∪R3) ⊆
R1 ∪R2 ∪R3.

Proposition 5 Let

R̄1 = {(f (g (Gn (z))) , y, z) : (y, z) ∈ Iy × Iz}
R̄2 = {(x, g (h (Hn (x))) , z) : (x, z) ∈ Ix × Iz}
R̄3 = {(x, y, h (f (Fn (y)))) : (x, y) ∈ Ix × Iy}

The union of the surfaces R̄1, R̄2 and R̄3 is an invariant set of

the map M , that is M
(
R̄1 ∪ R̄2 ∪ R̄3

) ⊆ R̄1 ∪ R̄2 ∪ R̄3.

Proof. Let (x, y, z) ∈ R̄1. We have that

M (f (g (Gn (x))) , y, z) = (f (y) , g (z) , z)

= (x, y, h (f (g (Gn (z)))))

= (x, y, h (f (Fn (g (z)))))

= (x, y, h (f (Fn (ȳ)))) ∈ R̄3

where x = f (y) ∈ Ix and ȳ = g (z) ∈ Iy. In similar way we
can prove that M

(
R̄2

) ⊆ R̄1 and M
(
R̄3

) ⊆ R̄2. Thus, we can
conclude that M

(
R̄1 ∪ R̄2 ∪ R̄3

) ⊆ R̄1 ∪ R̄2 ∪ R̄3.

Recalling that the set
{
(x, y, z) ∈ R

3 : z = f (x)
}
is a general-

ized cylinder spanned by lines parallel to the y-axis with cross-
section defined by the equations z = f (x) and y = 0 we can say
that the surfaces analyzed in the last two propositions are union
of generalized cylinders.
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(a) ic: (f (y0) , y0, z0) =
(0.09, 0.01, 0.03)

(b) ic: (x0, y0, h (f (y0))) =
(0.02, 0.01, 0.09)

Figure 8: Chaotic surfaces at k = 0.16

For instance, if in model (4) we consider as initial conditions

(f (y0) , y0, z0) = (0, 09; 0, 01; 0, 03) , or
(x0, y0, h (f (y0))) = (0, 02; 0, 01; 0, 09)

we obtain the two chaotic surfaces shown in Fig.7.
Finally, we can prove that intersecting two by two the surfaces

families R1, R2, R3 (or R̄1, R̄2, R̄3) we obtain an invariant set of
the map M , made up by the union of three curves.

Proposition 6 Let Δ = (R1 ∩R2) ∪ (R2 ∩R3) ∪ (R1 ∩R3), then

M(Δ) ⊆ Δ

Proof. We consider the intersections between the surfaces R1 and
R2, R2 and R3, R1 and R3; that is:

R1 ∩R2 = {(f (Fn (y)) , y, z)} ∩ {(x, g (Gn (z) , z)}
=

(
H2n (f (g (z))) , g (Gn (z) , z)

)
R2 ∩R3 = {(x, g (Gn (z) , z)} ∩ {(x, y, h (Hn (x)))}

=
(
x, F 2n (g (h (x))) , Gn (h (x))

)
R1 ∩R3 = {(f (Fn (y)) , y, z)} ∩ {(x, y, h (Hn (x)))}

=
(
Hn (f (y)) , y,G2n (h (f (y)))

)
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To obtain the assert, we show that M (R1 ∩R2) ⊆ R1 ∩ R3,

M (R1 ∩R3) ⊆ R2∩R3 and M (R2 ∩R3) ⊆ R1∩R2. From Propo-
sition 2 and keeping in mind that x ∈ Ix, y ∈ g (h (Ix)) = Iy,
z ∈ h (Ix) = Iz and g (z) = y ∈ Iy we obtain that:

M (R1 ∩R2) = M
(
H2n (f (y)) , y, Fn (g (z)) , z

)
=

= (f (Fn (g (z))) , g (z) , h
(
H2n (f (g (z)))

)
) =

=
(
Hn (f (g (z))) , g (z) , G2n (h (f (g (z))))

)
=

=
(
Hn (f (y)) , y,G2n (h (f (y)))

) ∈ R1 ∩R3

In similar way, we obtain:

M (R2 ∩R3) = M
(
x, F 2n (g (h (x))) , Gn (h (x))

)
=

=
(
H2n (f (g (z))) , g (Gn (z) , z)

) ∈ R1 ∩R2

and

M (R1 ∩R3) = M
(
Hn (f (y)) , y,G2n (h (f (y)))

)
=

=
(
H2n (f (g (z))) , g (Gn (z) , z)

) ∈ R1 ∩R2

This allows us to conclude that M (Δ) ⊆ Δ.

Proposition 7 Let Δ̄ = (R̄1 ∩ R̄2) ∪ (R̄3 ∪ (R̄1 ∩ R̄3), then

M(Δ̄) ⊆ Δ̄

Proof. We consider the intesection between the surfaces R̄1 and
R̄2. Keeping in mind that

g (h (Hn (f (g (Gn (z)))))) = g (h (Hn (Hn (f (g (z))))))

= g
(
h
(
H2n (f (g (z)))

))
= F 2n (g (h (f (g (z))))) = F 2n+1 (g (z))

and
f (g (Gn (z))) = Hn (f (g (z))) ,
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Figure 9: k = 0.16, ic:(0.09, 0.01, 0.09). Example of a chaotic set
made up by the union of three curves

we obtain that

R̄1 ∩ R̄2 =
{(

Hn (f (g (z))) , F 2n+1 (g (z)) , z
)
, z ∈ Iz

}
Proceeding in a similar way we get

R̄1 ∩ R̄3 =
{(

H2k+1 (f (y)) , y,Gk (h (f (y)))
)
, y ∈ Iy

}
and

R̄2 ∩ R̄3 =
{(

x, Fn (g (h (x))) , G2n+1 (h (x))
)
, x ∈ Ix

}
To obtain the assert, as in Proposition 7, we show that

M
(
R̄1 ∩ R̄2

) ⊆ R̄1 ∩ R̄3,

M
(
R̄1 ∩ R̄3

) ⊆ R̄2 ∩ R̄3 and
M

(
R̄2 ∩ R̄3

) ⊆ R̄1 ∩ R̄2.

Denoting g (z) = ȳ ∈ Iy, f (y) = x̄ ∈ Ix and h (x) = z̄ ∈ Iz, we
have
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M
(
R̄1 ∩ R̄2

)
=

(
f
(
F 2n+1 (g (z))

)
, g (z) , h (Hn (f (g (z))))

)
=

=
(
H2n+1 (f (g (z))) , g (z) , Gn (h (f (g (z))))

)
=

=
(
H2n+1 (f (ȳ)) , ȳ, Gn (h (f (ȳ)))

) ∈ (
R̄1 ∩ R̄3

)
;

M
(
R̄1 ∩ R̄3

)
=

(
f (y) , g (Gn (h (f (y)))) , h

(
H2n+1 (f (y))

))
=

=
(
x̄, g (Gn (h (x̄))) , h

(
H2n+1 (x̄)

))
=

=
(
x̄, Fn (g (h (x̄))) , G2n+1 (h (x̄))

) ∈ (
R̄2 ∩ R̄3

)
;

M
(
R̄2 ∩ R̄3

)
=

(
f (Fn (g (h (x)))) , g

(
G2n+1 (h (x))

)
, h (x)

)
=

=
(
f (Fn (g (z̄))) , g

(
G2n+1 (z̄)

)
, z̄

)
=

=
(
Hn (f (g (z̄))) , F 2n+1 (g (z̄)) , z̄

) ∈ (
R̄1 ∩ R̄2

)
so proving the assert.

Fig.9 shows an example of chaotic curves for the map M .

5 Conclusion

In this paper we have studied a Cournot duopoly with isoelastic
demand function and costant marginal costs. As it is well-know
the reactions of the competitors are functions depending on the
opponent expected production. To close the model, we have as-
sumed that both producers have naive expectations but one of
them reacts with delay to the move of its competitor.

So doing, we have obtained a discrete two-dimensional time-
delayed system, ultimately described by a 3D map (map M) hav-
ing third iterate with separate components. This property, that
we have called ”cube separate property” , is a extension at the
three-dimensional case of the ”square separate property” studied
in [5].

Our aim was to investigate the dynamic behavior of the two
firm described by the map M . In particular our study focused on
the global properties of its dynamic behavior.

We have pointed out that the cube separate property causes
an enrichement of the dynamics of the model allowing many situa-
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tions of multistability, in which umpteen stable cycles may coexist.
Characterizing the basins of attraction of different stable coexist-
ing cycles, we have shown that, in general, they are parallelepipeds,
separated by stable sets of saddle cycles.

Expanding the paper [4], we have also proved that, when the
1D map is chaotic, chaotic surfaces, having the shape of general-
ized cylinders, and chaotic curves may coexist for the map M .
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