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Abstract: Over the last decade much research has been carried out on unit roots and 

cointegration in panel-data with integrated time series, due to the availability of new datasets 

where the time series dimension and the cross-section dimension are of the same order. The 

analysis of this peculiar panel data set requires new techniques. In the panel unit root test 

framework, two generations of tests have been developed: a first generation (Levin, Lin and 

Chu test (2002), Im, Pesaran and Shin test (2003) and Fisher-type tests) whose main limit is 

the assumption of cross-sectional independence across units; a second generation of tests that 

rejects the cross-sectional independence hypothesis. Within this second generation of tests, 

two main approaches can be distinguished: the covariance restrictions approach, adopted 

notably by Chang (2002, 2004), and the factor structure approach, including contributions by 

Bai and Ng (2004a), Phillips and Sul (2003), Moon and Perron (2004a), Choi (2002) and 

Pesaran (2003), among others.  
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Introduction 

 

The econometric theory for dealing with panel data
1
 was largely developed for data sets 

where the number of time series observations (T) was small (often only four or five 

observations) but the number of groups or individuals (N) was large
2
. In this case, the 

asymptotic statistical theory was derived by letting ∞→N , for fixed T, in contrast to time-

series analysis which was done letting ∞→T , for fixed N. 

Nevertheless, during the past two decades a variety of new data sets have been 

constructed and are now available in electronic form (e.g. the Penn World Tables by Summer 

and Heston, 1991). One of the main features of these data sets is that sometimes both T and N 

are large and their orders of magnitude are similar. This feature has different implications for 

theoretical and empirical analysis, and understanding them is very important for economists 

intending to work on this kind of data.  This is why recent years have seen an explosion in the 

number of papers on the subject of unit roots and cointegration in panels of data with 

integrated time series. 

The attempt of the present work is to provide an updated overview of the recent 

developments in panel unit root tests literature and to underline the main issues which remain 

to be solved. This is fundamental for the econometric researcher who wants to apply existing 

tests or to develop new and better tests. 

The advantages of panel data methods include the use of data from countries (when 

combined in a panel) for which the span of time series data is insufficient and would thus 

preclude the study of many hypotheses of interest. Other benefits include better power 

properties of the testing procedures (when compared to more standard time-series methods) 

and the fact that many of the issues studied, such as convergence or purchasing power parity, 

lend themselves naturally to being studied in a panel context. 

A preliminary problem which has to be solved in order to develop appropriate test 

statistics in the  large panel framework is the question of how to carry out an asymptotic 

analysis, as both N and T can go to infinity. Several approaches have been developed, 

considering how the two indexes go to infinity
3
. The main contribution in this framework has 

                                                 
1
 For surveys on panel data see Arellano (2003), Baltagi (2001), Hsiao (2003) and Wooldridge (2002). 

2
 The cross-sectional units may be households, firms, regions, countries and so forth. 

3
 The way this is done is crucial for determining the asymptotic properties of estimators and tests for 

nonstationary panels. 
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been made by Phillips and Moon (1999), who identified three main ways to approach 

asymptotic theory in this case: 

1) Sequential limits: this procedure consists in letting one argument, say T, go to infinity 

first, and the other, say N, go to infinity second ( ( )seq, ∞→NT  hereafter). These sequential 

limits are easy to derive and helpful in extracting quick asymptotics, but they can sometimes 

give misleading asymptotic results (Phillips and Moon, 1999). 

2) Diagonal-path limits: this consists in imposing restrictions on the relative rates at 

which N and T go to infinity
4
. The limit theory obtained by this approach depends on the 

specific functional relation ( )⋅T , and the assumed expansion path may not provide an 

appropriate approximation for a given ( )NT ,  situation. 

3) Joint limits: this allows both N and T to pass to infinity simultaneously without placing 

specific diagonal path restrictions on the divergence. In general, this procedure gives a more 

robust result than the other approaches, but there are also some disadvantages: a) the joint 

limit is usually more difficult to derive; b) stronger conditions (i.e. existence of higher 

moments) are required to allow for uniformity in the convergence arguments; c) it is not 

generally true that a sequential limit is equal to a joint limit
5
. 

All previous approaches are theoretically interesting; nevertheless, the limiting results are 

essentially the same as those of the sequential asymptotics, and, from a practical point of 

view, sequential asymptotic results will be adequate in most cases. 

Initial theoretical work on the non-stationary panel data focuses on testing for unit roots in 

univariate panels, and since the work of Quah (1994) and Breitung and Meyer (1994), interest 

in this topic has been increasing significantly. 

In general, the commonly-used unit root tests, such as the Dickey-Fuller (DF) and the 

Augmented DF (ADF) test (Dickey and Fuller, 1981), have non-standard limiting 

distributions
6
 which depend on whether deterministic components are included in the 

regression equation. 

                                                 
4
 For instance, Quah (1994) and Levin and Lin (1993) assumed that the two indexes pass to infinity along a 

specific diagonal path which can be determined by ( )NTT = . This means that ( ) ∞→NT  as ∞→N  

(being ( )⋅T  a monotonically increasing function). 
5
 Phillips and Moon (1999) applied the multi-index asymptotic theory to joint limits in situations where T  is 

large relative to N , that is ∞→NT ,  with ( ) ∞→NT  (examples of this type of data configuration are 

industries, regions and countries observed over a long span of time. A well-known example of this kind of data 

is provided by the Penn World Tables). However, the general approach given in Phillips and Moon (1999) is also 

applicable to situations in which ( ) 0→NT , although different limit results will generally obtain in that case. 
6
 For example, the ADF test statistic converges to a function of Brownian motion (White, 1958) under very 

general conditions (Said and Dickey, 1984) 
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Moreover, in finite samples such tests show little power in distinguishing the unit root 

from stationary alternatives as well as unit root tests based on a single time series with highly 

persistent deviations from equilibrium.  

The reason for the poor performance of standard unit root tests in the panel framework 

may be the different null hypothesis tested in this case. For instance, if we consider the 

simplified model: 

ititiit uyy +=∆ −1ρ      Ni ,...,2,1=      Tt ,...,2,1= .
7
 

in the single equation case we are interested in testing 01 =ρ  against the alternative 

hypothesis 01 <ρ  and we apply a unit root for the first time series. Instead, in the panel data 

case, the hypothesis we are interested in is: 

0:0 =iH ρ  against 0: <iaH ρ  for Ni ,...,2,1= . 

 

In the large panel framework “The hope ... is to combine the best of both worlds: the 

method of dealing with non-stationary data from the time series and the increased data and 

power from the cross-section” (Baltagi and Kao, 2000). 

Two generations of panel unit root tests have been developed as we can note in Table 1. 

 

Table 1. Panel Unit Root Tests 

 

First Generation Cross-sectional independence 

1. Nonstationarity tests Levin and Lin (1992, 1993) and Levin, 

Lin and Chu (2002) 

 Im, Pesaran and Shin (1997, 2003) 

 Maddala and Wu (1999) and Choi (1999, 

2001) 

2. Stationarity tests Choi’s (2001) extension 

 Hadri (2000) 

Second Generation Cross-sectional dependence 

1. Factor Structure Pesaran (2003) 

 Moon and Perron (2004a) 

 Bai and Ng (2002, 2004) 

 Choi (2002) 

2. Other Approaches O’Connell (1998) 

 Chang (2002, 2004) 

 

The first generation of tests includes Levin, Lin and Chu’s test (2002), Im, Pesaran and 

Shin (2003) and the Fisher-type test proposed first by Maddala and Wu (1999), then 

                                                 
7
 In the remainder of this paper, i and t are always assumed Ni ,...,2,1= , Tt ,...,2,1=  where not differently 

specified. 
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developed by Choi (2001). The main limit of these tests is that they are all constructed under 

the assumption that the individual time series in the panel are cross-sectionally independently 

distributed, when on the contrary a large amount of literature provides evidence of the co-

movements between economic variables. 

To overcome this difficulty, a second generation of tests rejecting the cross-sectional 

independence hypothesis has been proposed. Within this second generation of tests, two main 

approaches are distinguished. The first one consists in imposing few or no restrictions on the 

residual covariance matrix and has been adopted notably by Chang (2002, 2004), who 

proposed the use of nonlinear instrumental variable methods or the use of bootstrap 

approaches to solve the nuisance parameter problem due to cross-sectional dependency. The 

second approach relies on the factor structure approach and includes contributions by Bai and 

Ng (2004a), Phillips and Sul (2003), Moon and Perron (2004a), Choi (2002) and Pesaran 

(2003) among others.  

This paper is organized as follows. The first section reviews first generation of panel unit 

root tests, section 2 discusses the second generation of panel unit root tests while my 

conclusions close the paper. 

 

 

1. Panel unit root tests in the presence of cross-sectional 

independence
8
 

 

A first generation of models has analyzed the properties of panel-based unit root tests 

under the assumption that the data is independent and identically distributed (i.i.d.) across 

individuals. The firsts unit root tests are those of Quah (1992, 1994), Breitung and Mayer 

(1994) and Levin and Lin (1992, 1993). 

In general, this type of panel unit root tests is based on the following univariate 

regression: 

 itititiit uzyy +′+=∆ − γρ 1  (1.1) 

where Ni ,...,2,1=  is the individual, for each individual Tt ,...,2,1=  time series observations 

are available, itz  is the deterministic component and itu  is a stationary process. itz  could be 

zero, one, the fixed effects ( iµ ), or fixed effect as well as a time trend (t). 

                                                 
8
 See Table A.1. in the Appendix for a summary of the main characteristics of this first generation of tests.  
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The null hypothesis is 

 0=iρ i∀ . (1.2) 

The main difference between the proposed tests is the degree of heterogeneity considered 

under the alternative hypothesis.  

Quah (1990, 1994) - using random field methods - derives the asymptotic standard 

normality of the DF unit root t-statistic for a model with i.i.d. disturbances and no 

heterogeneity across groups as both N and T grow arbitrarily large. Specifically, N and T are 

assumed to go to infinity at the same rate, such that TN  is constant
9
. Unfortunately, the 

random approach cannot be used to analyse more general model specifications (i.e. 

accommodating individual-specific fixed effects or serial correlation in the disturbances) or to 

multivariate analysis (i.e. testing for cointegration).  

Breitung and Mayer (1994) derive the asymptotic normality of the DF test statistic for 

panel data with an arbitrarily large N and a small fixed T (which corresponds to the most 

common microeconomic panel dataset). In this framework, it is possible to incorporate 

arbitrary patterns of serial correlation for each individual (since this only involves a finite 

number of parameters), and time-specific random effects (which can be consistently estimated 

as N  grows arbitrarily large). 

The asymptotic dimensional assumptions of Breitung and Mayer are not appropriate for 

panel datasets in which T and N  have the same or larger order of magnitude. Furthermore, 

their approach cannot be extended to allow for heterogeneous residual distributions and the 

influence of individual-specific effects can have large effects on the appropriate critical values 

at which to evaluate the unit root t-statistic. 

Since the tests proposed by Quah and Breitung and Meyer have been by-passed by the 

papers by Levin and Lin (1992, 1993), they are not discussed here. 

 

 

1.1. Levin, Lin and Chu (2002) test 

 

Levin and Lin (1992, 1993) and Levin, Lin and Chu (2002)
10

 (LLC thereafter) provide 

some new results on panel unit root tests. They generalize the Quah’s model to allow for 

                                                 
9
 Via Monte Carlo simulations, Quah shows that the standard normal distribution is a good approximation for 

specific panel sizes (i.e. Summer-Heston dataset containing 25 annual observations for each 100 countries). 
10

 Levin and Lin proposed their test in first time in 1992. In 1993 they generalised the analysis allowing for 

autocorrelation and heteroscedasticity. Their paper in 2002 (Levin, Lin and Chu, 2002) collect major results of 

their researches. 
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heterogeneity of individual deterministic effects (constant and/or linear time trend) and 

heterogeneous serial correlation structure of the error terms assuming homogeneous first 

order autoregressive parameters. They assume that both N and T tend to infinity but T increase 

at a faster rate, such that 0→TN . 

They develop a procedure using pooled t-statistic of the estimator to evaluate hypothesis 

that each individual time series contains a unit root against the alternative hypothesis that each 

time series is stationary. 

Thus, referring to the model (1.1), LLC assume homogeneous autoregressive coefficients 

between individual, i.e. ρρ =i  for all i , and test the null hypothesis 0:0 == ρρ iH  against 

the alternative 0: <= ρρ iaH  for all i . 

Imposing a cross-equation restriction on the first-order partial autocorrelation coefficients 

under the null, this procedure leads to a test of much higher power than performing a separate 

unit root test for each individual. 

The structure of the LLC analysis may be specified as follows: 

 itiiitit utyy +++=∆ − 101 ααρ , Ni ,...,2,1= , Tt ,...,2,1= . (1.1.1) 

where a time trend ( ti1α ) as well as individual effects ( iα ) are incorporated. Note that the 

deterministic components are an important source of heterogeneity in this model since the 

coefficient of the lagged dependent variable is restricted to be homogeneous across all units in 

the panel. 

itu  is assumed to be independently distributed across individuals and follow a stationary 

invertible ARMA process for each individual: 

 ∑
∞

=
− +=

1j

itjitijit uu εθ  (1.1.2) 

and the finite-moment conditions are assumed to assure the weak convergence in Phillips 

(1987) and Phillips-Perron’s (Phillips and Perron, 1988) unit root tests. 

LLC consider several subcases of model (1.1.1) which are all estimated by OLS as pooled 

regression models.  

Limiting distributions are derived by sequential limit theory ( )seq, ∞→NT . 

LLC show that the asymptotic properties of the regressions estimators and test statistics 

are a mixture of properties derived for stationary panel data, and properties derived in the time 

series literature on unit root tests: in contrast to the non-standard distributions of unit root test 

statistic for single time series (cf. Phillips, 1987; Phillips and Perron, 1988; Phillips and 
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Ouiliaris, 1990), the panel regression estimators and test statistics have limiting normal 

distributions, as in the case of stationary panel data (cf. Hsiao, 2003). 

However, the presence of a unit root causes the convergence rate of the estimators and t-

statistics is higher when ∞→T  than when ∞→N  (referred to as “super-consistency” in the 

time series literature). 

In the case of i.i.d. disturbances and no individual-specific fixed effects, under the null, 

the panel regression unit root t -statistic ρt  based on the pooled estimator ρ̂  converges to the 

standard ( )1,0N  distribution when N  and T  tend to infinity and 0→TN . 

In contrast, if there are individual-specific fixed effects, time trends or serial correlation in 

the disturbances, the resulting test statistic is not centred at zero, with substantial impact on 

the size of unit root test; in this case, Levin and Lin suggest using an adjusted t-statistic: 

 
( )

∗

∗−
=∗

−
=

Tm

TmN RSESTNt
t

~

~
2

~0
ˆˆˆ~

σ

µρσ ερ

ρ  (1.1.3) 

being ∗

T
~µ  and ∗

T
~σ  the mean and the standard deviation adjustment terms which are obtained 

from Monte Carlo simulation and tabulated in Levin and Lin’s paper (1992), 

∑
=

=
N

i ei

yi

NT
N

S
1 ˆ

ˆ1ˆ
σ

σ
, where 2ˆ

yiσ  denotes a kernel estimator of the long-run variance  for the 

individual i. 

Applying sequential limit theory, i.e. ( )seq, ∞→NT , the following limiting distributions 

of ρ̂NT  and ρt  are obtained: 

 ( )2,0ˆ N⇒ρNT  (1.1.4) 

 ( )1,00 N⇒=ρt . (1.1.5) 

Levin and Lin (1993)’s Monte Carlo simulation results indicate that when there are not 

individual-specific fixed effects, the standard normal distribution may provide a good 

approximation of the empirical distribution of the test statistic in relatively small samples, and 

that the panel framework can provide dramatic improvements in power compared to 

performing a separate unit root test for each individual time series. 

As Levin et al. (2002) noted, their panel based unit root tests are more relevant for panels 

of moderate size (i.e., 25010 << N  and 25025 << T ). 
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In fact, existing unit root test procedures are appropriate if T  is very large, or T  is very 

small but N  is very large.
11

 

However, for panels of moderate size standard multivariate procedures may not be 

computationally feasible or sufficiently powerful and the LLC test seems to be more 

appropriate. 

Unfortunately, the LLC test has some limitations. First of all, the test depends crucially 

upon the independence assumption across individuals, and hence not applicable if cross 

sectional correlation is present. 

But the major limitation is that the autoregressive parameters are considered being 

identical across the panel: 

 
0...:

0...:

21

210

<====

=====

ρρρρ

ρρρρ

Na

N

H

H
 (1.1.6) 

The null makes sense under some circumstances, but as Maddala and Wu (1999) pointed 

out, the alternative is too strong to be held in any interesting empirical cases. 

This limitation has been overcame by IPS (Im, Pesaran and Shin, 1997, 2003) which 

proposed a panel unit root test without the assumption of identical first order correlation under 

the alternative. 

 

 

1.2. Im, Pesaran and Shin (2003) tests 

 

Im, Pesaran and Shin (2003) -IPS thereafter-, using the likelihood framework, suggest a 

new more flexible and computationally simple unit root testing procedure for panels (which is 

referred as t-bar statistic), that allows for simultaneous stationary and non-stationary series 

(i.e. iρ  can differ between individuals). 

Moreover, this test allows for residual serial correlation and heterogeneity of the dynamics 

and error variances across groups. 

Instead of pooling the data, IPS consider the mean of (A)DF statistics computed for each 

cross-section unit in the panel when the error term itu  of the model (1.1) is serially correlated, 

                                                 
11

 If T is very large, then existing unit root test procedures will generally be sufficiently powerful to be applied 

separately to each individual in the panel, though pooling a small group of individual time series can be 

advantageous in handling more general patterns of correlation across individuals (Park, 1990; Johansen, 1991). 

If T is very small, and N is very large, then existing panel data procedure will be appropriate allowing for very 

general temporal correlation patterns (MaCurdy, 1982; Hsiao, 2003; Holtz-Eakin et al., 1988; Breitung and 

Mayer, 1994). 
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possibly with different serial correlation patterns across cross-sectional units (i.e. 

∑ = − += ip

j itjitijit uu
1

εϕ ), and T and N are sufficiently large. Substituting this itu  in 

(1.1), and considering a linear trend for each of the N cross-section units, we get: 

 ∑
=

−− +∆++=∆
ip

j

itjitijitiiit yyy
1

10 εϕρα  (1.2.1) 

where, as usual, Ni ,...,2,1= , Tt ,...,2,1= . 

The null hypothesis
12

 is: 

0:0 =iH ρ   i allfor  

against the alternative: 





=

<

0

0
:

i

i

aH
ρ

ρ
 

NNi

Ni

,...,1for 

,...,1for 

1

1

+=

=
 NN ≤< 10with  

that allows for some (but not all) of individual series to have unit roots. 

IPS compute separate unit root tests for the N cross-section units and define their t-bar 

statistic as a simple average of the individual ADF statistics, iTt , for the null as: 

 ∑
=

=
N

i

iTt
N

t
1

1
. (1.2.2) 

IPS assume that iTt  are i.i.d. and have finite mean and variance. 

Therefore, by Lindeberg-Levy central limit theorem, the standardized t-bar statistic 

converges to a standard normal variate as ∞→N  under the null hypothesis. 

In order to propose a standardization of the t-bar statistic, the values of the mean and the 

variance have been computed via Monte Carlo methods for different values of T and spi
′  and 

tabulated by IPS (2003). 

It is important to note that in this procedure only balanced panel data are considered. If 

unbalanced data are used, more simulations have to be carried out to get critical values. In the 

case of serial correlation, IPS propose using ADF t-test for individual series. However 

[ ]0=iiTtE ρ  and [ ]0=iiTtVar ρ  will vary as the lag length included in the ADF regression 

varies. They tabulate [ ]0=iiTtE ρ  and [ ]0=iiTtVar ρ  for different lag lengths. In practice, 

however, to use their tables, it is necessary to restrict all the ADF regressions for individual 

series having the same lag length. 

                                                 
12

 The null hypothesis in IPS also implies auxiliary assumptions about the individual effects as in LLC and in 

particular 0
0

=
i

α  for all i. 
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IPS’s simulations show that, if there is not serial correlation, the t-bar test has the correct 

size and is very powerful, even for small values of T ( 10=T ): its power rises monotonically 

with N and T .
13

 

Simulations show the importance of a correct choice of the underlying ADF regressions 

order especially when the panel contains deterministic time trends. 

When the disturbances in the dynamic panel are serial correlated, size and power of the t-

bar test are reasonably satisfactory, but T and N have to be sufficiently large. In this case it is 

also critically important not to under-estimate the order of the underlying ADF regressions. 

Another important feature lies in the fact that the power of the t-bar test is much more 

favourably affected by a rise in T than by an equivalent rise in N. 

Special care needs to be exercised when interpreting the results of this panel unit root 

tests. Due to the heterogeneous nature of the alternative hypothesis, rejection of the null 

hypothesis does not necessarily imply that the unit root null is rejected for all i, but only that 

the null hypothesis is rejected for NN <1  members of the group such that as ∞→N , 

01 >→ δNN . The test does not provide any guidance as to the magnitude of δ , or the 

identity of the particular panel members which the null hypothesis is rejected. 

 

 

1.3. The Fisher’s type test: Maddala and Wu (1999) and Choi (2001) test 

 

Maddala and Wu (1999) and Choi (2001) consider the shortcomings of both the LLC and 

IPS frameworks and offer an alternative testing strategy. 

Then, to test for unit root in panel data, they suggest to use a non parametric Fisher-type 

test which is based on a combination of the p-values of the test-statistics for a unit root in each 

cross-sectional unit (the ADF test or other non stationarity tests)
14

. Both IPS and Fisher tests 

combine information based on individual unit root tests and relax the restrictive assumption of 

the LLC test that iρ  is the same under the alternative. However, the Fisher test is built under 

                                                 
13

 This also confirms that better results arise when cross-section dimension is added to time-series dimension. 
14

 Maddala and Wu (1999) note that the IPS test is good for testing the significance of the results from N 

independent tests of a hypothesis and propose a test combining the p-values. Pooling on the basis of p-value is a 

common practice in meta-analysis (see Tippett, 1931, Fisher, 1932, Becker ,1977, and Hedges and Olkin, 1985). 

It has the advantage of allowing for as much heterogeneity across units as possible. If the test statistics are 

continuous, the significance levels 
i

p  ( Ni ,...,2,1= ) are independent uniform ( )1,0  variables, and 
ie

plog2−  has 

a 2χ  distribution with two degrees of freedom. Using the additive property of the 2χ  variables, we get 

∑ =
−=

N

i ie
p

1
log2λ  has a 2χ  distribution with 2N degrees of freedom. This is the Fisher test (1932). 
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more general assumptions than the previously proposed ones (Quah’s, LLC and IPS tests). In 

fact, as Choi (2001) noted, previous tests suffer from some common inflexibilities which can 

restrict their use in applications: 

1) they all require an infinite number of groups.  

2) all the groups are assumed to have the same type of nonstochastic component. 

3) T is assumed to be the same for all the cross-section units and to consider the case of 

unbalanced panels further simulations are required
15

. 

4) as Levin and Lin, the critical values are sensitive to the choice of lag lengths in the 

ADF regressions. 

5) finally, all the previous tests hypothesize that none of the groups have a unit root under 

the alternative hypothesis: they do not allow that some groups have a unit root and others do 

not. 

Choi (2001) tries to overcome these limitations and proposes a very simple test based on 

the combination of p-values from a unit root test applied to each group in the panel data. 

There exists a number of possible p-value combinations
16

 to this aim, but the Fisher’s one 

turns out to be the better choice
17

. 

Choi (2001) considers the model: 

 ititit xdy += , (1.3.1) 

with Ni ,...,2,1= , Tt ,...,2,1=  and: 

 
( ) ittiiit

m

imiiit

uxx

ttd i

i

+=

+++=

−1

10 ...

ρ

ααα
 (1.3.2) 

and itu  is integrated of order zero. Note that the observed data ity  are composed of a 

nonstochastic process itd  and a stochastic process itx . Each time series ity  can have different 

sample size and different specification of nonstochastic and stochastic component depending 

on i. Notably itu  may be heteroskedastic. 

The null hypothesis is: 

iH i  allfor     1:0 =ρ  (1.3.3) 

which implies that all the time series are unit root nonstationary. The alternative hypothesis 

may be: 

                                                 
15

 IPS consider only briefly such case and the required moment calculations make it difficult to use. 
16

 See note 15. 
17

 As we will see later, the Fisher test is an exact and non-parametric test, and may be computed for any arbitrary 

choice of a test for unit root in a cross-sectional unit. 
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i:H ia  oneleast at for     1<ρ  for finite N  (1.3.4) 

that is some time series are nonstationary while the others are not, or 

s' somefor     1 i:H ia <ρ  for infinite N (1.3.5) 

which includes as a special case the alternative that all the time series are stationary, as it is 

considered in LLC. 

Let 
iiTG  be an one-sided unit root test statistic (e.g. DF tests) for the i-th group in model 

(1.3.1) and assume that: 

a) under the null hypothesis, as ∞→iT , iiT GG
i
⇒  (where iG  is a non degenerate random 

variable); 

b) itu  is independent of jsu  for all t  and s  when ji ≠ ; 

c) kNN k →  (a fixed constant) as ∞→N . 

Let ip  be the p-value of a unit root test for cross-section i, i.e., ( )
iiTi GFp = , where ( )⋅F  

is the distribution function of iG . The proposed Fisher type test is: 

 ∑
=

−=
N

i
iplnP

1

2  (1.3.6) 

which combines the p-value from unit root tests for each cross-section i  to test for unit root in 

panel data. Under null hypothesis of unit root, P is distributed as ( )N22χ  as ∞→iT  for all 

N. 

Fisher test holds some important advantages: 1) it does not require a balanced panel as in 

the case of IPS test; 2) it can be carried out for any unit root test derived; 3) it is possible to 

use different lag lengths in the individual ADF regression. 

The main disadvantage of this test is that the p-values have to be derived by Monte Carlo 

simulation.
18

  

When N is large, it is necessary to modify the P test since in the limit it has a degenerate 

distribution. Having for the P test [ ] 2ln2 =− ipE  and [ ] 4ln2 =− ipVar , Choi (2001) 

proposes a Z test: 

 ( )∑ =
−−=

N

i ipln
N

Z
1

22
2

1
 (1.3.7) 

                                                 
18 The IPS test is easy to use because there are tables available in the paper for ( )

iT
tE  and ( )

iT
tV . However, 

these are valid only for the ADF test. 
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This statistic corresponds to the standardized cross-sectional average of individual p-

values. Under the cross-sectional independence assumption of the ip ’s, the Lindeberg-Levy 

central limit theorem is sufficient to show that under the unit root hypothesis Z converges to a 

standard normal distribution as ( )
seq

, ∞→NTi . 

Choi (2001) also studies the effects of serial correlation in itu  on the size for the panel unit 

root tests and concludes that this is an important source of size distortions. 

 

 

1.4. Comparison between the previous tests 

 

Extensive simulations have been conducted to explore the finite sample performance of 

previous panel unit root tests, e.g., Im et al. (1997), Karlsson and Lothgren (1999), Maddala 

and Wu (1999), Choi (2001) and Levin et al. (2002). 

Monte Carlo simulations show that t-bar test is more powerful than LLC and Quah test. 

Breitung (2000) studies the local power of LLC and IPS tests statistics versus a sequence 

of local alternatives. He finds that both tests suffer for a dramatic loss of power if individual 

specific trends are included. This is due to the bias correction that also removes the mean 

under the sequence of local alternatives. 

It is necessary to note (Maddala and Wu, 1999, and Levin et al., 2002) that a direct 

comparison between LLC and t-bar is not possible because they present some relevant 

differences. Even if both tests have the same null hypothesis, the alternatives are quite 

different: in LLC test the alternative provides for individual stationary series with identical 

first order autoregressive coefficient (although there is heterogeneity in the error variances 

and the serial correlation structure of the errors), while in IPS test it provides for different 

individual first order autoregressive coefficients. 

As a consequence LLC test is based on pooled regressions (which is more advantageous if 

the stationary alternative with identical AR coefficients across individuals is appropriate) 

meanwhile IPS test amounts to a combination of different independent tests and does not pool 

the data as LLC test does. Then, in the power comparisons, it should be kept in mind that the 

worse performances of LLC test may be due to the fact that this test has to use the panel 

estimation method which is not valid if there is no need for pooling. 

Im et al. (2003) simulation results are: 
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- in the case of models without serially correlated errors, LLC test tends to over-reject null 

hypothesis as N is allowed to increase; for small T the t-bar test has a slightly higher power 

though the LLC test has a larger size. 

- in the case of models with serially correlated errors, LLC test tends to over-reject null 

hypothesis as N is allowed to increase and t-bar test is more powerful;  

- in general, if a large enough lag order is selected for the underlying ADF regressions, 

then the finite sample properties of the t-bar test is reasonably satisfactory and generally better 

than that of the LLC test. 

While LLC and t-bar test are not directly comparable, Fisher and IPS t-bar test are. 

Both tests are combination of different independent tests and they verify  the same 

hypothesis
19

.  

The main difference between the two tests is that the Fisher test is based on the 

combination of the significance levels of the different tests, and the IPS test is based on 

combining the test statistics.  

Furthermore, the Fisher test is a non-parametric test, whereas the IPS test is a parametric 

test. The distribution of the t-bar statistic involves the mean and variance of the t-statistics 

used. IPS compute this for the ADF test statistic (using different numbers of lags and sample 

sizes), but their tables are valid only if the ADF test is used for the unit root tests and the 

length of the time series is the same for all samples. Otherwise Fisher test can be used with 

any unit root test and even if the ADF test is used, the choice of the lag length for each sample 

can be separately determined. Also, there is no restriction of the sample sizes for different 

samples. 

The fact that Fisher test is an exact test whereas the IPS test is an asymptotic test does not 

lead to a large difference in finite sample results: the adjustment terms in the IPS test and the 

p-values in the Fisher test are all derived from simulations. However, the asymptotic validity 

of the IPS test depends on ∞→N  while for the Fisher test it depends on ∞→T . 

Maddala and Wu (1999) conduct simulations not size-corrected to compare their Fisher 

test, LLC test and t-bar test and show that their test performs better than the other two tests. In 

comparing the performances of the tests, the main results are: 

- when there is no cross-sectional correlation in the errors, the IPS test is more powerful 

than the Fisher test (the IPS test has higher power when the two have the same size). Both 

tests are more powerful than the LLC test; 

                                                 
19

 Note that if there is contemporaneous correlation (i.e. there is correlation among the individual test statistics), 

both tests will need modifications. 
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- all the tests can take care of heteroscedasticity and serial correlation in the errors, but 

when there is cross-sectional correlation, none of the tests can handle this problem well. The 

Monte Carlo evidence suggests that this problem is less severe with the Fisher test than with 

the LLC or the IPS test
20

. 

- when a mixture of stationary and nonstationary series in the group is included as an 

alternative hypothesis, the Fisher test is the best because it has the highest power in 

distinguishing the null and the alternative. 

Choi’s simulations (2001) compare t-bar and Fisher tests performances and show that the 

size of both tests is reasonably close to their nominal size 0.05 when N is small and t-bar test 

has the most stable size to the different values of N and T. The power of both test rises as N 

increases (which justifies the use of panel data), but it decreases considerably when a linear 

trend is included in the model. However in terms of size-adjusted power, Fisher test is 

superior to the t-bar. Considering the trade-off between size and power, the Z test (1.3.7) 

seems to outperform the other tests. Furthermore, we remember that this test can be used for 

both finite and infinite N. 

 

Also Banerjee et al. (2005) point out the assumption of cross-unit independence in panel 

framework. 

They analyze the PPP hypothesis and suggest an alternative explanation for the mismatch 

existing between the results of the panel data analysis and the results of the univariate 

analysis
21

. They observe that empirically the no cross-sectional independence hypothesis of 

panel unit root tests is violated. As a consequence the empirical size of these tests is 

substantially higher than the nominal level, and usual tests would over-reject the non-

stationarity null when there are common sources of non-stationarity (see also Lyhagen, 2000, 

and Pedroni and Urbain, 2001). 

Banerjee et al. (2005) carry out Monte Carlo simulations to compare performances of 

LLC, t-bar, LM-IPS and Fisher tests. They show that when there are cross-country 

cointegrating relationships, the LLC test suffers the least from size distortion. This occurs 

because LLC is the only pooled test which takes some account of the relationships linking the 

units. In addition, pooling is not an unreasonable restriction when the autoregressive 

parameter ρ  to be estimated is homogeneous under both the null and alternative hypotheses. 

                                                 
20 More specifically, when T is large but N is not very large, the size distortion with the Fisher test is small. But 

for medium values of T and large N, the size distortion of the Fisher test is of the same level as that of the IPS 

test. 
21

 The PPP hypothesis is often accepted in the former case and rejected in the latter. 
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However, when the DGP allows for heterogeneity, the power of the LLC test is lower than for 

the other panel tests considered.  

Banerjee et al. (2005) show that in the presence of cross-unit cointegration the null 

hypothesis of unit root is rejected too often. 

 

All this results show that it is very important to take into account the presence of cross-

country cointegration relationships in testing for unit roots 

 

 

1.5. Stationarity tests 

 

All previous test procedures evaluate the null hypothesis of unit root but, as Hadri (2000) 

noted, it is a well known fact that the classical hypothesis testing accept the null hypothesis 

unless there is strong evidence to the contrary. This is confirmed in the time series literature 

by the fact that the standard unit root tests does not result very powerful against relevant 

alternatives and fails to reject the null hypothesis for many economic series. To decided 

whether economic data are stationary or integrated, DeJong and Whiteman (1991) suggest to 

perform test of the null hypothesis of stationarity as well as of a unit root. 

Testing for stationarity in a panel data instead of single time series leads to the same 

advantage invoked for panel unit root tests: as N  grows the power of the test increases and 

the distributions of the test statistics get asymptotically normal. 

Nevertheless, it is also necessary to recall that the time series tests for the null of 

stationarity tend to have serious size distortions when the null is close to the alternative of a 

unit root. Panel tests for the null of stationarity are no different in this respect, and caution 

should be exercised when interpreting the results of panel stationarity tests. 

These tests may be used in conjunction with panel data tests for the null of a unit root. 

Using both kinds of test it is possible to distinguish series that appear to be stationary, series 

that appear to have a unit root, and series for which it is not possible establish it they are 

stationary or integrated.  

The previously presented Choi’s test can also be used for the null of stationarity. 

Hadri (2000) proposes a residual based Lagrange Multiplier test which is an extension of 

stationarity test for time series of Kwiatkowki et al. (1992). 
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1.5.1  Choi’s test extension 

 

Choi’s testing procedures can be extended to verify the null of stationarity. In this case, 

the null hypothesis is formulated as: 

 i:H i  allfor     10 <ρ  (1.5.1.1) 

which implies that all the time series are stationary, and the alternative hypothesis may be: 

 i:H ia  oneleast at for     1=ρ , for finite N (1.5.1.2) 

or: 

 s' somefor     1 i:H ia =ρ , for infinite N (1.5.1.2’) 

Now, if 
iiTG  is a test for the null of stationarity (e.g. Kwiatkowski et al., 1992; Tsay, 

1993; Choi, 1994, ecc…) and ( )
iiTi GFp =  is the associated p-value, the tests and asymptotic 

theories that we have previously seen can be applied to the hypothesis system (1.5.1.1)-

(1.5.1.2’). 

 

 

1.5.2. Hadri (2000) test 

 

Hadri (2000) proposes a parametrization which provides an adequate representation of 

both stationary and nonstationary variables and permits an easy formulation for a  residual-

based LM test of stationarity. More specifically, Hadri adopts the following components 

representation:  

 itititit rzy εγ ++′=  (1.5.2.1) 

where itz  is the deterministic component, itr  is a random walk: 

 ititit urr += −1  (1.5.2.2) 

( )20,iid~ uitu σ  and itε  is a stationary process. The null hypothesis of trend stationary 

corresponds to the hypothesis that the variance of the random walk equals zero. 

(1.5.2.1) can be written as: 

 ititit ezy +′= γ  (1.5.2.3) 

where: 

 it

t

j

ijit ue ε+=∑
=1

 (1.5.2.4) 
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Let itê  be the residuals from the regression in (1.5.2.3), 2ˆ
eσ  be a consistent estimator of 

the error variance under 0H
22

 and let itS  be the partial sum process of the residuals: 

 ∑
=

=
t

j

ijit eS
1

ˆ . (1.5.2.5) 

The LM statistic can be defined as: 

 







= ∑∑

= =

N

i

T

t

it

e

S
NT

LM
1 1

2

22

1

ˆ

1

σ
. (1.5.2.6) 

which is consistent and has an asymptotic normal distribution as ( )seq, ∞→NT . 

The main advantage of Hadri (2000) test is that the moments of the asymptotic 

distribution of the Hadri test are exactly derived
23

. 

Besides, these tests allow the disturbance terms to be heteroscedastic across i . Let 

consider equation (1.5.2.6): it is sufficient to compute 2

eσ  for each individual time series i , 

say 2

,ieσ , and then apply the following formula: 

 







= ∑∑

= =

N

i

T

t

it

ie

S
NT

LM
1 1

2

22

,

1

ˆ

1

σ
 (1.5.2.7)  

Sometimes it is also possible allow for serial dependence substituting the assumption that 

the errors itε  are i.i.d. ( )2,0 εσN  over t  with the assumption that they satisfy the strong 

mixing regularity conditions of Phillips and Perron (1988) or the linear process conditions of 

Phillips and Solo (1992). Then it is possible to replace 2

eσ  by the long-run variance 2σ  

defined as: 

 ( )∑
=

−

∞→
=

N

i

iT
T

ST
N 1

212 lim
1

σ  (1.5.2.8) 

A consistent estimator of 2σ  can be obtained using one of the estimators found by 

Andrews and Monahan (1992), Lee and Phillips (1994), Newey and West (1994) and Den 

Haan and Levin (1996). 

Monte Carlo simulations show that T and N dimensions are very important for the test 

size. Test size is close to the nominal 5% level if 10>T  and it is the correct size if 25>T . 

 

                                                 

22
 A possible consistent estimator of 2

e
σ  is given by ∑ ∑= =

=
N

i

T

t ite
e

NT 1 1

22 ˆ
1

σ̂  which should be corrected for the 

degrees of freedom for finite samples. 
23

 For all the tests cited above, the critical values or the moments of the asymptotic distributions are evaluated 

using Monte Carlo simulations or numerical integration. 
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2. Panel unit root tests in the presence of cross-sectional 

dependence24 

 

All previously presented tests were constructed under the assumption that the individual 

time series in the panel were cross-sectionally independently distributed. 

This condition is needed in order to satisfy the Lindberg-Levy central limit theorem and to 

obtain asymptotically normal distributed test statistics. 

Nevertheless more recently, a large amount of literature (i.e. Backus and Kehoe, 1992) 

provided evidence on the strong co-movements between economic variables and it was 

recognized that the assumption of independence across members of the panel is rather 

restrictive, particularly in the context of cross country (region) regressions. Moreover, this 

cross-sectional correlation may affect the finite sample properties of panel unit root test
25

 

(O’Connell, 1998). For instance, the limit distribution of the usual Wald type unit root test 

based upon OLS and GLS system estimators depend upon various nuisance parameters 

defining correlations across individual units. Various attempts to eliminate the nuisance 

parameters in such systems have been proposed
26

; unfortunately, even if this procedure could 

partly deal with the problem, it is not appropriate if pair-wise cross-section covariances of the 

error terms differed across the individual series. This is why new panel unit root tests have 

been proposed in the literature
27

. 

To build these tests, a preliminary issue is to specify the cross-sectional dependence. But 

since individual observations in a cross-section have no natural ordering  this specification is 

not obvious. 

Various methods have been developed and they can be organized in two main streams: 

                                                 
24

 See Table A.2. in the Appendix for a summary of the main characteristics of this second generation of tests. 

The reader should note that this area of research is very recent and the linked literature is still under 

development, given the diversity of the potential cross-sectional correlations. 
25

 Inappropriately assuming cross-sectional independence can lead to a severe distortion in the size of the test 

when this assumption is not valid. 
26

 For example, the cross-sectionally de-meaning of the series before application of the panel unit root test. This 

is what has been done by Im, Pesaran and Shin (1997) which consider a simple form of cross-sectional 

correlation using time-specific effects. 
27

 Other attempts to solve the cross-sectional correlation problem are those of Driscoll and Kraay (1998) and  

Conley (1999). The former presents a simple extension of common nonparametric covariance matrix estimation 

techniques which yields standard errors that are robust to very general forms of spatial and temporal dependence 

as the time dimension becomes large. Conley (1999) presents a spatial model of dependence among agents using 

a metric of economic distance that provides cross-sectional data with a structure similar to time-series data. In 

this context, a generalized method of moments (GMM) is proposed using the dependent data and a class of 

nonparametric covariance matrix estimators that allow for a general form of dependence characterized by 

economic distance. 
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1. a first more general approach consists in imposing few or none restrictions on the 

covariance matrix of residuals (O’Connel, 1998; Maddala and Wu, 1999; Taylor and Sarno, 

1998; Chang, 2002, 2004).  

2. in a second approach the cross sectional dependence is modelled in the form of a low 

dimensional common factor model, which is estimated and conditioned out prior to 

construction of the panel unit root test (Bai and Ng, 2004a; Moon and Perron, 2004a; Phillips 

and Sul, 2003;  Pesaran, 2003). The main advantage of factor models is that they allow us to 

model the cross-sectional dependence using a (small) number of unobserved common factors.  

 

 

2.1. The covariance restrictions approach 

 

The first attempt to deal with the problem of cross-sectional correlation in panel data was 

done in O’Connell (1998). He refers to a GLS-based unit root test for homogeneous panels 

and considers a covariance matrix similar to the one that would arise in an error component 

model with mutually independent random time effects and random individual effects. 

However, this approach is theoretically valid only when N is fixed. When ∞→N , consistent 

estimation of the GLS transformation matrix is not a well defined concept since the sample 

cross-section covariance matrix will have rank T when TN >  even when the population 

covariance matrix is rank N. 

Another attempt was proposed in Maddala and Wu (1999). They bootstrap the critical 

values of the LLC, IPS or Fisher's type test statistics in order to get the empirical distributions 

and make inferences. This approach results in a decrease of the size distortions due to the 

cross-sectional correlations, although it does not eliminate them.  The main disadvantage of 

this methodology is that it is technically difficult to implement and Maddala and Wu do not 

provide the validity of using bootstrap methodology for panel data.  

More recently, Chang (2004) proposed a second generation bootstrap unit root test that, 

contrary to the previous tests, successfully overcomes the nuisance parameters problem in 

panels with cross-sectional dependence. 

 

 

2.1.1. Chang (2002) test 

 

Chang (2004) applies bootstrap methods to Taylor and Sarno’s (1998) multivariate ADF 

and other related tests and computes appropriate critical values by conditioning on the 
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estimated cross sectional dependence. More specifically, in her general framework, each 

panel is driven by general linear processes which may differ across cross-sectional units; she 

approximates these processes by an autoregressive integrated process of finite order which 

increases as T grows. In order to take into account the dependence among the innovations 

generating the individual series, a unit root tests based on the estimation of the whole system 

of N equations is suggested. The limit distributions of the tests are derived as T goes to 

infinity and N is fixed. Therefore bootstrap methodology is applied to approximate 

autoregressions and obtain the critical values for the panel unit root tests based on the original 

sample. To overcome the inferential difficulty of standard panel unit root tests in the presence 

of cross-sectional dependence, that have non standard limit distributions (i.e. LLC, IPS), 

Chang proposes to use the bootstrap method and shows that bootstrap panel unit root tests are 

consistent and perform well in finite samples relative to the IPS t-bar statistic. 

 

Chang (2002) also proposes an alternative non-linear instrumental variable (IV) 

approach. As previous, the goal is to solve the nuisance parameter problem and to do this, 

Chang (2002) tries to render the panel statistics asymptotically invariant to cross sectional 

dependence: for each cross-section unit, she estimates the AR coefficient from an usual ADF 

regression using the instruments generated by an integrable transformation of the lagged 

values of the endogenous variable. Then the author constructs N individual t-statistics for 

testing the unit root based on these N nonlinear IV estimators. These t-statistics have limiting 

standard normal distribution under the null hypothesis. Finally, a cross-sectional average of 

the individual IV t-ratio statistics is considered, as in the IPS approach. 

Specifically, Chang considers a panel model generated by a first-order autoregressive 

regression: 

 ititiit uyy += −1ρ , (2.1.1.1) 

where as usual Ni ,...,1=  denotes individual cross-sectional units and iTt ,...,1=  denotes time 

series observations. Note that the total number T for each individual i may differ across cross-

sectional units, i.e. unbalanced panels are allowed. 

The initial values ( )010 ,..., Nyy  are set at zero for simplicity. 

The error term itu  is given by an ( )ipAR  invertible process: 

 ( ) itit

i
uL ελ =  (2.1.1.2) 
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where ( ) ∑ =
−= ip

j

j

ij

i
LL

1
1 βλ  being L  the usual lag operator. Cross-sectional dependence of 

the innovations ( )2

i ,0...~
i

diit εσε  that generate the errors itu ’s is allowed.  

The null hypothesis of interest is: 

 1:0 =iH ρ  for all ity  

against the alternative: 

 1<ia :H ρ  for some ity . 

Thus, the null implies that all ity ’s have unit roots, and it is rejected if any one of ity ’s is 

stationary with 1<iρ . The rejection of the null therefore does not imply that the whole panel 

is stationary. 

Giving the (2.1.1.1) and (2.1.1.2) it is now possible re-write the model as: 

 it

p

j

jitijitiit

i

uyy εβρ ++= ∑
=

−−
1

1 . 

and, since itit uy =∆  under the unit root null hypothesis, the above regression becomes: 

 it

p

j

jitijitiit

i

yyy εβρ +∆+= ∑
=

−−
1

1  (2.1.1.3) 

To deal with the cross-sectional dependence, Chang uses the instrument generated by a 

nonlinear function ( )⋅F  of lagged values 1−ity , i.e. ( )1−ityF  which is called the Instrument 

Generating Function (IGF). 

( )⋅F  is a regularly integrable function which satisfies ( ) 0 ≠∫
∞

∞−
dxxxF , i.e. the nonlinear 

instrument ( )⋅F  is correlated with the regressor 1−ity . 

For the lagged demeaned differences ( )
ipititit yyx −− ∆∆=′ ,...,1 , the variables themselves are 

used as the instruments. 

Let ( )′= + iTipi xxX
i

,...,1  be the ( )ipT ,  matrix of the lagged differences, let 

( )1,..., −= iTipli yyy
i

 be the vector of lagged values and ( )′= + iTipi i
εεε ,...,1  be the vector of 

residuals. 

The augmented regression (2.1.1.3) can be written in matrix form as 

 itiiilii Xyy εβρ ++=  (2.1.1.4) 

where ( )′=
iipii βββ ,...,1 . Under the null, the nonlinear IV estimator of the parameter iρ  

denoted iρ̂ , is: 
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( ) ( ) ( )
1

1
ˆ

−
−





 ′′′

−
′

= liiiiilililii yXXXXyFyyFρ ( ) ( ) ( )




 ′′′

−
′ −

iiiiiliili XXXXyFyF εε 1
 

and its variance is: 

( ) ( ) ( )
2

122

ˆ ˆˆ
−

−





 ′′′

−
′

= liiiiililili yXXXXyFyyF
ii ερ σσ  

  ( ) ( ) ( ) ( ) ( )




 ′′′

−
′ −

liiiiililili yFXXXXyFyFyF
1

 

where ( )∑ =
= i

i

T

t itT
1

22 ˆ1ˆ εσ ε  and itε̂  is the fitted residual from augmented regression (2.1.1.3). 

For testing the unit root hypothesis 1:0 =iH ρ  for all ity , Chang constructs a t-ratio 

statistic from the nonlinear IV estimator iρ̂ , denoted iZ : 

( )1,0
ˆ

1ˆ

ˆ

N
d

T

i

i

i

Z
∞→

→
−

=
ρσ

ρ
 for all Ni ,...1=  

which asymptotically converges to a standard normal distribution if a regularly integrable 

function is used as an IGF. 

This asymptotic Gaussian result is fundamentally different from the usual unit root limit 

theories and it is entirely due to the nonlinearity of the IV. More importantly, the limit 

distributions of individual iZ  statistics are cross-sectionally independent. So, these 

asymptotic orthogonalities lead to propose a panel unit root test based on the cross-sectional 

average of these individual independent statistics. Chang proposes an average IV t-ratio 

statistic, defined as: 

 ∑
=

=
N

i

iN Z
N

S
1

1
. 

The factor 21−
N  is used just as a normalization factor. NS  results having a limit standard 

normal distribution
28

. Then by this result it is possible to do simple inference based on the 

standard normal distribution even for unbalanced panels with general cross-sectional 

dependence. 

More specifically, Chang’s limit theory does not require a large spatial dimension; 

consequently N  may take any value, large or small. 

 Finally, the model with deterministic components can be analyzed similarly using 

demeaned or detrended data. 

                                                 
28

 It should be noted that the usual sequential asymptotic is not used here. The limit theory is derived for 

∞→T , which in not followed by ∞→N .  
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Chang (2002) asserts that her approach is very general and has good finite sample 

properties. Her simulation results show that the finite sample sizes of NS  calculated from 

using the standard normal critical values quite closely approximate the nominal test sizes. 

Moreover, the test NS  has noticeably higher discriminatory power than the commonly used 

IPS t-bar tests. The panel nonlinear IV unit root test seems to improve significantly upon the 

t-bar test under cross-sectional dependency, especially for the panels with smaller time and 

spatial dimensions. 

However, Im and Pesaran (2003) showed that Chang’s test is valid only if N  is fixed as 

∞→T . Their Monte Carlo simulations show that Chang’s test is grossly over-sized for 

moderate degrees of cross section dependence, even for relatively small values of N . 

 

 

2.2. The factor structure approach 

 

Pesaran (2003), Bai and Ng (2002), Moon and Perron (2004a), and Phillips and Sul 

(2003) treated the cross-section dependence by allowing the common factors to have 

differential effects on different cross section units. 

In the context of a residual one-factor model Phillips and Sul (2003) showed that when 

there is cross-sectional dependence the standard panel unit root tests are no longer 

asymptotically similar. Thus, they proposed an orthogonalization procedure to asymptotically 

eliminate the common factors before applying standard panel unit root tests and provide 

asymptotic results for ( )seq, ∞→NT . 

Moon and Perron (2004a) and Bai and Ng (2004a) provided similar orthogonalization 

procedures in a more general context. 

Moon and Perron (2004a) proposed a pooled panel unit root test based on “de-factored” 

observations in which the factor loadings are estimated by the principal component method. 

Deriving asymptotic properties of the test under the unit root null hypothesis and local 

alternatives, as N  and ∞→T  with 0→TN , this test has good asymptotic power 

properties if the model does not contain deterministic trends
29

. 

Bai and Ng (2004a) specify the model allowing for the possibility of unit roots (and 

cointegration) in the common factors. They consider the first-differenced version of the model 

                                                 
29

 Moon, Perron and Phillips (2005) propose a point optimal invariant panel unit root test which is shown to have 

local power even in the presence of deterministic trends. 
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and apply the principle component procedure. Standard unit root tests are then applied to the 

factors loadings and the individual de-factored series, both computed as partial sums of the 

estimated first differences. Also in this case asymptotic properties are derived as N  and 

∞→T  with 0→TN . 

In order to describe these approaches to panel unit root testing in the presence of cross-

sectional correlation, let assume a common factor representation in which an observed data 

series ity  can write as the weighted sum of (unobserved) common and idiosyncratic 

components:  

 ( ) ( ) iti

K

k

ktikit LCLDy εη   
1

+=∑
=

, (2.2.1) 

where Ni ,...,1=  are the cross-sectional units, Tt ,...,1=  the time series observations and 

Kk ,...,1=  the common factors and NK << . 

The common shock terms ktη  are assumed to be ( )2,0...
kfdii σ  variables, and the 

idiosyncratic errors itε  are also ( )2,0...
iedii σ  with ktη  and itε  mutually independent for all i , 

k , t . The lag polynomials ( ) ∑
∞

=
=

1j

j

ikjik LdLD , where L is the lag operator, describe the 

(dynamic) dependence of the observed data on the common factor, and ( ) ∑
∞

=
=

1j

j

iji LcLC  

generate individual specific dynamics. Pesaran’s (2003), Moon and Perron’s (2004a) and Bai 

and Ng’s (2004a) models can be obtained from (2.2.1) by suitable restrictions on its lag 

polynomials. 

 

 

2.2.1. Pesaran (2003) test 

 

Pesaran (2003) presents a new and simple procedure for testing unit roots in dynamic 

panels subject to possibly cross sectionally dependent as well as serially correlated errors. 

In this approach, the observations ity  are supposed to be generated according to a simple 

dynamic linear heterogeneous panel data model: 

 ( ) ititiiiit uyy ++−= −11 δµρ  (2.2.1.1) 

where iµ  is a deterministic component, the initial values 0iy  are given and the disturbances 

follow a one-factor structure: 

 ittiit fu ελ += . (2.2.1.2) 
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The idiosyncratic shocks, itε  are assumed to be independently distributed both across i  

and t  with zero mean, variance 2

iσ  and finite forth-order moments. 

The unobserved common factor tf  is serially uncorrelated with zero mean, constant 

variance 2

fσ  and finite forth-order moment. Without loss of generality, 2

fσ  is set equal to one. 

The variables itε , iλ  and tη  are assumed to be mutually independent for all i . 

The assumptions made about itε  and tf  imply serial uncorrelation for the itu
30

.  

(2.2.1.1) and (2.2.1.2) can more conveniently be written as: 

 ( ) ittiitiiit fyy ελρα ++−−=∆ −11  (2.2.1.3) 

being ( ) iii µρα −= 1  and 1−−=∆ ititit yyy . Pesaran (2003) considers the following unit root 

hypothesis: 

 1:0 =iH ρ  for all i  

against the possibly heterogeneous alternatives: 

 




=

<

1

1
:1

i

i
H

ρ

ρ
  

NNi

Ni

,...,for   

,...,1for   

1

1

=

=
 

where the fraction of the stationary individuals is such that κ→NN1 , as ∞→N  with 

10 ≤< κ . 

Instead of basing the unit root tests on deviations from the estimated common factors, 

Pesaran (2003)  proposes a test based on standard unit root statistics in a Cross-sectionally 

Augmented DF (CADF) regression - that is a DF (or ADF) regression which is augmented 

with the cross section averages of lagged levels and first-differences of the individual series
31

: 

 ittitiitiiit eydycybay +∆+++=∆ −− 11  (2.2.1.4) 

where ∑ =

−=
N

j jtt yNy
1

1 , ∑ =

− ∆=∆
N

j jtt yNy
1

1  and ite  is the regression error
32

. 

                                                 
30

 This assumption and the assumption that 1=K  (there is only one common factors) could be relaxed. Pesaran 

(2003) considers an example where a stationary p-th order autoregression for 
it

u  is obtained including p lagged 

values of 
it

u  in (2.2.1.2). Then it is possible to write 
ittiit

efu += λ  where ( )
tt

Lf ηΦ=  and ( )
itit

Le εΦ=  are 

stationary and invertible MA processes, and ( ) 1−
Φ L  is the AR polynomial of 

it
u . Note that in this setting any 

non-stationarity of the 
it

y  is due to the presence of a unit root in the autoregressive part of (2.2.1.1): the common 

factor 
t

f  is always assumed to be stationary. 
31

 This is a natural extension of the DF approach in order to deal with residual serial correlation where lagged 

changes of the series are used to filter out the time series dependence when T is sufficiently large. 
32

 Note that (2.2.1.4) is valid for serially uncorrelated 
it

u . For the more general case, lagged values of 
it

y∆ , but 

also of 
t

y∆  need to be included in the estimation. 
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The cross-sectional average ty  and its lagged values are included into (2.2.1.4) as a proxy 

for the unobserved common factor tf
33

.  

Let iCADF  be the ADF statistic for the i-th cross-sectional unit given by the t-ratio of the 

OLS estimate ib̂  of ib  in the CADF regression (2.2.1.4). 

Individual CADF statistics are used to develop a modified version of the IPS t-bar test 

(denoted CIPS for Cross-sectionally Augmented IPS) that simultaneously take account of 

cross-section dependence and residual serial correlation: 

 ∑
=

=
N

i

iCADF
N

CIPS
1

1
. (2.2.1.5) 

The asymptotic null distributions of the single CADF statistics are similar and do not 

depend on the factor loadings. Unfortunately, CADF statistics are correlated due to their 

dependence on the common factor. Then, even if CIPS statistics can be built, it is not possible 

to apply standard central limit theorems to them. Moreover, in contrast to the results obtained 

by Im et al. (2003) under cross-sectional independence
34

, the distribution of the CIPS statistic 

is shown to be non-standard even for large N.  

Pesaran also considers a truncated version of CADF (CADF*) to avoid excessive 

influence of extreme outcomes that could arise for small T samples. The results for CADF and 

CIPS are valid also for CADF* and the related CIPS* and, even if it is not normal, the null 

asymptotic distribution of CIPS* statistic exists and is free of nuisance parameter. 

He proposes simulated critical values of CIPS for various samples sizes and three 

specification of deterministic components (i.e. models without intercept or trend, models with 

individual-specific intercepts and models with incidental linear trends). 

Following Maddala and Wu (1999) or Choi (2001), Pesaran also proposes Fisher type 

tests based on the significant levels of individual CADF statistics. In this case as well the 

statistics do not have standard distributions because of the previous reasons. 

Finally, Pesaran (2003) extends his approach to serially correlated residuals. 

For an AR(p) error specification, the relevant individual CADF statistics can be 

computed from a thp  order cross-section/time series augmented regression: 

it

p

j

jtij

p

j

jtijtiitiiit yydycyy µβρα +∆+∆+++=∆ ∑∑
=

−
=

−−−
00

11  

                                                 
33

 This approximation is applicable if ∑ =

−=
N

j j
N

1

1 λλ  and 0≠λ  for a fixed N and as ∞→N  (Pesaran, 2003). 

34
 In this case, a standardized average of individual ADF statistics was normally distributed for large N. 



 

 28 

Finally, note that Pesaran’s (2003) CADF and CIPS tests are designed for testing for unit 

roots when cross-sectional dependence is due to a single common factor but the CIPS test has 

better power properties than the individual CADF tests and should therefore be preferred. 

 

 

2.2.2. The Phillips and Sul (2003) and Moon and Perron (2004a)  tests 

 

Phillips and Sul (2003) and Moon and Perron (2004a) propose tests for the null of  a unit 

root in the observable series ity . These approaches are not based on separate tests on the 

individual and common components and use the factor model in a similar way: this is why 

these tests are both illustrated in this section. 

First Moon and Perron procedure is presented allowing for a more general specification of 

the common components respect to the Phillips and Sul test. 

 

Moon and Perron (2004a)  test 

 

Moon and Perron (2004a) represent the observation series ity  as AR(1) processes with 

fixed effects and assume, as Pesaran (2003), that common factors are present in the error 

term. They consider the following dynamic panel model: 

 itiit xy += µ  

 ititiit uxx += −1ρ  (2.2.2.1) 

 ittiit efu +′= λ  

where the observed ity  ( Ni ,...,2,1= ; Tt ,...,2,1= ) are generated by a deterministic 

component iµ  and an autoregressive process itx  and 00 =ix  for all i . 

To model the correlation among the cross-sectional units, the error component itu  is 

assumed to follow an approximate factor model where tf  is a ( )1×K  vector of unobservable 

random factors, iλ  is the corresponding vector of non-random factor loading for cross-section 

i  and ite  is an idiosyncratic shock. The number of factors K  is possibly unknown. 

As it is easy to note panel data are assumed to be generated by idiosyncratic shocks and 

unobservable dynamic factors that are common to all the individual units but to which each 

individual reacts heterogeneously. 

Model (2.2.2.1) can also be re-written as: 
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 ( ) ititiiiit uyy ++−=∆ −11 ρµρ . (2.2.2.2) 

Comparing (2.2.2.2) and (2.2.1.1) it is now straightforward to note that Pesaran (2003) 

and Moon and Perron (2004a) models are identical in the case where a single common factor 

is present in the composite error term. 

For the error term itu  in (2.2.2.1) similar assumptions are made as by Pesaran (2003): 

- the idiosyncratic part ite  follows a stationary and invertible infinite MA process, and is 

cross-sectionally uncorrelated: ( ) itiit Le εΓ= , where ( ) ∑
∞

=
=Γ

0j

j

iji LL γ  and ( )1,0...~ diiitε  

across i  and t  with finite eighth moment; 

- also the common factor tf  follows a stationary, invertible MA(∞) representation:  

( ) tt Lf ηΦ= , where ( ) ∑
∞

=
=Φ

0j

j

iji LL φ  is a K-dimensional lag polynomial and 

( )Kt Idii ,0...~η . Furthermore, the covariance matrix of tf  is (asymptotically) positive 

definite: this implies that under the null hypothesis it is possible to have cointegrating 

relations among the nonstationary factors; 

- there exists at least one common factor in the data but their maximum number 

( )∞<≤≤ KKK 1   is supposed to be known a priori. Also, the contribution from each factor 

to at least one of the ity  is assumed to be significant by imposing 0
1

1
>Σ→′∑ = λλλ

p
N

i ii
N

; 

however this assumption does not impose that all cross-sections respond to all factors so that 

some of the factor loadings could be zero; 

- short-run variance 2

ieσ  (=∑
∞

=0

2

j ijγ ), long-run variance 2

ieω  (= ( )2

0∑
∞

=j ijγ )  as well as the 

one-sided long-run covariance 
ieϕ  (= ( )∑ ∑

∞

=

∞

= +1 0l j lijijγγ ) are supposed to exist for all 

idiosyncratic disturbances ite ; additionally, these parameters are assumed to have non-zero 

cross-sectional averages ∑ =
=

N

i ee iN 1

22 1
σσ , ∑ =

=
N

i ee iN 1

22 1
ωω  and ∑ =

=
N

i ee iN 1

22 1
ϕϕ . 

In referring to the model (2.2.2.1), the null hypothesis of interest is: 

 1:0 =iH ρ  Ni ,...,1 allfor =  (2.2.2.3) 

against the heterogeneous alternative: 

 1<ia :H ρ  i somefor  

It is simple to note that under the null, ity  in (2.2.2.1) results to be influenced by two 

components: the integrated factors ∑ =

T

s sf
1

 and the integrated idiosyncratic errors ∑ =

T

s ise
1

. 
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The model allows for both integrated or cointegrated factors (in this case the rank of ( )1Φ  is 

Kr < ) but excludes the possibility of cointegrating relations of the integrated idiosyncratic 

errors. 

When common factors are present in the panel, tests based on the assumption of cross-

sectional independence among units suffer from size distortions. To pass this difficulty, Moon 

and Perron (2004a) transform the model in order to eliminate the common components of the 

ity  series and apply the unit root test on de-factored series. Resulting test statistics have a 

normal asymptotic distributions as those of Im et al. (2003) or Levin and Lin (1992, 1993); 

moreover being computed from de-factored data, they are also independent in the individual 

dimension. 

More specifically, to remove cross-sectional dependence in (2.2.2.1), Moon and Perron 

use a projection onto the space orthogonal to the factor loadings (i.e. the space generated by 

the columns of the matrix of factor loading ( )′=Λ Nλλ ,...,1 ). Then, Λ  is estimated
35

 to 

construct a projection matrix ( ) Λ′ΛΛ′Λ−=
−

Λ

1

NIQ . 

Let Λ̂  and 
k

Q
Λ̂

 be the estimator of the matrix Λ  and the corresponding estimator of the 

projection matrix. 

Consistent estimates of the above defined nuisance parameters can be obtained non-

parametrically from the de-factored residuals 
k

Que
Λ

= ˆˆˆ , ( )Nuuu ˆ,...,ˆˆ
1=  with ( )′= iTii uuu ˆ,...,ˆˆ

1 . 

Denote the estimates of short-run and long-run variances, 2

ieσ  and 2

ieω , as 
ieϕ̂  and 2ˆ

ieω  

respectively, and let eϕ̂  and 2ˆ
eω  be their cross-sectional averages

36
. 

The unit root test is implemented from the de-factored data obtained as ΛYQ  (being Y  the 

matrix of observed data). Specifically, the modified pooled estimator of δ  suggested by 

Moon and Perron (2004a) is: 

 
( )

( )1ˆ1

ˆ1

pool

ˆ

−Λ−

Λ−∗

′

−′
=

YQYtr

NTYQYtr

k

k
eϕ

ρ  (2.2.2.4) 

where 1−Y  is the matrix of lagged observed data and ( )⋅tr  the trace operator. 

In order to obtain feasible statistics, Moon and Perron procedure requires estimating the 

number K  of factors in (2.2.2.1), apart from the projection matrix 
k

QΛ .  

                                                 
35

 For this purpose, Moon and Perron suggest to use the principal component method used in Stock and Watson 

(1998) and Bai and Ng (2004a). 
36

 For these estimates, see Moon and Perron (2004a). 
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From the estimator ∗
poolρ , two modified t-statistics based on pooled estimation of the first-

order serial correlation coefficient of the data are suggested for the null hypothesis (2.2.2.2): 

 
( )

4

4

pool

2

1

e

e

ˆ

ˆ

ˆNT
t

ω

φ

ρ
α

−
=

+
∗  (2.2.2.5.a) 

 ( ) ( )
4

2

1ˆ12pool ˆ

ˆ1
1ˆ

e

e

b YQYtr
NT

NTt
k φ

ω
ρ −Λ−

+∗ ′−=  (2.2.2.5.b) 

being +
poolρ̂  the bias-corrected pooled autoregressive estimate of (2.2.2.4) and 4ˆ

eφ  the estimate 

of  and the cross sectional average of 4

,ˆ ieω . 

Moon and Perron show that as ∞→TN  and , with 0→TN , the statistics (2.2.2.5.a) and 

(2.2.2.5.b) have a limiting standard normal distribution under the null hypothesis, while 

diverge under the stationarity alternative. 

It is possible to note that the convergence rate of the pooled estimator (corrected or no) of 

the autoregressive root is the same as the one obtained in the LLC model: in fact, removing 

the cross unit dependence in the Moon and Perron model, the model which is obtained on 

transformed data is similar to the LLC model with common autoregressive root, under the 

cross-unit independence hypothesis. 

Finally, Moon and Perron simulations show that the tests are very powerful and have good 

size when no estimation of deterministic components is necessary (i.e. only a deterministic 

constant is included in the model) for different specifications and different values of T and N. 

When such estimation is necessary, the tests have no power beyond their size. 

Note that the Moon and Perron (2004a) tests using defactored data allow for multiple 

common factors. Therefore, their use has to be recommended when cross-section dependence 

is expected to be due to several common factors. 

 

Phillips and Sul (2003)  test 

 

Phillips and Sul (2003) consider a rather more restrictive model than Moon and Perron 

(2004a) which contains only one factor tf  independently distributed as ( )1,0N  across time. 

The main difference existing between the two tests stays in the approach used to remove the 

common factors: Moon and Perron suggested to estimate the projection matrix ΛQ  using 

principal component analysis; Phillips and Sul propose to use a moment-based method. 
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The obtained de-factored data are used to compute a series of panel unit root tests. The 

first one is defined as: 

 ( )1,0
ˆ

1ˆ1 1

1 ˆ

N∑
−

=

+
+ →














−

−
=

+

N

i

d
i

OLS

i
N

G ξ

ρξ

µ
σ

ρ

σ
 (2.2.2.6) 

where +
iρ̂  and +

iρ
σ

ˆ
ˆ  are the cross-sectional autoregressive estimates and their standard errors 

computed for each i  from the de-factored data
37

 and ξµ  and ξσ  are the mean and standard 

error of the statistic. Phillips and Sul show that +
OLSG  converges to a standard normal 

distribution as ( )seq, ∞→NT  . 

As in Bai and Ng (2004a), Phillips and Sul also propose tests based on the meta-analysis. 

Specifically the better test seems to be the inverse normal test given by: 

 ( )∑
−

=

−Φ=
1

1

ˆ

11 N

i

c

ei
p

N
Z , (2.2.2.7) 

where c

ei
p ˆ  is the p-value of the ADF test associated with cross section element i , and ( )⋅Φ −1  

is the inverse cumulative distribution function for a standard normal variable. Expression 

(2.2.2.7) converges to a standard normal distribution. 

Note finally that both tests (2.2.2.6) and (2.2.2.7) require summing up only 1−N  

elements because the Phillips and Sul procedure reduces the cross sectional dimension by 1. 

 

 

2.2.3. Bai and Ng test (2004a) 

 

Bai and Ng (2004a) propose a different procedure to test for panel unit root allowing for 

cross-section correlation or cointegration. It does not treat cross-section dependence as a 

disturbance as the previously tests did: the nature of the comovements of economic variable 

are themselves an object of interest of the analysis. 

In the context of model (2.2.2.1), assuming that the null hypothesis (2.2.2.2) holds and 

that (2.2.2.1) admits only one factor, this approach is based on the decomposition of each 

panel series ity  in the sum of a deterministic component, a common –stochastic- component 

(all the common factors) and an individual component (the idiosyncratic error term): 

                                                 
37

 Phillips and Sul (2003) also propose the +

EMS
G  test based on the median estimates of +

i
ρ  which seems to have 

marginal better property than the +

OLS
G  test. 
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 ittiitit EFDy +′+= λ         (2.2.3.1) 

where the deterministic component itD  is a polynomial function containing either a constant 

iα  or a linear trend tii βα + , iλ  is a ( )1×K  vector of factor loadings, tF  is a ( )1×K  vector 

of common factors
38

, and itE  is an error term. 

It is worth noting that the presence of the common factor tF , with his specific elasticity 

iλ , is at the origin of the cross-sectional dependence. 

As Pesaran (2003) and Moon and Perron (2004b), Bai and Ng (2004a) consider a 

balanced panel with N  cross-sectional units and T  time series observations. 

A series with this factor structure is nonstationary if at least one common factor of the 

vector tF  is nonstationary and/or the idiosyncratic error is nonstationary
39

. 

The possibility that one or more common factors are integrated allows Bai and Ng test for 

considering possible presence of cross-section cointegration relationships. 

Rather than directly testing the nonstationarity of ity  ( Ni ,...,1= )
40

, this approach 

analyzes the common and individual components separately. This is why, it is referred as 

PANIC (Panel Analysis of Nonstationarity in the Idiosyncratic and Common components). 

Therefore the aim of PANIC is to determine if nonstationarity comes from a pervasive ( tF ) or 

an idiosyncratic source ( itE ) and to construct valid pooled tests for panel data when the units 

are correlated. 

This procedure potentially solves three econometric problems: 1) firstly, it solves the 

problem of the size distortion
41

; 2) since in this approach ity  will be strongly correlated across 

units if the data follow a factor structure (in previous factor model the idiosyncratic 

components can only be weakly correlated across i by design), pooled tests based upon ite  are 

more likely to satisfy the cross-section independence assumption required for pooling; 3) 

pooled tests exploit cross-section information and are more powerful than univariate unit root 

tests. 

                                                 
38

 K  is assumed to be known. 
39

 Under the null hypothesis of unit root the data in the Pesaran’s (2003) or Moon and Perron’s (2004b) model 

contains a common, as well as an idiosyncratic stochastic trend. 
40

 It is well known that, if a series is defined as the sum of two components with different dynamic properties, 

has itself dynamic properties which are very different from its entities. Since common factor and idiosyncratic 

term can have different dynamic properties, it may difficult to check the stationarity of 
it

y  if this series contains 

a large stationary component. This is why, Bai and Ng suggest to separately test the presence of unit root in the 

common and individual components. 
41

 For example, existing tests tend to over-reject the null hypothesis of nonstationarity when the series being 

tested is the sum of a weak I(1) component and a strong stationary component. 
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First of all, to analyze the factors tF  and the idiosyncratic components ite  that are both 

unobserved, Bai and Ng try to find consistent estimates of these series preserving their 

integration features
42

.  

The complete model considered by Bai and Ng can be written as follow: 

 ittiiiit eFtcy +′++= λβ  (2.2.3.2.a) 

 ttt fFF += −1  (2.2.3.2.b) 

 ititiit ee ερ += −1  (2.2.3.2.c) 

where ( ) tt Lf η Φ=  and ( ) ∑
∞

=
=Φ

0j

j

j LL φ  is a K−dimensional lag polynomial and 

( )( ) 11 krank =Φ ; ( )ηη Σ,0...~ diit  with finite fourth-order moment. Then, the tF  are assumed 

to follow an AR(1) process that contains Kk ≤1  independent stochastic trends and 

consequently 1kK −  stationary components.  

The idiosyncratic terms ite  are also modelled as AR(1) processes and are allowed to be 

either I(0) or I(1); itε  follows a mean zero, stationary, invertible MA process, such that 

( ) itiit L ∈Γ=ε  with ( )2,0...~
i

dii ∈∈ σ . 

Bai and Ng (2004a) impose the cross-sectional independence of the idiosyncratic term
43

 

only to validate pooled testing. It is obvious that the assumption that ηΣ  is not (necessarily) a 

diagonal matrix is more general than the assumption of uncorrelation for the innovations of 

the common factors made by Moon and Perron (2004a). tF∆  has a short-run covariance 

matrix of full rank while, as ( )( ) 11 krank =Φ , the long-run covariance matrix has reduced rank 

and permits cointegration among the common factors. As in Moon and Perron (2004a), 

(asymptotically) redundant factors are ruled out. 

So, the objective of PANIC is to determine the number of non-stationary factors 1k  and to 

test whether 1=iρ  for each Ni ,...,1= . 

Bai and Ng accomplish this goal by utilizing a suitable transformation of ity . Specifically, 

if the intercept only is included in the model (i.e. ittiiit eFcy +′+= λ ), the first differences are 

                                                 
42

 In other words, the common variations must be extracted without appealing to stationarity assumptions and/or 

cointegration restrictions. 
43

 Bai and Ng(2004a) permit some weak cross-sectional dependence of the shock terms driving the 
it

ε . The full 

set of assumptions can be found in their paper. 
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employed, 1−−=∆ ititit yyy , while in the presence of a linear trend ( ittiiiit eFtcy +′++= λβ ) 

ity  is de-trended, i.e. yyy it

d

it ∆−∆= , where ∑ =
∆

−
=∆

T

t itit y
T

y
21

1
. 

The Bai and Ng (2004a) procedure implies, in a first step, to estimate the common factors 

and idiosyncratic errors in ity∆  or d

ity  by a simple principal component method; in a second 

step these estimators, denoted as tf̂  and itê  respectively, have to be re-cumulate to remove 

the effect of possible over-differencing. This yields: 

 ∑
=

=
T

s

st fF
2

ˆˆ     ∑
=

=
T

s

isit eE
2

ˆˆ  (2.2.3.3) 

Now it is simple to test for the null hypothesis of a unit root the common factor tF̂  and 

each idiosyncratic components itÊ  separately: 

- for the first component, when only a factor is detected
44

, Bai and Ng use the ADF test; when 

more than one factor is detected, they employ a modified version of Stock and Watson 

(1988) common trend test; 

- for the idiosyncratic components, a method based on meta-analysis is used
45

. 

 

- Common factors stationarity analysis 

In order to test the nonstationarity of the common factors, Bai and Ng (2004a) suggest to 

use either an ADF test, or a rank test, depending on whether there is only one, or several 

common factors
46

. 

 

In the former case (i.e. 1=K ), consider: 

 it

p

j

jitijititit FFDF ξθθ +∆++=∆ ∑
=

−−
1

10
ˆˆˆ  (2.2.3.4) 

where itξ  is the regression error and itD  is defined as in equation (2.2.3.1). 

Now, denote the t-statistic for 00 =θ  as c

F
ADF ˆ  (for the intercept only case) or τ

F
ADF ˆ  

(for the linear trend case). Limiting distributions of these statistics are DF type distributions
47

. 

 

                                                 
44

 The number of factors is estimated by using Bai and Ng’s (2002) procedure. 
45

 This procedure was been originally presented in Maddala and Wu (1999) and in Choi (2001). 
46

 It is straightforward to verify that 0
1

=k  corresponds to the case where there are N cointegrating vectors for N 

common factors, i.e. all factors are I(0). 
47 The asymptotic 5% critical values are -2.86 and -3.41, respectively. 
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In the latter case ( 1>K ), individually testing each of the factors for the presence of a unit 

root generally overstates the number of common trends. So, to select 1k  (i.e. the number of 

common independent stochastic trends in the common factors) Bai and Ng implement an 

iterative procedure, similar to the Johansen (1988) trace test for cointegration. 

They use demeaned or de-trended factor estimates, depending on whether the model 

(2.2.3.1) contain the intercept only, or also a linear trend. 

Then, they define ttt FFF ˆˆ~
−=  where ( ) ∑ =

−
−=

T

t tt FTF
2

1 ˆ1ˆ  in the intercept only case; in 

the linear trend case, tF
~

 represents the residuals from a regression of tF̂  on a constant and 

linear trend. 

Using this defined tF
~

, the proposed test procedure can be described as follow. 

Initially, we consider Km = . 

1. If ⊥β̂  are the m eigenvectors associated to the m largest eigenvalues of ∑ =

− ′
T

t tt FFT
2

2 ~~
 

with tt FX
~ˆˆ

⊥
′= β , it is possible to consider two different statistics: 

 

(a) Let ( ) ( )11 −−= JjjK , Jj ,...,1= ; in this case the considered statistic ( )mMQ
c

c  -

in the constant only case- or ( )mMQc

τ  -in the linear trend case- is defined as: 

( )[ ]1ˆ −mT cν  

where ( )mcν̂  is the smallest eigenvalue of: 

( ) ( ) ( )
1

2

11

2

1111
ˆˆˆˆˆˆˆˆ

2

1ˆ
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=
−−

=
−− 








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






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T

t
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T

t

ttttc XXTXXXXm  

with ( )∑ ∑
= =

− 







′=Σ

J

j

T

t

tjt
T

jK
1 2

1
ˆ1ˆ ξξ , being tξ̂  the residuals from estimating a VAR(1) 

in tX̂   

 

(b) For p, fixed that does not depend on N or T, the considered statistic ( )mMQ
c

f  -in 

the constant only case- or ( )mMQ f

τ  -in the linear trend case- is defined as: 

( )[ ]1ˆ −mT fν  

where ( )mfν̂  is the smallest eigenvalue of: 

( ) ( )
1

2

11

2

11
ˆˆˆˆˆˆ

2

1ˆ
−

=
−−

=
−− 




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
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






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T

t

ttttf xxxxxxm  
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( )
tt XLx ˆˆˆ Π=  is obtained by filtering tX̂  by LΠ̂ , the polynomial coefficients of an 

estimate Var(p) in tX̂∆ , i.e. ( ) p

pm LLIL Π−−Π−=Π ˆ...ˆˆ
1 . 

2. If the null mkH =10 :  is rejected, it is necessary to set 1−= mm  and return to Step 1. 

If the null is not rejected, we set mk =1
ˆ  and we can stop. 

Then, if there are 1>K  common factors, Bai and Ng consider two tests: the first filters 

the factors under the assumption that they have finite order VAR representations. The second 

corrects for serial correlation of arbitrary form by non-parametrically estimating the relevant 

nuisance parameters. This is why they have been called cMQ  and fMQ  respectively
48

. As it 

is obvious, the fMQ  test is valid only when the common trends can be represented as finite 

order ( )pAR  processes and cMQ  is more general. 

The limiting distributions of these tests are non-standard; Bai and Ng provide 1%, 5%, 

and 10% critical values for all four statistics and various m.  

 

- Idiosyncratic components stationarity analysis 

To test the non-stationarity of the idiosyncratic components, Bai and Ng implement a 

methodology that consists in pooling individual ADF t-statistics computed for each de-

factored itÊ  in a model with no deterministic term: 

 it

p

i

jitijitiit EdEdE υ+∆+=∆ ∑
=

−−
1

10
ˆˆˆ ; (2.2.3.5) 

itυ  is a regression error. 

Let ( )iADF
c

Ê
 (if a constant is included in the DGP) and ( )iADF

E

τ
ˆ  (if a constant and a 

linear trend are included in the DGP) be the t-statistics to test the hypothesis 00 =id . 

The limiting distribution of ( )iADF
c

Ê
 coincides with the usual DF distribution for the case 

of no constant and the 5% critical value is 95.1− . Instead, the asymptotic distribution of 

( )iADF
E

τ
ˆ  is proportional to the reciprocal of a Brownian bridge. Critical values for this 

distribution are not tabulated yet and have to be simulated. 

Thus, contrary to the other panel unit root tests previously described, these statistics do 

not have the advantages of a standard normal limiting distribution. This happens because the 

                                                 
48

 Note that ( )mMQ c

c

τ,  and ( )mMQ
c

f

τ,
 statistics are modified version of the 

c
Q  and 

f
Q  tests developed in Stock 

and Watson (1988). 
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panel information has been used to consistently estimate ite , but not to analyze its dynamic 

properties. 

As Bai and Ng noted, PANIC procedure is characterized by some significant features: 

first, the tests on the factors do not depend on whether ite  is I(1) or I(0), as well as the tests on 

the idiosyncratic errors do not depend on whether tF  is I(1) or I(0); second, the unit root tests 

for ite  is valid whether jte , ij ≠ , is I(1) or I(0), and in any event, such knowledge is not 

necessary. 

The independence of the limiting distribution of ( )iADF
c

Ê
 and ( )iADF

E

τ
ˆ  on the common 

factors makes possible for Bai and Ng (2004a) to propose a pooled Fisher-type test
49

 as 

suggested in Maddala and Wu (1999) or Choi (2001). 

The test statistic is given by: 

 
( )

( )1,0
4

2log2
1 ˆ

ˆ N
d

N

i E

E
N

Nip
P →

−−
=

∑ =

o

o  (2.2.3.6) 

where o

E
Pˆ  denotes c

E
Pˆ  or τ

E
Pˆ , depending on the deterministic specification, and ( )ip

E

o

ˆ  is the 

associated p-value of the ADF test on the estimated residual itê . 

For ∞→TN  and , this statistic converges to a standard normal distribution, but only if 

independence among the error terms is assumed: in this case, pooled testing is valid and it is 

possible to derive the statistic distribution. This seems a contradiction: the aim of Bai and Ng 

(2004a) test was precisely to take into account these individual dependence. Nevertheless, it is 

straightforward to note that Bai and Ng do not assume the cross-sectional independence 

hypothesis on the whole series ity  as Im et al. (2003) or Maddala and Wu (l999) do, but they 

only hypothesize the asymptotic independence between the individual components ite . Under 

this hypothesis, the test statistics based on the estimate components itê  are asymptotically 

independent and the p-values iep ˆ  are also independently distributed as uniform laws on [ ]1,0 . 

Then, the hypothesis that all individual components ite  for Ni ,...,1=  are I(l) is sufficient to 

assure that the test statistic c

E
Pˆ  or τ

E
Pˆ  is standard normally distributed, for all panel sizes N.

50
  

 

                                                 
49

 In principal, also an IPS-type test using a standardized average of the above described t-statistics should be 

possible. 
50

 It is possible to adopt the Choi (2001)'s standardization for panels with large sizes. 
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The PANIC procedure has the advantage that the estimated common factors and 

idiosyncratic components are consistent whether they are stationarity or non-stationarity. This 

is due to the fact that the unobserved components are estimated from the first-differenced (or 

de-trended) data, then the estimates are re-accumulated to remove the effect of possible 

overdifferencing if the factors or errors are stationary. Hence, the obtained estimates could 

also be used for stationarity tests, which is discussed in Bai and Ng (2004b). 

As Banerjee and Zanghieri (2003) noted the implementation of Bai and Ng test shows 

very well the role of cross-section cointegration relationship. In fact, the Bai and Ng tests 

considering the factors common of different series, accept null hypothesis of unit roots for the 

factors, leading to the conclusion that the series is nonstationarity. 

Simulations show that Bai and Ng test has good finite sample properties with satisfying 

size and a power even for small panel ( 40=N ). 

 

 

2.2.4. Choi (2002) test 

 

Choi (2002)’s approach is very similar to the one of Moon and Perron (2004a). Both 

approaches test the unit root hypothesis using the modified observed series ity  that allows the 

elimination of the cross-sectional correlations and the potential deterministic trend 

components. However, Choi (2002) procedure differs from the one of Moon and Perron in 

some main points. 

Choi considers a two-way error-component model: 

 itit xy += 0α  (2.2.4.1.a) 

 ittiit vx ++= λµ  (2.2.4.1.b) 

 ∑
=

− +=
ip

j

itjitijit vdv
1

ε  (2.2.4.1.c) 

where 0α  is the common mean for all i, iµ  is the unobservable individual effect, tλ  is the 

unobservable time effect represented as a weakly stationary process, itv  is the remaining 

random component which follows the autoregressive process of order ip  and itε  is 

( )2,0... idii εσ  for fixed i  and independently distributed across individuals. 

The number of the time series T may differ across cross-sectional units even if, for 

simplicity, in the model specification T is retained the same for all time series. 
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Differently from Bai and Ng (2002) and Moon and Perron (2004a) approaches, here the 

cross sectional units ity  are considered to be influenced homogeneously by a single common 

factor ( 1=K ), i.e. the time effect tλ . Other authors also consider only one common factor, 

but they assume an heterogeneous specification of the sensitivity to this factor, like tiλθ  (i.e. 

Phillips and Sul, 2003). Choi justifies his choice by the fact that the logarithmic 

transformation of the model (2.2.4.1) allows to introduce such a sensitivity. Furthermore in 

this model, it is straightforward to check the stationarity hypothesis of the tλ  process, while it 

is not the case when an heterogeneous sensitivity is assumed. This represents an important 

advantage since, from a macroeconomic point of view, these time effects are supposed to 

capture the breaks in the international conjuncture, and nothing guarantees that they are 

stationary, 

Referring to the model (2.2.4.1), the null hypothesis of interest is: 

 1:
1

0 =∑
=

ip

j

ijdH  Ni ,...1=∀ , 

that suppose the presence of a unit root in the idiosyncratic component itv  for all individuals, 

against the alternative hypothesis that: 

 1
1

<∑
=

ip

j

ijd  for some i  

Another difference with the Moon and Perron (2004a) approach concerns the 

orthogonalization of the individual series ity . To get ride of the cross-sectional correlations, 

Choi isolates itv  by eliminating the individual effect 0α  and the common error term tλ . To 

do that, he use a two-step procedure: first he demeans the data (i.e. removes the intercept) 

following the method suggested in Elliott et al. (1996); then he subtracts from the demeaned 

data the cross-sectional means to suppress the time effect. So, the new variables are 

independent across the units i  for large N and T. 

When the itv  component is stationary, OLS provides a fully efficient estimator of the 

constant term. However, when itv  is I(1) or presents a near unit root, Elliott et al. (1996) 

show that using GLS to estimate the constant term on quasi-differenced data provides unit 

root tests with better finite sample properties. Choi (2002) extende this approach in a panel 

context. 

More formally, Choi’s methodology can be presented as follows. 
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To introduce the individual series orthogonalization process, let assume that the largest 

root of the itv  process is Tc+1  (near unit root process), for all Ni ,...1= . It is then possible 

to construct two quasi-differenced series ity~  and itc~  such that, for 2≥t : 

 11~
−








+−= ititit y

T

c
yy ,  








+−=

T

c
cit 11~  (2.2.4.2) 

Now, let consider the case of a model without time trend
51

 and set 7−=c  (the value given 

by Elliott et al., 1996, for this case).  Regressing ity~  on the deterministic variable itc~ , the 

demeaned series can be written for large T as:  

 110
ˆ

iittiit vvy −+−≈− λλα  (2.2.4.3) 

where i0α̂  is the GLS estimate obtained for each individual i on quasi-differenced data. 

Relation (2.2.4.3) holds whatever the process itv  is I(1) or near-integrated. 

Now the aim is to eliminate from the (2.2.4.3) the common component tλ  which can 

induce correlation across individuals. 

Choi suggests demeaning iity 0α̂−  cross-sectionally to obtain: 

 ( ) ( ) ( ) ( )11

1

00
ˆ

1
ˆ vvvvy

N
yz itit

N

i

iitiitit −−−≈−−−= ∑
=

αα  (2.2.4.4) 

whit ( )∑ =
=

N

i itt vNv
1

1 . It is possible to note that the deterministic components 0α , iµ  and tλ  

were removed from itz  by the time series and cross-sectional demeanings. It is 

straightforward also to note that itz  are independent in the individual dimension for large T 

and N since the means 1v  and 1v  converge in probability to 0 when N goes to infinity for any 

T.
 52
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 It is possible to extend this procedure to the case of a model with an individual time trend. 
52

 Choi shows that a similar approach can be used when an individual time trend is present in the model 

(2.2.4.1). In fact, many macroeconomic and financial variables contain a linear time trend in addition to a 

stochastic component (see Nelson and Plosser, 1982) and also some economic theories provide for a linear time 

trend in economic variables (i.e. Solow, 1956). In this case, the extended model becomes: 

itit
xty ++=

10
αα , 

ititiit
vtx +++= γλµ  

where 
it

v  is specified as previously seen and 
i

γ  is the individual trend effect. In this case, to obtain the estimates 

i
α̂  and iγ̂ , it is necessary to regress the series 

it
y~  on 

it
c~  and Tcd

it
−= 1

~
 using GLS. Then c  is set to 

5.13−=c  (i.e. the value given by Elliott et al., 1996, for the case of a model with a time trend). It is now 

possible to define 
it

w  as: 

 ( ) ( )∑
=

−−−−−=
N

i

iiitiiitit
ty

N
tyw

1

00
ˆˆ

1
ˆˆ γαγα  (a) 

As in the previous case, the unit root tests using 
it

w  are independent across i for large T and N and this relation 

holds either when 
it

v  is stationary or not. 
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Next step is running a unit root test on the transformed series itz . 

The main idea of the Choi (2002) test is to combine p-values from independent unit root 

tests applied to each time series as Maddala and Wu (1999) and Choi (2001) already did
53

. 

To do this, the ADF test is applied to each detrended time series and the p-values are 

calculated. 

In instance, the ADF test using the series { }T

titz
2=
, with itz  defined as in equation 

(2.2.4.4), is the t-ratio for coefficient estimate 0ρ̂  from the regression: 

 it

p

j

jitjitit uzzz
i

ˆˆ
1

1

10 +∆+=∆ ∑
−

=
−− ρρ  (2.2.4.5) 

This test has the DF t-distribution without time trends as ∞→T  and ∞→N .
54

 

Denoted by ip  the asymptotic p-value of one of the DF-GLS tests for each unit i, Choi 

suggests three panel test statistics based on the individual 
i

tρ  statistics which are independent 

the ones on the others: 

 ( )[ ]∑
=

+−=
N

i

im p
N

P
1

1log
1

 (2.2.4.6.a) 

 ( )∑
=

−Φ=
N

i

ip
N

Z
1

11
 (2.2.4.6.b) 

 ∑
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
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



−
=

N
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i

p

p

N
L

1
2 1

log
3

1

π
 (2.2.4.6.c) 

where ( )⋅Φ  is the standard cumulative normal distribution function. 

It is straightforward to note that the mP  test is a modification of Fisher’s (1932) inverse 

chi-square tests and rejects the null hypothesis for positive large value of the statistics. The 

test statistic Z  is called the inverse normal test (see Stouffer et al., 1949) and the ∗L  is a 

modified logit test. These last two tests reject the null for large negative values of the 

statistics. 

Finally under the null all the tests converge to a standard normal distribution as 

∞→TN  and . 

As for Choi (2001) or Maddala and Wu (1999), the main difficulty in this approach is in 

the fact that the p-values ( ip ) used to build the test statistics have to be simulated using 

bootstrap methods
55

. 
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 This procedure makes the same test more powerful in the panel framework than in the time series framework. 
54

 When there is a time trend, this statistic applied to 
it

w  follows a distribution tabulated by Elliot et al. (1996). 
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It is important to note that the obtained p-values are somewhat sensitive to the normality 

assumption for the tu . When T is large, wrongly suppose the normality of the residuals tu  

does not affect the results. However, when T is small, the p-values obtained under the 

normality hypothesis may be not accurate, if the underlying distribution is quite different from 

the normal one. 

Choi’s simulation shows that all the tests keep nominal size quite well and this property 

tends to improve as T grows; moreover, the power of all the tests increases as N grows, which 

justifies the use of panel data; unfortunately, the size and the power of all the tests decrease 

when a linear time trend term is included in the model. 

In terms of size-adjusted power, the Z and mP  tests seem to be superior to the ∗L  test; in 

fact, the Z and mP  tests seem to outperform the ∗L  test both in terms of size and power. 

The empirical size of the tests is not quite sensitive to the cross-sectional correlation of 

innovation terms
56

. Nevertheless, when the innovation terms independence assumption is 

violated, the empirical size of the tests deteriorates as T increases and the tests tend to reject 

more often under the alternative; instead, the empirical power properties seem to be the same. 
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 Data are generated on T periods according to the process 
ttt

uxx +=
−1

,  where 0
0

=x , ( )1,0 ...~ Ndiiu
t

 and 

30,...,1 += Tt . It is recommended to consider realizations of 
t

x  on a longer period and to retain only the last T 

observations to avoid sensitivity to initial conditions. 

Choi followed the MacKinnon (1994) methodology which can be summarized as follow: 

- for different values of T ( 1000,500,250,100,75,50,30=T ), he generated { }T

tit
x

1=
 i times. Then, for each series 

he computed the 
i

tρ  statistic in the ADF model (a) -see note 52-, and, given the i realizations 
i

t ρ̂ , he constructed 

399 equally spaced percentiles; 

- he repeated 50 times the first step and recorded the percentiles: for the seven considered values of T, he 

obtained 50 values for each of the 399 percentiles. Let ( )
k

p

j
Tq  be the value of the percentile obtained at the j-th 

simulation ( 350,...,1=j ) for 9975.0,...,0050.0,0025.0=p  and size T; 

- for each level p and each size T, the following equation: 

 ( )
jk

p

k

pp

k

p

j
TTTq εηηη +++= −−

∞

2

2

1

1
  350,...,1=j  

is estimated, using GLS and the 50 disposable observations; 

For a given size T, 399 realizations of the GLS estimates of the parameters p

∞
η , p

∞
η  and p

2
η  are obtained. For 

example, for the 20th Choi obtained 948.1ˆ 05.0 −=
∞

η , 36.19ˆ 05.0

1
−=η  and 4.143ˆ 05.0

2
=η . Therefore, using these 

estimates, the 5% percentile of the 
i

tρ  statistic at 100=T  is: 

 1273.2
100

4.143

100

36.19
948.1

2
−=−−−  

Then, for each size T, 399 percentiles values are obtained and using linear interpolation it is possible to derive 

the p-values 
i

p  of the DF-GLS tests statistic that will be used in the construction of the 
m

P , Z  and ∗L  test 

statistics. 
56

 By contrast, O’Connell (1998) reports quite severe size distortions of Levin and Lin’s (1992) test under a 

similar circumstance. 
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2.2.5. Comparison between the previous tests 

 

From previous discussions it is straightforward to note that Bai and Ng (2004a) approach 

is more general than the ones of Pesaran (2003) and Moon and Perron (2004a). All these tests 

assume the same dynamic structure of the data and are computationally simple to implement 

(they simply require some tabulated critical values and the selection of the number of 

common factor K). The use of factor models by all three approaches is a convenient way to 

model cross-correlation or cointegration between panel members and the  assumption of 

independence between the common factors and error terms (necessary for pooled testing) is 

far less restrictive than the assumption of independent cross-sections (IPS and LLC test). 

However these tests differ in several ways:  

- Bai and Ng (2004a) allow the non-stationarity of the data to come from common or 

idiosyncratic sources, while the Pesaran (2003) and Moon and Perron (2004a) approaches 

assume common and idiosyncratic stochastic trends under the null hypothesis. 

- Pesaran (2003) and Moon and Perron (2004a) assume the same order of integration for 

the idiosyncratic and the common component of the data, while Bai and Ng (2004a) allow 

them to differ.
57

 

- Pesaran (2003) and Moon and Perron (2004a) exclude the possibility of cointegration 

among the ity  as well as between the observed data and the common factors; Bai and Ng 

(2004a) models include both possibilities. 

- Pesaran’s (2003) and Bai and Ng’s (2004a) models include either a constant or a linear 

trend; Moon and Perron (2004a) test is proposed for the case in which only a restricted 

constant is present. 

Due to these features, in the case where the observed nonstationarity depends only on a 

nonstationary common factor (i.e. the individual series are pairwise cointegrated along the 

cross sectional dimension) only the Bai and Ng (2004a) tests enable us to detect this situation. 

On the contrary, both Moon and Perron (2004a) and Pesaran (2003) tend to systematically 

reject the non-stationarity of the series. 

Gengenbach et al. (2004) analyze the small sample behaviour of the proposed tests and 

show that: 

                                                 
57

 Note that on the basis of the these observations, Pesaran’s (2003) Moon and Perron’s (2004a) null hypothesis 

can be viewed as a special case of Bai and Ng’s (2004a) setup, namely where 1≥K  and all idiosyncratic errors 

are I(1). 
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- Moon and Perron (2004a) tests are more powerful than the Pesaran (2003) tests, but the 

latter is simpler to compute; 

- the c

E
Pˆ  tests is more powerful than the c

E
ADF ˆ  in detecting unit roots in the idiosyncratic 

components; 

- the c

F
ADF ˆ  for testing for the presence of unit roots in the common factor is found to 

have good small sample properties when N and T are sufficiently large (≥ 50) and the serial 

correlation in the common factor is not too persistent; 

- in a multi-factor setting, the c

cMQ  test shows better performance than the c

fMQ  test but 

both tests fail to distinguish high but stationary serial correlation from non-stationarity in the 

common factors. 

Due to this observations, Gengenbach et al. (2004) propose a procedure to unit root 

testing in panels with dynamic factors: in step one, use Pesaran’s (2003) CIPS test to test for 

the presence of unit roots in the data when on expects that only a single common factor 

generates cross-sectional dependence. Use one of the tests proposed by Moon and Perron 

(2004a) to test for unit roots when cross-section dependence is likely to be due to multi 

common factors. In a second step, use c

E
Pˆ  and the c

F
ADF ˆ  tests proposed by Bai and Ng 

(2004a) to test for the presence of unit roots in the idiosyncratic components and the common 

factors respectively. 

The case where the Bai and Ng (2004a) tests reject the unit roots for the idiosyncratic 

components but not for the factor while the Pesaran (2003) or Moon and Perron (2004a) tests 

both reject the unit root null, is an indication of cross-member cointegration. 

Further, Choi’s (2002) tests are largely oversized, except when the cross-section units 

respond homogeneously to the common factor. In addiction, unlike Phillips and Sul (2004a) 

results, the +
OLSG  test seems to show better properties than the pooled Z test of Choi, but large 

size distortions are detected for both tests when more than one factor is included in the 

simulation study. Finally, all tests lack power when a deterministic trend is included in the 

process. 

Thus, one must be careful when using the previously reviewed panel unit root tests with 

variables, such as real GNP or industrial production, that are probably influenced by a 

deterministic trend. 
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Conclusions 

 

This work gives a review of the main results presented in the panel unit root test literature. 

Much research has been carried out recently on the topic of econometric nonstationary panel 

data, especially because of the availability of new data sets (e.g. the Penn World Tables by 

Summer and Heston, 1991) in which the time series dimension and the cross-section 

dimension are of the same order. 

Giving a larger quantity of information, new data sets ask for new tools of analysis. In 

order to work with this new kind of data, it is necessary that new tools including advantages 

and limits are well-known by researchers. 

The aim of this paper is to provide a survey of the topic, making it easy to see the 

directions in which the research has developed, sorting out what appears worthwhile from the 

dead ends, and determining future areas in which it would be productive to undertake 

research. 

In particular, in the panel unit root test framework, two directions have been developed 

since the seminal work by Levin and Lin (1992), leading to two generations of panel unit root 

tests. The first one concerns heterogeneous modellings with contributions by Im, Pesaran and 

Shin (2003), Maddala and Wu (1999), Choi (2001) and Hadri (2000). A second and more 

recent area of research aims at taking cross-sectional dependence into account. This latter 

category of tests is still under development, given the diversity of the potential cross-sectional 

correlations. 

Researchers should bear in mind that all tests for the null of a unit root must be used with 

panel data tests for the null of stationarity. This procedure allows us to distinguish series that 

seem stationary, series that appear to have a unit root, and series for which it is not possible to 

establish whether they are stationary or integrated. 
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APPENDIX 
 

Table A.1. The first generation of panel unit root tests. 
 

 

Test Hypotesis test 
Model 

specification 
Advantages (+) /disadvantages (-) Properties 

LLC • nonstationarity 

for all individual 

• homogeneous 

alternative 

• individual effects 

• time trends 

• heterogeneous serial 

correlation structure 

of the errors 

+ unbalanced panels are allowed,  but further simulations 

are required 

- it requires an infinite number of groups 

- all the groups are assumed to have the same type of 

nonstochastic components 

- the critical values are sensitive to the choice of lag lengths 

in the individual ADF regressions 

- it does not allow that some groups have a unit root and 

others do not 

• it is a pooled test 

• more relevant for panel of moderate size 

( 25010 << N  and 25025 << T ) 

• superconsistency of the estimators 

• there is a loss of power when time 

trends are included 

IPS • nonstationarity 

for all individual 

• heterogeneous 

alternative 

• individual linear 

trend 

• heterogeneous serial 

correlation structure 

of the errors 

+ unbalanced panels are allowed,  but further simulations 

are required 

- it requires an infinite number of groups 

- all the groups are assumed to have the same type of 

nonstochastic components 

- the critical values are sensitive to the choice of lag lengths 

in the individual ADF regressions 

- it does not allow that some groups have a unit root and 

others do not 

• it is an averaged t-test 

• there is a loss of power when time 

trends are included 

• generally, it is more powerful than LLC 

and Fisher tests 

 

Fisher • nonstationarity 

for all individual 

• heterogeneous 

alternative 

• individual fixed 

effects and time trend 

• heterogeneous serial 

correlation structure 

of the errors 

+ unbalanced panels are allowed 

+ it can be carried out for any unit root test derived 

+ it is possible to use different lag lengths in the individual 

ADF regressions 

- the p-value have to be derived by Monte Carlo simulations 

- problems of size distortion with serial correlated errors 

• it is a combination test 

• there is a loss of power when time 

trends are included 

• with cross-sectional correlated errors it 

is more powerful than LLC 

Hadri • stationarity for all 

individual 

• homogeneous 

alternative 

• individual specific 

variances and 

correlation patterns 

+ it avoids oversized tests due to treating not only N but 

also T asymptotic 

+ the moments of the asymptotic distribution of the test are 

exactly derived 

• it is a residual based LM test 
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Table A.2. The second generation of panel unit root tests: the problem of cross-sectional dependence. 
 

Test Hypotesis test 
Model 

specification 
Advantages (+) /disadvantages (-) Properties 

Chang 

(2002) 

• nonstationarity 

for all individual 

• heterogeneous 

alternative 

• fixed effects 

• time trends 

 

+ unbalanced panels are allowed 

+ N can take any value, large or small 

- for moderate cross-section dependence, it is valid only 

for N fixed ∞→T  

• it is a nonlinear instrumental variable 

approach 

• good finite sample properties 

• more powerful than IPS especially for 

little panels 

Pesaran 

(2003) 

• nonstationarity 

for all individual 

• heterogeneous 

alternative 

• fixed effects 

• time trends 

• cross-section 

dependence and/or 

serial correlation 

+ unbalanced panels are allowed 

 

 

Moon 

and 

Perron 

(2004a) 

• nonstationarity 

for all individual 

• heterogeneous 

alternative 

• one-way error 

component model 

• identical panel 

composition 

• heterogeneous 

restrictions 

 

+ unbalanced panels are allowed 

 

• the test suffers from size distortion when 

common factors are present on cross-

sectional independence 

• the test is very powerful and has good size 

when only a deterministic constant is 

included in the model 

• recommended when cross-section 

dependence is expected to be due to several 

common factors 

Bai and 

Ng 

(2004a) 

• for all individual 

• heterogeneous 

alternative 

• fixed individual 

effects 

• time trends 

+ unbalanced panels are allowed 

+ it is possible to determine if nonstationarity comes from 

a pervasive or an idiosyncratic source 

+ this procedure solves the problem of the size distortion 

+ it is a pooled test, then it is more powerful than 

univariate unit root test 

• good finite sample properties (even for 

little N) 

Choi 

(2002) 

• nonstationarity 

for all individual 

• heterogeneous 

alternative 

• two-way error 

component model 

• time trend 

• one single common 

factor is considered 

+ unbalanced panels are allowed • the tests keep nominal size quite well 

• the power increases as N grows 

• the size and the power decrease when a 

linear time trend is included in the model 

 


