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Abstract

Previous studies on efficiency of hospitals often refer to quite restrictive func-
tional forms for the technology. In this paper, referring to a study about some
hospitals in Lombardy, we propose a statistical model based on the transloga-
rithmic function - the most widely used flexible functional form (Christensen,
Jorgenson and Lau, 1973). More specifically, in order to take into consider-
ation the hierarchical structure of the data (as in Gori, Grassetti and Rossi,
2004), we propose a multilevel model, ignoring for the moment the one-side
error specification, typical of stochastic frontier analysis. Given this simplifica-
tion, however, we are easily able to take into account some typical econometric
problems as, for example, heteroscedasticity.
The estimated production function can be used to identify the technical in-
efficiency of hospitals (as already seen in previous works), but also to draw
some economic considerations about scale elasticity, scale efficiency and opti-
mal resource allocation of the productive units. We will show, in fact, that for
the translogarithmic specification it is possible to obtain the elasticity of the
output (regarding an input) at hospital level as a weighted sum of elasticities
at ward level. Analogous results can be achieved for scale elasticity, which
measures how output changes in response to simultaneous inputs variation.
In addition, referring to scale efficiency and to optimal resource allocation, we
will consider the results of Ray (1998) in our context.
The interpretation of the results is surely an interesting administrative instru-
ment for decision makers in order to analyze the productive conditions of each
hospital and its single wards and also to decide the preferable interventions.

Keywords: Elasticity, Multilevel Models, Production Function Analysis, Scale
Efficiency, Scale Elasticity, Translog Function.
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1 Introduction

Previous studies on hospitals efficiency often refer to quite restrictive functional forms

for the technology. In this paper, referring to a study about some hospitals in Lombardy,

we formulate convenient correctives to a statistical model based on the translogarithmic

function, which is the most widely used flexible functional form for economic functions

(Christensen, Jorgenson and Lau, 1973; Kim, 1992; Grant, 1993; Ryan and Wales, 2000).

This model allows to obtain also closed form measures of scale elasticity and scale effi-

ciency, readily computable from the fitted model. The aim of this work is, indeed, to

provide an administrative instrument, based on stochastic production function analysis,

which is able both to identify non standard productive conditions and propose convenient

correctives, in the sense of inputs re-allocation.

The translogarithmic specification is the second order Taylor approximation of a

generic production function. In the simple case of one output (y) and two input vari-

ables (x1, x2), it is equal to:

ln(y) = α0 + α1 ln(x1) + α2 ln(x2) +
β11

2
[ln(x1)]2 + β12 ln(x1) ln(x2) +

β22

2
[ln(x2)]2. (1)

The success of this functional form in many econometric applications is due to its

flexibility (for example, the elasticity of the output with respect to an input is not constant,

as for the Cobb-Douglas, but it is a function of the inputs). This flexibility allows a large

adaptability of the model, but, at the same time, increases the multicollinearity.

In the present case of study the choice of the translogarithmic specification is mainly

connected to the non-linearity of the relation between beds number (an input variable)

and the hospitalizations number (the output variable). In addition, it allows to make

some economic considerations about scale elasticity, scale efficiency and optimal resource’s

allocation of the productive units.

In order to take into consideration the hierarchical structure of the data, typical of
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health context (Leyland and Goldstein, 2001), we propose a multilevel model, ignoring for

the moment the one-side error specification, typical of stochastic frontier analysis. Given

this simplification, however, we are able to take into account some typical econometric

problems as, for example, heteroscedasticity.

The data involved in the study are characterized by the presence of two levels of data

collection. While the first one regards the single wards in each hospital, the second is

identified by the hospitals.

The paper is organized as follows. Section 2 describes the data involved in the study.

Section 3 illustrates the model proposed. Section 4 presents the results of the analysis.

Section 5 proposes some economic considerations on the results. Section 6 gives some

conclusions.

2 The Data

As just said the data involved in the study are characterized by a two level hierar-

chical structure. More, in depth, the considered dataset refers to 1478 first level units

(wards) observed in 178 second level units (hospitals) of Italian region Lombardy in 1997.

This dataset, described in Gori, Grassetti and Rossi (2004), has been obtained from a

deterministic linkage of three distinct archives: the discharge database, the beds allo-

cation database and the staff database. These three archives are collected at different

levels of detail. The discharge files are available for each hospitalization and, among the

other variables, includes the ward and the hospital identifiers. This information allows to

calculate the total number of hospitalizations for each ward in a hospital (i.e. the total

number of cases treated in the observed year), which is the output variable (indicated by

NHosp). The beds number (indicated by Beds) is available for each ward in a hospital.

The staff variable (Staff ) is available only at hospital level, without the possibility of dis-

tinguishing among substructures, and corresponds to the total number of doctors, nurses

and administrative staff.
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Then, some other informations are taken into consideration. First of all, in order to

distinguish the hospitalizations by degree of complexity, there is the case-mix index, which

represents the relative level of case complexity in each ward, given the regional mean. In

particular, we use a standardized version of the logarithm of this index (indicated by

std(ln(CMix))). Then, in order to take into account the type of hospitalizations disease,

an addictive linear component is introduced in the production function model, consisting

of four variables. These four variables are two transformations of the Disease Related

Groups (DRG) weight variable, calculated at hospital and ward level. The DRG code

derive from an international clusterization of the hospitalization cases; the DRG weight

provides a “proxy” measure of the complexity of every treated case. The first transfor-

mation is the mean of DRG weights (indicated by µWeig,ij and µWeig,i) and represents

the mean complexity of observed cases at ward and hospital level. The second one is

the standard deviation of DRG weights (σWeig,ij and σWeig,i) and allows to control the

variability of the complexity in treated cases at the two levels considered. These factors

are introduced to affect only the level of production and not the production process itself.

In Table 1 are summarized the descriptive statistics of the variables involved in the

model.

Stand.
Variable Min Median Max Mean Deviation
ln(NHosp) 0.000 6.903 9.806 6.589 1.947
ln(Beds) 0.000 3.296 6.234 3.166 0.926
ln(Staff) 2.833 6.497 8.322 6.442 1.147
mean DRG Weight (Ward lev.) 0.160 0.850 8.320 1.076 0.776
s.d. DRG Weight (Ward lev.) 0.000 0.420 6.870 0.682 0.937
mean DRG Weight (Hospital lev.) 0.630 0.850 2.130 0.886 0.030
s.d. DRG Weight (Hospital lev.) 0.120 0.670 1.950 0.695 0.093
std(ln(CMix)) -10.350 -0.023 2.935 0.000 1

Table 1: Descriptive Statistics

The pair-wise scatter plot in Figure 1 shows the relation between the output variable

and the input variables and in particular highlights the strong dependence between hos-
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pitalizations number and beds number. From in-depth studies this relationship can not

be considered linear.
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Figure 1: Pair-wise Scatter Plot among output variable and input variables

3 The Model

In order to model the hospitalization phenomenon we use a modified translog specifica-

tion. In particular, the complete translog model for the hospitalizations number, function

of the beds number and the staff of observed units, is modified by the addition of two other

components. The first one is a multiplicative term that linearly depends from case-mix

index (indicated by std(ln(CMixij))). The second one is the additive linear component

illustrated in Section 2 (indicated in the following by f(Weights)).
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Given the hierarchical structure of the data, we propose to adopt a multilevel model, with

two levels and random intercept, which can be formulated as follows:

ln(NHospij) = α(CMixij) + β(CMixij , Bedsij)+

+ γ(CMixij , Staffi) + δ(CMixij , Bedsij, Staffi)

+ f(Weights) + ui + εij,

(2)

where

α(CMixij) = α0 + α1std(ln(CMixij))

β(CMixij, Bedsij) = [β0 + β1std(ln(CMixij))] ·
[
ln(Bedsij) + β2

2
ln(Bedsij)

2
]

γ(CMixij , Staffi) = [γ0 + γ1std(ln(CMixij))] ·
[
ln(Staffi) + γ2

2
ln(Staffi)

2
]

δ(CMixij , Bedsij, Staffi) = [δ0 + δ1std(ln(CMixij))] · [ln(Bedsij) · ln(Staffi)]

f(Weights) = λ1µWeig,ij + λ2σWeig,ij + λ3µWeig,i + λ4σWeig,i,

ui ∼ N(0, σ2
u) are the residuals at hospital level, i=1,...,N,

εij ∼ N(0, σ2
ε ) are the residuals at ward level, j=1,...,M, with ui ⊥ εij.

Using a classical notation for the coefficients of mixed models, equation (2) can be

re-written as:
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ln(NHospij) = α0i + α1 ln(Bedsij) + α2

2
(ln(Bedsij)

2) + α3 ln(Staffi)+

+α4

2
(ln(Staffi)

2) + α5(ln(Bedsij) · ln(Staffi)) + α6(ln(Bedsij) · std(ln(CMixij)))+

+α7(ln(Staffi) · std(ln(CMixij))) + α8(ln(Bedsij) · ln(Staffi) · std(ln(CMixij))))+

+α9(ln(Bedsij)
2 · std(ln(CMixij)))) + α10(ln(Staffi)

2 · std(ln(CMixij))))+

α11std(ln(CMixij))) + λ1µWeig,ij + λ2σWeig,ij + λ3µWeig,i + λ4σWeig,i + εij,

(3)

where α0i = α0 + ui, α1 = β0, α2 = β0β2, etc.

Note that the model defined in (3) can be seen as an unconstrained version of model

(2). Equation (3) is obtained by substitution of α(CMixij), β(CMixij), γ(CMixij),

δ(CMixij) and f(Weights) in (2). This operation leads to a linear form with some re-

striction on parameter values. For example, coefficients connected to ln(Beds) correspond

to β0, β1, β0β2

2
and β1β2

2
, that are only three different coefficients in model (2) and, respec-

tively, α1, α6, α9 and α2

2
in model (3). In order to justify the re-parametrization in (3),

we have performed a hypothesis test about non-linear restrictions (Godfrey, 1988). The

Wald test statistic presents a p-value of 0.0699, which allows to accept the null hypothesis.

Given this result, the following analysis is based on model (3), without any constraints

on the interaction parameters. The choice of formulation (3) is due not only to the ease

in estimation by means of conventional statistical software, but also to the immediate

interpretability of the estimated coefficients.

Then, regarding the errors at first level, εij, usually called residuals, the estimation

results, performed with the statistical software R (see Cribari-Neto and Zarkos, 1999; Ihaka

and Gentleman, 1996), show a high level of heteroscedasticity (see Figure 2-A). In order
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to include this information in the model, we have defined a dependence of ε from one of

the most significant inputs (the beds number), by means of an exponential multiplicative

variance function. Then, the corresponding model assumes that the within-group errors

are heteroscedastic, with variance function equal to:

V ar(εij) = σ2
ε |Bedsij|2θ. (4)

The plot of the standardized residuals (estimated by considering the inclusion of het-

eroscedasticity in the model) in Figure 2-B, shows that the problem of heteroscedasticity

has been reduced.

Figure 2: Effect on the residuals of inclusion of heteroscedasticity in the model

Finally, the 2nd level errors, ui, can be interpreted as efficiency indicators, as illus-

trated for example in Gori, Grassetti and Rossi (2004), and can be estimated by “Empir-

ical Bayes” (EB) approach as described in Pinheiro and Bates (2000) and Verbeke and

Molenberghs (2000).
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4 The Results

In Table 2 we summarize the estimated coefficients for fixed and random effects of the

model introduced in equation (3), which takes also into consideration the heteroscedastic-

ity. For variance components, as Wald statistics based on the asymptotic standard error

are not reliable, we provide the 95% confidence intervals. For the parameters in the linear

mixed-effects model approximate confidence intervals are obtained by using the normal

approximation of the distribution of the maximum likelihood estimators.

The prior aim of this paper is to focus on the economic interpretation of the estimated

model. The obtained coefficients show that quadratic forms of original variables have

negative effects on number of hospitalization as well as the various complexity indexes

(std(ln(CMixij)), µWeig,ij σWeig,ij, µWeig,i and σWeig,i). A positive effect is, indeed, con-

nected to the original input variables, also taking into consideration their interation with

the standardized case-mix index.

Figure 3: Confidence intervals for estimated BLUP random effects (ui) at hospital level

In Figure 3 we have summarized the estimated BLUP error components. Confidence

intervals have been calculated on the basis of pairwise comparison theory given in Gold-

stein and Healy (1995). The estimated BLUP error components and their standard errors

have been computed following chapter 7 of Pinheiro and Bates (2000). The point es-
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Fixed Effects Coefficients

Value Std.Error p-value

α0 0.7941 1.0367 0.4434
α1 1.2328 0.1541 0.0000
α2 -0.0165 0.0163 0.3101
α3 0.9683 0.3033 0.0017
α4 -0.0630 0.0251 0.0129
α5 -0.0114 0.0236 0.6275
α6 0.3265 0.1756 0.0632
α7 0.9390 0.2315 0.0001
α8 0.0185 0.0232 0.4252
α9 -0.0443 0.0195 0.0232
α10 -0.0774 0.0183 0.0000
α11 -3.2004 0.8323 0.0001
λ1 -0.4798 0.0493 0.0000
λ2 -0.0591 0.0493 0.2305
λ3 -1.2266 0.3833 0.0016
λ4 0.6379 0.2689 0.0188

Random Effects Coefficients

Value Lower Bound Upper Bound

θ -0.3773 -0.4170 -0.3375
σu 0.3502 0.3026 0.4053
σε 2.0625 1.8123 2.3474

Number of Observations: 1478 - Number of Groups: 178

Table 2: Estimated coefficients of the mixed model with heteroscedasticity
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timates and their confidence intervals (C.I.) are easily obtained from fixed effects and

variance maximum likelihood (ML) estimates.

5 Some Economic Considerations

As just pointed out, the aim of this article is to investigate the elasticity of the hos-

pitalizations number with respect to the inputs of the model, in particular Staff and

Beds, which are, indeed, the only variables directly under hospital control. As mentioned

previously, the case-mix index is treated as an exogenous variable, in order to distinguish

among different types of hospitalizations. Looking at our analysis results, in fact, it re-

sults that elasticity is strongly affected by this variable; we will show in the following how

elasticity varies for its different levels.

The elasticity of the output y for an input xr, defined as the marginal productivity of

xr divided by the average productivity of xr, i.e.

e(xr) =
∂y

∂xr
/
y

xr
=

∂ ln(y)

∂ ln(xr)
, (5)

is the percentage change in output associated with a unitary percent change in the r-

th input, holding all other inputs constant, and represents a unit-free measure of the

marginal productivity (Chambers, 1988).

From this formulation we obtain directly the elasticity at ward level, denoted by eW .

For Beds we have:

eW (Beds)ij =
∂ ln(NHospij)

∂ ln(Bedsij)
=

= [β0 + β1std(ln(CMixij))] · [1 + 2β2 ln(Bedsij)] +

+ [δ0 + δ1std(ln(CMixij))] · ln(Staffi).

(6)
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Analogously, for Staff we have:

eW (Staff)ij =
∂ ln(NHospij)

∂ ln(Staffi)
=

= [γ0 + γ1std(ln(CMixij))] · [1 + 2γ2 ln(Staffi)] +

+ [δ0 + δ1std(ln(CMixij))] · ln(Bedsij).

(7)

In both cases, the elasticity depends on the three explicative variables of the model.

As one can see in Appendix A (see Table 6), it is mainly affected by the case-mix value. In

fact, given a positive index, the estimated elasticity of the hospitalizations number with

respect to Beds decreases with Beds, when Staff is fixed, and increases with Staff, when

Beds are fixed. On the contrary, given a negative case-mix value, specular patterns can

be observed. Finally, given a null value of the index, both elasticities are almost constant.

Tables 4 and 5, in Appendix A, summarize the estimated elasticity for Beds and Staff

calculated for every observed macro units (i.e. at hospital level). Equation (5) can be, in

fact, reformulated at hospital level by writing output y as the sum of outputs of single

micro unit, reducing itself to the weighted sum of elasticities at ward level:

eH(Staff)i =
∂
∑

j
yij

∂Staffi

Staffi∑
k
yik

=
∑
j

(
∂yij

∂Staffi

Staffi∑
k
yik

yij
yij

)

=
∑
j

(
∂yij

∂Staffi

Staffi
yij

yij∑
k
yik

)
=
∑
j

(
∂yij

∂Staffi

Staffi
yij

wij
)

=
∑
j

(
∂ ln yij

∂ lnStaffi
wij
)

=
∑
j e

W (Staff)ijwij,

(8)

where eH indicates the elasticity at hospital level and wij are to be intended as weights

of the elasticities at ward level.

It can be simply demonstrated, by means of the limit of the difference quotient, that

analogous results can be achieved for Beds, obtaining:

eH(Beds)i =
∑
j

(
∂ ln yij

∂ lnBedsij
wij
)

=
∑
j e

W (Beds)ijwij. (9)

The estimates of elasticity at hospital level are summarized in Figure 4.
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Figure 4: Histograms of hospital elasticities for Beds and Staff

From this figure one can notice that, for Beds, the elasticity is concentrated around

the unity. For Staff, however, the plot shows that quite all units work in over-dimensioned

conditions, and a few have even reached a congested estate (the negative values). From

a re-allocative point of view we can then identify situations where elasticity values can

justify an input increase (elasticities greater than one) and cases for which an additional

input brings up no proportional output improvement (elasticities lower than one).

Considering the sum of the elasticities for Beds and Staff we obtain a slightly inter-

pretation of elasticity results as the local returns to scale (so called elasticity of scale)

e(x) = e(Beds)i + e(Staff)i, (10)

where x indicates the input vector (Beds, Staff ). The elasticity of scale is a scalar-valued

measure of how output changes in response to simultaneous input variation (Chambers,

1988). Here simultaneous input variation is restricted to variations that do not change

relative input utilization; that is, the ratios (xr/xs) are constant for all r and s.

“By geometrical point of view, the elasticity of scale is interpretable as measuring how

accurately the distance between isoquants in input space reflects the distance in output

space. In particular, there are three possible characterizations of production functions. If
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e(x) = 1, the production function exhibits constant returns to scale, and the isoquants are

evenly spaced. If e(x) < 1, the production function exhibits decreasing returns to scale,

and the distance between isoquants in input space overestimates the distance in output

space. Finally, if e(x) > 1, the distance in input space underestimates the distance in

output space, and the production function exhibits increasing returns to scale; isoquants,

therefore, tend to be more crowded together as one moves along a ray from the origin”

(Chambers, 1988).

The preceding concepts have some economical interpretations. “Assume that, by a

given endowment of inputs, the goal is producing as much output as possible and that we

can decide whether or not it would be better to split up the resource endowment equally

into m separate operations or to produce everything in one large operation. For conve-

nience, suppose also that both alternatives are equally costly. If the available technology

is characterized by decreasing returns to scale, there is no incentive to centralize the op-

eration, and it is better to split up the operation; exactly analogous arguments show that

when e(x) = 1, centralization and decentralization are indifferent, and when e(x) > 1,

centralization is preferable” (Chambers, 1988). These situations can be interpreted as the

estimated productive conditions of each hospital and each ward.

Focusing our analysis on hospitals level results, an estimated scale elasticity under

the unity identifies hospitals presenting a congested condition, where investments are not

useful and it is better to reduce the dimension; on the contrary, hospitals that have an

higher return to scale are the ones with unused productive capacity, which could increase

their dimension. This interpretation could be very useful by the administrative point of

view. Tables 4 and 5, in Appendix A, shows also the estimated scale elasticity for each

hospital. It can be noted, however, that the differences among hospitals are due quite all

to Staff elasticity. Staff and Beds values are also given in these tables in order to allow

a straightforward interpretation of the estimated values.

Another interesting measure, related to the returns to scale of a technology, is the
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scale efficiency, which measures the ray average productivity at the observed input scale

on the production frontier relative to the maximum ray average productivity attainable

at the most productive scale size (Banker, 1984), which is an input bundle x characterized

by e(x) = 1. “It needs to be emphasized that scale efficiency is lower than one whenever

the observed input mix is not scale-optimal, i.e. where locally constant returns to scale

does not hold. Scale elasticity, on the other hand, can be either greater than or less than

unity. Only at the most productive scale size both measures equal unity and are, therefore,

equal to one another. Elsewhere, they differ and the magnitude of scale elasticity does not

directly reveal anything about the level of scale efficiency” (Ray, 1988). Ray developed

an input-oriented measure of scale efficiency, directly obtainable from an empirically esti-

mated single output multiple input translog production function. For example, regarding

the translog model

ln(NHosp) = α0 + α1 ln(Beds) + α2 ln(Staff)+

+ β11

2
[ln(Beds)]2 + β12 ln(Beds) ln(Staff) + β22

2
[ln(Staff)]2

(11)

and in the absence of technical inefficiency, the scale efficiency is equal to:

SE(x) = exp

{
(1− e(x))2

2β

}
, (12)

where β =
∑2
r=1

∑2
s=1 (βrs).

In the more general case involving technical inefficiency, it is equal to:

SE(x) = exp





[1−
√
e(x)2 − 2βθ]2

2β



 , (13)

where θ is the technical inefficiency (in our case we can obtain it from a MOLS or COLS

transformation - Greene, 1993 - of the second level error component). This measure can

be computed for each hospital from the fitted translog production function.
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As previously seen, a practical implication of returns to scale analysis is that any input

characterized by increasing returns to scale should be expanded, while one with dimin-

ishing returns should be scaled down in order to attain full scale efficiency. Supposing

it is possible to change relative input utilization, an interesting question would be: what

level of Staff combined with the given quantity of Beds would result in a scale-optimal

input-mix?

Ray (1998) developed an index, in the two input case, which measures the extent to which

the observed quantity of Staff differs from what would be the optimal level in light of the

size of its actual Beds.

Let B0 be the exogenously fixed quantity of Beds, S0 the observed quantity of Staff and

(S∗0) the optimal quantity of Staff. Ray (1998) defines

σ =
S∗0
B0

/
S0

B0

=
S∗0
B0

· B0

S0

=
S∗0
S0

. (14)

Clearly, σ = 1 if and only if the observed pair (S0, B0) is itself scale-optimal. Other-

wise, σ > 1 implies that the actual Beds-Staff ratio is higher than the optimal. Similarly,

σ < 1 implies excessive number of Staff relative to the optimal level.

For the translog case the index is equal to:

σ = exp

{
1− e(S0, B0)

β22 + β12

}
, (15)

that is it depends on both the observed scale elasticity, e(S0, B0), and the estimated val-

ues of the parameters in the denominator. Thus, the mere fact that increasing returns to

scale hold at any given input bundle does not by itself imply that the observed quantity

of Staff is too low. ”It should be noted, however, that if β22 + β12 = 0, there will not

exist a finite S∗0 for the given B0” (Ray, 1998).
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6 Conclusions

The decision to measure efficiency of health services by the given model is due to both

interpretability and flexibility of the functional form. The model proposed is certainly a

simplified version of the complete econometric model specification (some other variables,

in fact, can affect the analyzed phenomenon) but, also at this preliminary stage, some of

the obtained results are really closed to the desirable hypotheses. Then one can conclude

that the application of this methodology provides useful and reliable results. Some more

attention should be focused, however, on typical econometric problems, like for example

outlier detection; this is, in fact, still an unsolved problem in the multilevel framework,

because it is not easy to identify at which level outliers should be searched (see Langford

and Toby, 1998 and Barnett and Toby, 1994).

By means of deterministic COLS and MOLS approaches (Greene, 1993), decision

makers can interpret the random effect BLUP estimates (ûi) as indicators of structure

efficiency. The larger is the effect, the better is the productive process. Then, the interpre-

tation of estimated elasticities provides some information about the productive conditions

of observed units.

Our results show that, as beds elasticities are mainly concentrated around unity, the

interest of decision makers should be focused on estimated staff elasticities. Both staff

elasticity and scale elasticity highlight the presence of over- and under-dimensioned units,

i.e. situations where a re-allocation of staff is necessary.

The sample used for the analysis included different kinds of hospital structures. As

reported in Table 3, while structures classified as “Hospitals” and “Classified Hospitals”

are almost homogenous in terms of staff elasticity, “Private and Public Clinics” present

a large variability. “Research structures” are instead characterized by a low average staff

elasticity and, consequently, worse productive conditions, maybe due to the different goal

of these structures. Here staff is quite completely devoted to research and the health

service is considered only as a secondary aim.
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Beds Elasticities Std. Obs.
Structure Type y0.01 y0.25 y0.5 y0.75 y0.99 Mean Dev. Number

Hospitals 0.971 1.015 1.032 1.051 1.088 1.033 0.025 118
Research Institutes 0.913 0.992 1.013 1.036 1.086 1.010 0.042 18
Classified Hospitals 1.010 1.022 1.025 1.042 1.072 1.035 0.022 5
Private and Public Clinics 0.919 1.028 1.068 1.099 1.317 1.067 0.074 51

Staff Elasticities Std. Obs.
Structure Type y0.01 y0.25 y0.5 y0.75 y0.99 Mean Dev. Number

Hospitals 0.003 0.302 0.375 0.449 0.600 0.369 0.123 118
Research Institutes -0.045 0.187 0.265 0.354 0.703 0.282 0.183 18
Classified Hospitals 0.269 0.321 0.353 0.426 0.563 0.387 0.104 5
Private and Public Clinics -0.326 0.253 0.478 0.604 1.297 0.453 0.303 51

Table 3: Elasticity summary statistics of hospitalization structures clusters

In our analysis, the Case-Mix is treated as an exogenous variable, which does not

interfere with hospital politics. This is correct in the case that we consider as fixed the

service demand for each structure. For a few diseases with a lower case-mix, however,

the demand can be affected by single hospital marketing strategies. As one can see in

Table 6 of Appendix A, substantial changes in case-mix index cause the raise of different

elasticity patterns.

Future developments will consider the generalization of Ray’s results (Ray, 1998) to

our model specification and the consequent estimation of scale efficiency and σ-index for

scale optimality of input mix.

In conclusion, we think that the presented methodology and relative results can be

considered really interesting for the decision making processes. In fact, both random and

fixed effect estimates are easily interpretable. From an administrative point of view they

can be used to identify the different productive observed conditions (both technical and

scale inefficiency) and, in case, to decide the preferable interventions.
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Appendix A: Elasticity Results

Beds Staff Scale Beds Staff Scale
HospID Elasticity Elasticity Elasticity Beds Staff HospID Elasticity Elasticity Elasticity Beds Staff

1 1.010 0.330 1.339 170 351 51 1.068 0.518 1.586 271 485
2 1.031 0.367 1.397 853 1327 52 1.062 0.472 1.534 329 676
3 1.015 0.311 1.326 622 1187 53 1.021 0.113 1.135 58 55
4 0.997 0.238 1.235 630 1042 54 1.025 0.353 1.378 351 559
5 1.001 0.185 1.186 151 217 55 1.122 0.697 1.819 168 219
6 1.039 0.401 1.440 293 579 56 1.125 0.710 1.835 110 168
7 1.007 0.206 1.213 268 285 57 1.068 0.478 1.546 80 48
8 1.060 0.475 1.535 123 228 58 1.048 0.150 1.198 282 309
9 1.054 0.411 1.465 400 95 59 1.133 0.719 1.852 130 134

10 1.141 0.765 1.907 126 143 60 1.146 0.713 1.860 300 365
11 1.061 0.509 1.570 214 559 61 0.872 -0.430 0.442 160 170
12 1.044 0.363 1.406 77 154 62 1.023 0.245 1.268 71 65
13 1.050 0.444 1.494 368 702 63 1.084 0.564 1.648 60 55
14 1.046 0.443 1.489 140 280 64 1.328 1.303 2.631 136 232
15 1.042 0.422 1.464 102 234 65 0.995 0.261 1.256 260 350
16 1.042 0.426 1.469 258 408 66 1.039 0.397 1.436 182 240
17 1.073 0.569 1.642 270 932 67 1.039 0.378 1.417 91 98
18 1.022 0.321 1.343 201 321 68 1.061 0.464 1.525 190 185
19 1.074 0.520 1.594 180 182 69 1.092 0.601 1.692 198 358
20 0.989 0.193 1.182 106 126 70 1.116 0.758 1.874 380 681
21 1.068 0.471 1.538 100 100 71 1.086 0.743 1.830 60 70
22 1.043 0.244 1.287 170 183 72 1.016 0.226 1.243 144 96
23 0.965 -0.223 0.742 60 42 73 1.025 0.307 1.332 105 242
24 1.028 0.296 1.324 32 91 74 1.045 0.445 1.490 495 943
25 1.036 0.432 1.468 525 926 75 1.084 0.557 1.640 129 264
26 1.049 0.439 1.488 130 267 76 1.030 0.366 1.396 212 377
27 1.059 0.494 1.553 140 331 77 1.008 0.263 1.271 157 240
28 1.027 0.288 1.315 92 180 78 0.963 0.179 1.142 163 226
29 1.026 0.315 1.340 342 538 79 1.033 0.352 1.384 140 244
30 1.056 0.482 1.538 172 461 80 1.028 0.342 1.371 186 232
31 1.006 0.233 1.239 260 474 81 1.063 0.443 1.506 170 321
32 1.089 0.606 1.695 349 663 82 1.064 0.487 1.551 68 165
33 1.088 0.581 1.669 72 240 83 1.074 0.563 1.637 279 585
34 0.998 0.240 1.238 587 977 84 0.986 0.122 1.108 78 182
35 1.044 0.446 1.491 549 1270 85 1.306 1.290 2.596 130 229
36 1.053 0.482 1.534 391 857 86 1.100 0.570 1.670 148 107
37 1.089 0.592 1.681 188 434 87 0.979 0.172 1.151 142 152
38 1.033 0.374 1.408 258 469 88 0.982 0.175 1.156 135 174
39 1.033 0.374 1.407 493 1016 89 1.032 0.387 1.418 319 415
40 1.036 0.413 1.449 511 1347 90 1.047 0.449 1.496 420 551
41 1.015 0.354 1.368 575 1109 91 0.976 0.022 0.998 92 128
42 1.010 0.198 1.209 223 333 92 0.974 -0.056 0.918 108 184
43 1.047 0.414 1.461 141 262 93 1.035 0.357 1.392 35 47
44 1.010 0.321 1.331 504 1085 94 1.060 0.493 1.553 236 616
45 1.022 0.334 1.357 238 493 95 1.052 0.482 1.534 366 667
46 1.006 0.238 1.244 128 246 96 1.037 0.378 1.414 167 368
47 1.049 0.445 1.494 162 322 97 1.016 0.319 1.335 197 292
48 1.016 0.240 1.256 75 202 98 1.036 0.415 1.451 155 272
49 1.031 0.374 1.405 165 303 99 1.020 0.345 1.366 203 378
50 1.006 0.133 1.138 50 102 100 1.031 0.383 1.414 168 300

Table 4: Estimated elasticities computed with respect to each input variable and scale
elasticity

22



Beds Staff Scale Beds Staff Scale
HospID Elasticity Elasticity Elasticity Beds Staff HospID Elasticity Elasticity Elasticity Beds Staff

101 1.008 0.284 1.292 90 211 140 1.054 0.451 1.505 269 541
102 1.083 0.601 1.684 118 391 141 1.037 0.404 1.441 405 789
103 1.029 0.247 1.276 100 92 142 1.079 0.503 1.582 180 79
104 1.009 0.267 1.276 378 624 143 1.123 0.794 1.917 744 210
105 1.095 0.554 1.649 275 430 144 1.017 0.358 1.375 1021 1644
106 1.066 0.484 1.550 105 107 145 1.004 0.263 1.267 481 732
107 1.073 0.492 1.564 145 133 146 1.057 0.489 1.546 230 487
108 1.078 0.552 1.630 319 421 147 1.042 0.460 1.502 917 2135
109 0.996 0.024 1.019 86 65 148 1.030 0.411 1.440 895 1653
110 1.052 0.445 1.497 320 325 149 1.035 0.400 1.436 724 1407
111 1.047 0.402 1.449 120 113 150 1.015 0.327 1.342 706 1461
112 1.018 0.288 1.306 122 146 151 1.018 0.390 1.408 1574 3198
113 1.023 0.251 1.274 86 123 152 0.997 0.301 1.298 2155 3802
114 1.028 0.368 1.396 102 192 153 1.029 0.415 1.445 747 1558
115 1.035 0.335 1.370 140 171 154 1.012 0.337 1.348 941 1630
116 1.057 0.419 1.476 125 205 155 1.010 0.360 1.370 1298 2570
117 1.071 0.548 1.619 345 661 156 1.032 0.426 1.458 644 1462
118 1.047 0.465 1.512 452 745 157 0.971 0.087 1.058 494 1081
119 1.104 0.621 1.724 100 89 158 1.015 0.399 1.414 746 2369
120 0.974 0.027 1.001 76 61 159 1.007 0.370 1.377 1608 4113
121 1.098 0.608 1.706 160 135 160 1.009 0.348 1.358 564 1529
122 1.100 0.559 1.659 30 17 161 1.008 0.280 1.289 766 1642
123 1.003 0.182 1.185 57 39 162 1.024 0.384 1.408 613 1401
124 1.076 0.508 1.584 147 142 163 1.025 0.215 1.240 80 103
125 1.059 0.435 1.494 162 229 164 0.991 0.306 1.297 750 2520
126 1.079 0.590 1.668 147 210 165 0.936 0.108 1.044 510 1511
127 1.040 0.450 1.490 472 902 166 1.036 0.407 1.443 207 525
128 1.020 0.246 1.266 95 124 167 1.032 0.428 1.460 1394 2965
129 0.991 -0.001 0.990 97 115 168 0.990 0.103 1.093 53 192
130 1.023 0.345 1.368 120 127 169 1.004 0.206 1.210 173 253
131 1.041 0.373 1.413 137 143 170 1.016 0.273 1.289 130 194
132 1.077 0.485 1.562 145 113 171 1.037 0.259 1.296 64 57
133 1.056 0.467 1.524 164 320 172 1.091 0.731 1.823 189 410
134 1.019 0.199 1.218 90 142 173 1.056 0.542 1.597 993 3150
135 1.057 0.480 1.537 135 327 174 0.993 0.137 1.130 154 321
136 1.066 0.476 1.541 174 211 175 0.908 -0.071 0.837 110 747
137 1.057 0.461 1.518 95 181 176 1.010 0.337 1.347 242 487
138 1.042 0.423 1.465 201 534 177 1.038 0.325 1.363 159 247
139 1.146 0.733 1.879 94 85 178 1.001 0.203 1.205 287 390

Table 5: Estimated elasticities computed with respect to each input variable and scale
elasticity
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Elasticity of Nhosp calculated with respect to Staff given different input mix Elasticity of Nhosp calculated with respect to Staff given different input mix
and different levels of case-mix (ln(std(CMix))) and different levels of case-mix (ln(std(CMix)))

Case- Case-
mix = 2 Beds mix = 2 Beds

Staff 10 20 30 40 50 100 500 Staff 10 20 30 40 50 100 500
10 1.902 1.920 1.930 1.938 1.943 1.961 2.002 10 1.460 1.315 1.229 1.169 1.122 0.976 0.637
50 1.201 1.219 1.229 1.236 1.242 1.260 1.301 50 1.502 1.356 1.271 1.210 1.163 1.017 0.679

200 0.597 0.615 0.625 0.633 0.638 0.656 0.697 200 1.537 1.391 1.306 1.246 1.199 1.053 0.714
500 0.198 0.216 0.226 0.233 0.239 0.257 0.298 500 1.561 1.415 1.329 1.269 1.222 1.076 0.738

Case- Case-
mix = 1 Beds mix = 1 Beds

Staff 10 20 30 40 50 100 500 Staff 10 20 30 40 50 100 500
10 1.277 1.282 1.285 1.287 1.288 1.293 1.305 10 1.295 1.211 1.162 1.127 1.100 1.015 0.819
50 0.825 0.830 0.833 0.835 0.837 0.841 0.853 50 1.307 1.223 1.173 1.138 1.111 1.027 0.831

200 0.436 0.441 0.444 0.446 0.447 0.452 0.464 200 1.317 1.232 1.183 1.148 1.121 1.036 0.841
500 0.179 0.183 0.186 0.188 0.190 0.195 0.206 500 1.323 1.239 1.190 1.154 1.127 1.043 0.847

Case- Case-
mix = 0 Beds mix = 0 Beds

Staff 10 20 30 40 50 100 500 Staff 10 20 30 40 50 100 500
10 0.652 0.644 0.639 0.636 0.634 0.626 0.607 10 1.131 1.108 1.094 1.085 1.077 1.055 1.001
50 0.449 0.441 0.437 0.433 0.431 0.423 0.405 50 1.112 1.089 1.076 1.066 1.059 1.036 0.983

200 0.275 0.267 0.262 0.259 0.256 0.248 0.230 200 1.096 1.073 1.060 1.050 1.043 1.020 0.967
500 0.159 0.151 0.147 0.143 0.141 0.133 0.114 500 1.086 1.063 1.050 1.040 1.033 1.010 0.957

Case- Case-
mix = -1 Beds mix = -1 Beds

Staff 10 20 30 40 50 100 500 Staff 10 20 30 40 50 100 500
10 0.027 0.006 -0.006 -0.015 -0.021 -0.042 -0.090 10 0.966 1.004 1.027 1.043 1.055 1.094 1.183
50 0.073 0.053 0.041 0.032 0.025 0.004 -0.044 50 0.917 0.956 0.978 0.995 1.007 1.046 1.135

200 0.113 0.093 0.081 0.072 0.065 0.044 -0.004 200 0.876 0.914 0.937 0.953 0.965 1.004 1.094
500 0.140 0.119 0.107 0.098 0.092 0.071 0.023 500 0.848 0.887 0.910 0.926 0.938 0.977 1.066

Case- Case-
mix = -2 Beds mix = -2 Beds

Staff 10 20 30 40 50 100 500 Staff 10 20 30 40 50 100 500
10 -0.598 -0.632 -0.652 -0.665 -0.676 -0.710 -0.788 10 0.801 0.901 0.959 1.001 1.033 1.133 1.365
50 -0.303 -0.336 -0.356 -0.370 -0.381 -0.414 -0.492 50 0.723 0.823 0.881 0.923 0.955 1.055 1.287

200 -0.048 -0.081 -0.101 -0.115 -0.126 -0.159 -0.237 200 0.655 0.755 0.814 0.855 0.888 0.988 1.220
500 0.121 0.087 0.067 0.053 0.043 0.009 -0.069 500 0.611 0.711 0.770 0.811 0.843 0.943 1.176

Table 6: Estimated elasticities computed with respect to each input by given values of case-mix index. Negative values of
case-mix index corresponds to easier treatments which need more Beds than Staff. In a specular way positive case-mix identifies
the treatments that need more Staff than Beds.
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