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Abstract: Much research has been carried out recently on the topic of econometric non-

stationary panel data, especially because of the availability of new data sets (e.g. the Penn 

World Tables by Summers and Heston, 1991) in which the time series dimension and the 

cross-section dimension are of the same order of magnitude. My previous working paper 

(Barbieri, 2006) presented a review of the most recent unit root tests in a panel framework. 

This paper does the same with the panel cointegration test literature. This kind of test has 

been developed to extend the unit root approach to a multivariate framework. 

Of the panel cointegration tests, one can distinguish between those which verify the null 

hypothesis of no cointegration (Kao test, 1999; McCoskey and Kao test, 1999a, Pedroni’s 

tests, 2004; Groen and Kleibergen test, 2003; Larsson and Lyhagen, 1999) and those which 

verify the null hypothesis of cointegration, such as the McCoskey and Kao test (1998). 
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Introduction 

 

This paper follows on directly from my previous working paper on panel unit root tests 

(Barbieri, 2006). The aim of these works is to give a review of the recent main results in the 

econometric non-stationary panel data literature. Indeed, over the last two decades much 

research has been carried out in this area, and knowing and understanding progress in this 

field is essential for all econometricians who want to work with panel data. While Barbieri 

(2006) presented the recent main results in the field of panel unit root tests, this paper deals 

with the question of panel cointegration tests. 

Unit root tests verify the stationarity of the series. However, empirical questions often 

concern multivariate relationships; it becomes essential to find out if a particular set of 

variables is cointegrated. In the time series framework, cointegration refers to the idea that if a 

set of variables is individually integrated of order one, it is possible that some linear 

combinations of these variables are stationary. In this case, the vector of slope coefficients is 

referred to as the cointegrating vector.
1
 

Panel unit root tests can be adapted for residual-based cointegration tests by testing the 

series of residuals for stationarity. Unfortunately this adaptation is even more difficult 

because of the estimation procedure. The cointegration tests which test the null hypothesis of 

no cointegration must take into consideration the so-called “spurious regression” problem. 

Tests based on the null of cointegration must take into consideration an efficient estimation of 

a cointegrated relationship. Further, the concept of “pooled” estimation is different from 

pooling the cross-section testing results. In the case of unit root testing, most tests treat each 

individual cross-section independently. In the case of cointegration, treating each cross-

section independently may translate into allowing for varying slopes and varying intercepts. 

This has strong implications for the model. 

To extend unit root approaches to a multivariate framework, panel cointegration tests have 

been developed. These tests can be classified into two groups: tests assessing the null 

hypothesis of no cointegration (Kao, 1999; McCoskey and Kao, 1999a; Pedroni 1997, 1999, 

2000, 2004; Groen and Kleibergen, 2003; Larsson and Lyhagen, 1999; Bai and Ng, 2004; 

                                                 
1
 This vector is generally not unique, and the question of how many cointegrating relationships exist between a 

certain set of variables is also an important issue. Here this question is not analysed in depth: it is assumed that 

the researcher, taken as given a particular normalization process among the variables, is only interested in 

discovering if they are cointegrated. In this case, it is necessary recall that conventional tests often suffer from 

very low power when applied to series of moderate length. 



 2 

Choi, 2001) and tests assessing the null of cointegration (McCoskey and Kao, 1998)
2
.  It 

should be noted that the asymptotic analysis of both approaches involves the use of sequential 

limit arguments ( )seq, ∞→NT . 

Greater attention is required in the interpretation of the panel cointegration test, given that 

it raises even more difficulties than the interpretation of panel unit root tests. For example, if 

we consider a vector of data ity  (as usual, Ni ,...,1= , Tt ,...,1= ), with ir  cointegrating 

relationships such as itiit yz β ′=  is I(0), there are a variety of possible situations: the number 

of cointegrating vectors, rri = , can be the same in each group; the number of cointegrating 

vectors can be at least minr ; the cointegrating vectors iβ  can be identical in each group.  These 

alternatives make it difficult to interpret the possible rejection of the cointegration hypothesis. 

The pre-testing problems in cointegrating models are much more severe than in the unit 

root tests, where the issues are just determination of lag lengths and treatment of the 

deterministic elements. The large number of choices involved in cointegration analysis, even 

in the case of a set of time-series variables, is discussed in Pesaran and Smith (1998). 

This paper is organized as follows. The first section briefly presents the spurious 

regression problem, while section 2 reviews the cointegration test verifying the null 

hypothesis of no cointegration: residual tests (Kao test, 1999; McCoskey and Kao test, 1999a; 

several of Pedroni’s tests, 2004) and a couple of likelihood-based tests (Groen and 

Kleibergen, 2003; Larsson and Lyhagen, 1999) are presented. Section 3 presents the 

McCoskey and Kao test (1998) for the null of cointegration and section 4 compares the 

presented tests. My conclusions close the paper. 

 

 

1. Spurious regression in panel data 

 

The spurious regression problem holds even in the panel framework. Entorf (1997) studies 

spurious fixed effects regressions when the true model involves independent random walks 

with and without drifts and finds that as ∞→T  and N  is finite, the nonsense regression 

phenomenon is relevant for spurious fixed effects models and inference based on t-values can 

be highly misleading. Kao (1999) and Phillips and Moon (1999) derive the asymptotic 

distribution of the least square dummy variable (LSDV) estimator and various conventional 

                                                 
2
 See Table A.1. in the Appendix for a summary of the main characteristics of these tests. 
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statistics from the spurious regression in panel data. They also show that the coefficient of 

OLS estimator is consistent and the asymptotics of the OLS estimator are very different from 

those of the spurious regression in pure time series. This is important for residual-based 

cointegration tests in panel data, because the null distribution of residual-based cointegration 

tests depends on the asymptotics of the OLS estimator. 

However, there are a number of issues in tests for unit roots and cointegration in panels 

and their interpretation; in this framework spurious regression seems to be less of a problem 

because it is reduced by averaging. 

In the time series framework, it has been shown (Granger and Newbold, 1974; Phillips, 

1986) that, for given i , regressing a non-stationary variable ity  on a vector of non-stationary 

variables itx  may lead to spurious regression results. In fact, in a spurious regression the OLS 

estimator converges to a random variable. This means that the OLS estimator is not consistent 

and the t-statistic diverges. As a consequence a spurious regression may show an apparently 

significant relationship between the variables even if they are generated independently. 

In contrast, as Phillips and Moon (1999) note, if we suppose that there are panel 

observations of ity  and itx  with large cross-sectional and time series components, the noise 

can often be characterized as independent across individuals even if the noise in the time 

series regression is strong. Hence, by pooling the cross-section and time series observations, 

we may smooth the strong effect of the residuals in the regression while retaining the strength 

of the signal ( itx ). In such a case, we can expect a panel-pooled regression to provide a 

consistent estimate of some long-run regression coefficient. 

Then, Phillips and Moon (1999) show that panel data methods allow to estimate a long-

run relationship between several variables even in the case where the single time series 

dimension will lead to a spurious regression. This new relation is a long-run average 

relationship over the cross-section and it is parameterized in terms of a matrix regression 

coefficient derived from the cross-section long-run average covariance matrix. However 

interpretation of such relation is ambiguous because, as in the time series framework, t-

statistics diverge (Kao, 1999). 
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2. Null hypothesis of no cointegration 

 

The tests verifying null hypothesis of no cointegration (Kao, 1999; McCoskey and Kao, 

1999a; Pedroni 1997, 1999, 2000, 2004; Groen and Kleibergen, 2003; Larsson and Lyhagen, 

1999; Bai and Ng, 2004; Choi, 2001) are based on the principle of deciding whether or not the 

error process of the regression equation is stationary. These tests can be divided into two 

groups, the residual-based tests and the likelihood-based tests, and are presented in the follow. 

 

 

2.1. Residual-Based Cointegration Tests 

 

The residual-based tests are constructed on the basis of the Engle and Granger (1987) test 

in time series framework and use residuals of the panel static regression to construct the test 

statistics and tabulate the distributions. 

It is obvious that in this case obtaining good estimates of the residuals is essential to 

obtain good tests. Moreover, the asymptotic properties of these tests will depend on the 

asymptotics of the estimators.
3
 

                               

 

2.1.1. Kao test (1999) 

 

Kao (1999) presents two tests for the null hypothesis of no cointegration in panel data: the 

DF and ADF type tests. He considers the special case where cointegration vectors are 

homogeneous between individuals, i.e. these tests do not allow for heterogeneity under 

alternative hypothesis and they cannot be applied to a bivariate system (where only one 

regressor is present in the cointegration relation). 

Referring to the sequential limit theory, Kao shows that the asymptotic distribution of 

these statistics will converge to a standard normal one ( )1,0N . 

Kao results are offered for the asymptotics of spurious regression within a panel data 

setting. The specification of the panel model allows for differing intercepts across cross-

sections and common slopes. Further, the long-run variance covariance matrix is assumed to 

                                                 
3
 The tests assuming common slopes are derived under the assumption of a spurious regression and are based on 

OLS estimation. 
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be the same for all cross-section observations. Kao shows that in the panel data case the 

results for LSDV estimation are somewhat more encouraging. In fact, adding the cross-section 

dimension, an appropriate normalization of the estimated parameter converges in distribution 

to a normal, mean zero, random variable and, even though the model is misspecified, the 

LSDV estimator is consistent; however, the t-statistic keeps on diverging. 

These asymptotic results on the spurious regression are essential for testing the null 

hypothesis of no cointegration. Under the null of no cointegration the residuals required for 

the test need to be estimated, by construction, from a spurious regression. Note that the 

residual based test is equivalent to testing for a unit root in the LSDV estimated residuals. 

Using the panel model, the DF and ADF test statistics, after appropriate normalizations will 

converge in distribution to random variables with normal distributions. 

Kao presents two sets of specifications for the DF test statistics. The first set of test 

statistics depends directly on consistent estimation of long-run parameters. The second set of 

test statistics does not. 

Kao considers the following model: 

 ititiit exy ++=  βα , Ni ,...,1= , Tt ,...,1=  (2.1.1.1) 

 ititit uyy += −1  (2.1.1.2) 

 ititit xx ε+= −1  (2.1.1.3) 

where iα  are the fixed effects varying across the cross-section observations, β  is the slope 

parameter common across i and itu  are constant terms. Note that since both ity  and itx  are 

random walks, under the null hypothesis of no cointegration, the residual series ite  should be 

non-stationary. 

Before introducing the test, we define the lung-run covariance matrix of ( )′= ititit uw ε, 4
, 

as: 

 







=Γ′+Γ+Σ=
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4
 Note that itw  is a bivariate innovation process with zero mean vector. The definition of the standard long-run 

variance-covariance matrix is the standard definition used in the time series literature. 
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and 

 ( ) 







=′=Γ ∑

=
∞→ 2

2

1

1
lim

εε

ε

σσ

σσ

u

uu
T

k

itit
T

wwE
T

. 

In this framework, Σ , can be thought as the contemporaneous correlation and Γ  as the 

correlation across time. A special case of this long-run relationship is when 0=Γ  (i.e. 

2

0

22

0

2

vvuu σσσσ === ) which means strong exogeneity and no serial correlation. 

Kao suppose that ( ) ( )Ω⇒∑ = i

Tr

t it BwT
1

1  for all i  as ∞→T  where ( )ΩiB  is a vector 

Brownian motion with asymptotic covariance Ω . 

Both tests proposed by Kao can be calculated from the estimated residuals of (2.1.1.1), 

itê , as: 

 itp

p

j

jitjitit veee +∆+= ∑
=

−−
1

1
ˆˆ ˆ θρ  (2.1.1.4) 

where the lags are added in the specification to take care of possible autocorrelation and the 

number lags, p , is chosen such that the residuals itpv  are serially uncorrelated with past 

errors
5
. 

In order to test the null hypothesis of no cointegration, the null can be written as 

1:0 =ρH  against the alternative 1: <ρaH . The OLS estimate of ρ  is given by: 

 

∑ ∑
∑ ∑

= = −

= = −
=

N

i

T

t it

N

i

T

t itit

e

ee

1 2

2

1

1 2 1

ˆ

ˆˆ
ρ̂ . (2.1.1.5) 

Asymptotically: 

 ( ) 







+−−

4

0

4

4

3

5

36
3 , 0~1ˆ

v

v

T

TNNT
σ

σ

µ

µ
ρ N  (2.1.1.6) 

and 

 







+−

2

0

2

2

2

0

4

3
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3

2
 , 0~

v

v

v

v

T

T

s

N
t

σ

σ

σ

σ

µ

µ
ρ N  (2.1.1.7) 

where 

 





∆= ∑ = −

T

t ititT ee
T

E
2 13

ˆˆ
1

µ , 





= ∑ = −

T

t itT e
T

E
2

2

124
ˆ

1
µ  

                                                 
5
 In the case of DF test all 0=jθ . 
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Now, let ipX  be the matrix of observations on the p  regressors ( )
pitit ee −− ∆∆ ˆ,...,ˆ

1  such 

that ( )
ipipipipi XXXXIQ ′′−=

−1
,   and let ie  be a vector of 1

ˆ
−ite  with 

( ) ( ) ( )∑∑∑ ∑
= =

= = − =−=
N

i

T

t

itp

N

i

T

t ititv vNTeeNTs
1 1

2

1 2

2

1

2 ˆ1ˆ ˆˆ1 ρ . The ADF test statistic for the null 

hypothesis of no cointegration is based on the following t-statistic: 

 ( )
( )[ ]

v

N

j iii

ADF
s

eQe
ˆt

21

1
 

1
∑ =

′
−= ρ . (2.1.1.8) 

Kao shows that asymptotically: 

 




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


+−

2
0

2

2
0

2
0
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N  (2.1.1.9) 

with 

   





′= iiiT vQe

T
E

1
5µ , 





′= iiiT eQe

T
E

26

1
µ . 

The limiting distributions in (2.1.1.6), (2.1.1.7) and (2.1.1.9) are normal distributions with 

zero mean and contain nuisance parameters ( 2

0

2

6543  and ,,,, vvTTTT σσµµµµ ) that represent 

possible long-run weak exogeneity and serial correlation in the errors. As in the time series 

literature, consistent estimates of these long-run parameters are required and they would be 

based on the long-run variance-covariance matrix of itw . Let 2ˆ
vσ  and 2

0
ˆ

vσ  be the estimates of 

2

vσ  and 2

0vσ  respectively and note that, as ( )seq, ∞→NT : 

 2 2

3 v

p

T σµ −→ , 6 2

04 v

p

T σµ −→  

  2 2

05 v

p

T σµ −→ , 6 2

06 v

p

T σµ → . 

Now, it is possible to define some new statistics: 
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2

0

2

N

v

v

v
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NT
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σ

σ

σ

σ
ρ

ρ

+

+−

=∗ , (2.1.1.10) 
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 ( )1 0,~
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3

2

2

6

2
0

2

2
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0
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v

v

v

v

v

v
ADF

ˆ

ˆ

ˆ

ˆ

ˆ

ˆN
t

ADF

σ

σ

σ

σ

σ

σ

+

+

=  (2.1.1.12) 

whose limiting distributions by the sequential limit ( )seq, ∞→NT  do not depend on the 

nuisance parameters. 

When the case of strong exogeneity and no serial correlation (i.e. 2

0

22

0

2

uvuu σσσσ === ) is 

considered, the (2.1.1.6) and (2.1.1.7) can be re-written as: 

 ( ) 







−−

5

51
 , 0~1ˆ

6

5 N
T

TNNT
µ

µ
ρ  (2.1.1.13) 

and 

 ( )1 , 0~ 
4

5

6

5 N













−

T

TN
t

µ

µ
ρ  (2.1.1.14) 

and the bias-corrected test statistics become 

 
( ) ( )1 0,~

2.10

31ˆ
N

NNT
DF

+−
=

ρ
ρ , (2.1.1.15) 

 ( )1 0,~875.125.1 NNtDFt += ρ . (2.1.1.16) 

These tests do not require estimates of the long-run variance-covariance matrix as the 

others do. 

Kao compares the previous five residual based tests through Monte Carlo simulation using 

one-sided standard normal critical values and shows that: 

- when T and N are small, all tests have little power; 

- when T is small (e.g. 10=T ) and N is large, all tests have a large size distortion and little 

power; 

- when T increases to at least 25 for all N , the size distortion begins to disappear quickly 

and ∗
ρDF  test dominates ∗

tDF  and ADF tests in terms of power. 
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In general, ∗
ρDF  and ∗

tDF  tests outperform the other tests in terms of size and power 

properties and ρDF  and tDF  are substantially robust despite the model misspecification due 

to their independence from the estimation of long-run parameters. Specifically, in terms of 

robustness of the tests across different specifications, ADF and DF statistics do not perform 

very well and their distribution can be far from the standard normal distributions predicted by 

the theory. This is because of the dependence of this statistics on the long-run parameters and 

of the difficulty to obtain good results for the long-run estimates in the sample sizes feasible 

for applied research work. 

These problems are a consequence of the additional cross-section dimension, that 

however allows to “smooth” the limiting distribution into a normal distribution. 

Kao proposes a non-parametric correction to the ADF t-statistic test which can take the 

advantages of the normal distribution, but also cleanse the limiting distribution. He observes 

that ADFt  can be re-written as: 

 
Tv

T

ADF

s

N
t

6

5

ξ

ξ
=•  

where ( )∑ =
=

N

i iTNT N
1 55 1 ζξ , ( )( )iiiiT vQeT

∗∗= '

5 1ζ , ( )∑ =
=

N

i iTNT N
1 66 1 ζξ  and 

( )( )∗∗∗= iiiiT eQeT
'2

6 1ζ . 

It is then possible to make the following adjustments: 

 
( )






















+

−

5

4
 , 0~

2

6

6

5 N
NN

s
Tov

T

v

v

ξσ

λξσ
 (2.1.1.17) 

where ( ) 222

0 vv σσλ −= . Note that the distribution in (2.1.1.17) does not depend on nuisance 

parameters. 

 

 

2.1.2. McCoskey and Kao (1999a) test of no cointegration 

 

In his models Kao (1999) hypothesizes common slopes across the cross-sections. 

McCoskey and Kao (1999a) relax this assumption and propose two tests (an average ADF test 

and an average Phillips tZ  statistic) for the null of no cointegration with varying slopes and 

intercepts across the cross-sectional observations. 



 10 

 

For the average ADF test, they follow the Im, Pesaran and Shin (2003) –IPS thereafter- 

approach to the unit root test and present a cointegration test based on the average of the ADF 

statistics of the cross-sections. They consider the model (2.1.1.1): 

 itiitiit exy +′+= βα , Ni ,...,1= , Tt ,...,1=  (2.1.2.1) 

with 

 ititit uyy += −1  (2.1.2.2) 

 ititit xx ε+= −1 . (2.1.2.3) 

Each cross-section regression (which allows its individual cointegrating vector) is 

estimated separately. Then, single statistics are constructed under the assumption of cross-

sections independence of each other statistic and heteroskedasticity across the cross-sections. 

The pooling from the panel is done in the final step where the panel test statistic is 

constructed averaging the individual cross-section statistics. 

The ADF test can be constructed as: 

 itp

p

j

jitijitit veee +∆+= ∑
=

−−
1

1i
ˆˆˆ θρ , (2.1.2.4) 

where itê  are OLS residuals from (2.1.2.1). The (2.1.2.4) equation can be also written as: 

 itp

p

j

jitijitit veee +∆+=∆ ∑
=

−−
1

1i
ˆˆˆ θρ .

6
 (2.1.2.5) 

The null hypothesis of interest is 0:0 =iH ρ  and the t-statistic for each i  results: 

 
( )

v

ixp

iADF
s

ˆûQû
t

ρ21
11

 

−−′
= , (2.1.2.6) 

where 1
ˆ

−u  is the vector of observations of 1
ˆ

−tu , ( ) ppppX XXXXIQ
p

′′−=  with pX  matrix of 

observations on the p  regressors ( )
ptt uu −− ∆∆ ˆ,...,ˆ

1 , and ∑ =
=

T

t tpv v
T

s
1

22 ˆ
1

. 

Since, the iADFt   converges to a functional of Brownian motion (Phillips and Ouliaris, 

1990) and are cross-sectionally independent,  it is possible to calculate: 

 ∑
=

=
N

i
iADFADF t

N
t

1
 

1
. (2.1.2.7) 

Using the logic from Phillips and Moon (1999), McCoskey and Kao (1999a) show that: 

 ( ) ( )2MK  , 0~ ADFADFADFt tNADF σµ N−= , (2.1.2.8) 

                                                 
6
 See Phillips and Ouliaris (1990). 
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that is, the limiting distribution of the MK
tADF  test statistic is free of nuisance parameters and 

depends only in the number of regressors.  

The moments ADFµ  and 2
ADFσ  can be obtained through simulation following the Phillips 

and Ouliaris (1990) logic in the time series case. 

 

The second test proposed by McCoskey and Kao (1999a) is based on the average, across 

the cross-sections, of the Phillips tZ  statistics. This statistic is, by definition, for the varying 

intercepts and varying slopes model.  

In order to calculate the Phillips tZ  test, McCoskey and Kao follow the procedure 

illustrated by Phillips and Ouliaris (1990). Firstly, as for the ADF test, they calculate the 

estimated residuals from the original regression equation (2.1.2.1) using OLS. Then, these 

estimated residuals, itê , are used to perform the following regression: 

 ititiit vee += −1
ˆˆ α , (2.1.2.9) 

which is similar to the ADF test without lagged terms and whose error terms itv  can depend 

on cross-correlation and autocorrelation. 

If we define: 

 ∑
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=
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 (2.1.2.10) 

and 
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, (2.1.2.11) 

the final statistic can be expressed as: 
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α
. (2.1.2.12) 

This statistic converges in distribution to the same functional of Brownian motion as the 

ADF t-statistic (Phillips and Ouliaris, 1990) and uses the same simulated moments. 

Now, define as ( )∑ =
=

N

i itt ZNZ
1

1  the average of the cross-section itZ  statistics, it can be 

shown that: 
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 ( ) ( )2MK  , 0~ ADFADFtZ
ZNADF σµ N−= .

7
 (2.1.2.13) 

 

 

2.1.3. Pedroni tests (2004) 

 

Pedroni (1999, 2004) proposes a residual-based test for the null of cointegration for 

dynamic panels with multiple regressors in which the short-run dynamics and the long-run 

slope coefficients are permitted to be heterogeneous across individuals. The test allows for 

individual heterogeneous fixed effects and trend terms and no exogeneity requirements are 

imposed on the regressors of the cointegrating regressions. 

In earlier versions of his work Pedroni (1995, 1997) also studied the properties of tests for 

the null of no cointegration in panels with homogeneous cointegrating vectors iβ . He showed 

that in this case and with strictly exogenous regressors, under the null the distribution for 

residual-based tests is asymptotically equivalent to the distribution for raw panel unit root 

tests even if the residuals are estimated. With endogenous regressors, the asymptotic 

equivalence result falls and a correction is needed for the asymptotic bias induced by the 

estimated regressor effect
8
. 

The difficulty with this approach arises when a common slope coefficient is hypothesized 

despite the fact that the true slopes are heterogeneous. In this case, the estimated residuals for 

any member of the panel will be non-stationary, even if in truth they are cointegrated and it is 

not easy to interpret the resulting test for no cointegration 

This is why, Pedroni (2004) considers a set of residual-based test statistics for the null of 

no cointegration in the general case of fully endogenous regressors, no pooled slope 

coefficients and varying dynamics. The advantage of these tests is that they pool only the 

information regarding the possible existence of the cointegrating relationship that comes from 

the statistical properties of the estimated residuals. 

Specifically, the tests ask for the residuals estimation from static cointegrating long-run 

relation for a time series panel of observables ity : 

 itKitKiitiitiiiit exxxty ++++++= βββδα ...2211  (2.1.3.1) 

 Ni ,...,1= , Tt ,...,1= , Kk ,...,1=  

                                                 
7
 Also Pedroni (1997) considers a version of the average of the 

it
Z  statistics. 

8
 Kao (1999) examines the properties of such a test for the special case of homogeneous slope estimates and 

short-run dynamics. 
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where as usual T  is the number of observations over time, N  is the number of units in the 

panel and K  is the number of regressors. It is possible to interpret the model (2.1.3.1) as N  

different equations, each of which has K  regressors. The variables ity  and itx  are assumed to 

be I(1), for each member i of the panel, and under the null of no cointegration the residual ite  

will also be I(1). iα  and iδ  are scalars denoting fixed effects and unit-specific linear trend 

parameters, respectively and iβ  are the cointegration slopes; note that all this coefficients are 

permitted to vary across individuals, so that  considerable heterogeneity is allowed by this 

specification. 

Pedroni considers the use of seven residual-based panel cointegration statistics, four based 

on pooling the data along the within-dimension (denoted ‘panel cointegration statistics’) and 

three based on pooling along the between-dimension (denoted ‘group mean cointegration 

statistics’). 

Computationally, the former are constructed by summing both the numerator and the 

denominator terms over the N  dimension separately (i.e. they are based on estimators that 

effectively pool the autoregressive coefficient across different members for the unit root tests 

on the estimated residuals), whereas the latter are constructed by first dividing the numerator 

by the denominator prior to summing over the N  dimension (i.e. they are based on estimators 

that simply average the individually estimated coefficients for each member i ). 

 Another distinction between the two sets of test is based on the alternative hypothesis 

specification. In fact, even if both sets of test verify the null hypothesis of no cointegration: 

 1:0 =iH ρ i∀ , 

where iρ  is the autoregressive coefficient of estimated residuals under the alternative 

hypothesis ( ititiit uee += −1
ˆˆ ρ ), alternative hypothesis specification is different: 

- the panel cointegration statistics impose a common coefficient under the alternative 

hypothesis which results: 

 1: <= ρρ i

w

aH , i∀  

- the group mean cointegration statistics allow for heterogeneous coefficients under the 

alternative hypothesis and it results: 

 :b

aH  1<iρ  i∀  . 
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It is evident that the tests based on the between dimension are more general allowing for 

cross-section heterogeneity
9
. 

Defining itê  the estimated residuals from (2.1.3.1), the seven Pedroni’s statistics are: 

1. Panel v -Statistic: ( )∑ ∑= = −
−

=
N
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t iti
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1 1
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2. Panel ρ -Statistic: 
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3. Panel t -Statistic (non-parametric): 
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4. Panel t -Statistic (parametric): 
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5. Group ρ -Statistic: 
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6. Group t -Statistic (non-parametric):  
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7. Group t -Statistic (parametric):  ∑
∑

∑
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The nuisance parameter estimator 2

11
ˆ

iL  is the member-specific long-run conditional 

variance for the residuals. If ( )( ) 






 ′
∆∆=Ω ∑∑ ==

−
∞→

T

t it

T

t itTi zzTE
11

1lim  is the long-run 

covariance matrix for the partitioned vector of differenced unit root series ( )′′∆∆=∆ ititit xyz , , 

iL̂  is the lower triangular Cholesky composition of iΩ̂  and 2

11
ˆ

iL  is given as 

iiiiiL 21

1

222111

2

11
ˆˆˆˆˆ Ω′ΩΩ−Ω= − , where iΩ̂  is any consistent estimator of iΩ 10

.  

                                                 
9
 Note the analogy with the Levin, Lin and Chu (2002) and IPS tests in terms of the heterogeneity permitted 

under the alternative hypothesis: in the former case for the root of the raw time series, the autoregressive 

coefficient in the estimated residuals for the latter. 
10

 2

11
ˆ

i
L  can also be interpreted as a conditional asymptotic variance based on the projection of 

it
y∆  onto 

it
x∆ . 

Consequently, 2

11
ˆ

i
L  can be estimated by regressing 

it
y∆  onto the vector 

it
x∆  and computing the asymptotic 

variance of the residuals of this regression, using -for example- the Newey-West (1987) estimator. 
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The remaining nuisance parameter estimators are respectively defined as 

( )( )22 ˆˆ21ˆ
iii s−= σλ , ∑ −−= 22

11

12 ˆˆ~
iiNT LN σσ , ∑ =

∗−∗ =
N

i iNT sNs
1

212 ˆ~  and, being 2ˆ
iσ  and 2ˆ

is  

( ∑ =

−=
T

t iti uTs
1

212 ˆˆ ) the individual long-run and contemporaneous variances respectively of the 

residuals itû  ( 1
ˆˆˆ

−−= itiitit eeu ρ ) and ∗
iŝ  the standard contemporaneous variance of the residual 

from the ADF regression (then 2~∗
NTs  is simply the contemporaneous panel variance estimator). 

It is straightforward to observe that the first category of four statistics includes a type of 

non-parametric variance ratio statistic, a panel version of a non-parametric Phillips and Perron 

(1988) ρ -statistic, a non-parametric form of the average of the Phillips and Perron t-statistic 

and an ADF type t-statistic.  

The second category of panel cointegration statistics is based on a group mean approach 

and includes a Phillips and Perron type ρ -statistic, a Phillips and Perron type t-statistic and 

an ADF type t-statistic. The comparative advantage of each of these statistics will depend on 

the underlying data-generating process. 

To obtain the test statistics, following steps are required. 

- Firstly, the residuals itê  for the estimated panel cointegration regression (2.1.3.1) are 

calculated. 

- In the second step, the residuals for the differenced regression 

itKitKiitiitiit xbxbxby η+∆++∆+∆=∆ ...2211  are obtained to compute  2

11
ˆ

iL  as the long-run 

variance of itη̂  using any kernel estimator (i.e. the Newey-West (1987) estimator). 

- Then the residuals itê  are used to estimate the appropriate autoregression: 

(a) for the non-parametric statistics, the regression ititiit uee ˆˆˆ
1 += −ρ  is estimated to compute 

the long-run variance 2ˆ
iσ  (i.e. the simple variance of the residuals itû ). The term iλ̂  can 

then be computed as ( )( )22 ˆˆ21ˆ
iii s−= σλ  where 2ˆ

is  is just the simple variance of itû
11

. 

(b) For the parametric statistics, the regression ∗

= −− +∆+= ∑ it

K

k kitikitiit ueee ˆˆˆˆˆˆ
11 ρρ  is estimated; 

its residuals are used to compute the simple variance of ∗
itû  denoted 2ˆ∗

its . 

Finally, the appropriate mean and variance adjustment terms reported in Pedroni (1999) have 

to be applied. 

 

                                                 
11

 These error correction terms are the same as the usual correction terms that enter into the conventional single-

equation Phillips-Perron (1988) tests. 
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To discuss the distribution of the tests, the ( )1×K -dimensional vector of observations 

( )′= ititit xyz ,  is considered, such that under the null hypothesis of no cointegration, the true 

process itz  is generated as: 

 ititit zz ξ+= −1 . (2.1.3.2) 

The error term in the above equation ( )′=′ ′x

it

y

itit ξξξ ,  is a ( )1×K -dimensional stationary 

ARMA process which satisfies ( ) [ ] ( )ii

Tr

t it BT Ω⇒∑ =1
1 ξ 12

 for each i as ∞→T , where 

( )iiB Ω 13
 is a vector Brownian motion. The ( )KK × -dimensional asymptotic covariance 

matrix iΩ  of this Brownian motion is (partitioned conformably) such that the ( ) ( )11 −×− KK  

lower diagonal block 022 >Ω i (to rule out cointegration amongst the regressors). The itξ  

process specification therefore imposes cross-sectional independence (excepting any common 

aggregate disturbances) but allows for a wide range of temporal dependence in the data. In 

particular, no exogeneity requirements are imposed on the regressors in (2.1.3.1). 

Under these assumptions, Pedroni (1995, 1997) shows that, under appropriate 

normalisations based on Brownian movement functions, each test statistic has standard 

normal asymptotic distributions under the null hypothesis as ( )seq, ∞→NT . The author  

computes critical values for the tests (Pedroni, 1999) as well. 

Under the alternative hypothesis, the panel v -statistic diverges to positive infinity, and the 

right tail of the normal distribution is used to reject the null hypothesis of no cointegration. 

For the remaining six statistics, the left tail of the normal distribution is used to reject the null 

hypothesis.  

Pedroni (1997) simulations shows that, when 100>T , statistics have the same power. For 

little samples ( 20<T ), the most powerful test is the ADF test based on the between 

dimension (group t-statistic). 

 

 

 

 

 

                                                 
12

 [ ]1 , 0∈r  and [ ]Tr  denotes the integer part of Tr . Note that under this condition the standard functional 

central limit theorem holds individually for each member series as T grows large. 
13

 The ( )
ii

B Ω are taken to be defined on the same probability space for all i. 
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2.2. Likelihood-Based Cointegration Tests 

 

Now two LR tests for the null of no cointegration, inspired at the Johansen (1991, 1996) 

work, are presented: the Groen and Kleibergen (2003) test and the Larsson and Lyhagen 

(1999) test. 

 

 

2.2.1. Groen and Kleibergen test (2003) 

 

Groen and Kleibergen (2003) propose a likelihood-based framework for the panel 

cointegration analysis of a fixed number of vector error correction (VEC) models. They 

calculate maximum likelihood estimators of the cointegrating vectors using iterated GMM 

estimators and construct likelihood ratio statistics to test for a common cointegration rank 

across the individual VEC models, both with heterogeneous and homogeneous cointegrating 

vectors. 

The test is based on the trace test proposed by Johansen (1991, 1996). 

Firstly, they stack VEC models of the different individuals into a joint panel VEC model. 

Then, considering the standard time series framework for cointegration testing, they construct 

a restricted VEC model: 

 tttt

N

t yyy εε +Π=+


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




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


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Π

=∆ −− 1A1
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1

00

00

00

L

MOM

L

 (2.2.1.1) 

where ty∆ , ty  and tε  are ( )1×Nk  vectors –with k  equal to the number of variables-, the 

coefficient matrix AΠ  has dimension ( )NkNk × . The submatrices iΠ  are of dimension 

( )kk ×  for Ni ,...,1=  and relate ity∆  to 1−ity . The disturbance vector tε  contains the ( )1×k  

disturbance vectors itε  for each individual VEC model and ( )Ω , 0~Ntε 14
 with nondiagonal 

covariance matrix 

                                                 
14

 This normality assumption can be relaxed (Groen and Kleibergen, 2003). 
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The submatrix ijΩ  is of dimension ( )kk ×  and ( ) 0,cov ≠≡Ω jtitij εε  for Nji ,...,1, = 15
. 

Note that this specification for the model does not allow for cross-sectional dependence 

through the covariance matrix of the disturbance terms Ω , i.e. transitory cross-sectional 

dependence. However as the off-diagonal elements of the AΠ  matrix are set equal to zero, the 

model is a restricted version of the model in which the off-diagonal elements are left to be 

estimated. These restrictions on the AΠ  matrix impose that there is no linear dependence 

between the variables of individual i and lags of the variables of individual j, for ij ≠ , i.e. no 

persistent cross-sectional dependence. By imposing the restrictions, cross-dependence in the 

panel is only allowed through the non-diagonal covariance structure of the error term Ω . 

Larsson and Lyhagen (1999) do allow for non-zero off-diagonal elements, which also 

implicitly allows for the possibility of cointegration between series of different individuals in 

the panel. The reason why these restrictions are imposed here is that if these restrictions are 

not imposed, all the off-diagonal elements of the AΠ  matrix would also have to be estimated. 

This is very likely not to be efficient due to the large number of parameters that have to be 

estimated in the estimation procedure. 

Then, Groen and Kleibergen impose also a rank reduction on the different iΠ ’s assuming 

that the cointegration rank is identical for all N individuals cointegration. This reduction 

allows for the following reduced-rank specification of the model (2.2.1.1): 

 tttt
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 (2.2.1.2) 

In this framework, panel cointegration testing is identical to verifying B0 : ΠH  versus 

A1 : ΠH . The null is tested using LR test statistics denoted by ( )AB  ΠΠLR . If the panel VEC 

models (2.2.1.1) and (2.2.1.2) are considered as being composed of N standard time series k-

                                                 
15

 Because of the large number of parameters and the presence of spurious correlations, an unrestricted VEC 

model is not efficient estimate, even for moderate sizes of N and k: in fact, the number of parameter of the 

covariance matrix should be ( )2
Nk . 
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variate VEC models, the asymptotic behavior of ( )AB  ΠΠLR  can be based on the asymptotic 

behavior of standard time series-based likelihood ratio cointegration rank tests defined as: 

 ( ) [ ]( )∫∫∫ −−

−

−−−− ′′′⇒ i,rki,rki,rki,rki,rki,rki BdBBdBBdBtrkrLR
1

 

where ( )krLRi  is the Johansen's LR statistic for each of the restrictions 1,...,0 −= kr  versus 

full rank k  referred to the i-th individuals and rkB −  is a ( )rk − -dimensional vector Brownian 

motion with an identity covariance matrix. 

Groen and Kleibergen show that the limiting distribution of ( )AB  ΠΠLR  is invariant to 

the covariance matrix of the error terms (i.e. ( )AB  ΠΠLR  is robust with respect to the 

choices of the covariance matrix). 

Moreover, they show that for fixed N: 

 ( ) [ ]( ) ( )∑∑ ∫∫∫
==

−−

−

−−−− =′′′⇒ΠΠ
N

i
i

N

i
i,rki,rki,rki,rki,rki,rk krLRBdBBdBBdBtrLR

11

1

AB  

as ∞→T , i.e. nothing is lost by assuming that the covariance matrix has zero non-diagonal 

covariances and the tests based on the cross-independence ( ( )∑
=

N

i
i krLR

1

), will perform just as 

well (asymptotically) as the tests based on the cross-dependence, ( ( )AB  ΠΠLR ).
16

 

Now, let ( )krLR  be the average of the N  individual trace statistics ( )krLRi : 

 ( ) ( )∑
=

=
N

i
i krLR

N
krLR

1

1
. 

Then it is possible to build: 

 
( ) ( )[ ]

( )[ ]krLRV

krLREkrLR −
 (2.2.1.3) 

which is asymptotically standard normally distributed as ( )seq, ∞→NT ; a central limit 

theorem provided that ( )[ ]krLRE  and ( )[ ]krLRVar  are bounded. 

Groen and Klaibergen also show that ( )krLR  and ( )ABLR ΠΠ  are equivalent for large N 

and T , where: 

 ( ) ( )ABAB LR
N

LR ΠΠ=ΠΠ
1

 (2.2.1.4) 

                                                 
16

 This Groen and Kleibergen’s result is fundamental for econometrics and applied econometrics. In fact, it 

means that there exists tests/estimators based on the cross-independence which are equivalent to tests/estimators 

based on the cross-dependence in nonstationary panel time series. 
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is the Larsson et al. (2001) test when N is fixed and T is large. 

If a fixed N is considered: 

( ) ( )ABAB LR
N

LR ΠΠ=ΠΠ
1
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 (2.2.1.5) 

where 

 [ ] 

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
 ′′′= ∫∫∫ −−

−

−−−− irkirkirkirkirkirkki BdBBdBBdBtrZ ,,

1

,,,,  (2.2.1.6) 

as ∞→T . Since irkB ,−  and jrkB ,−  are independent for ji ≠ : 
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as ∞→N , which implies that: 

   
( ) ( )[ ]

( )[ ] ( )1 , 0~N
AB

ABAB

LRVar

LRELR

ΠΠ

ΠΠ−ΠΠ
 (2.2.1.8)  

as ( )seq, ∞→NT . 

 

 

2.2.2. Larsson and Lyhagen test (1999) 

 

The Larsson et al. (2001) test is a LR panel test for the existence of a common 

cointegrating rank in heterogeneous panel models. This test is based on the average of the 

individual rank trace statistics developed by Johansen (1996) and is very similar to the IPS-

bar statistic. In Monte Carlo simulation, Larsson et al. investigate the small sample properties 

of the standardized LR-bar statistic and find that the proposed test requires a large time series 

dimension. Even if the panel has a large cross-sectional dimension, the size of the test will be 

severely distorted. 

Groen and Kleibergen (2003) verified that the Larsson et al. test is robust with respect to 

the cross-dependence in panel data. 
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Larsson and Lyhagen (1999) extend previous work by Larsson et al. (2001) and Groen and 

Kleibergen (2003). They focus on multivariate cointegration and present a more general panel 

cointegration model which corresponds to a restricted cointegrated vector autoregression 

(VAR) model. They consider the model: 

 t

m

k

ktktt yyy εβα +∆Γ+′=∆ ∑
−

=
−−

1

1

1  

where the vector ity  of dimension 1×Np  is given by stacking the N vectors 

 ( )′= ipttitiit yyyy ...,, ,21 , Ni ,...,1= , Tt ,...,1= , (2.2.2.1) 

being N and T defined as usual and being p the dimension of each unit. Hence ijty  denotes the 

ith group, the jth variable at time t, where pj ,...,1= . In the same way: 

 ( )′= ipttitiit εεεε ...,, ,21 , Ni ,...,1= , Tt ,...,1= , (2.2.2.2) 

and the 1×Np  dimensional vector tε  is obtained by stacking the N 1×p  vectors itε . The 

error process tε  has a multivariate normal distribution as ( )Ω , 0~ Npt Nε  with covariance 

matrix ( )NpNp ×  given by 
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Each of the individual ijΩ  matrices (denoting the covariance matrix of itε  with jtε ) is of 

dimension pp × . The matrices of fixed coefficients kΓ  have dimension NpNp ×  while the 

matrices α  and β  are both of order ∑ =
×

N

i irNp
1

, where ir  is the rank of each unit, 

pri ≤≤0  and are given by: 
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α  contains the short-run coefficients (adjustment parameters) and β  the lung-run 

coefficients each of rank ir . 

The general model (2.2.2.1) allows for simultaneous long-run relations between several 

variables for a panel of groups and for heterogeneous long-run cointegration relations within 
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each group. But Larsson and Lyhagen impose the restriction jiij ≠∀=  0β  that rules out 

cointegrating relationships across the groups. However the model allows for an important 

short-run dependence between the panel groups, since ijα  is not restricted to zero for the 

ji ≠∀ . Specifically, the elements jij βα ′  represent the short-run dependences of the changes 

in the series for group i  that are due to the long-run equilibrium deviations in group j ; the 

elements jii βα ′  represent the short-run adjustments in group i  resulting from a deviation from 

long-run equilibrium in group i
17

. Then, while the short term dynamics is allowed to vary 

over individuals, the long term dynamics is assumed to be constant. 

Larsson and Lyhagen impose also that ir  is the same for each panel group, i.e. there is a 

common maximum rank. 

It is very important to recall these two restrictions in empirical applications, since they 

often turn out to be inconsistent with both theory and data. 

The estimation
18

 of the individual cointegrating relations consists in an iterative procedure 

of reduced rank regressions in which each iiβ  is estimated by concentrating out the remaining 

1−N  matrices in the β  matrix. Hence, 11β  to NNβ  are estimated at each step, and the 

procedure is repeated until convergence
19

. 

After the estimation step, the distribution of estimated parameters and the likelihood ratio 

test for the cointegrating rank are derived. 

Larsson and Lyhagen extend the Johansen (1996) trace statistic and propose a panel test 

which uses the information available in the panel data. This test is a standardized LR-bar 

statistic given by the average of the N individual trace statistics. Specifically, the following 

rank hypotheses are considered: 
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qrH
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17

 Larsson et al. (2001) consider a similar heterogeneous panel data model under cointegrating restrictions, with 

the added assumption that no dependencies are allowed between the panel groups. This makes the model 

completely heterogeneous. Groen and Kleibergen (2003) relax this assumption. 
18

 As N grows for given T, it may be not possible to estimate the parameters of the model. In fact, in this case 

only some degrees of freedom are saved, with respect to unrestricted VAR, by restricting the parameters in the 

off-diagonal terms of  β  to zero. For example, if m=1, the number of parameters is at most 22 pN . With Np  

equations, each equation must have Np  observations to give an exactly identified system. Since the right hand 

of equation (2.4.2.1) consists of lagged left side variables, one observation is lost and the number of time units 

used must be at least 2+= NpT . 
19

 For starting values, Larsson and Lyhagen propose using the 
ii

β  estimated from a standard cointegration 

analysis on each unit separately. 



 23 

These hypothesis are verified by a likelihood type test under the block-diagonality 

restriction on β . The asymptotic distribution of this panel trace test statistic is a convolution 

of the distribution of a well known DF type distribution (the standard Johansen trace test 

statistic) and an independent 2χ  variable with ( )( )qqpNN −−1  degrees of freedom. This 

means that if 0=ir  the panel trace test is equal to the Johansen test; if 0>ir  an additional 

component appears in the distribution of the panel trace statistic, which accounts for the 

additional zero restrictions imposed on β . 

In this framework, testing for qri =  versus pri =  corresponds to testing for rank Nq  

versus Np  in a Johansen context, whereas testing for rank in the Johansen framework would 

allow for all the intermediate possibilities. 

Then, Larsson and Lyhagen show that the asymptotic distribution of the log LR test of the 

homogeneity hypothesis: 

 
jiH

H

jia

N

 , somefor    :

...: 210

ββ

ββββ

≠

====
 

results to be a 2χ  with ( ) ( )qpqN −−   1  degrees of freedom, under the null hypothesis and 

given the rank r , (as ∞→T ).
20

 

Monte Carlo simulations show that the test for common cointegrating space has 

sufficiently good size and power properties while the test for common cointegrating rank does 

not. This is why, they propose to use a Bartlett (1937) corrected test statistic
21

 which is found 

to have the desired properties, i.e. a size very close to the nominal one. 

 

 

3. Null hypothesis of cointegration 

 

Tests of null hypothesis of cointegration were introduced in the times series literature as a 

response to some critiques of the null hypothesis of no cointegration (Harris and Inder, 1994, 

and Shin, 1994). The null of no cointegration has the disadvantage that rejection could be 

caused, in many cases, by the low power of the test rather than by the true underlying nature 

                                                 
20

 Obviously because this is the difference of the numbers of free parameters under the different hypotheses. 
21

 A simple expression for the Bartlett corrected statistic is ( )
∞∞

∗ = ECCECC
TT

, where 
T

C  is the statistic for 

sample size T , 
∞

C  denote the asymptotic one and E  is the expectation operator. 
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of the data. The null of cointegration is often preferred in applications where cointegration is 

predicted a priori by economic theory.  

 

 

3.1. McCoskey and Kao test (1998) 

 

McCoskey and Kao (1998) propose a residual-based test for null hypothesis of 

cointegration in the heterogeneous panels framework
22

. This test can be view as an extension 

of the LM test and the locally best invariant test for an MA unit root for  time series (Harris 

and Inder, 1994; Shin, 1994; Leybourne and McCabe, 1994, and Kwiatowski et al., 1992). 

For the residual based test of the null of cointegration, an efficient estimation technique 

of cointegrated variables is required. In the time series framework there exist a variety of 

asymptotically efficient methods as the fully modified (FM) estimator of Phillips and Hansen 

(1990) and the dynamic least squares (DOLS) estimator (Saikkonen, 1991; Stock and Watson, 

1993). 

In the panel data framework, Kao and Chiang (2000) show that both the FM and DOLS 

methods can give asymptotically normally distributed estimators with zero means. 

The considered model allows for varying slopes and intercepts
23

: 

 itiitiit exy +′+= βα , Ni ,...,1= , Tt ,...,1=  (3.1.1) 

 ititit xx ε+= −1  (3.1.2) 

 ititit ue += γ . (3.1.3) 

ite  is composed of two separate terms, itγ  and itu  where: 

 ititit u  1 θγγ += −  (3.1.4) 

and itu  are ( )2

u , 0... σdii . The null of hypothesis of interest is 0=θ . 

Independence across cross-sectional units and no cointegration amongst the regressors are 

assumed. 

Let Ω  be the long-run variance-covariance matrix
24

 of ( )′′= ititit uw ε,  defined as 

                                                 
22

 In a similar vein, Hadri (2000) develops a test of the null of trend versus difference stationarity. 
23

 The framework can be generalized to include unit-specific trend terms 
i

δ  (McCoskey and Kao, 1999a). 
24

 A critical point in this analysis is the assumption of a constant variance-covariance matrix across the cross-

sectional units. As McCoskey and Kao (1998) note, the analysis could be generalized but the relaxation of this 

restriction, associated to the assumption of independence across i, will imply that the method will be equivalent 

to equation-by-equation estimation of the system. 
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iβ̂  is the FM estimator of iβ  and 21

1

2212

2

1

2

2.1
ˆ ϖϖϖϖ −Ω−=  is a consistent estimator of the 

long-run conditional variance under the null, 2

vσ , which is used in place of 
2+

s  if the 

residuals are estimated using the FM estimator. 

The construction of the statistic (3.1.5) requires a consistent estimation of Ω  in order to 

implement the non-parametric corrections. If these corrections are made, the FM estimator 

takes account of serial correlation of the residuals in (3.1.2) and the endogeneity of the 

regressors and provides an asymptotically unbiased estimator (Kao and Chiang, 2000)
25

. 

The asymptotic result for the test is: 

 ( ) ( )2

v , 0~ σµ NvLMN − ; 

since the statistic diverges under the alternative hypothesis, large values imply rejections of 

the null hypothesis. 

The correction factors vµ  and 2

vσ  are moments of a complex functional of Brownian 

motion defined in Harris and Inder (1994), which depend only on the number of regressors 

and can be found through Monte Carlo simulation. 

The limiting distribution of LM  is then free of nuisance parameters and robust to 

heteroscedasticity. 

 

The asymptotics of the panel tests take advantage of the sequential limit theory which 

allows for indices across the two dimensions of T and N. Note that for the panel LM test an 

                                                 
25

 The DOLS estimator uses lagged and future differences of itx  to correct for these effects. 
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additional dimension is considered to create the partial sums of the residuals. The fact that the 

model here allows for varying intercepts means that each cross-section is actually estimated 

individually, thus the additional dimension is manageable in the asymptotics. 

The McCoskey and Kao (1998) test is in the spirit of the IPS analysis, since it involves the 

averaging of the individual LM statistics across the cross-sections. Analogies with Pedroni 

tests can also be found (i.e. the use of nonparametric corrections) as with a number of other 

presented tests for the use of the mean and variance correction factors.  

McCoskey and Kao (1999b) conclude that using their LM test does not compromise the 

ability of the researcher in determining the underlying nature of the data when the null 

hypothesis of cointegration is more logical than the null of no cointegration. 

 

 

4.  A comparison between the presented tests 

 

McCoskey and Kao (1999b) simulations compare the size and power of different residual 

based tests for cointegration in heterogeneous panel data, with varying slopes and varying 

intercepts. 

Three of the tests under consideration, based on the average ADF test ( MK
tADF  and 

MK

Z
ADF ) and Pedroni’s pooled tests (

NTtZ ), are constructed under the null hypothesis of no 

cointegration. The fourth test, based on the McCoskey and Kao LM test ( LM ), is constructed 

under the null of cointegration. 

Within the former four tests ( 0H : no cointegration), MK
tADF  seemingly performs the 

best in terms of empirical size in the varying slopes and varying intercepts case. Its size has a 

small range across the nominal size (0.05) for all N and T. MK

Z
ADF  has a strong tendency to 

over-reject when 25≤T  and tendency to under-reject for 25≥T . 
NTtZ  behaves as MK

Z
ADF  

but in neither cases the problem is severe. The under-rejection problem of 
NTtZ  is bigger for 

25>T  and 25>N . These results highlight that relative sizes of T and N can significantly 

impact the characteristics of the test in panel data. 

In terms of power 
NTtZ  is the best. Power of all the tests increases as ρ  decreases. 

Moreover, the power of the tests increases more when T  grows than when N grows.  
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Then McCoskey and Kao (1999b) consider the LM  test and note that, in general for 

fixed T  and increasing N, the size of this test decreases. In terms of power, in all cases when a 

most powerful test could be determined, LM  was the best
26

. 

McCoskey and Kao conclude that of the two reasons for the introduction of the test of the 

null hypothesis of cointegration, low power and attractiveness of the null, the introduction of 

the cross-section dimension of the panel solves one: all of the tests show sufficient power 

when used with panel data. 

 

Banerjee et al. (2004) compare the Larsson and Lyhagen (1999) and Pedroni (2004) tests. 

Their  simulations indicate that when the hypothesis of no cross-unit cointegration (i.e. block-

diagonal β  matrix) and equal rank across the units are satisfied, the Larsson-Lyhagen test has 

good size and power properties, and often yields gains in efficiency relative to the full-system 

analysis for the estimation of the cointegrating parameters. However, when the previous 

assumptions are violated, both univariate and multivariate tests displaying size distortions. 

When N is small the presence of cross-unit cointegration is less harmful for the single-

equation tests than for the Larsson-Lyhagen test statistic. 

For empirical analysis, Banerjee et al. (2004) suggest to use full-system estimation 

whenever it is possible. If this is not feasible, they recommend to conduct a preliminary unit-

by-unit cointegration analysis and to test for the presence of cross-unit cointegration by the 

Gonzalo and Grenger test. If the null hypothesis of no cross-unit cointegration is accepted, 

and the unit-by-unit analysis does not indicate the presence of different rank across units, then 

the Larsson-Lyhagen or Pedroni test (depending on the size of N) can be applied, yielding 

efficiency gains in terms of higher power and lower standard errors for the estimated 

cointegrating coefficients. 

 

Gutierrez (2003) considers Kao’s ρDF  and ∗
ρDF  tests and Pedroni’s Panel ρ -statistic 

and Group ρ -statistic tests which provide the best power inside the group of tests proposed 

by Kao (1999) and Pedroni (1999). Gutierrez (2003) shows that for an homogeneous panel, 

Kao’s  ρDF  and ∗
ρDF  tests outperform Pedroni’s Panel ρ -statistic and Group ρ -statistic 

tests when T  is small, while Pedroni’s tests have higher power than Kao’s when T  increases. 

Thus when the sample grows large, the power of Pedroni tests outperforms Kao tests and both 

tests show better performance than LR-bar test proposed by Larsson et al. (2001).  

                                                 
26

 This result is obvious being LM  the only test of the four derived under the null hypothesis of cointegration. 
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Generally the power of these tests increases when N or T or the proportion of cointegrated 

relationships in the panel increases. 

In addition, depending on a T-dimension of the panel, cointegration tests can have high 

power when a small or high fraction of the relationships are cointegrated. This result suggests 

that when rejecting the null hypothesis of no cointegration for the whole panel not all the 

relationships can be really cointegrated. 

 

 

Conclusions 

 

This work is strictly related to my previous working paper on panel unit root tests 

(Barbieri, 2006).  In this second paper I discuss the panel cointegration question and several 

tests are critically analyzed. Firstly, the spurious regression problem is briefly recalled. Then, 

the panel cointegration tests are introduced. Specifically, the tests are split into two groups: 

tests which verify the null hypothesis of no cointegration and tests which verify the null of 

cointegration. In fact, as we saw in the panel unit root case
27

, it is a well known fact that the 

classical-hypothesis tests accept the null hypothesis unless there is strong evidence to the 

contrary. Then, in order to decide whether economic series are cointegrated, it is necessary to 

perform a test of the null hypothesis of no cointegration as well as of cointegration. 

Amongst the no cointegration tests, we can distinguish between residual-based tests and 

likelihood-based tests. It is important to recall that in the cointegration test framework, tests 

are based on severe restrictions. The way forward in the longer term is either to develop tests 

which do not impose such severe restrictions, or to find more reasonable and testable ways of 

incorporating restrictions within the maximum-likelihood framework. 

The panel cointegration test area is developing very rapidly. However, researchers should 

bear it in mind that the mechanical application of panel unit-root or cointegration tests is to be 

avoided. Their application requires that the hypotheses involved be interesting in the context 

of the empirical application, which is a question of theory rather than statistics. 

 

 

 

 

                                                 
27

 See the “stationary test” section in Barbieri (2006). 
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APPENDIX 

 
Table A.1. Main characteristics of the panel cointegration tests. 

 

Test Hypotesis test Model specification 
Advantages (+) 

/disadvantages (-) 
Properties 

KAO 

(1999) 
 

• null hypothesis of no 

cointegration 

• homogeneous alternative 

(it cannot be applied to a 

bivariate system) 

• varying intercepts 

• common slopes 

• identical lung-run 

variance-covariance 

matrix for all of the cross-

section observations 

• LSDV estimator 

+ ρDF  and tDF  are substantially 

robust  despite the model 

misspecification due to their 

independence from the estimation 

of long-run parameters 

+ a non-parametric correction for 
K

ADF  takes the advantages of the 

normal distribution and cleanses 

the limiting distribution 

 

• they are residual tests 

• they are DF and ADF type tests 

• they have standard normal limiting distributions 

• when T and N are small, all tests have little power 

• when T is small (e.g. T =10) and N is large, all of the 

tests have a large size distortion and little power 

• when T increases to at least 25 for all N , the size 

distortion begins to disappear quickly and ∗
ρDF  test 

dominates ∗
tDF  and K

ADF  in terms of power 

• in general, ∗
ρDF  and ∗

tDF  tests outperform the other 

tests in terms of size and power properties 

McCOSKEY & 

KAO (1999) 

• null hypothesis of no 

cointegration 

• heterogeneous alternative 

• varying slopes 

• varying intercepts 

• OLS estimator 

+ the normal limiting distributions 

of the tests are free of nuisance 

parameters 

- the moments of the two statistics 

can be obtained through simulation 

• they are average residual ADF/Phillips tests 

• MK

t
ADF  seemingly performs the best. Its size has a 

small range across the nominal size (0.05) for all N and T 

• MK

Z
ADF  has a strong tendency to over-reject when 

25≤T  and tendency to under-reject for 25≥T  

PEDRONI 

(2004) 

• null hypothesis of no 

cointegration 

• heterogeneous alternative 

is also considered (tests 

based on the between 

dimension) 

• varying dynamics 

• heterogeneous fixed 

(individual and time) 

effects 

• heterogeneous trend terms 

+ no exogeneity requirements are 

imposed on the regressors of the 

cointegrating regressions 

+ they pool only the information 

regarding the possible existence of 

the cointegrating relationships 

• they are residual tests 

• they have standard normal limiting distributions 

• T>100 all statistics have the same power 

• T<20 most powerful is the group t-statistic 

GROEN & 

KLEIBERGEN 
(2003) 

• null hypothesis of no 

cointegration (test for a 

common cointegrating rank) 

• homogeneous and 

heterogeneous cointegrating 

vectors 

• VEC panel model 

• GMM estimator 

• cointegration 

relationships across the 

groups are not allowed 

- the cointegration rank is assumed 

to be identical for all individuals 

cointegration 

• it is a LR based test 

• it has a normal standard limiting distribution 

• it is robust with respect to the choices of the covariance 

matrix 
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LARSSON & 

LYHAGEN 

(1999) 

• null hypothesis of no 

cointegration (test for a 

common cointegrating rank) 

• heterogeneous alternative 

• restricted cointegrated 

VAR model 

• heterogeneous panel 

data models 

• cointegration 

relationships across the 

groups are not allowed 

• short term dynamics 

allowed to vary over 

individuals 

• constant long term 

dynamics 

- it requires large T: if it is not, the 

size is very distorted 

+ robust with respect to the cross-

dependence in panel data 

- a common maximum rank is 

assumed (these restrictions can be 

inconsistent with both theory and 

data) 

• it is a LR based test 

(based on the average of the individual rank trace 

statistics – similar to the IPS test) 

• it has a chi squared limiting distribution 

• it has sufficient good size and power 

• using a Bartlett corrected test statistic it is possible to 

have a size very close to the nominal one also for the 

common rank test 

 

McCOSKEY & 

KAO (1998) 

• null hypothesis of 

cointegration 

 

• varying slopes 

• varying intercepts 

• FM or DOLS estimators 

for the cointegrated 

variables 

• independence across 

cross-sectional units 

• no cointegration 

amongst the regressors 

+ if non-parametric corrections are 

implemented, the FM estimator 

takes account of serial correlation 

of the residuals and the 

endogeneity of the regressors and 

provides an asymptotically 

unbiased estimator 

• it is a residual test 

(based on the average of the individual LM statistics – 

similar to the IPS test) 

• the limiting distribution of the test is normal, free of 

nuisance parameters and robust to heteroskedasticity 

• for fixed T  and increasing N, the size of this test 

decreases 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


