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Abstract

In this paper we point out some features of the dynamical models de-
scribing the interaction of two similar agents competing in a market. Such
models are fitted by a two-dimensional map M : (xt, yt) 7→ (xt+1, yt+1)
symmetric with respect to the diagonal, i.e., such that M (x, y) = M (y, x).
In particular we shall consider a model describing the strategic behavior
of two firms that produce complementary goods and have adaptive expec-
tation.

The aim of the paper is to analyze of the trajectories generated by the
iteration of M starting from different initial conditions. In particular we
are interested in two different problems arising in such situation. First,
we analyze the conditions that allow an agent to reach a favourable po-
sition (in term of its profit) in the long run. Second, we investigate the
mechanisms that lead the agents to behave in the same way in the long
run (synchronization) and the phenomena associated with these particular
situations, as the on-off intermittency.

JEL Codes: C02, C61, C73.
Keywords: Discrete nonlinear dynamical systems. Synchronization.

Strategic competition.

1 Introduction

Several microeconomic models describe the interaction between two (or more)
agents that compete in a market to gain the best possible result in terms of
profit. The classical example is duopoly, where two producers strategically
choose the quantities or the prices that maximize their own profit and such
a choice depends generally on that of the competitor, mainly when they act
simultaneously.
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The agents face a common situation depending on the framework in which
they are inserted (the demand function of the market in the duopoly example)
and they may either be similar or have different characteristics, as the cost struc-
ture in the duopoly. In the first case a representative agent can be introduced,
and the market will be equally shared between the different agents, while in the
case of heterogeneity of agents the share of market of an agent crucially depends
on its peculiarity.

Furthermore, an important feature of the agents is the degree of knowledge
they have on the market structure and on the characteristic of the competitor.
In the simplest case of perfect knowledge (a strong assumption in this kind of
models), game theory leads to the equilibrium solution (Nash equilibrium), that
is, the optimal strategy the agents can adopt, by the intersection point of the so
called reaction curves. Obviously, in the case of nonlinear reaction curves, many
equilibria may exist and in such a case some selection problems may emerge.

Under the perfect knowledge assumption we are dealing with a static model,
in the sense that the market is described by a one-stage game. The structure
of the model can be completely different when the agents are assumed to have
bounded rationality, allowing them to have some lack of information about the
market and/or the competitor. Indeed, in such repeated games the equilibrium
in the market can be reached only after some steps, and the model assumes a
dynamic structure, being described by the iterations of a two-dimensional map
(the evolution law of the market). The outcome of the map may also depend
on the initial condition of the market. In particular, even if the agents in the
market have similar characteristics, it may happen that in the long run an agent
has a favorable position with respect to the competitor if the initial conditions
are different.

The latter is the case we are interested in, investigating some particular
properties of a dynamic competition model with two identical competitors.

In the case of identical competitors, the dynamical system M : (xt, yt) 7→
(xt+1, yt+1) must remain the same if the variables x and y are interchanged,
that is, if the map M is symmetric with respect to the diagonal ∆ of the plane
R2. The symmetry property implies that the diagonal ∆ is mapped into itself by
the map M and this means that identical agents starting from identical initial
conditions obviously behave in the same way.

The trajectories generated by the iteration of the map M and characterized
by xt = yt for any t, are said synchronized trajectories and are governed by the
one-dimensional map given by the restriction of M to the invariant submanifold
∆.

Such one-dimensional map describes the behavior of the representative agent,
but the analysis of its dynamics is an important tool to understand the dynam-
ical behavior also when the competitors start from different initial conditions.

A trajectory starting out of ∆, that is, with x0 6= y0, is said to synchronize
if |xt − yt| → 0 as t → +∞ (see, e.g. , Bischi et. al., 1998, Agliari et. al., 2002).

A natural question arising in this framework is whether identical competi-
tors starting with different initial conditions synchronize in the long run. And
if not, which initial conditions allow an agent to reach a favorable situation? If
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a competitor starts in a favorable condition, is that condition guaranteed in the
long run?

The aim of this paper is to give an answer to these questions, putting also
in evidence the local and global bifurcations which give rise to the different
situations.

As an illustrative example we consider a model proposed by Matsumoto
and Nonaka, 2006, that describes the strategic behavior of two firms producing
complementary goods and using an adaptive expectation mechanism, instead of
static expectations as in the original paper.

Such a model reduces to the iteration of a nonlinear, and noninvertible,
two-dimensional map that exhibits up to four equilibria, coexistence of different
attractors and complex dynamics (see, also, Bignami and Agliari, 2007).

In order to obtain a symmetric map we restrict the analysis to the particular
case of proportional prices and costs. The corresponding map still exhibits mul-
tiple equilibria and through a global analysis of its dynamics we shall investigate
the role played by the initial conditions in the selection of one of them. In this
context, we shall also see that homoclinic and contact bifurcations (these latter
typical of nonlinear maps) can occur, causing important qualitative change in
the asymptotic behavior of the model.

The synchronization of the trajectories will be also shown, as well as some
interesting phenomena associated with such a situation.

Synchronization phenomena may occur in dynamic systems having an in-
variant submanifold of lower dimension than the total phase space. In physics
such phenomena have been deeply studied associated with the coupled chaotic
oscillators dynamics (see, among other, Fujisaka and Yamada, 1983, Pecora and
Carrol, 1990), while in economics only a few studies have been elaborated (see,
among others, Bischi et al., 1998, Bischi and Gardini, 1998, Bischi et al., 1999,
Bischi and Lamantia, 2002, Agliari et al., 2002). In our opinion, it is worth
highlighting the peculiarity of some trajectories when synchronization occurs.
In particular, we shall show the existence of a Milnor attractor and the associ-
ated on-off intermittency behavior of the trajectories, that is, the chaotic time
patterns which are synchronized for several time periods, nevertheless asyn-
chronous fluctuations sometimes take place. We recall that a closed invariant
set A is said to be a Milnor attractor (or a weak attractor in the Milnor sense)
if its stable set has positive Lebesgue measure, while A is a topological attrac-
tor (or asymptotically stable attractor) if it is Lyapunov stable, that is for every
neighborhood W of A there exist a neighborhood U of W such that T t (U) ⊂ W
∀t ≥ 0 and the distance between T t (U) and A tends to 0 when t goes to infinity.
Note that a topological attractor implies a Milnor attractor but the converse is
not true.

Before to enter into the analysis, we emphasize once more that the particular
model here consider is only a pedagogical example that allow us to put in
evidence the global properties of the more general class of models having the
symmetry property, as those allowing the existence of a representative agent.

The paper is organized as follows. In Section 2, we introduce the model
describing the time evolution of the production levels of two firms acting in a
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complementary good market by the iteration of a two-dimensional map T . The
main properties of the map T are analyzed in Section 3. In particular, we point
out that such a map is a noninvertible one, that it may possess two or four fixed
points and we study their local stability. Then, in Section 4, we study some
not synchronizing trajectories by the analysis of the basins of attractions of
several coexisting attractors that the map T exhibits. In particular some global
bifurcations are pointed out, that involve important change in the long run
situation of the producers. The aim of Section 5 is to analyze a synchronization
phenomena, considering two different ways in which synchronization is attained.
A first one in which initially two strange attractors not embedded in ∆ exist and
we describe the mechanism which gives rise to the appearance of synchronizing
trajectories. The second one we propose is related to chaos synchronization and
gives us the opportunity to show the on-off intermittency phenomenon. Section
6 is the conclusion.

2 The model

We consider the model proposed by Matsumoto and Nonaka, 2006, describing
the strategic behavior of two firms producing complementary goods, x1 and x2

respectively. They assume that in each market, the inverse demand function is
given by

pi (xi, xj) = αi − βixi + γix
2
j (1)

where αi > 0, βi > 0 and γi > 0 (i = 1, 2) and i 6= j.
The complementary relationship between the two outputs is fitted by the

quadratic term in (1), whose effect is to introduce in the model a positive sale
externality, due to the fact that the sales of one firm are positively influenced
by the production of the other firm.

On the supply side (as in Kopel, 1997) it is assumed that a negative produc-
tion externality exists, the production choices of one firm being influenced by
the production level of the other one in terms of the cost function. Following
Matsumoto and Nonaka, we confine the analysis to the simple case in which the
production cost linearly depends on the other firm’s output, that is,

Ci (xi, xj) = cixixj (2)

where ci > 0, i = 1, 2.
Hence, we are considering a situation involving a double externality: A

positive externality via the market demand, measured by the quadratic term in
xj in (1) and a negative externality via the cost function, due to the dependence
on xj of the marginal cost in (2).

Each firm acts in a strategic framework since, in choosing its production
level, it has to take into account the decision of the other producer. The optimal
production choice of each firm is given by the solution of the profit maximiza-
tion problem. Solving such a problem, each producer obtains its own reaction
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function xi = ri (xj), i, j = 1, 2 and i 6= j , given by

ri (xj) =
αi − cixj + γix

2
j

2βi
. (3)

The reaction functions in (3) are nonlinear, with a unimodal shape and cru-
cially depend on the mutual amplitude of the sale and production externalities.
Indeed, if ci << γi, the curves are quadratically upward sloping, due to the
dominance of the sale externality; whereas, if γi << ci, the reaction functions
become linearly downward sloping, due to the dominance of the production
externality.

The firms decide simultaneously the production quantity and then they have
to anticipate the quantity supplied in the complementary market; thus the quan-
tity of xi is a function of the expected quantity x

(e)
j , that is,

xi = r
(
x

(e)
j

)
=

αi − cix
(e)
j + γi

(
x

(e)
j

)2

2βi
. (4)

Obviously, if the firms have a perfect foresight of the production in the
complementary market, they would be able to choose their optimal strategy,
belonging to the Nash equilibria set. But, given the nonlinearity of the reaction
functions and, consequently, the existence of multiple Nash equilibria, some
selection problem may arise.

In order to choose among the different equilibria, we assume that the firms
adopt a “learning by doing” approach. Then in the time evolution of the
production decisions, we assume that at each stage, one firm optimally decides
by means of its reaction function, supposing that the expected production of
the complementary good is the same as in the previous one. This means that
the firms have naive expectations, that is

x
(e)
j (t) = xj (t− 1) ∀t ≥ 0 (5)

Moreover, in order to offset the lack of information of the firms, we assume
that they do not immediately jump to the optimum predicted by the reaction
function, but adaptively adjust their previous decision in the direction of the
new optimum (see, among others, Bischi and Kopel, 2001, Agliari et al., 2005)

xi(t) = (1− λi) xi(t− 1) + λiri (xj(t− 1)) (6)

where i, j = 1, 2 (i 6= j) and the parameters λi (0 < λi < 1) are the adjust-
ment speeds. The assumption in (6) may also be justified by some technology
constraint which prevents the producers to immediately jump to the optimal
quantity.

Substituting the expression of ri (xj) in the adaptive mechanism (6), we
obtain the following two-dimensional dynamical system

R :

{
x′ = (1− λ1)x + λ1

α1−c1y+γ1y2

2β1

y′ = (1− λ2) y + λ2
α2−c2x+γ2x2

2β2

(7)
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where, for the sake of simplicity, we rewrite the state variables (xi, xj) as (x, y) .
In (7), the symbol ”′” denotes the one-period advancement operator, i.e. if x
is the production level at time t, then x′ denotes the production level at time
t + 1.

The map R in (7) describes the evolution over time of the two markets and
depends on 8 parameters. The particular case λ1 = λ2 = 1 has been studied in
Agliari and Bignami, 2007, where the asymptotic behavior of the map has been
deeply analyzed, considering the same choice of parameters made by Nonaka and
Matsumoto (who emphasized on the emergence of chaotic dynamics). Obviously,
the methods used in Agliari and Bignami apply even in this framework, but such
a study is beyond the scope of this paper.

Then, in the following we restrict the analysis to the case

α1

α2
=

β1

β2
=

γ1

γ2
=

c1

c2
= k, (8)

that is, we assume that the marginal costs are proportional as well as the prices
of the two complementary goods. The reason for such an assumption is merely
analytic, since this is the first condition in order to study the trajectories which
asymptotically behave in the same way (synchronized trajectories).

Indeed, under the assumption in (8), the map R in (7) reduces to

T :

{
x
′
= λ1

2β

(
α− cy + γy2

)
+ (1− λ1) x

y
′
= λ2

2β

(
α− cx + γx2

)
+ (1− λ2) y

, (9)

where the index 2 has been suppressed in some parameters. In the case of equal
adjustment speeds, λ1 = λ2 = λ, T becomes a symmetric map, being

T ◦ S = S ◦ T

where S : (x, y) → (y, x) is the reflection through the diagonal ∆ =
{
(x, y) ∈ R2 : x = y

}
.

2.1 The symmetric map

Let us denote with Tλ the map T in (9) with equal adjustment speeds, that is

Tλ :

{
x
′
= λ

2β

(
α− cy + γy2

)
+ (1− λ)x

y
′
= λ

2β

(
α− cx + γx2

)
+ (1− λ) y

. (10)

The symmetry property implies that Tλ (∆) ⊆ ∆, and this means that firms
starting from identical initial conditions behave identically in any time. Thus
the dynamics generated by the map Tλ on the invariant submanifold ∆ can be
studied through the restriction of Tλ to ∆, given by the one-dimensional map

f (x) =
λγ

2β
x2 +

(
1− λ− cλ

2β

)
x +

αλ

2β
. (11)

6



Looking for the fixed points of the one-dimensional map f in (11), we can
see that if D = (2β + c)2 − 4αγ ≥ 0, two fixed points exist and are given by

x∗1 =
2β + c−√D

2γ
; x∗2 =

2β + c +
√

D

2γ
. (12)

Moreover, if D ≥ 0 the map f in (11) is topologically conjugate to the
standard logistic map

z
′
= az (1− z) = g (z) (13)

through the homeomorphism h, where

h (z) = uz + v =
−2β − λ

√
D

γλ
z +

2β + c +
√

D

2γ

and the following relation among the parameter holds

a = 1 +
λ

2β

√
D.

The topological conjugation between the maps (11) and (13) implies that
the dynamics of (11) are completely known, as these can be obtained from
those of the logistic map (13). We briefly recall some of such properties. With
regard to the fixed points of f , we have that x∗2 is repelling if D > 0, while
x∗1 is attracting if 0 < D < 16β2

λ2 . At D = 16β2

λ2 a flip bifurcation occurs,
which starts the well known Feigenbaum cascade of period doubling bifurcations
leading to the chaotic behavior of f . In any case, for each a ∈ (1, 4], i.e. for
each D ∈ (

0, 36β2/λ2
]
, a unique attractor exists. Such an attractor is the

ω-limit set of any trajectory starting from a point x0 ∈
(
x∗2 − 2β+λ

√
D

γλ , x∗2
)
,

such an interval being equivalent to the interval (0, 1) of the logistic map. Any
trajectory starting outside of the interval

(
x∗2 − 2β+λ

√
D

γλ , x∗2
)

is divergent.
Let us now return to the two-dimensional map Tλ, in order to put in evi-

dence a noticeable property (useful in the next analysis) of its Jacobian matrix
evaluated at the points of the diagonal ∆. Such a matrix assumes the form

JTλ (x, x) =
[

A B
B A

]

where A = 1 − λ and B = λ
2β (2γx− c). Then, it is immediate to obtain that

the eigenvalues of JTλ (x, x) are always real and given by s‖ = A + B, with
associated eigenvector directed along ∆, and s⊥ = A − B, with associated
eigenvector normal to ∆.

In particular, we observe that the rank-1 preimage of the point Θ = (θ, θ),
with θ = h

(
a
4

)
= 4β(cλ+β(2λ−1))−λ2D

8βγλ critical point of the one-dimensional map
f , is the point at which the eigenvalue s‖ vanishes, that is, the point Θ−1 =
(θ−1, θ−1), with θ−1 = h

(
1
2

)
= β(λ−1)

λγ + c
2γ .
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Thus the fate of any synchronized trajectory (i.e., any trajectory starting
from identical initial conditions) is known. Hence, we are now interested in
the existence of synchronization phenomena and we analyze producers starting
from different initial conditions in order to see if they evolve towards synchro-
nization, so that their dynamical behavior is completely determined by the
one-dimensional attractors of the restriction f , or if they converge somewhere
else.

Such a problem will be considered in Section 5. In the following section we
introduce some properties of the map T to be useful in the next.

3 Properties of the map T

In this section we study some properties of the adjustment process given by
the iteration of the map T in (9), which play a crucial role in the study of
the global dynamics. In particular we shall analyze the noninvertibility of the
map T , useful in the investigation of the topological structures of the attracting
sets of the map and related basins of attraction. Moreover, some analytical
results about the fixed points will be obtained and their local stability analysis
performed.

3.1 Noninvertibility

We recall that a map T is noninvertible if, given a point p′ ∈ R2, the rank-1
preimage of p′ (that is, the point p ∈ R2 such that p′ = T (p)), may not exist
or may not be unique. In other words, a noninvertible map is a correspondence
many-to-one, that is, distinct points of the plane have the same image but there
may exist points x having no preimage (see Mira et al., 1996).

Considering the map T in (9), the rank-1 preimages of a given point (u, v) ∈
R2 are the solution of the system

{
u = λ1

2β

(
α− cy + γy2

)
+ (1− λ1) x

v = λ2
2β

(
α− cx + γx2

)
+ (1− λ2) y

in the unknown variables x, y. This is a fourth degree algebraic system, which
may have four or two real solutions or no real solution at all.

Then, following the terminology introduced in Mira et al., 1996 and in Gu-
mowski and Mira, 1980, we can say that the map T is a Z4−Z2−Z0 map, since
in the plane there is a region of points having four distinct rank-1 preimages,
a region of points having two distinct rank-1 preimages and another one whose
points have no preimage. Such regions, or zones, are separated by the critical
line LC, i.e. the locus of points having two merging rank-1 preimages. The
locus of the merging preimages of the points belonging to the set LC, is the
rank-0 critical line LC−1.

The critical lines can be obtained from the Jacobian matrix of the map T ,
LC−1 being included into the locus of points at which the determinant of the
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Jacobian matrix vanishes:

LC−1 ⊆ J0 =
{
(x, y) ∈ R2 : det JT (x, y) = 0

}
.

From

JT (x, y) =
[

1− λ1
1
2β λ1 (−c + 2γy)

1
2β λ2 (−c + 2γx) 1− λ2

]
,

we obtain

LC−1 =
{

(x, y) : y =
1
γ

(
2β2 (1− λ1) (1− λ2)

λ1λ2

1
2γx− c

+
c

2

)}
.

Then LC−1 is an equilateral hyperbola in the plane (x, y), made up by two
branches, denoted by LC

(a)
−1 and LC

(b)
−1, and LC = T (LC−1) is made up by the

union of two branches, denoted by LC(a) and LC(b), as well. In Fig.1a, related
to the map Tλ, we can observe that the branch LC(a) separates the region Z0

from the region Z2, while the second branch LC(b) separates Z2 from Z4.

2Z 4Z

y

*

2P

*Q

( )

1

bLC
−

( )bLC

2Z

4Z

K

y

∆

� � � � � � ( )aLC

( )bLC

0Z

K

x

*

1P

*

1Q

*

2Q

( )

1

aLC
−

( )aLC

0Z

x

∆

Figure 1: (a) Critical curves and Z4, Z2, Z0 regions; P ∗1 , P ∗2 , Q∗1, Q∗
2 are the

fixed points of the map Tλ. (b) Riemann foliation of the plane associated with
map Tλ. The cusp point K belongs to the branch LC(b).

Geometrically, the action of a noninvertible map can be expressed by saying
that it “folds and pleats” the plane, so that distinct points are mapped into
the same point and several inverses are defined in some point x ∈ R2. These
inverses “unfold” the plane. The geometrical interpretation of the action of
the map T , and of the multivalued inverse relation T−1, can be understood by
considering a region Zk as the superposition of k “sheets” each one associated
with a different inverse. Such a representation is known as Riemann foliation
of the plane associated with the map T (see e.g., Mira et al., 1996), that is the
number of superimposed “sheets” which cover the plane explaining the number
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of preimages existing in the different regions. The sheets are connected by folds
joining two sheets and the projections of such folds on the phase plane are the
arcs of LC. The Riemann foliation of the plane R2 defined by the map Tλ is
shown in Fig.1b. From this figure we may also observe the existence of a cusp
point K, belonging to the branch LC(b). Then, still following the terminology
of Mira et al., 1996, we may be more precise, by saying that the Tλ (and T
too) is a noninvertible Z4 > Z2 − Z0 map, where the symbol “>” denotes the
existence of a cusp point in the branch LC(b) (see also Arnold et al., 1968).

The coordinate of the cusp point can be easily computed in the symmetric
case λ1 = λ2 = λ, since, in such a case, K belongs to the diagonal ∆ (see Bischi
and Kopel, 2001).

As we can see in Fig.1a, the critical line LC intersects the diagonal in two
points, K and Θ, rank-1 image of the points K−1 and Θ−1, respectively, be-
longing to LC−1.1 Observing that in any point of LC−1 at least one eigenvalue
of the Jacobian matrix of the map Tλ, given in (10), vanishes, we obtain that

K−1 = LC
(b)
−1 ∩∆ = (k−1, k−1)

with k−1 = β(1−λ)
λγ + c

2γ , as in such a point the eigenvalue s⊥ = 1 − λ −
λ
2β (2γx− c) vanishes. Consequently, the cusp point is given by

K = LC(b) ∩∆ = (k, k) (14)

with k = f (k−1) =
4β(3β−6βλ+4βλ2+cλ)−λ2D

8βγλ .
The coordinates of the cusp point K allow us to detect a noticeable global

bifurcations arising in the basins of attraction of the stable equilibria and causing
important qualitative changes in it, as we shall see in the next section.

3.2 Fixed points and local stability

The equilibrium points of the map T in (9) are the solutions of the system
{

x = λ1
2β

(
α− cy + γy2

)
+ (1− λ1)x

y = λ2
2β

(
α− cx + γx2

)
+ (1− λ2) y

(15)

in the unknown variables x and y. The possible solutions of the fourth degree
system (15) are independent of the adjustment speeds λ1 and λ2, hence the
steady states of the map T and Tλ are the same.

Solving (15), we obtain that the map T (and Tλ) may have up to four fixed
points; in particular, setting D = (2β + c)2−4αγ and D1 = (c− 2β) (c + 6β)−
4αγ < D, we obtain that no fixed point exists if D < 0. If D1 < 0 ≤ D, two
fixed points exist and belong to the diagonal ∆, given by P ∗1 = (x∗1, x

∗
1) and

1The point Θ−1 is the same point already considered in subsection 2.1
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P ∗2 = (x∗2, x
∗
2) with x∗1 and x∗2 defined in (12). Finally, if D1 ≥ 0, two further

fixed points appear, Q∗
1 and Q∗2, whose coordinates are

Q∗1 =
(

1
2γ

(
c− 2β −

√
D1

)
,

1
2γ

(
c− 2β +

√
D1

))
,

Q∗2 =
(

1
2γ

(
c− 2β +

√
D1

)
,

1
2γ

(
c− 2β −

√
D1

))
.

Note that the equilibria points Q∗1 and Q∗2 are symmetric with respect to
the diagonal ∆.

The local stability of the four fixed points of the map T is summarized in
the following proposition, where we consider as parameter space the set Ω =
{(αγ, λ1, λ2) : αγ > 0, 0 < λi < 1, i = 1, 2}.

Proposition 1 (i) The fixed point P ∗1 ∈ ∆ exists if D ≥ 0 (i.e., if αγ ≤
(2β + c)2 /4) and is a stable node in the parameter region

Ω(P )
s =

{
(αγ, λ1, λ2) ∈ Ω :

(6β + c) (c− 2β)
4

< αγ ≤ (2β + c)2

4

}

(ii) The fixed point P ∗2 ∈ ∆ exists if D ≥ 0 and is always unstable. In
particular, if 8β2 (2− λ1 − λ2) − λ1λ2

√
D

(√
D + 4β

)
> 0, P ∗2 is a

saddle point with stable set along the direction of the eigenvector

v‖ =
[ √

β2 (λ1 + λ2)
2 +

√
D

(
4β +

√
D

)
λ1λ2 − β (λ1 − λ2) , λ2

(
2β +

√
D

) ]
.

(iii) The two fixed points Q∗1 and Q∗2 exist if 4αγ − (c− 2β) (c + 6β) < 0
and are stable in the parameter region

Ω(Q)
s =

{
(αγ, λ1, λ2) ∈ Ω :

1
λ1

+ 1
λ2

> (c−2β)(c+6β)−4αγ
4β2 ∩ αγ < (6β+c)(c−2β)

4

}
.

The proof of Proposition 1 is quite standard and based on the localization
of the eigenvalues of the Jacobian matrix J evaluated at the fixed points. In
particular we have used the local stability conditions (see Gumowski and Mira,
1980; Medio and Lines, 2001):





1− trJ + det J > 0
1 + trJ + det J > 0

1− detJ > 0
(16)

From Proposition 1 we deduce that when αγ = (2β + c)2 /4 a saddle-node
bifurcation occurs and two fixed points appear, a saddle P ∗2 and a stable node
P ∗1 . Both these fixed points belong to the diagonal ∆. As the parameter αγ

crosses the plane of equation αγ = (6β+c)(c−2β)
4 a pitchfork bifurcation occurs
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and causes the appearance of two stable nodes Q∗1 and Q∗2. Immediately after
the crossing, the fixed point P ∗1 becomes a saddle point whose stable set is
the diagonal ∆ and separates the basins of attraction of the two stable nodes.
Finally, as the parameters approach the condition

1
λ1

+
1
λ2

=
(c− 2β) (c + 6β)− 4αγ

4β2
, (17)

the fixed points Q∗
1 and Q∗2, turn into stable foci, and undergo a Neimark-

Sacker bifurcation at the crossing of the condition in (17). Through numerical
simulation, it is possible to verify that such a bifurcation is of supercritical
type, that is, after its occurrence two attracting closed curves appear, each one
surrounding an unstable focus Q∗

1 or Q∗
2.

Since in the following we confine our study to the case of identical adjustment
speeds, that is, we analyze the dynamical behavior of the map Tλ defined in
(10), we specialize Proposition 1 to such a particular case, obtaining

Proposition 2 (i) The fixed point P ∗1 ∈ ∆ exists if D ≥ 0 (i.e., if αγ ≤
(2β + c)2 /4) and is a stable node in the parameter region

Ω(P )
s =

{
(αγ, λ) ∈ Ω :

(6β + c) (c− 2β)
4

< αγ ≤ (2β + c)2

4

}

(ii) The fixed point P ∗2 ∈ ∆ exists if D ≥ 0 and is always unstable. In particular,
if λ < 4β/

(√
D + 4β

)
, P ∗2 is a saddle with stable set transverse to ∆.

(iii) The two fixed points Q∗
1 and Q∗

2 exist if 4αγ − (c− 2β) (c + 6β) < 0 and
are stable in the parameter region

Ω(Q)
s =

{
(αγ, λ) ∈ Ω : λ < λN (αγ) ∩ αγ <

(6β + c) (2β − c)
4

}

where λN (αγ) is an hyperbola of equation λN (αγ) = 8β2

(c−2β)(c+6β)−4αγ .

Obviously, in Proposition 2 the parameter set Ω is a subset of the plane
(αγ, λ) .

A qualitative sketch of the stability regions Ω(P )
s and Ω(Q)

s of the equilibria
P ∗1 , Q∗

1 and Q∗
2 of the map Tλ is given in Fig.2.

It is worth to recall also that, being the map Tλ symmetric, either an in-
variant set (attractors, basins of attractions etc.) of the map is symmetric with
respect to ∆, either its symmetric set is invariant as well.

4 Basins of attraction and global bifurcations

In this section we consider the situation in which the firms have different initial
productions and do not synchronize. As we have seen in the previous section, our

12
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Figure 2: Stability regions Ω(P )
s , Ω(Q)

s of the map Tλ.

model admits up to two equilibria outside the diagonal ∆, and each producer has
its own preference between them, determined by the profit functions, π1 (x, y)
and π2 (x, y).

More precisely, producer 1 prefers the equilibrium Q∗2 (below the diagonal)
and, conversely, producer 2 prefers the equilibrium Q∗1 (above the diagonal), as
a straightforward computation permits to obtain (see Table 1).

π1 (x, y) π2 (x, y)

Q∗
1

kβ
4γ2

(
c− 2β −√D1

)2 β
4γ2

(
c− 2β +

√
D1

)2

Q∗
2

kβ
4γ2

(
c− 2β −√D1

)2 β
4γ2

(
c− 2β −√D1

)2

Table 1. Profit functions with D1 = 4cβ − 4αγ + c2 − 12β2

The natural task in such a context is to determine the initial conditions that
enables the producers to reach the preferred equilibrium in the long run. We
may expect that if the initial conditions are above the diagonal then producer 2
will be satisfied in the long run, and the opposite situation occurs if the initial
condition is chosen below the diagonal. This is exactly the case shown in Fig.3a,
where the two fixed points Q∗

1 and Q∗
2 are attracting and have connected basins

of attraction separated by the diagonal ∆, stable set of the saddle point P ∗1 .
In such a figure, the connected basins of attraction of the fixed points Q∗1 and
Q∗

2 are represented in red and yellow, respectively, the grey area representing
the basin of attraction, B (∞), of an attracting set located at infinity on the
Poincaré equator.

Then, in the parameter constellation of Fig.3a, an initial difference in the

13
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Figure 3: (a) Connected basins of attraction of the equilibria Q∗1 and Q∗2, in red
and yellow, respectively. The gray area represents the set of points giving rise
to divergent trajectories. (b) After the occurrence of a contact bifurcation, the
two basins of attraction are disconnected.

production determines the equilibria selected in the long run and the producer
having a larger production preserves its advantage in the long-run. Indeed, any
bounded trajectory starting with x0 > y0 converges to the fixed point Q∗2 and
any bounded trajectory starting with x0 < y0 converges to the equilibrium Q∗1.

Such a situation can be radically modified if a contact bifurcation between
the critical curves and the boundary of the basins takes place, causing the
breakdown of the connected structure of the basins of attraction.

As an illustration of the occurrence of this global bifurcation, we start from
the parameter constellation of Fig.3a and increase the adjustment speed. So
doing, the cusp point K of the critical curve LC(b), belonging to the set B (∞)
in Fig.3a, approaches more and more the boundary of the set of bounded trajec-
tories until it merges with the fixed point P ∗2 (contact bifurcation). The adjust-
ment speed value at which such a bifurcation occurs is λcb = 2β/

(√
D + 4β

)
.

As a result of such a contact we obtain that two further rank-1 preimages of
the fixed point P ∗2 appear, P ∗2 belonging to the Z2 region if λ < λcb and to the
Z4 region otherwise (compare Fig.3a and Fig.3b). Then the portion KP ∗2 of ∆
belongs to the region Z4 and this implies that besides its two rank−1 preimages
on ∆, each point of KP ∗2 has two further rank-1 preimages located on the line
∆−1 of equation

y + x =
1
γ

(
2β

(
1
λ
− 1

)
+ c

)

locus of preimage of rank−1 of ∆. Obviously, all these preimages, and their
preimages of increasing rank, belong to the stable set of P ∗1 , since the segment
KP ∗2 belongs to it, and makes the boundary separating the basins of attraction

14



of Q∗
1 and Q∗2 more complex.

As a result of the contact bifurcation occurring at λcb we observe the tran-
sition from a connected basin into a disconnected one and it may occur that
the producer having initially a larger production loses its advantage in the long
run.

A second situation, due to a different global bifurcation, in which the pre-
ferred position of a producer is not predetermined by the initial conditions, is
illustrated in Fig.4.
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Figure 4: (a) Coexistence of two attractors surrounding the fixed points Q∗

1 and
Q∗

2. The enlargement shows many convolutions in the proximity of the saddle
point P ∗1 . (b) At λ = .4275, an unique chaotic ring exists, appeared after a
homoclinic bifurcation.

As we have seen in Sec.3.2, the fixed points Q∗
1 and Q∗

2 lose their stability
through a supercritical Neimark-Sacker bifurcation occurring at λ = λN (αγ),
and immediately after the bifurcation two coexisting stable closed curves ap-
pear around them. Then, after the Neimark-Sacker bifurcation, the generic
trajectory exhibits a quasi-periodic or a periodic behavior. In Fig. 4a, obtained
quite far from the Neimark-Sacker bifurcation, the two coexisting attractors are
represented together with their disconnected basins of attraction. Due to the
nonlinearity of the map Tλ, they exhibit a large number of oscillations close to
the diagonal ∆, as the enlargement shows. This implies that the unstable set
of the saddle point P ∗1 , converging to the closed curves, involves more and more
and approaches the stable set of the same saddle, and in particular the diagonal
∆. As the adjustment speed is slightly increased (from λ = .425 to λ = .4275)
the stable and the unstable sets of the saddle P ∗1 have a tangential contact and
a homoclinic bifurcation occurs. As a consequence, the two attractors merge,
giving rise to a unique chaotic ring, shown in Fig. 4b. Then, after the occur-
rence of the homoclinic bifurcation, the coexistence of the two attractors is lost
and the generic trajectory fluctuates in a chaotic way.
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Figure 5: The time evolution of the difference x(t)− y(t) when the chaotic ring
exists.

To understand the long-run evolution of the quantities in such a case, where
a unique symmetric attractor exists, we consider the difference of the quantities
x (t) − y (t), represented versus time in Fig.5. We observe that a larger initial
production does not favor a producer, but, quite unexpectedly, stages in which a
producer has a good position alternate in an irregular way with stages in which
the opposite situation is established.

5 Synchronization

In this section, still considering producers starting with different initial condi-
tion, we study the mechanisms which can lead to the synchronization of the
trajectories. Obviously, we achieve synchronization when on the diagonal ∆
there exists a transversely stable orbit (in the sense that it attracts points not
belonging to the diagonal itself). Such an attractor can be also coexisting with
non synchronizing trajectories and in such a case it becomes important to know
the initial conditions leading to synchronization.

To better understand this particular situation we propose an example, il-
lustrated in Fig.6, in which the transversely stable orbit is a cycle of period 2.

We start from the parameter constellation of Fig.6a, which is linked to two
symmetric strange attractors. They have been obtained through a standard
route to chaos, starting from the two attracting closed curves appeared after
the Neimark-Sacker bifurcation of the two equilibria Q∗1 and Q∗2. The generic
bounded not synchronized trajectory converges to one of them, as the basins of
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Figure 6: (a) The coexistence of two symmetric strange attractors. Along the di-
agonal a saddle cycle C = {C1, C2} has appeared through a flip bifurcation of the
fixed point P ∗1 . (b) An increase of the adjustment speed causes the appearance
of synchronizing trajectories (green points)

attraction in Fig.6a show. The separatrix of the two basins of attraction is the
stable set of a saddle cycle C = {C1, C2} belonging to diagonal ∆, appeared
through a flip bifurcation of the fixed point P ∗1 . It is worth noting here that
the eigenvalue associated with the cycle C and transverse to the diagonal, s⊥,
is larger than 1 in modulus, while the parallel one, s‖, is smaller than 1 in
modulus. At this parameter constellation, if the producers have different initial
conditions, they cannot synchronize in the long run. A quite different situation is
represented in Fig.6b, obtained at a slightly larger value of the adjustment speed
λ. Indeed the green points in such a figure correspond to initial condition that
give rise to synchronized trajectories. Here, the opportunity of synchronization
is due to a simply local bifurcation of the cycle C of period 2, now attracting.
Indeed, at a value of λ belonging to the range (0.78, 0.79) the eigenvalue s⊥
assumes the value 1, causing a subcritical pitchfork bifurcation. Immediately
after the bifurcation the cycle C becomes stable and two cycles of period two
(not belonging to the diagonal) appear. They are saddles and their stable sets
separate the basin of attraction of the cycle C from those of the two chaotic
attractors. As a consequence, we obtain a situation in which three attractors
coexist and the synchronization of the producers is a possible outcome.

From Fig.6b, we also observe that the two chaotic attractors are very close
to their basin boundary and this fact suggests that a final bifurcation caused
by the contact between the boundary of the basins and the attractors, is going
to occur, causing the disappearance of the two strange attractors. After such
a bifurcation, a generic trajectory having different initial conditions will evolve
towards synchronization.

The example shown above is related to cyclical synchronizing trajectories,
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nevertheless more interesting phenomena in this framework can be detected
when a chaotic attractor As exists on the diagonal ∆.

Indeed, in such a case, As includes infinitely many periodic orbits which
are unstable in the direction along ∆. For any of these cycles the associated
eigenvalues can be obtained. As we have seen in subsection 2.1, due to the
symmetry property, the Jacobian matrix of map T , JT (x, x), evaluated at any
point of the diagonal ∆, is such that J11 = J22 and J12 = J21. Since the product
of matrices with the structure of JT (x, x) has the same structure as well, a k-
cycle {x1, ...xk} embedded into the diagonal has the eigenvalue sk

‖ = Πk
i=1s‖ (xi),

associated with eigenvectors parallel to ∆, and the eigenvalue sk
⊥ = Πk

i=1s⊥ (xi),
associated with eigenvectors normal to ∆, where s‖ (xi) and s⊥ (xi) are the
eigenvalues of JT (xi, xi).

Making use of the eigenvalue sk
⊥ and of the transverse Lyapunov exponent

we can study the transverse stability of the chaotic attractor As. That is, we can
investigate if not synchronized initial conditions give trajectories converging to
it. We recall that, given a chaotic set As ⊂ ∆, the transverse Lyapunov exponent
is defined as

S⊥ = lim
τ→∞

1
τ

τ∑
t=0

ln
∣∣s⊥

(
f t (x0)

)∣∣ (18)

where f t (x0), t ≥ 0, is a generic trajectory embedded in As. If x0 belongs to
a k-cycle, then S⊥ = ln

∣∣sk
⊥

∣∣, and the cycle is transversely stable if S⊥ < 0.
If x0 belongs to a generic aperiodic trajectory embedded inside the chaotic set
As then S⊥ in (18) is the natural transverse Lyapunov exponent Snat

⊥ , where
“natural” indicates that the exponent is computed for a typical trajectory taken
in the chaotic attractor As (see Bischi and Gardini, 2000). Since infinitely many
cycles, all unstable along the diagonal ∆, are embedded inside a chaotic attractor
As a spectrum of transverse Lyapunov exponents can be defined (see Buescu,
1997) by the inequality

Smin
⊥ ≤ ... ≤ Snat

⊥ ≤ ... ≤ Smax
⊥

and the natural transverse Lyapunov exponent expresses a sort of ”weighted
balance” between the transversely repelling and transversely attracting cycles
(see Nagai and Lai, 1997). If all the cycles embedded in As are transversely
stable, that is if Smax

⊥ < 0, then As is asymptotically stable in the Lyapunov
sense, for the two-dimensional map Tλ ; nevertheless it may occur that some
cycles embedded in the chaotic set As become transversely unstable, that is
Smax
⊥ > 0, while Snat

⊥ < 0. In such a case As is not stable in the Lyapunov sense
but it is a stable attractor in the Milnor sense (see Milnor, 1985 and Alexander
et al., 1992).

If a Milnor attractor of the map Tλ exists we obtain that some transversely
repelling trajectories can be embedded into a chaotic set which is attracting only
“on average” (see Bischi et al., 1998, Agliari et al., 2002). Furthermore, such
transversely repelling trajectories can be re-injected towards ∆, so that their
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behavior is characterized by some “burst” far from the diagonal ∆, before the
synchronization (or before converging to a different attractor). This situation
is called on-off intermittency (see Ott and Sommerer, 1994).

nat
S
⊥

λ
Figure 7: The natural transverse Lyapunov exponent as a function of the pa-
rameter λ.

Let us come back to our particular model under study. In order to investi-
gate the existence of a Milnor attractor As, we estimate the natural transverse
Lyapunov exponent Snat

⊥ , represented as a function of the parameter λ in Fig.7,
and observe that it can assume negative values. As an example, we consider
λ = .9581, at which Snat

⊥ = −0.00878 and the one-dimensional map f in (11)
exhibits a the 5-band chaotic intervals As. The invariant set As is the unique
attractor at finite distance of the map T , as shown in Fig.8a, but any trajectory
with initial conditions not belonging to the diagonal ∆ has a long transient
before converging to the 5-band chaotic set. A whole trajectory, starting from
x0 = .78158, y0 = .68486, is shown in Fig.8b. Considering the difference xt −yt

for any t, we can observe that the transient part of the trajectory is character-
ized by several ”bursts” away from ∆ (see Fig.9). Then it exhibits the typical
on-off intermittency phenomenon, so proving that As is a Milnor attractor.

Exploiting the geometrical properties of the critical lines, we may also es-
timate the maximum amplitude of the burst, by obtaining the boundary of a
compact trapping region of the phase space in which the on-off intermittency
phenomena are confined. Indeed such a trapping region is given by a minimal
absorbing area (see Bischi and Gardini, 1998) including the Milnor attractor.

We recall that an absorbing area D is a bounded region of the phase plane
whose boundary is given by a finite number of critical lines segments (i.e, by
segments of LC and their increasing rank forward images), such that T (D) ⊆ D
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Figure 8: (a) The 5-band chaotic attractor As belonging to the diagonal. Its
basins of attraction is the set of white points. (b) A whole trajectory, starting
from the initial condition x0 = .78158, y0 = .68486 and converging to As.

and a neighborhood U of D exists whose points enter D after a finite number
of iterations and then never escape (see, e.g. Mira et al., 1996, Abraham et al.,
1997, Bischi and Gardini, 2000).

As shown in Fig.10a, for the map Tλ at the parameter constellation at
which the 5-band chaotic attractor As exists, an absorbing area can be ob-
tained by considering a convenient segment of LC−1 and its forward images
LCk = T k+1 (LC−1), with k = 0, 1, 2 and LC0 = LC, and it contains the whole
trajectory of Fig.8b.

In order to check that the region D so obtained is the region in which the
on-off intermittency phenomena are confined, we need to verify that it is the
smallest one including the Milnor attractor As. In order to do that we introduce
a parameter mismatch in the speeds of adjustment, breaking the symmetry
of the map. Indeed, while generally the symmetry of a map is a structurally
unstable property (that is, it is lost after an arbitrarily small variation of some
parameter), the existence of a minimal invariant absorbing area is structurally
stable, persisting under a small perturbation of the parameters, even if such
a perturbation breaks the symmetry. Then we introduce a slight difference in
the adjustment speed and consider the map T in (9) with λ1 = 0.9581 and
λ2 = 0.95. As a consequence of the symmetry breaking, we obtain that the
invariance of the diagonal is lost, and the Milnor attractor As as well, but the
map T exhibits a strange attractor whose shape is exactly that of the absorbing
area D, as we can appreciate comparing Fig.10a and Fig.10b. This proves that
D is a minimal absorbing area, since it is completely covered by the attractor
of T , and that the amplitude of the bursts arising in the trajectories of the map
Tλ can be estimated by considering the critical segments LC, LC1 and LC2.
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Figure 9: Bursts away from the diagonal before synchronization occurs. Such a
phenomenon is known as on-off intermittency.

6 Conclusions

In this paper we have studied some global properties of the dynamic behavior
of two firms producing complementary goods. They are assumed to make the
production choices in a strategic context, adaptively adjusting their previous
decisions in the direction of the optimum predicted by the best reply functions.
By making some restrictions on the parameters of the model we obtain that
the evolution of the quantities over time is described by a two-dimensional
noninvertible symmetric map. The symmetry property, that naturally arises
when identical competitors are considered, has allowed us to investigate whether
identical competitors, starting with different initial conditions, synchronize in
the long run. Even if competitors don’t synchronize, we are able to determine
the initial conditions that allow the agent to reach a favorable situation.

In particular, we have pointed out that, due to the noninvertibility of the
model, an initial favorable position in the market of a producer can be lost in
the long run. This result has been achieved by the detection of some global
bifurcations, as contact and homoclinic bifurcations. The first type causes the
transition from connected to disconnected basins. The second type leads changes
in the attractors.

The synchronization of the producers, that is, producers behaving in the
same way in the long run, has been considered as well, by the analysis of two
different situations. In the first one, the attractor As is a cycle belonging to
the diagonal and in the second As is a chaotic set embedded on the invariant
submanifold.

The latter case is the more interesting one, since we have proved that As

is an attractor in Milnor sense, since the trajectories converging to it exhibit
a transient part where several “bursts” exist. In different words, in this case,
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Figure 10: (a) The minimal absorbing area D, bounded by segment of critical
curves LC, LC1 and LC2, in which the on-off intermittency phenomenon occurs.
(b) The introduction of parameter mismatch, that breaks the symmetry, permits
to check the absorbing area properties. Indeed we obtain a strange attractor
having exactly the same shape as D.

the competitor behavior can be summarized as follows. Before definitely con-
verging to As, they exhibit intermittent behaviors between synchronous and
asynchronous regimes (the so-called on-off intermittency). The amplitude of
such oscillations can be estimated, since they are confined inside a minimal
absorbing area that we have obtained making use of some critical segments.
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