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Abstract

The aim of this article is that of obtaining an expression for the density for the
likelihood ratio test which should be suitable for the computation of percentage
points. By extending previous results obtained by Krishnaiah (1976), Rathie (1989)
and Pederzoli (1995), the density function is expressed in terms of R-function and
G-functions.
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1. Introduction

Complex multivariate distributions play an important role in various areas such
as Nuclear Physics, see Carmeli (1974), Porter (1965) and Multiple Time Series, see
Brillinger (1974), Hannon (1970) for instance.

Let z' _ (zl,...,zp) be distributed as a complex multivariate normal with mean
}:l' _ (1, - 1,) and covariance matrix X. Let H denote the hypotesis
H:Z = %, ) (1.1)
where Ho and X, are supposed to be known.

If we denote the likelihood ratio test statistics for H by A, then it is known [see
Krishnaiah (1976), page 17] that

(@™ LN {-zbl[A+N(g0 “1o) (20 - 1) ]}
Ao 2 ‘AEO‘ e (1.2)
where (zlj, - zpj), j=1, ..., Nare N independent observations on zZ;,
N '
5 = JZ:lzlj; Z. = (Zl., zp4),
N * R
Alm:%:l(le - ZID) (ij - ) P (z-0)_ ( )‘
being the conjugate transpose of the vector ( and
A A
lp
A A A
A= 21 T2 2p
A A A
pl  p2 pp
The moments of A are given by
phN
)
h N P T (N-itNh)
(") - e I (1.3)
(i+h) ! I'(N-1)

The distribution of certain powers of A is approximated in Chang, Krishnaiah and
Lee (1977) with Pearson’s type I distribution by using the first four moments. Using
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this approximation they have also obtained percentage points for -2 Log A. Rathie
(1994) has expressed the density function of A in terms of R-function as well as in
series of chi-square distributions.

The purpose of this paper is to obtain an alternate series expression for the
density function of A involving Meijer’s G-function. A series representation, suitable
for the computation of percentage points, is also obtained by using residues theory.

2. Density in Terms of R-and G-Functions

In this section, we will obtain the density function in terms of R-function
introduced earlier by Rathie (1989). Using the asymptotic expansion of gamma
function, the density will be expressed as a series involving G-function.

On substituting L= % in (1.3), denoting the density function of A"~ by f(x) and

using inverse Mellin transform, we get
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where ® —+—1 and L is a suitable contour with ¢ > p.

Using the definition of R-function, the density (2.1) can be written as
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Using the asymptotic expansion [7, p. 32 (5)]
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Now
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Here C, (y1, ..., ¥a) is the cyclic indicator of the symmetric group. Note that y; =0

fori=2,4,6, .. because B, (a)=0 when i is an odd integer. Thus (2.1), with the
help of (2.4), takes the following form on interchanging the order of summation and
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which expresses the density function f(X) as a series involving a G-function.

3. Series Expansion

To get a series expansion suitable for computation of percentage points, we will
expand the G-function in (2.5) by using the theory of residues, see Mathai and Rathie
(1971), for this we start with
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From (3.1), it is clear that the poles of the integrand on the right hand side are

given by the expression
(s-p+)"1=0 , j=0, 1, ...
and the order of the poles is given by
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Hence by residue theorem, we have from (3.1) that
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Thus all the derivatives of g,(s) are given by
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Integration of f(X) in the above expression between 0 and y for 0 <y < 1 yields
the distribution function F(y).
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