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Abstract

A relevant issue in panel data estimation is heteroskedas-
ticity, which often occurs when the sample size is large and
individual units are of varying size. Furthermore, many of
the available panel data sets are unbalanced in nature,
because of attrition or accretion, and micro-econometric
models applied to panel data are frequently multi-equation
models. This paper considers the general least squares es-
timation of heteroskedastic stratified two-way error com-
ponent model of both single equations and seemingly un-
related regressions (SUR) systems (with cross-equations
restrictions) on unbalanced panel data. The derived het-
eroskedastic estimators improve the estimation efficiency,
with the SUR procedures performing better than the single-
equation procedures.

Keywords: Unbalanced panels; ECM; SUR; Heteroskedas-
ticity.
JEL classification: C13; C23; C33.
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1. INTRODUCTION

In applied econometrics, there is an increasing use of panel data,
that Baltagi (2013, page 1) defines as “the pooling of observa-
tions on a cross-section of households, countries, firms, etc. over
several time periods”. The reason for this increasing use is that
panel data sets are more informative, since they often provide
richer and more disaggregated information. Furthermore, they
allow to model individual heterogeneity and to address aggrega-
tion issues. Finally, since they span over several time periods,
they also allow to describe the dynamics of the phenomena under
study.

The error component model (ECM ) is the standard approach
to the estimation of individual and time effects in econometric
single-equation models based on panel data (see Baltagi, 2013,
for a review of the methods). Many of the available data sets are
unbalanced in nature, that is, not all the individuals are observed
over the whole time period. Several and different reasons, such as
attrition or accretion, may produce an incomplete panel data set.
Therefore, standard single-equation ECM s have been extended
to the econometric treatment of unbalanced panel data: Biørn
(1981) and Baltagi (1985) discussed the single-equation one-way
ECM, Wansbeek and Kapteyn (1989) and Davis (2002) extended
such estimation method to the two and multi-way cases.

Although often discarded in empirical applications, a rele-
vant issue in panel data estimation is heteroskedasticity, which
often occurs when the sample size is large and observations dif-
fer in “size characteristic” (i.e., the level of the variables). Un-
der this perspective, heteroskedasticity arises from the fact that
the degree to which a relationship may explain actual observa-
tions is likely to depend on individual specific characteristics. On
the other hand, the error variance may also systematically vary
across observations of similar size and, in practice, the two differ-
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ent sources of heteroskedasticity may be simultaneously present
(see Lejeune, 1996, 2004). This means that heteroskedasticity is
the rule rather than the exception when dealing with individual
data concerning households or firms. Assuming homoskedastic
disturbances when heteroskedasticity is present will still result
in consistent estimates of the regression coefficients, but these
estimates will not be efficient. Also, the standard errors of the
fixed-effect (FE ) estimates will be biased and robust standard
errors should be computed in order to correct for the possible
presence of heteroskedasticity.

Several authors have analyzed the problem of heteroskedas-
ticity in balanced panel data, usually considering a single-equation
regression model with one-way disturbances εit = μi+uit

1. Bal-
tagi and Griffin (1988) are concerned with the estimation of a
random-effect (RE ) model allowing for heteroskedasticity on the
individual-specific error term Var (μi) = ϕi. In contrast, Rao et
al. (1981), Magnus (1982), Baltagi (1988), and Wansbeek (1989)
adopt a symmetrically opposite specification allowing for het-
eroskedasticity on the remainder error term Var (uit) = ψi.

As Mazodier and Trognon (1978) pointed out, if the ϕi’s are
unknown, then there is no hope to estimate them from the data:
even if the μi’s were observed, it would be impossible to esti-
mate their variances from only one observation on each individ-
ual disturbance. Therefore, the model proposed by Baltagi and
Griffin (1988) suffers from the incidental parameters problem2

1While all these papers assume constant slope coefficients, Bresson et al.
(2006, 2011) allow variations in parameters across cross-sectional units in or-
der to take into account the between individual heterogeneity. Hence, these
authors derive a hierarchical Bayesian panel data estimator for a random co-
efficient model (RCM ), where heteroskedasticity is modeled following both
the RCM s on panel data proposed by Hsiao and Pesaran (2004) and Chib
(2008) and the general heteroskedastic one-way ECM proposed by Randolph
(1988), who assumes that both the individual-specific term μi and the re-
mainder error term uit are heteroskedastic.

2Neyman and Scott (1948) study maximum likelihood (ML) estimation of
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(see Phillips, 2003; Baltagi, 2013). Furthermore, also the mod-
els allowing for heteroskedasticity on the remainder error term
uit suffer from the incidental parameters problem when the time
dimension of the panel is short.

There are two possible solutions to avoid the incidental pa-
rameters problem (see Baltagi, 2013): either to allow the vari-
ances to change across strata (i.e., stratified ECM s) or, if the
variables that determine heteroskedasticity are known, to spec-
ify parametric variance functions (i.e., adaptive estimation of
heteroskedasticity of unknown form).

Mazodier and Trognon (1978) proposed a stratified two-way
ECM, i.e., εit = μi+νt+uit, on balanced panels in which both the
individual-specific effect μi and time-specific effect νt variances
are constant within subsets of observations (or strata), but are
allowed to change across strata. More recently, Phillips (2003)
considers a stratified one-way ECM, again on balanced panels,
where the variances of the individual-specific effect μi are allowed
to change not across individuals but across strata, and provides
an expectation-maximization (EM ) algorithm to estimate the
model’s parameters.

Li and Stengos (1994) derive an adaptive estimator for the
heteroskedastic one-way ECM using balanced panel data where
heteroskedasticity is placed on the remainder error term, and
hence, Var (uit|xit) = ψ (xit) ≡ ψit

3. More recently, Roy (2002)
derives a similar adaptive estimator where heteroskedasticity is
placed on the individual-specific term rather than the remainder
disturbance, and hence, Var (μi|x̄i·) = ϕ (x̄i·) ≡ ϕi. Baltagi et al.

models having both structural and incidental parameters: while the struc-
tural parameters can be consistently estimated, the incidental parameters
cannot be consistently estimated. These authors show that the estimation
of the ML model is inconsistent (or partially inconsistent) if the model con-
tains nuisance or incidental parameters which increase in number with the
sample size.

3Throughout the paper, all vectors and matrices are in boldface.
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(2005) check the sensitivity of these two adaptive heteroskedastic
estimators to misspecification of the form of heteroskedasticity,
showing that misleading inference may occur when heteroskedas-
ticity is present in both components. Therefore, accounting for
both sources of heteroskedasticity seems to be very important in
empirical work.

Indeed, if heteroskedasticity is due to differences in size char-
acteristic across statistical units (i.e., individuals, households,
firms or countries), then both error components are expected to
be heteroskedastic, and it may be difficult to argue that only
one component of the error term is heteroskedastic but not the
other (see Bresson et al., 2006, 2011). To this end, Randolph
(1988), working on unbalanced panel data, allows for a more
general heteroskedastic single-equation one-way ECM, assuming
that both the individual-specific and remainder error terms are
heteroskedastic, i.e., Var (μi) = ϕi and E (uu′) = diag[ψit]. Leje-
une (1996, 2004) is concerned with the estimation and specifica-
tion testing of a full heteroskedastic one-way ECM, in the spirit
of Randolph (1988) and Baltagi et al. (2005), and specifies para-
metrically the variance functions. Baltagi et al. (2006), in the
spirit of Randolph (1988) and Lejeune (1996, 2004), derive a joint
Lagrange multiplier (LM ) test for homoskedasticity against the
alternative of heteroskedasticity both in the individual-specific
term μi and in the remainder error term uit.

Micro-econometric models applied to panel data are often
multi-equation models. Primal and dual production models are
a common case, when systems of input demands and/or out-
put supply equations have to be estimated; the same is true
for systems of demand equations in consumer analysis. Baltagi
(1980) and Magnus (1982) extended the estimation procedure
of the single-equation model to the case of seemingly unrelated
regressions (SURs) for balanced panels; Biørn (2004) proposed
a parsimonious technique to estimate one-way SUR systems on
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unbalanced panel data; Platoni et al. (2012) extended the proce-
dure suggested by Biørn (2004) to the two-way case. Although
heteroskedasticity is a frequent and relevant issue also in the
multi-equation models applied to (unbalanced) panel data, to
our knowledge very few papers concerning heteroskedastic SUR
systems have been published. A relevant exception is Verbon
(1980), who derived a LM test for heteroskedasticity in a model
of SUR equations for balanced panels.

In order to fill this gap in the literature, this paper extends
previous results to the estimation of heteroskedastic stratified
two-way ECM, i.e., εit = μi + νt + uit, on unbalanced panel
data4 in the case of SUR systems (with cross-equations restric-
tions). The individual-specific effect μi and remainder error term
uit variances and covariances are constant within strata, but are
allowed to change across strata. Indeed, the variance and co-
variance estimations in two-way SUR systems are implemented,
starting from the straightforward extension of the heteroskedas-
tic single-equation stratified ECM from the one-way to the two-
way case. Moreover, the estimations are implemented by two
methods: the quadratic unbiased estimation (QUE ) procedure
suggested by Wansbeek and Kapteyn (1989) and the within-
between (WB) procedure proposed by Biørn (2004).

The remainder of the paper proceeds as follows. While Sec-
tion 2 describes the heteroskedastic two-way estimation for single
equations, Section 3 extends the analysis to the corresponding es-
timation for SUR systems. Finally, Section 4 provides simulation
results, Section 5 discusses a possible extension to heteroskedas-
ticity on the time-specific error term, and Section 6 draws some
conclusions.

4The estimation procedures proposed here can definitely be applied also
to balanced panel data.
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2. HETEROSKEDASTIC STRATIFIED
SINGLE-EQUATION TWO-WAY ECM

We start by considering an unbalanced panel characterized by a
total of n observations, withN individuals (indexed i = 1, . . . , N)
observed over T periods (indexed t = 1, . . . , T ). Let Ti denote the
number of times the individual i is observed and Nt the number
of individuals observed in period t. Hence,

∑
i Ti =

∑
tNt = n.

In the following we consider the regression model:

yit = xitβ+ μi + νt + uit = xitβ+ εit, (1)

where xit is a 1×k vector of explanatory variables and β a k×1
vector of parameters, μi is the individual-specific effect, νt the
time-specific effect, and uit the remainder error term; in the RE
model εit is the composite error term.

Using the n × N matrix Δμ and the n × T matrix Δν , that
are matrices of indicator variables denoting observations on in-
dividuals and time periods respectively, we can define the N×N
diagonal matrix ΔN ≡ Δ′μΔμ (diagonal elements correspond to
the Ti’s) and the T × T diagonal matrix ΔT ≡ Δ′νΔν (diagonal
elements correspond to the Nt’s), as well as the T ×N matrix of
zeros and ones ΔTN ≡ Δ′νΔμ, indicating the absence or presence
of an individual in a certain time period. Hence, using matrix
notation, we can write:

y = Xβ+Δμμ+Δνν+ u = Xβ+ ε, (2)

where X is a n× k matrix of explanatory variables.
Let us assume there exists a meaningful stratification of ob-

servations5. Hence, the unbalanced panel can also be character-
ized by A strata (indexed a = 1, . . . , A), with N̂a the number of

5In empirical work the number of strata is unidentified. Therefore, it is
necessary to use a selection procedure, such as the Akaike (1974) information
criterion, to determine the number of strata.
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individuals belonging to stratum a (indexed ı̂a = 1̂a, . . . , N̂a) and
Îa the set of individuals belonging to stratum a. Therefore, the
number of observations related to stratum a is n̂a =

∑
i∈Îa Ti =∑N̂a

ı̂a=1̂a
Tı̂a . Hence,

∑A
a=1 N̂a = N and

∑A
a=1 n̂a = n.

Using the n × A matrix Δα of indicator variables denoting
observations on strata, we can define the A×A diagonal matrix
ΔA ≡ Δ′αΔα (diagonal elements correspond to the n̂a’s) and the
A×N matrix of zeros and ones ΔAN ≡ Δ′αΔμΔ−1N , indicating the
absence or presence of an individual in a certain stratum (notice
that Δ′αΔμ is a matrix of zeros and Ti’s for i ∈ Îa or Tı̂a ’s).

As Mazodier and Trognon (1978) and Phillips (2003), we as-
sume the individual-specific error and remainder error variances
are constant within stratum but change across strata. Hence,
heteroskedasticity on the individual-specific disturbance implies
μi ∼ (0, ϕa), while heteroskedasticity on the remainder error
term implies uit ∼ (0, ψa).

2.1. Robust Two-way FE

In the FE model the individual-specific term μi and the time-
specific term νt are parameters to be estimated. Therefore, het-
eroskedasticity is placed only on the remainder error uit by as-
suming uit ∼ (0, ψa). The Within (W ) transformation6 of the

6For a FE model the number of fixed-effect parameters μ1, . . . , μN and
ν1, . . . , νT increases with the number of individuals N and periods T , re-
spectively. Hence, the conventional asymptotic result cannot be applied: if
N →∞, then estimates of the parameters μ1, . . . , μN are necessarily incon-
sistent for a fixed T (see Wang and Ho, 2010), and if T → ∞, then esti-
mates of the parameters ν1, . . . , νT are necessarily inconsistent for a fixed N .
Therefore, when the time dimension of the panel is short, the noise in the
estimation of the incidental parameters μi contaminates the ML estimates
of the structural parameters (see Bester and Hansen, 2016). The literature
proposes some solutions to the incidental parameters problem for some of
the models, usually relying on removing the incidental parameters before
estimations (see Wang and Ho, 2010). One popular approach, widely used
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two-way ECM is based on the n× n matrix:

Q[Δ] = QA −PB = QA −QAΔνQ
−Δ′νQA, (3)

where QA = In−PA, PA = ΔμΔ
−1
N Δ

′
μ, and Q = Δ′νQAΔν , with

Q− the generalized inverse (see Wansbeek and Kapteyn, 1989;
Davis, 2002). Therefore, the W estimator is:

β̂
W

=
(
X′Q[Δ]X

)−1
X′Q[Δ]y, (4)

where the number of explanatory variables, obviously without
the intercept, is k − 1.

Moreover, the following assumptions are made7.

FE.1 Strict exogeneity The set of (k − 1)·Ti explanatory variables
for each individual xi(N) ≡ (xi1,xi2, . . . ,xiTi) is uncorre-
lated with the idiosyncratic error uit and the set of (k − 1) ·
Nt explanatory variables in each time period xt(T ) ≡
(x1t,x2t, . . . ,xNtt) is also uncorrelated with the same id-
iosyncratic error uit:

E (uit |x , μi, νt)= E
(
uit

∣∣xi(N) , μi, νt
)

= E
(
uit

∣∣xt(T ) , μi, νt) = 0,

with x ≡ (x11, . . . ,x1T1 ,x21, . . . ,x2T2 , . . . ,xN1, . . . ,xNTN ).

FE.2 Consistency The W estimator in (4) is asymptotically well
behaved, in the sense that the “adjusted” (k − 1)× (k − 1)
outer product matrix X′Q[Δ]X has the appropriate rank:

rank
(
X′Q[Δ]X

)
= k − 1.

in linear models, is to transform the model by the W transformation (i.e.,
yit and the 1× (k − 1) vector xit are demeaned), as we have done in deriving
our estimation.

7Details on the assumptions FE.1 and FE.2 can be found in Appendix A
of Platoni et al. (2012).
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Under assumptions FE.1 and FE.2 the W estimator is con-
sistent and asymptotically normal (see Wooldridge, 2010). But
without assuming homoskedasticity and no serial correlation (i.e.,
the assumption FE.3 in Appendix A of Platoni et al., 2012), the
expression

Var
(
β̂
W
)
= σ̂2u ·

(
X′Q[Δ]X

)−1
, (5)

with σ̂2u the estimator of σ2u, gives an improper variance-covariance
matrix estimator (see Wooldridge, 2010).

To obtain robust standard errors we follow the simple method
suggested by Arellano (1987) for the one-way ECM, and proposed
also by Baltagi (2013). If we stack the observations for each
individual i, we can write:

ỹi = (ETi −ETiDiQ
−D′

iETi)yi,

X̃i = (ETi −ETiDiQ
−D′

iETi)Xi,
(6)

where ETi = ITi − J̄Ti , with ITi an identity matrix of dimension

Ti, J̄Ti =
JTi
Ti

, and JTi a matrix of ones of dimension Ti, and Di

is the Ti × T matrix obtained from the T × T identity matrix
IT by omitting the rows corresponding to periods in which the
individual i is not observed. Therefore, we can compute the

Ti×1 vector ẽi = ỹi−X̃iβ̂
W

and the robust asymptotic variance-

covariance matrix of β̂
W

is estimated by:

Var
(
β̂
W
)
=

(
X′Q[Δ]X

)−1 N∑
i=1

X̃′iẽiẽ
′
iX̃i

(
X′Q[Δ]X

)−1
. (7)

However, since uit ∼ (0, ψa), it is possible to obtain robust
standard errors also by stacking the observations for each stra-
tum a, as described later in Appendix A.1.

2.2. GLS Estimation

In the RE model, not only the remainder error uit, but also
the individual-specific error μi and the time-specific error νt are
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random variables.

If we assume that the variances of μi, νt, and uit are known,
then we can write the general least squares (GLS ) estimator for
β:

β̂
GLS

=
(
X′Ω−1X

)−1
X′Ω−1y, (8)

where the number of explanatory variables is k, as the problem of
minimizing ε′itΩ

−1εit, where Ω is the n× n variance-covariance
matrix.

The following assumptions are made8.

RE.1.a Strict exogeneity Same definition as assumption FE.1.

RE.1.b and RE.1.c Orthogonality conditions Both μi and νt are
orthogonal to the corresponding sets of explanatory vari-
ables, that is the k · Ti explanatory variables for each in-
dividual xi(N) and the k ·Nt explanatory variables in each
time period xt(T ):

E
(
μi

∣∣xi(N)

)
= E(μi) = 0 and E

(
νt

∣∣xt(T ) ) = E(νt) = 0.

RE.2 Rank condition The k × k weighted outer product matrix
X′Ω−1X has the appropriate rank, ensuring the GLS es-
timator in (8) is consistent:

rank
(
X′Ω−1X

)
= k.

Assuming homoskedasticity and no serial correlation (i.e., the
assumption RE.3 in Appendix B of Platoni et al., 2012), the
variance-covariance matrix Ω has the following form:

Ω = σ2u · In + σ2μ ·ΔμΔ′μ + σ2ν ·ΔνΔ′ν , (9)

8Details on the assumptions RE.1 and RE.2 can be found in Appendix B
of Platoni et al. (2012).
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and the GLS estimator in (8) is efficient. However, assuming ho-
moskedastic μi and/or uit when heteroskedasticity is present will
still result in consistent estimates of the regression coefficients,
but these estimates will not be efficient.

With general heteroskedasticity, that is μi ∼ (0, ϕa) and uit ∼
(0, ψa), the matrix Ω in (9) is modified to:

Ω = Ψ+ΔμΦΔ
′
μ + σ2ν ·ΔνΔ′ν , (10)

with the N × N matrix Φ = diag
[
Δ′ANϕ

]
, the A× 1 vector

ϕ = (ϕ1, ϕ2, . . . , ϕA)
′, the n × n matrix Ψ = diag

[
ΔμΔ

′
ANψ

]
,

and the A× 1 vector ψ = (ψ1, ψ2, . . . , ψA)
′.

The ANOVA-type quadratic unbiased estimator of the vari-
ance components based on the W residuals in the homoskedas-
tic case (9) is determined in Wansbeek and Kapteyn (1989) and
Davis (2002). The estimation of the components of the variance-
covariance matrix Ω in the heteroskedastic case (10) can be ob-
tained modifying the QUE procedure suggested by Wansbeek
and Kapteyn (1989).

The QUE procedure considers the n × 1 residuals e ≡ y −
Xβ̂

W
from the W estimator in (4), where X is a matrix of

dimension n × (k − 1), since it does not include the intercept.
If we assume that the n × k matrix X in (8) contains a vector
of ones, we have to define the n× 1 consistent centered residuals
f ≡ Ene = e− ē, where En = In − J̄n, with In being an identity
matrix of dimension n, J̄n = Jn

n , and Jn a matrix of ones of
dimension n (see Wansbeek and Kapteyn, 1989). Moreover, we
have to define also the n̂a × 1 consistent centered residuals fa =
Haf , withHa the n̂a×nmatrix obtained from the identity matrix
In by omitting the rows referring to observations not related to
stratum a, and the matrix J̄n̂a =

Jn̂a
n̂a

with Jn̂a a matrix of ones
of dimension n̂a.

The adapted QUE s for Ψ,Φ, and σ2ν is obtained by equating:
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qa(n) ≡ f ′Q[Δ]H
′
aHaQ[Δ]f →

A∑
a=1

qa(n) = qn ≡ f ′Q[Δ]f ,

qa(N) ≡ f ′aJ̄n̂afa →
A∑
a=1

qa(N) = qN ≡ f ′ΔμΔ−1N Δ
′
μf ,

qT ≡ f ′ΔνΔ−1T Δ
′
νf ,

(11)

to their expected values (see Wansbeek and Kapteyn, 1989; Davis,
2002). For more details on the expressions in (11), see Appendix
A.2.

With the n × n matrix M ≡ In − X(X′Q[Δ]X)−1X′Q[Δ]

(and then by definition e = My = Mε and ff ′ = Enee
′En =

EnMΩM′En), the expected value of qa(n) is:

E
(
qa(n)

)
= tr

(
HaQ[Δ]EnMΩM′EnQ[Δ]H

′
a

)
=

(
n̂a − N̂a − τa

)
· ψa − ka · ψ̄, (12)

where τa ≡ n̂a − N̂a − tr(HaQ[Δ]H
′
a), with

∑A
a=1 τa = T − 1,

ka ≡ tr[(X′Q[Δ]X)−1X′Q[Δ]H
′
aHaQ[Δ]X], with

∑A
a=1 ka = k−1,

and ψ̄ ≈ σ2u is obtained by equating qn to its expected value (see
Wansbeek and Kapteyn, 1989; Davis, 2002):

E (qn) = [n−N − (T − 1)− (k − 1)] · σ2u. (13)

Hence, the estimator of ψa is:

ψ̂a =
qa(n) + ka · σ̂2u
n̂a − N̂a − τa

. (14)

The expected value of qa(N) is:

E
(
qa(N)

)
= tr

(
J̄n̂aHaEnMΩM′EnH′

a

)
=

(
N̂a − 2 · n̂an

)
· ψa +

(
kNa − k0a + n̂a

n · k0 + n̂a
n

) · ψ̄
+(n̂a − 2 · λμa) · ϕa + n̂a

n · λμ · ϕ̄+
(
N̂a − 2 · λνa + n̂a

n · λν
)
· σ2ν , (15)

16



where kNa ≡ tr[(X′Q[Δ]X)−1X′aJ̄n̂aXa], k0 ≡ ι′nX(X′Q[Δ]X)−1X′ιn
n ,

k0a ≡ 2 · ι′nX(X′Q[Δ]X)−1X′aιn̂a
n = 2 · ι

′
n̂a

Xa(X′Q[Δ]X)−1X′ιn
n , with ιn

and ιn̂a vectors of ones of dimension n and n̂a respectively, λμ ≡
ι′nΔμΔ′μιn

n =
∑N
i=1 T

2
i

n , λμa · ϕa ≡ ι′nΔμΦΔ′μH′aιn̂a
n =

∑
i∈Îa T

2
i

n · ϕa =
∑N̂a
ı̂a=1̂a

T 2
ı̂a

n · ϕa, λν ≡ ι′nΔνΔ′ν ιn
n =

∑T
t=1N

2
t

n , λνa ≡ ι′nΔνΔ′νH′aιn̂a
n =

∑
t∈Ĵa Nt
n , with Ĵa the set of periods individuals belonging to stra-

tum a are observed, and ϕ̄ ≈ σ2μ is obtained jointly with σ2ν by
equating qN and qT to their expected values (see Wansbeek and
Kapteyn, 1989; Davis, 2002):

E (qN ) = (N + kN − k0 − 1) · σ2u + (n− λμ) · σ2μ+
(N − λν) · σ2ν ,

E (qT ) = (T + kT − k0 − 1) · σ2u + (T − λμ) · σ2μ+
(n− λν) · σ2ν ,

(16)

with kN ≡ tr[(X′Q[Δ]X)−1X′ΔμΔNΔ′μX] and kT ≡
tr[(X′Q[Δ]X)−1X′ΔνΔTΔ′νX]. Hence, the estimator of ϕa is:

ϕ̂a =
qa(N) − n̂a

n · λμ · σ̂2μ −
(
N̂a − 2 · λνa + n̂a

n · λν
)
· σ̂2ν

n̂a − 2 · λμa

+
−

(
N̂a − 2 · n̂an

)
· ψ̂a −

(
kNa − k0a + n̂a

n · k0 + n̂a
n

) · σ̂2u
n̂a − 2 · λμa

. (17)

Simpler heteroskedastic schemes (i.e., heteroskedasticity only
on the individual-specific disturbance and on the remainder er-
ror) can be obtained combining results for the general scheme
with those for the homoskedastic case, although when we con-
sider the case of heteroskedasticity only on the individual-specific
disturbance, the expected value of qa(N) is obtained differently
as:

E
(
qa(N)

)
=
(
N̂a + kNa − k0a + n̂a

n · k0 − n̂a
n

)
· σ2u

+(n̂a − 2 · λμa) · ϕa + n̂a
n · λμ · ϕ̄+

(
N̂a − 2 · λνa + n̂a

n · λν
)
· σ2ν , (18)
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and, therefore,

ϕ̂a =
qa(N) − n̂a

n · λμ · σ̂2μ −
(
N̂a − 2 · λνa + n̂a

n · λν
)
· σ̂2ν

n̂a − 2 · λμa

+
−

(
N̂a + kNa − k0a + n̂a

n · k0 − n̂a
n

)
· σ̂2u

n̂a − 2 · λμa
. (19)

3. HETEROSKEDASTIC STRATIFIED TWO-WAY SUR
SYSTEMS

When systems of equations have to be estimated, as it is the
case of SUR systems, single-equation estimation techniques are
not appropriate. In order to estimate heteroskedastic two-way
SUR systems we extend the procedure in Biørn (2004), with
individuals grouped according to the number of times they are
observed.

3.1. Model and Notation

Let Ñp denote the number of individuals observed exactly in p pe-

riods, with p = 1, . . . , T . Hence
∑

p Ñp = N and
∑

p

(
Ñp · p

)
=

n. Moreover, let Na,p denote the number of individuals belonging

to stratum a and observed in p periods; therefore,
∑

aNa,p = Ñp

and
∑

p

∑
aNa,p = N .

We assume that the T groups of individuals are ordered such
that the Ñ1 individuals observed once come first, the Ñ2 in-
dividuals observed twice come second, etc. Hence, with Cp =∑p

h=1 Ñh being the cumulated number of individuals observed
at most p times, the index sets of the individuals observed ex-
actly p times can be written as Ip = {Cp−1 + 1, . . . , Cp}. Note
that I1 may be considered as a pure cross section and Ip, with
p ≥ 2, as a pseudo-balanced panel with p observations for each
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individual. This structure allows us to use a number of results
derived for the two-way SUR in the balanced case.

If km is the number of regressors for equation m, the total
number of regressors for the system is K =

∑M
m=1 km. Stacking

the M equations, indexed by m = 1, . . . ,M , for the observation
(i, t) we have:

yit = Xitβ+ μi + νt + uit = Xitβ+ ε, (20)

where the M × K matrix of explanatory variables is Xit =
diag[x1it, . . . ,xMit] and the K × 1 vector of parameters is β =
(β′1, . . . ,β

′
M )′ and where μi ≡ (μ1i, . . . , μMi)

′, νt ≡ (ν1t, . . . , νMt)
′,

and uit ≡ (u1it, . . . , uMit)
′. If we do not have cross-equation re-

strictions, we can assume E(umit|x1it,x2it, . . . ,xMit) = 0, and
then E(ymit|x1it,x2it, . . . ,xMit) = E(ymit|xmit) = xmitβm. On
the contrary, if we have cross-equation restrictions9, we can only
assume E(uit|xit) = 0, where xit ≡ (x1it,x2it, . . . ,xMit).

With heteroskedasticity on both the individual-specific dis-
turbance and the remainder error, we assume for i ∈ Îa:

E
(
μmi, μji′

)
=

{
ϕamj i = i′

0 i �= i′,

E
(
νmt, νjt′

)
=

{
σ2νmj t = t′

0 t �= t′,

E
(
umit, uji′t′

)
=

{
ψamj i = i′ and t = t′

0 i �= i′ and/or t �= t′.

(21)

Let us consider the NM × 1 vector μ ≡ (μ′1, . . . ,μ′N )
′, the

TM × 1 vector ν ≡ (ν′1, . . . ,ν′T )
′, and the nM × 1 vector u ≡

(u′11,u′12, . . . ,u′1T1 ,u
′
21, . . . ,u

′
NTN

)′. Since theM×1 vectors uit ∼
9As Biørn (2004) suggests, with cross-equations restrictions we can rede-

fine β as the complete K × 1 coefficient vector (without duplication) and
the M ×K regression matrix as Xit = (x′1it,x

′
2it, . . . ,x

′
Mit)

′, where the kth

element of the 1 × km vector xmit either contains the observation on the
variable in the mth equation which corresponds to the kth coefficient in β or
is zero if the kth coefficient does not occur in the mth equation.
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(0,Σψa), the M × 1 vectors μi ∼ (0,Σϕa), and the TM × 1
vector ν ∼ (0,Σν), with the M × M matrices Σψa =

[
ψamj

]
,

Σϕa =
[
ϕamj

]
, and Σν = [σ2νmj ], we can assume that the ex-

pected values of the vectors uit, μi, and νt are zero and their
covariance matrices are equal to Σψa , Σϕa , and Σν . It follows
that E[εitε

′
i′t′ ] = δii′Σϕa + δtt′Σν + δii′δtt′Σψa , with δii′ = 1 for

i = i′ and δii′ = 0 for i �= i′, δtt′ = 1 for t = t′ and δtt′ = 0 for
t �= t′.

As in Biørn (2004), let us consider the pM × 1 vector of
independent variables yi(p) ≡ (y′i1, . . . ,y

′
ip)
′, the pM ×K matrix

of explanatory variables Xi(p) ≡ (X′i1, . . . ,X
′
ip)
′, and the pM × 1

vector of composite error terms εi(p) ≡ (ε′i1, . . . , ε
′
ip)
′ for i ∈ Ip. If

we define the pM ×TM matrix Δi(p), indicating in which period
t the individual i of the group p is observed, and if we consider
the TM × 1 vector ν, for the individual i ∈ Ip we can define the
pM × 1 vector νi(p) ≡ Δi(p)ν and write the model:

yi(p) = Xi(p)β+ (ιp ⊗ μi) + νi(p) + ui(p) = Xi(p)β+ εi(p), (22)

where ιp is a p× 1 vector of ones (see Platoni et al., 2012).

The pM × pM heteroskedastic variance-covariance matrix of
the pM × 1 composite error terms εi(a,p) for the individual i ∈
Ia,p, with Ia,p = Îa∩Ip the set of individuals belonging to stratum
a and observed in p periods, is given by:

Ωi(a,p) = Ep ⊗ (Σψa + Σν) + J̄p ⊗ (Σψa + Σν + p · Σϕa) , (23)

where Ip is an identity matrix of dimension p, Jp a matrix of

ones of dimension p, Ep = Ip − J̄p, and J̄p =
Jp
p . Since Ep and

J̄p are symmetric, idempotent, and have orthogonal columns,
the inverse of the variance-covariance matrix of the individual i
belonging to stratum a and to group p is:

Ω−1
i(a,p) = Ep ⊗ (Σψa + Σν)

−1 + J̄p ⊗ (Σψa + Σν + p · Σϕa)−1 . (24)
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This specification nests simpler heteroskedastic schemes as well
as the homoskedastic case by replacing Σϕa with Σμ and/or Σψa
with Σu.

If we assume that Σψa , Σϕa , and Σν are known, then in the
heteroskedastic case we can write theGLS estimator for theK×1
vector of parameters β as the problem of minimizing:

T∑
p=1

A∑
a=1

∑
i∈Ia,p

ε′i(a,p)Ω
−1
i(a,p)εi(a,p). (25)

If we apply GLS on the observations for the individuals observed
p times we obtain:

β̂
GLS

p =

(
A∑
a=1

∑
i∈Ia,p

X′i(a,p)Ω
−1
i(a,p)Xi(a,p)

)−1
A∑
a=1

∑
i∈Ia,p

X′i(a,p)Ω
−1
i(a,p)yi(a,p), (26)

while the full GLS estimator is:

β̂
GLS

=

(
T∑
p=1

A∑
a=1

∑
i∈Ia,p

X′i(a,p)Ω
−1
i(a,p)Xi(a,p)

)−1
T∑
p=1

A∑
a=1

∑
i∈Ia,p

X′i(a,p)Ω
−1
i(a,p)yi(a,p), (27)

where Xi(a,p) is the pM × K matrix of explanatory variables
related to individual i ∈ Ia,p.

3.2. Estimation of the Covariance Matrices

The next step is to find an appropriate technique to estimate the
components of the variance-covariance matrices of the two-way
SUR system Σψa , Σϕa , and Σν . This can be achieved adopting
either the QUE procedure suggested by Wansbeek and Kapteyn
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(1989) for the homoskedastic single-equation case or the within-
between (WB) procedure suggested by Biørn (2004) for the ho-
moskedastic one-way SUR system. In the following sub-sections
we modify both procedures making them suitable for the het-
eroskedastic two-way SUR system.

The QUE Procedure

The QUE procedure considers the n × 1 residuals em ≡ ym −
Xmβ̂

W

m from the W estimator in (4) for the equation m =
1, . . . ,M , where Xm is a matrix of dimension n × (km − 1). If
we assume that the n×km matrix Xm contains a vector of ones,
then we have to define the n × 1 consistent centered residuals
fm ≡ En · em = em − ēm (see Wansbeek and Kapteyn, 1989).

With heteroskedasticity, we can obtain the adapted QUE s
for Ψmj , Φmj , and σ

2
νmj by equating:

qa(n)mj ≡ f ′jQ[Δ]H
′
aHaQ[Δ]fm

→
A∑
a=1

qa(n)mj = qnmj ≡ f ′jQ[Δ]fm,

qa(N)mj
≡ f ′aj J̄n̂afam →

A∑
a=1

qa(N)mj
= qNmj ≡ f ′jΔμΔ

−1
N Δ

′
μfm,

qTmj ≡ f ′jΔνΔ
−1
T Δ

′
νfm,

(28)

to their expected values (see Wansbeek and Kapteyn, 1989; Davis,
2002). The expressions in (28) can be further detailed as already
done in (A.3) for the expressions in (11).

With the n×nmatrixMm ≡ In−Xm(X
′
mQ[Δ]Xm)

−1X′mQ[Δ]

(and then by definition em = Mmym = Mmεm and fmf
′
j =

Eneme
′
jEn = EnMmΩmjM

′
jEn), the expected value of qa(n)mj

is:

E
(
qa(n)mj

)
= tr

(
HaQ[Δ]EnMmΩmjM

′
jEnQ[Δ]H

′
a

)
=

(
n̂a − N̂a − τa

)
· ψamj −

(
kam + kaj − kamj

) · ψ̄mj , (29)
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where kamj ≡ tr[(X′mQ[Δ]Xm)
−1X′mQ[Δ]Xj(X

′
jQ[Δ]Xj)

−1X′j
Q[Δ]H

′
aHaQ[Δ]Xm], with

∑A
a=1 kamj = kmj and kmj ≡ tr[(X′m

Q[Δ]Xm)
−1X′mQ[Δ]Xj(X

′
jQ[Δ]Xj)

−1X′jQ[Δ]Xm], and ψ̄mj ≈ σ2umj
is obtained by equating qnmj to its expected value (see Platoni
et al., 2012):

E
(
qnmj

)
=[n−N − (T − 1)− (km − 1)− (kj − 1) + kmj ]

·σ2umj . (30)

Hence, the estimator of ψamj is:

ψ̂amj =
qa(n)mj +

(
kam + kaj − kamj

) · σ̂2umj
n̂a − N̂a − τa

. (31)

The expected value of qa(N)mj is:

E
(
qa(N)mj

)
= tr

(
J̄n̂aHaEnMmΩmjM

′
jEnH

′
a

)
=

(
kNamj − k0amj + n̂a

n · k0mj + n̂a
n

)
· ψ̄mj

+
(
N̂a − 2 · n̂an

)
· ψamj + n̂a

n · λμ · ϕ̄mj
+(n̂a − 2 · λμa) · ϕamj +

(
N̂a − 2 · λνa + n̂a

n · λν
)
· σ2νmj , (32)

where kamj ≡ tr[(X′mQ[Δ]Xm)
−1X′mQ[Δ]Xj(X

′
jQ[Δ]Xj)

−1X′j
Q[Δ]H

′
aHaQ[Δ]Xm], with

∑A
a=1 kamj = kmj and kmj ≡ tr[(X′m

Q[Δ]Xm)
−1X′mQ[Δ]Xj(X

′
jQ[Δ]Xj)

−1X′jQ[Δ]Xm], and ψ̄mj ≈ σ2umj
is obtained by equating qnmj to its expected value (see Platoni
et al., 2012):

E
(
qNmj

)
=

(
N + kNmj − k0mj − 1

) · σ2u
+(n− λμ) · σ2μmj + (N − λν) · σ2νmj ,

E
(
qTmj

)
=

(
T + kTmj − k0mj − 1

) · σ2u
+(T − λμ) · σ2μmj + (n− λν) · σ2νmj ,

(33)

with kNmj ≡ tr[(X′jQ[Δ]Xj)
−1X′jQ[Δ]Xm(X

′
mQ[Δ]Xm)

−1X′mΔμ
ΔNΔ

′
μXj ] and kTmj ≡ tr[(X′jQ[Δ]Xj)

−1X′jQ[Δ]Xm(X
′
mQ[Δ]
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Xm)
−1X′mΔνΔTΔ

′
νXj ]. Hence, the estimator of ϕamj is:

ϕ̂amj =
qa(N)mj

− n̂a
n · λμ · σ̂2μmj −

(
N̂a − 2 · λνa + n̂a

n · λν
)
· σ̂2νmj

n̂a − 2 · λμa

+
−

(
N̂a − 2 · n̂an

)
· ψ̂amj

n̂a − 2 · λμa

+
−

(
kNamj − k0amj + n̂a

n · k0mj + n̂a
n

)
· σ̂2umj

n̂a − 2 · λμa
. (34)

As in the single-equation case, simpler heteroskedastic scheme
(i.e., heteroskedasticity only on the individual-specific distur-
bance and on the remainder error) can be obtained combining
results for the general scheme with those for the homoskedastic
case, although when we consider the case of heteroskedasticity
only on the individual-specific disturbance the expected value of
qa(N)mj is obtained differently as:

E
(
qa(N)mj

)
=(n̂a − 2 · λμa) · ϕamj + n̂a

n · λμ · ϕ̄mj
+

(
N̂a − 2 · λνa + n̂a

n · λν
)
· σ2νmj

+
(
N̂a + kNamj − k0amj + n̂a

n · k0mj − n̂a
n

)
· σ2umj (35)

and, therefore,

ϕ̂amj =
qa(N)mj

− n̂a
n · λμ · σ̂2μmj −

(
N̂a − 2 · λνa + n̂a

n · λν
)
· σ̂2νmj

n̂a − 2 · λμa

+
−

(
N̂a + kNamj − k0amj + n̂a

n · k0mj − n̂a
n

)
· σ̂2umj

n̂a − 2 · λμa
. (36)

The WB Procedure

With heteroskedastic two-way systems of equations, the M ×M
matrices of within individuals, between individuals, and between
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times (co)variations in the ε’s of theM equations are the follow-
ing:

Wε =
A∑
a=1

Wεa =
A∑
a=1

∑
i∈Îa

Ti∑
t=1

(εit − ε̄i· − ε̄·t) (εit − ε̄i· − ε̄·t)′ ,

BC
ε =

A∑
a=1

BC
εa =

A∑
a=1

∑
i∈Îa

Ti (ε̄i· − ε̄) (ε̄i· − ε̄)′ ,

BT
ε =

T∑
t=1
Nt (ε̄·t − ε̄) (ε̄·t − ε̄)′ ,

(37)

where for each equation m we have ε̄mi· =
∑Ti
t=1 εmit
Ti

, ε̄m·t =
∑Nt
i=1 εmit
Nt

, and ε̄m =
∑N
i=1

∑Ti
t=1 εmit
n =

∑N
i=1(Ti·ε̄mi·)

n or ε̄m =
∑T
t=1

∑Nt
i=1 εmit
n =

∑T
t=1(Nt·ε̄m·t)

n .

Because the uit’s, the μi’s, and the νt’s are independent, from
the equations in (37) we can write:

E (Wεa) = E (Wua) ,
E
(
BC
εa

)
= E

(
BC
μa

)
+ E

(
BC
ua

)
,

E
(
BT
ε

)
= E

(
BT
ν

)
+ E

(
BT
u

)
,

(38)

where the within individuals (co)variation is:

Wua=
∑
i∈Îa

Ti∑
t=1

(uit − ūi· − ū·t) (uit − ūi· − ū·t)′

=
∑
i∈Îa

Ti∑
t=1

uitu
′
it −

∑
i∈Îa

Tiūi·ū′i· −
∑
i∈Îa

Ti∑
t=1

ū·tū′·t, (39)

the between individuals (co)variations are:

BC
μa =

∑
i∈Îa

Ti (μi − μ̄) (μi − μ̄)′ =
∑
i∈Îa

Tiμiμ
′
i −

∑
i∈Îa

Tiμ̄μ̄
′,

BC
ua =

∑
i∈Îa

Ti (ūi· − ū) (ūi· − ū)′ =
∑
i∈Îa

Tiūi·ū′i· −
∑
i∈Îa

Tiūū
′, (40)
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and the between times (co)variations, as in the homoskedastic
case, are:

BT
ν =

T∑
t=1
Nt (νt − ν̄) (νt − ν̄)′ =

T∑
t=1
Ntνtν

′
t − nν̄ν̄′,

BT
u =

T∑
t=1
Nt (ū·t − ū) (ū·t − ū)′ =

T∑
t=1
Ntū·tū′·t − nūū′,

(41)

where ūmi· =
∑Ti
t=1 umit
Ti

, ūm·t =
∑Nt
i=1 umit
Nt

, ūm =
∑N
i=1

∑Ti
t=1 umit
n =

∑N
i=1(Ti·ūmi·)

n or ūm =
∑T
t=1

∑Nt
i=1 umit
n =

∑T
t=1(Nt·ūm·t)

n , μ̄m =
∑N
i=1(Ti·μmi)

n , and ν̄m =
∑T
t=1(Nt·νmt)

n (see Biørn, 2004; Platoni
et al., 2012).

Since for i ∈ Îa we have E(εitε
′
i′t′) = δii′Σϕa + δtt′Σν +

δii′δtt′Σψa , where E(uitu
′
i′t′) = δii′δtt′Σψa , E(μiμ

′
i′) = δii′Σϕa ,

and E(νtν
′
t′) = δtt′Σν , it follows that E(ūi·ū′i·) =

Σψa
Ti

, E(ū·tū′·t) =∑
i∈It Σψa
N2
t

� Σ̄ψ
Nt
≈ Σu

Nt
, with It the set of individuals observed in

period t, E(ūū′) =
∑N
i=1(Ti·Σψa )

n2 =
Σ̄ψ
n ≈ Σu

n , E(μ̄μ̄′) =
∑N
i=1(T

2
i ·Σϕa )

(
∑N
i=1 Ti)

2

=
∑N
i=1 T

2
i

n2 · Σ̄ϕ ≈
∑N
i=1 T

2
i

n2 ·Σμ, and E(ν̄ν̄′) =
∑T
t=1N

2
t

n2 ·Σν . Hence,
the M ×M matrices

Σ̂ψa =

Wεa +
∑
i∈Îa

Ti∑
t=1

1
Nt
· Σ̂u

n̂a − N̂a

, (42)

with
∑A

a=1

∑
i∈Îa

∑Ti
t=1

1
Nt

= T , and

Σ̂ϕa =

BC
εa +

∑
i∈Îa

Ti
n ·

N∑
j=1

T 2
j

n · Σ̂μ − N̂a · Σ̂ψa +
∑
i∈Îa

Ti
n · Σ̂u∑

i∈Îa
Ti

(43)

would be unbiased estimators of Σψa and Σϕa if the ε’s were
known. Both the estimators of Σu and Σμ and the estimator of
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Σν are derived as in the homoskedastic case:

Σ̂u =
Wε

n−N − T , Σ̂μ =
BC
ε − (N − 1) · Σ̂u
n−

N∑
i=1

T 2
i
n

, and

Σ̂ν =
BT
ε − (T − 1) · Σ̂u
n−

T∑
t=1

N2
t
n

,

(44)

that would be unbiased estimators of Σu, Σμ, and Σν if the ε’s
were known (see Biørn, 2004; Platoni et al., 2012).

Again, simpler heteroskedastic scheme (i.e., heteroskedastic-
ity only on the individual-specific disturbance and on the re-
mainder error) can be obtained combining results for the general
scheme with those for the homoskedastic case, although when
we consider the case of heteroskedasticity only on the individual-
specific disturbance the estimator is:

Σ̂ϕa =

BC
εa +

∑
i∈Îa

Ti
n ·

N∑
j=1

T 2
j

n · Σ̂μ −
(
N̂a −

∑
i∈Îa

Ti
n

)
· Σ̂u∑

i∈Îa
Ti

, (45)

that would be an unbiased estimator of Σϕa if the ε’s were
known10.

As Biørn (2004) suggested, in empirical applications consis-
tent residuals can replace ε’s in (37) to obtain consistent esti-
mates of Σψa , Σϕa , and Σν . Since the QUE procedure is based
on the W residuals, for coherence also in the WB procedure we

consider the M × 1 residuals eit ≡ yit − Xitβ̂
W

from the W
estimator in (4) for the individual i in period t, where Xit is

10Alternative computations of the estimators (42), (43), and (45) are pro-
vided in Appendix A.3.
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a matrix of dimension M × (K −M). As above, if we assume
that the M ×K matrix Xit in (20) always contains M vectors of
ones (a vector of ones for each equation m), then we have to de-
fine the M × 1 consistent centered residuals fit = eit − ē, where

ēm =
∑N
i=1

∑Ti
t=1 emit
n =

∑T
t=1

∑Nt
i=1 emit
n . Therefore, the M × M

matrices of within individuals, between individuals, and between
times (co)variations in the f ’s of the different M equations are
the following:

Wf =
A∑
a=1

Wfa =
A∑
a=1

∑
i∈Îa

Ti∑
t=1

(
fit − f̄i· − f̄·t

) (
fit − f̄i· − f̄·t

)′
,

BC
f =

A∑
a=1

BC
fa

=
A∑
a=1

∑
i∈Îa

Ti
(
f̄i· − f̄

) (
f̄i· − f̄

)′
,

BT
f =

T∑
t=1
Nt

(
f̄·t − f̄

) (
f̄·t − f̄

)′
,

(46)

where for each equation m we have f̄mi· =
∑Ti
t=1 fmit
Ti

, f̄m·t =
∑Nt
i=1 fmit
Nt

, and f̄m =
∑N
i=1

∑Ti
t=1 fmit
n =

∑N
i=1(Ti·f̄mi·)

n or f̄m =
∑T
t=1

∑Nt
i=1 fmit
n =

∑T
t=1(Nt·f̄m·t)

n . Given that:

E (Wfa) =
(
n̂a − N̂a

)
· Σψa −

∑
i∈Îa

∑
t∈Ji

1
Nt
· Σ̄ψ,

E
(
BC
fa

)
=

∑
i∈Îa

Ti · Σϕa −
∑
i∈Îa

Ti
n ·

N∑
j=1

T 2
j

n · Σ̄ϕ + N̂a · Σψa
−∑
i∈Îa

Ti
n · Σ̄ψ,

E
(
BT
f

)
=

(
n−

T∑
t=1

N2
t
n

)
· Σν + (T − 1) · Σ̄ψ,

(47)

with Σ̄ψ ≈ Σu and Σ̄ϕ ≈ Σμ, we can conclude that the es-
timators in (42) and (43), with Wfa instead of Wεa and BC

fa

instead of BC
εa respectively, are consistent estimators of Σψa and

Σϕa . As mentioned above, both the consistent estimators of Σu

28



and Σμ and the consistent estimator of Σν are derived as in
the homoskedastic case (see Biørn, 2004; Platoni et al., 2012).
Finally, with heteroskedasticity only on the individual-specific
disturbance, we have that:

E
(
BC
fa

)
=

∑
i∈Îa

Ti · Σϕa −
∑
i∈Îa

Ti
n ·

N∑
j=1

T 2
j

n · Σ̄ϕ

+

(
N̂a −

∑
i∈Îa

Ti
n

)
· Σu,

(48)

and therefore the estimator in (45), with BC
fa

instead of BC
εa , is

a consistent estimator of Σϕa
11.

4. MONTE CARLO EXPERIMENT

In order to analyze the performances of the proposed techniques,
we develop a simple simulation12 on a three-equation system
(M = 3). We assume an unbalanced panel with a large num-
ber of individuals (N = 4, 000) extended over a rather long time
period (T = 8). This should mimic a real world situation of a
large unbalanced panel for which the two-way SUR system is the
appropriate model. The simulated model is:

y1 = β10 +β11 · x1 +β12 · x2 +ε1,
y2 = β20 +β21 · x1 +β22 · x2 +β23 · x3 +ε2,
y3 = β30 +β32 · x2 +β33 · x3 +ε3,

where β1 = (15, 6,−3)′, β2 = (10,−3, 8,−2)′, and β3 = (20,−2, 5)′,
implying the cross equations restrictions β12 = β21 and β23 =
β32.

11Alternative computations of consistent estimators are provided in Ap-
pendix A.3.

12The simulation has been implemented with the econometric software
TSP version 5.1.
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Moreover, the experiment is implemented by considering as
strata the deciles of the independent variable x2. The homoskedas-
tic time variance-covariance matrix is:

Σν =

[
0.7659 -0.0280 -0.2242

0.7204 0.1068
0.7207

]
,

while the heteroskedastic variances-covariances ϕamj and ψamj
have been generated from the matrices:

Σϕ =

[
0.8070 -0.0056 0.2433

0.7073 -0.0044
0.6928

]
and Σψ =

[
0.6128 0.0571 0.1554

0.6726 -0.0941
0.9218

]

with ϕamj = ϕ
mj
· x̄22a and ψamj = ψ

mj
· x̄22a , where ϕmj and ψmj

are elements of the matrices Σϕ and Σψ respectively and x̄2a is
the mean of the independent variable x2 over the decile/stratum
a.

Finally, the scalars xkit are generated according to a modified
version of the scheme introduced by Nerlove (1971) and used,
among others, by Baltagi (1981), Wansbeek and Kapteyn (1989),
and Platoni et al. (2012):

xkit = 0.1 · t+ 0.5 · xkit−1 + ωkit, k = 1, 3
xkit = 0.1 · t+ xkit−1 + 0.5 · ωkit, k = 2

with ωkit following the uniform distribution [−1
2 ,

1
2 ] and xki0 =

5 + 10 · ωki0.
In order to construct the unbalanced panel, we adopt the pro-

cedure currently used for rotating panels, in which we have ap-
proximately the same number of individuals every year: a fixed
percentage of individuals (20% in our case13) is replaced each
year, but they can re-enter the sample in the following years.

13Also in Wansbeek and Kapteyn (1989) each period 20% of the households
in the panel is removed randomly.
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Thus, for each group p we have the following number of individ-
uals: Ñ1 = 962, Ñ2 = 769, Ñ3 = 615, Ñ4 = 492, Ñ5 = 394,
Ñ6 = 315, Ñ7 = 252, and Ñ8 = 201 (and then n = 13, 545).

The results of a 1000-run simulation are shown in Table 1
and Table 214.

Table 1 reports average estimates when the homoskedastic
specification is employed; the homoskedastic model is estimated
under several different specifications (the FE one-way and two-
way, the RE one-way GLS and ML, the RE two-way GLS and
ML, the SUR one-way WB, and the SUR two-way WB and
QUE ).

In Table 2, simulation results for the heteroskedastic specifi-
cations are reported. We have estimated the six models (the FE
one-way and two-way robust to heteroskedasticity of unknown
form, the RE two-way GLS, both WB and QUE, the SUR two-
way, both WB and QUE ) for three different specifications of the
heteroskedastic structure (only on the individual-specific effect
μi, only on the remainder error uit, and the true specification
with both the individual-specific and remainder error terms het-
eroskedastic). Average estimates for the true parameters are
overall similar to those obtained with the homoskedastic speci-
fications, with an average bias within 0.07%. As expected, the
SUR procedures perform better than the single-equation proce-
dures in all cases, also in those cases with no relevant differ-
ences between the WB and the QUE estimates. Looking at the
standard errors of the parameter estimates in the RE and SUR
models, it is evident that accounting for heteroskedasticity will
increase efficiency (standard errors in the heteroskedastic mod-
els are largely lower than those in the homoskedastic model).
Finally, the correct specification (i.e., with both the individual-
specific and remainder error terms heteroskedastic) is the most

14As in Baltagi and Griffin (1988) and Phillips (2003), negative variance
estimates are replaced by zero.
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Table 1

Simulation results: means of the estimated parameters and average
variances of the error components - homoscedastic case

RE RE RE RE SUR SUR SUR

True FE FE one-way one-way two-way two-way one-way two-way two-way

value one-way two-way (GLS) (ML) (GLS) (ML) WB WB QUE

β10 15 14.9991 14.9991 14.9933 14.9934 15.0038 15.0039 15.0039

(0.1021) (0.1022) (0.3130) (0.2955) (0.0832) (0.0840) (0.0832)

β11 6 5.9988 5.9996 5.9989 5.9989 5.9997 5.9997 5.9990 5.9990 5.9990

(0.0237) (0.0228) (0.0210) (0.0210) (0.0204) (0.0204) (0.0207) (0.0209) (0.0207)

β12 -3 -3.0029 -2.9991 -3.0004 -3.0004 -2.9989 -2.9989 -3.0019 -3.0020 -3.0020

(0.0476) (0.0492) (0.0273) (0.0273) (0.0275) (0.0275) (0.0174) (0.0176) (0.0174)

σ2
μ11

11.0511 7.8453 7.8334 7.9299 7.9129 7.9521 8.0087 7.9299

σ2
μ12

-0.0767 -0.0690 -0.0695 -0.0674

σ2
μ13

3.3318 2.3914 2.3709 2.3932

σ2
ν11

0.7659 0.7417 0.6502 0.7440 0.7417

σ2
ν12

-0.0280 -0.0276 -0.0276

σ2
ν13

-0.2242 -0.2360 -0.2367

σ2
u11

8.3917 6.7497 6.0254 6.7497 6.7532 6.0254 6.0235 6.7483 6.2082 6.0254

σ2
u12

0.7819 0.5344 0.5532 0.5601

σ2
u13

2.1280 1.2914 1.4696 1.5254

β20 10 10.0023 10.0024 9.9851 9.9851 9.9993 9.9991 9.9992

(0.1020) (0.1020) (0.3066) (0.2896) (0.1001) (0.1010) (0.1001)

β21 -3 -3.0028 -3.0013 -3.0023 -3.0022 -3.0009 -3.0009 -3.0019 -3.0020 -3.0020

(0.0353) (0.0338) (0.0274) (0.0274) (0.0265) (0.0265) (0.0174) (0.0176) (0.0174)

β22 8 7.9897 8.0013 7.9971 7.9971 8.0010 8.0010 7.9974 7.9974 7.9974

(0.0496) (0.0516) (0.0269) (0.0269) (0.0271) (0.0271) (0.0269) (0.0271) (0.0269)

β23 -2 -2.0008 -1.9992 -2.0021 -2.0021 -2.0004 -2.0004 -2.0012 -2.0012 -2.0012

(0.0353) (0.0337) (0.0274) (0.0274) (0.0265) (0.0265) (0.0177) (0.0179) (0.0177)

σ2
μ22

9.6858 6.8528 6.8418 6.9327 6.9175 6.9572 7.0091 6.9327

σ2
μ23

-0.0603 -0.0515 -0.0456 -0.0550

σ2
ν22

0.7204 0.7097 0.6227 0.7117 0.7097

σ2
ν23

0.1068 0.1032 0.1032

σ2
u22

9.2106 7.3063 6.6165 7.3063 7.3090 6.6165 6.6135 7.3040 6.7945 6.6165

σ2
u23

-1.2886 -0.8257 -0.9030 -0.9276

β30 20 19.9884 19.9883 19.9903 19.9903 19.9952 19.9950 19.9950

(0.1073) (0.1074) (0.3130) (0.2956) (0.0836) (0.0844) (0.0835)

β32 -2 -1.9972 -1.9991 -1.9989 -1.9989 -1.9993 -1.9993 -2.0012 -2.0012 -2.0012

(0.0573) (0.0604) (0.0287) (0.0287) (0.0290) (0.0290) (0.0177) (0.0179) (0.0177)

β33 5 5.0003 5.0000 5.0011 5.0011 5.0007 5.0007 5.0012 5.0012 5.0012

(0.0286) (0.0280) (0.0243) (0.0243) (0.0239) (0.0239) (0.0239) (0.0242) (0.0239)

σ2
μ33

9.4872 6.7199 6.7123 6.8005 6.7920 6.8407 6.8811 6.8005

σ2
ν33

0.7207 0.7358 0.6441 0.7378 0.7358

σ2
u33

12.6231 9.7781 9.0651 9.7781 9.7829 9.0651 9.0622 9.7761 9.2494 9.0651

The numbers in round brackets are the average estimated standard errors. The variances of the

estimated parameters are not displayed since they are not significantly different among estimation

techniques.
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efficient; also note that, at least in our simulation, consider-
ing heteroskedasticity only on the individual-specific disturbance
does not provide a large gain in efficiency with respect to the ho-
moskedastic specifications.

5. FURTHER EXTENSION: HETEROSKEDASTIC
TIME-SPECIFIC EFFECT

Usually panel data are characterized by many individuals and
relatively few time periods. Therefore heteroskedasticity on the
time-specific error term should not be a frequent issue. However,
the procedure proposed in the previous sections can be easily
extended also to this case.

In this section we assume heteroskedasticity is also on the
time-specific error term; hence, Var(νt) = ϑt and Var(uit) = ψit.
If the ϑt’s are unknown, then there is no hope to estimate them
from the data: even if the νt’s were observed, it would be im-
possible to estimate their variances from only one observation on
each time period disturbance (see Mazodier and Trognon, 1978).
Moreover, if the remainder error term uit is heteroskedastic not
only by the individual dimension, but also by the time dimen-
sion, then it would be impossible to estimate the variances ψit’s
from only one observation on each remainder error.

Let us assume there exist meaningful stratifications of obser-
vations both with respect to individuals and with respect to time
periods. Hence, the unbalanced panel can be characterized not
only by A strata of individuals, but also by B strata of time pe-
riods (indexed b = 1, . . . B), with Ťb the number of time periods
pertaining to stratum b (indexed ťb = 1̌b, . . . , Ťb) and J̌b the set of
time periods t = 1, . . . , T pertaining to stratum b. Therefore, the

number of observations related to stratum b is ňb =
∑Ťb

ťb=1̌b
Nťb

.

Hence,
∑B

b=1 Ťb = T and
∑B

b=1 ňb = n.

Furthermore, it is possible to identify C = A×B sub-strata
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Table 2

Simulation results: means of the estimated parameters and average
variances of the error components - heteroskedastic cases

Heteroskedasticity on μi

FE FE RE RE SUR SUR

True one-way two-way two-way two-way two-way two-way

value robust robust WB QUE WB QUE

β10 15 14.9974 14.9975 15.0015 15.0015

(0.0565) (0.0557) (0.0603) (0.0594)

β11 6 5.9988 5.9996 5.9986 5.9986 5.9989 5.9989

(0.0238) (0.0228) (0.0187) (0.0185) (0.0200) (0.0197)

β12 -3 -3.0029 -2.9991 -2.9994 -2.9994 -3.0019 -3.0019

(0.0479) (0.0494) (0.0147) (0.0145) (0.0160) (0.0158)

ϕ̄2
11 11.0511 8.0323 7.9643 8.0323 7.9643

ϕ̄2
12 -0.0767 -0.0695 -0.0674

ϕ̄2
13 3.3318 2.3702 2.3932

σ2
ν11

0.7659 0.7440 0.7417 0.7440 0.7417

σ2
ν12

-0.0280 -0.0276 -0.0276

σ2
ν13

-0.2242 -0.2360 -0.2367

σ2
u11

8.3917 6.7497 6.0254 6.2082 6.0254 6.2082 6.0254

σ2
u12

0.7819 0.5532 0.5601

σ2
u13

2.1280 1.4696 1.5254

β20 10 9.9930 9.9929 9.9937 9.9936

(0.0613) (0.0605) (0.0671) (0.0662)

β21 -3 -3.0028 -3.0013 -3.0013 -3.0013 -3.0019 -3.0019

(0.0354) (0.0337) (0.0229) (0.0227) (0.0160) (0.0158)

β22 8 7.9897 8.0013 8.0009 8.0009 7.9981 7.9981

(0.0502) (0.0518) (0.0154) (0.0152) (0.0240) (0.0238)

β23 -2 -2.0008 -1.9992 -2.0034 -2.0034 -2.0008 -2.0008

(0.0354) (0.0337) (0.0229) (0.0227) (0.0168) (0.0166)

ϕ̄2
22 9.6858 7.0623 6.9968 7.0623 6.9968

ϕ̄2
23 -0.0603 -0.0457 -0.0550

σ2
ν22

0.7204 0.7117 0.7097 0.7117 0.7097

σ2
ν23

0.1068 0.1032 0.1032

σ2
u22

9.2106 7.3063 6.6165 6.7945 6.6165 6.7945 6.6165

σ2
u23

-1.2886 -0.9030 -0.9276

β30 20 19.9894 19.9894 19.9928 19.9929

(0.0665) (0.0657) (0.0644) (0.0635)

β32 -2 -1.9972 -1.9991 -1.9996 -1.9996 -2.0008 -2.0008

(0.0578) (0.0605) (0.0174) (0.0172) (0.0168) (0.0166)

β33 5 5.0003 5.0000 5.0015 5.0015 5.0012 5.0012

(0.0288) (0.0280) (0.0218) (0.0216) (0.0232) (0.0229)

ϕ̄2
33 9.4872 6.9988 6.9312 6.9988 6.9312

σ2
ν33

0.7207 0.7378 0.7358 0.7378 0.7358

σ2
u33

12.6231 9.7781 9.0651 9.2494 9.0651 9.2494 9.0651

The numbers in round brackets are the average estimated standard errors. The variances of the

estimated parameters are not displayed since they are not significantly different among estimation

techniques.
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continued from previous page

Simulation results: means of the estimated parameters and average
variances of the error components - heteroskedastic cases

Heteroskedasticity on uit Heteroskedasticity on μi and uit

RE RE SUR SUR RE RE SUR SUR

two-way two-way two-way two-way two-way two-way two-way two-way

WB QUE WB QUE WB QUE WB QUE

β10 14.9992 14.9991 15.0031 15.0031 14.9990 14.9990 15.0012 15.0011

(0.0405) (0.0392) (0.0746) (0.0734) (0.0397) (0.0384) (0.0561) (0.0545)

β11 5.9989 5.9989 5.9993 5.9993 5.9989 5.9989 5.9992 5.9993

(0.0162) (0.0158) (0.0177) (0.0172) (0.0156) (0.0152) (0.0169) (0.0164)

β12 -3.0003 -3.0003 -3.0022 -3.0022 -3.0003 -3.0003 -3.0022 -3.0022

(0.0132) (0.0129) (0.0157) (0.0154) (0.0131) (0.0128) (0.0144) (0.0140)

σ2
μ11

; ϕ̄2
11 8.0087 7.9299 8.0087 7.9299 8.0114 7.9352 8.0114 7.9352

σ2
μ12

; ϕ̄2
12 -0.0695 -0.0674 -0.0689 -0.0669

σ2
μ13

; ϕ̄2
13 2.3709 2.3932 2.3716 2.3945

σ2
ν11

0.7440 0.7417 0.7440 0.7417 0.7440 0.7417 0.7440 0.7417

σ2
ν12

-0.0276 -0.0276 -0.0276 -0.0276

σ2
ν13

-0.2360 -0.2367 -0.2360 -0.2367

ψ̄2
11 6.2033 6.0202 6.2033 6.0202 6.2033 6.0202 6.2033 6.0202

ψ̄2
12 0.5527 0.5596 0.5527 0.5596

ψ̄2
13 1.4682 1.5241 1.4682 1.5241

β20 9.9925 9.9924 10.0007 10.0010 9.9924 9.9923 9.9952 9.9952

(0.0434) (0.0422) (0.0881) (0.0868) (0.0426) (0.0414) (0.0612) (0.0592)

β21 -3.0019 -3.0019 -3.0022 -3.0022 -3.0018 -3.0018 -3.0022 -3.0022

(0.0197) (0.0192) (0.0157) (0.0154) (0.0189) (0.0184) (0.0144) (0.0140)

β22 8.0004 8.0003 7.9965 7.9964 8.0003 8.0002 7.9973 7.9972

(0.0137) (0.0134) (0.0251) (0.0248) (0.0136) (0.0133) (0.0223) (0.0219)

β23 -2.0025 -2.0024 -2.0007 -2.0007 -2.0022 -2.0021 -2.0004 -2.0004

(0.0197) (0.0192) (0.0160) (0.0157) (0.0189) (0.0184) (0.0147) (0.0143)

σ2
μ22

; ϕ̄2
22 7.0091 6.9327 7.0091 6.9327 7.0127 6.9384 7.0127 6.9384

σ2
μ23

; ϕ̄2
23 -0.0457 -0.0550 -0.0466 -0.0559

σ2
ν22

0.7117 0.7097 0.7117 0.7097 0.7117 0.7097 0.7117 0.7097

σ2
ν23

0.1032 0.1032 0.1032 0.1032

ψ̄2
22 6.7890 6.6107 6.7890 6.6107 6.7890 6.6107 6.7890 6.6107

ψ̄2
23 -0.9021 -0.9268 -0.9021 -0.9268

β30 19.9905 19.9905 19.9944 19.9944 19.9906 19.9906 19.9922 19.9921

(0.0461) (0.0449) (0.0742) (0.0730) (0.0450) (0.0438) (0.0571) (0.0554)

β32 -1.9996 -1.9996 -2.0007 -2.0007 -1.9996 -1.9996 -2.0004 -2.0004

(0.0153) (0.0150) (0.0160) (0.0157) (0.0152) (0.0149) (0.0147) (0.0143)

β33 5.0010 5.0010 5.0006 5.0006 5.0010 5.0010 5.0008 5.0009

(0.0185) (0.0181) (0.0201) (0.0197) (0.0178) (0.0174) (0.0191) (0.0187)

σ2
μ33

; ϕ̄2
33 6.8811 6.8005 6.8811 6.8005 6.8868 6.8084 6.8868 6.8084

σ2
ν33

0.7378 0.7358 0.7378 0.7358 0.7378 0.7358 0.7378 0.7358

ψ̄2
33 9.2418 9.0573 9.2418 9.0573 9.2418 9.0573 9.2418 9.0573

The numbers in round brackets are the average estimated standard errors. The variances of the

estimated parameters are not displayed since they are not significantly different among estimation

techniques.
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of observations; each sub-stratum is characterized by a total of n̆c
observations, with N̆c individuals (indexed ı̆c = 1̆c, . . . , N̆c) ob-
served over T̆c periods (indexed t̆c = 1̆c, . . . , T̆c). Hence, the num-

ber of observations within the sub-stratum c is n̆c =
∑N̆c

ı̆c=1̆c
Tı̆c =∑T̆c

t̆c=1̆c
Nt̆c

.

Using the n × B matrix Δβ of indicator variables denoting
observations on strataB, we can define theB×B diagonal matrix
ΔB ≡ Δ′βΔβ (diagonal elements correspond to the ňb’s) and the

B×T matrix of zeros and ones ΔBT ≡ Δ′βΔνΔ−1T , indicating the
absence or presence of a time period in a certain stratum (notice
that Δ′βΔν is a matrix of zeros and Nťb

’s).

Moreover, using the n × C matrix Δγ of indicator variables
denoting observations on sub-strata C, we can define the C ×C
diagonal matrix ΔC ≡ Δ′γΔγ (diagonal elements correspond to

the n̆c’s), the C×N matrix of zeros and ones ΔCN ≡ Δ′γΔμΔ−1N ,
indicating the absence or presence of an individual in a certain
sub-stratum (notice that Δ′γΔμ is a matrix of zeros and Tı̆c ’s),

and the C × T matrix of zeros and ones ΔCT ≡ Δ′γΔνΔ−1T , in-
dicating the absence or presence of a time period in a certain
sub-stratum (notice that Δ′γΔν is a matrix of zeros and Nt̆c

’s).

Therefore, variances Var(μi)’s are assumed to be constant
within strata A, i.e., Var(μi) = ϕa, variances Var(νt)’s are as-
sumed to be constant within strata B, i.e., Var(νt) = ϑb, and
variances Var(uit)’s are assumed to be constant within sub-strata
C, i.e., Var(uit) = ψc. Hence, the approach presented in the pre-
vious sections can be easily extended to the case in which the
time-specific effect is also heteroskedastic.

6. CONCLUSION

The use of panel data is becoming very popular in applied econo-
metrics, since large data sets including many individuals ob-
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served for several periods are increasingly accessible and man-
ageable. Most of these data sets are unbalanced panels, since
very often not all the individuals are observed over the whole
time period. In estimating single-equation or system of equa-
tions ECM s on these data, the heteroskedasticity problem may
be very common, especially when individuals differ in size.

In this paper, we have derived suitable ECM estimators for
heteroskedastic two-way single-equation and SUR systems (with
cross-equations restrictions) on unbalanced panel data. Our sim-
ulations show that such estimators substantially improve estima-
tion efficiency as compared to the case where heteroskedasticity
is not taken into account, especially when both the individual-
specific and remainder error components are heteroskedastic.
Among the various estimators used in this analysis, the QUE
procedures and the WB procedures perform equally well (both
in the single-equation and the SUR specifications), resulting in a
similar average bias on the estimates of the variance-covariance
matrices.

APPENDIX

A.1. Alternative Robust Standard Errors

Since uit ∼ (0, ψa), it is possible to obtain robust standard errors
also by stacking the observations for each stratum a, and then
by writing:

ỹa(A) =

[
diag[ETı̂a ]−

(
ET1̂aD1̂a

, . . . ,ETN̂a
DN̂a

)′
Q−

(
D′

1̂a
ET1̂a , . . . ,D

′
N̂a

ETN̂a

)]
ya(A),

X̃a(A) =

[
diag[ETı̂a ]−

(
ET1̂aD1̂a

, . . . ,ETN̂a
DN̂a

)′
Q−

(
D′

1̂a
ET1̂a , . . . ,D

′
N̂a

ETN̂a

)]
Xa(A).

(A.1)
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Therefore, we can compute the n̂a × 1 vector ẽa(A) = ỹa(A) −
X̃a(A)β̂

W
and the robust asymptotic variance-covariance matrix

of β̂
W

is estimated by:

Var
(
β̂
W
)
=
(
X′Q[Δ]X

)−1 A∑
a=1

(
X̃′a(A)ẽa(A)ẽ

′
a(A)X̃a(A)

)
(
X′Q[Δ]X

)−1
. (A.2)

A.2. Adapted QUE s in (11)

The expressions in (11) can be further detailed as:

qa(n) ≡
[
f ′a − f̄ ′N ·Δ

′
μa −

(
f̄ ′·TΔT − f̄ ′N ·Δ

′
TN

)
Q−(

Δνa −ΔμaΔ−1N Δ′TN
)′][

fa −Δμa f̄N ·

−
(
Δνa −ΔμaΔ−1N Δ′TN

)
Q−

(
f̄ ′·TΔT − f̄ ′N ·Δ

′
TN

)′]
,

qn ≡ f ′
1×n

f
n×1

− f̄ ′N ·
1×N

ΔN
N×N

f̄N ·
N×1

−
(
f̄ ′·T
1×T

ΔT
T×T

− f̄ ′N ·
1×N

Δ′TN
N×T

)
Q−
T×T(

f̄ ′·T
1×T

ΔT
T×T

− f̄ ′N ·
1×N

Δ′TN
N×T

)′
,

qa(N) ≡
N̂a∑

ı̂a=1̂a

Tı̂a · f̄2ı̂a· =
∑
i∈Îa

Ti · f̄2i·,

qN ≡ f̄ ′N ·
1×N

ΔN
N×N

f̄N ·
N×1

=
N∑
i=1
Ti · f̄2i· =

A∑
a=1

N̂a∑
ı̂a=1̂a

Tı̂a · f̄2ı̂a·

=
A∑
a=1

∑
i∈Îa

Ti · f̄2i·,

qT ≡ f̄ ′·T
1×T

ΔT
T×T

f̄·T
T×1

=
T∑
t=1
Nt · f̄2t·,

(A.3)

where the elements of the N×1 matrix f̄N · are f̄i· =
∑Ti
t=1 fit
Ti

, the

elements of the T × 1 matrix f̄·T are f̄·t =
∑Nt
i=1 fit
Nt

, Δμa = HaΔμ,
and Δνa = HaΔν .
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A.3. Alternative (Consistent) Estimators of Σψa and Σϕa

Estimators of Σψa in (42) and Σϕa in (43) and (45) can be cal-
culated by identifying the individuals belonging to stratum a
through not the set Îa but the index ı̂a = 1̂a, . . . , N̂a:

Σ̂ψa =

Wεa +
N̂a∑
ı̂a=1

Tı̂a∑
t=1

1
Nt
· Σ̂u

n̂a − N̂a

, (A.4)

Σ̂ϕa =

BC
εa +

N̂a∑
ı̂a=1

Tı̂a
n ·

N∑
i=1

T 2
i
n · Σ̂μ − N̂a · Σ̂ψa +

N̂a∑
ı̂a=1

Tı̂a
n · Σ̂u

N̂a∑
ı̂a=1

Tı̂a

, (A.5)

Σ̂ϕa =

BC
εa +

N̂a∑
ı̂a=1

Tı̂a
n ·

N∑
i=1

T 2
i
n · Σ̂μ −

(
N̂a −

N̂a∑
ı̂a=1

Tı̂a
n

)
· Σ̂u

N̂a∑
ı̂a=1

Tı̂a

. (A.6)

Besides, the expected values of theM×M matrices of within
individuals and between individuals (co)variations in the f ’s of
the different M equations can be written by identifying the indi-
viduals belonging to stratum a through not the set Îa as in (47)
but the index ı̂a = 1̂a, . . . , N̂a:

E
(
Wfa

)
=

(
n̂a − N̂a

)
· Σψa −

N̂a∑
ı̂a=1

∑
t∈Jı̂a

1
Nt
· Σ̄ψ,

E
(
BC
fa

)
=

N̂a∑
ı̂a=1

Tı̂a · Σϕa −
N̂a∑
ı̂a=1

Tı̂a
n ·

N∑
i=1

T 2
i
n · Σ̄ϕ

+N̂a · Σψa −
N̂a∑
ı̂a=1

Tı̂a
n · Σ̄ψ.

(A.7)

Therefore, the estimators in (A.4) and (A.5), with Wfa instead
of Wεa and BC

fa
instead of BC

εa respectively, are consistent es-
timators of Σψa and Σϕa . Finally, with heteroskedasticity only
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on the individual-specific disturbance, the expected values of the
M ×M matrices of between individuals (co)variations in the f ’s
of the different M equations in (48) becomes:

E
(
BC
fa

)
=

N̂a∑
ı̂a=1

Tı̂a · Σϕa −
N̂a∑
ı̂a=1

Tı̂a
n ·

N∑
i=1

T 2
i
n · Σ̄ϕ

+

(
N̂a −

N̂a∑
ı̂a=1

Tı̂a
n

)
· Σu, (A.8)

and therefore the estimator in (A.6), with BC
fa

instead of BC
εa , is

a consistent estimator of Σϕa .
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