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A new Mobility Index for Transition Matrices

Ferretti C.∗, Ganugi P.†

Abstract
This work treats the construction of a mobility index able to grasp the prevail-
ing direction in the dynamics ruled by a given transition matrix. The states of
the matrix are based on an ordered economic variable, such as firm size, income
or ratings, for which the future state can be better or worse than the current one.
We propose here a whole family of directional indices, evaluated as a function
of the transition matrix, and defined so that their absolute value measures the in-
tensity of mobility, and their sign (+/-) represents the prevailing direction towards
improvement/worsening in the dynamics under study.

Introduction
For a wide range of economic phenomena the analysis of mobility plays a funda-
mental role. Observed and estimated transition matrices represent the basic tool
through whom the evolution of statistical units, measured for example in terms of
firm size, incomes, ratings of firms or states, is described. At the same time there
is the need of summarizing the degree of mobility in the analyzed dynamics, by
means of an index evaluated on the transition matrix. Past economic literature has
been enriched by some important contributions which introduce a set of mobil-
ity indices: among others Bartholomew (1973), Shorrocks (1978), Sommers and
Conlinsk (1979), Geweke et al (1986), Parker and Rougier (2001), Alcalde-Unzu
et al (2006). Such indices permit to grasp the overall degree of mobility in the
sample under study, because they provide a value in [0,1] which is near 1 (resp.
0) when the degree of mobility is high (resp. low).
In the case of an ordered economic variable a crucial aspect of the dynamics is
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not only the intensity of mobility but also its prevailing direction. Same degrees
of mobility can in fact assume a far different economic sense in correspondence
of the prevailing direction of the movements; as for example downsizing versus
upsizing of firms, or worsening versus improvement in incomes or ratings. In-
dices produced until now make feasible the measurement of the intensity but miss
that of the prevailing direction. In this paper we propose and analyze a family of
indices which aims to summarize, with the intensity, this particular feature of the
dynamics under study.

The paper is organized as follows: Sect. 1 provides a brief description of the
mobility indices proposed in the past literature, showing that every index is related
to a different concept of mobility; Sect. 2 introduces the family of indices based on
the prevailing direction and shows that each of such indices is a function equipped
with the properties of boundedness, perfect mobility and weak immobility; Sect.
3 contains an analysis of the behavior of the directional index, obtained drawing
20000 transition matrices at random and observing the density distribution of the
index values; lastly Sect. 4 contains our proposals for assigning a role in the
mobility measure to the starting distribution of individuals among the states and
to the magnitude of the jumps from one state to the other.

1 Mobility indices in literature
Let P be the set of transition matrices:

P = {P ∈ Rk×k|pi j ≥ 0,
k

∑
j=1

pi j = 1, ∀ i = 1, . . . ,k}

A mobility index can be defined as a function I : P→R chosen in order to provide
a suitable and synthetic description of the mobility. In literature many authors pro-
pose different choices for the function I (among others we recall Shorrocks (1978),
Sommers and Conlinsk (1979), Bartholomew (1973), Geweke et al (1986), Parker
and Rougier (2001) and Alcalde-Unzu et al (2006)). Here it is a list of some
indices existing in literature:

• Bartholomew’s index Ib(P) = k
k−1 ∑πi(1− pii).

• Trace index Itr(P) = k−trP
k−1 .

• Determinant index Idet(P) = 1−|detP|.

• Second eigenvalue index I2(P) = 1−|λ2|.
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• Eigenvalues index Ie(P) =
k−∑i |λi|

k−1 .

• Index of predictability Ip(P) = k
k−1

(
∑i, j p2

i j−1
)

.

• In Alcalde-Unzu et al (2006) a whole family of indices is introduced, ac-
cording to the following definition:

Iω,α,v(P) =
1
Z ∑

i
ωi

[
∑

j
|pi j−δi j|αv(| j− i|)

]1/α

which, for every choice of ωi, v and α , measures the weighted distance from
the identity matrix (δi j is the Kronoecker’s delta), with Z as a normalizing
constant.

Every choice of I provides the measure of a particular feature of the transition
matrix under study. As an example we consider the two matrices

P =

 0.8 0.1 0.1
0.5 0.5 0
0.5 0.2 0.3

 and Q =

 0.9 0.1 0
0.2 0.6 0.2
0.2 0.5 0.3


Evaluating Itr, Idet , Ip and I2 we obtain the following measures:

• Itr(P) = 0.7 and Itr(Q) = 0.6;

• Idet(P) = 0.91 and Idet(Q) = 0.93;

• Ip(P) = 0.81 and Ip(Q) = 0.96;

• I2(P) = 0.7 and I2(Q) = 0.3.

If we consider Itr and I2, P has an higher degree of mobility than Q. On the other
hand the two indices Idet and Ip support the opposite case. This contradiction can
be solved by remarking that different indices do not measure the same kind of mo-
bility: for example Ip measures, by definition, the higher or lower predictability of
the future state j given the current state i (see Parker and Rougier (2001, p. 64)),
whereas I2, being a function of the second eigenvalue, can be related to the rate of
convergence to the equilibrium distribution.
At the same time it is evident that none of the above indices is able to grasp the
prevailing direction of the mobility. (The same happens in the classical mechanics
where the scalar of a force gives information on its intensity but not on its direc-
tion). Our choice is then to propose an index able to seize the prevailing direction
of mobility and at the same time to measure its intensity.
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2 A new family of mobility indices

2.1 A first formulation of the directional index
Consider now a variable X with ordered states {1, . . . ,k}. Given the matrix P ∈
P and fixed the current state i, there are only two possible directions: moving
towards left (the arrival state is j = 1, . . . , i− 1), or moving towards right (the
arrival state is j = i+1, . . . ,k). Movements towards left correspond to downsizing
of firms or incomes or more generally to a worsening for other economic variables
which can be ordered. On the other hand movements towards right describe an
upsizing or improvement of the economic situation.
Then we introduce a new r.v. St = Xt+1−Xt : St , conditioned to the current state
Xt = i, assumes values s ∈ {1− i, . . . ,k− i}, with probability

P [St = s|Xt = i] = P [Xt+1 = s+ i|Xt = i] = pi,s+i

Consequently the expected value of St |Xt can be written as

E [St |Xt ] =
k−i

∑
s=1−i

spi,s+i =
k

∑
j=1

( j− i)pi j

and it represents the mean distance covered by the individuals starting from i and,
at the same time, the prevailing direction. Indeed, the quantity s = j− i measures
the ”jump” from i to j, and it has negative value if j < i (downsizing) and positive
value if j > i (upsizing). The case j = i is neutral. As a consequence, the expected
value E [St |Xt ] assumes positive/negative sign if the prevailing direction is towards
right/left. Then we can consider the above expected value as an index through
which it becomes possible to summarize intensity and direction of mobility.

2.2 A more refined formulation for measuring the direction
We want now to empower the information content of the index:

• to guarantee the possibility to assign different weights to jumps character-
ized by same magnitude but different starting positions;

• to introduce the possibility to model trough a not linear function the differ-
ent magnitudes of the jumps.

With this aim we will draw on and empower the suggestions of Alcalde-Unzu et al
(2006).
The first aspect has an immediate motivation. Considering as an example the size
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of firms, we observe that the transition from the (k−1)-th to the k-th class, con-
taining the largest firms, is usually not easy as the transition from the first to the
second class. More generally, jumps of the same magnitude might require differ-
ent effort according with the starting state, and then they have different influence
on the whole mobility. Then we introduce the weights ωi to assign variable im-
portance to the starting state.
The second aspect is again related to the effort needed for moving among classes:
introducing in the mobility measure a function v(| j− i|) we assume that the work
required for going, for example, from state i to state i+3 is not necessarily three
times bigger than the effort for going from i to i+1.
On such basis we propose now a family of mobility indices defined as follows:

Iω,v(P) = ∑
i

ωi ∑
j

pi jsign( j− i)v(| j− i|) (1)

where ωi is the weight corresponding to the starting state i, such that ωi > 0 and
∑

k
i=1 ωi = 1, v is a suitable function of the distance |i− j|, and the function sign is

defined as follows:

sign(x) =


−1 if x < 0
+1 if x > 0
0 if x = 0

The main feature of the new index here proposed consists in its capability for
measuring the prevailing direction in the dynamics, because it is, by definition,
equipped with the sign, negative if the prevailing direction is towards left, positive
in the opposite case.

2.3 Properties of Iω,v

In literature many requirements have been introduced in order to obtain a well-
defined index and a suitable description of the mobility (Shorrocks (1978), Geweke
et al (1986)). We consider here the following properties: monotonicity, immobil-
ity, perfect mobility and boundedness, because they represent some basic require-
ments about the nature of the function I : P → R. The following proposition
proves the validity of such properties for the whole family of directional mo-
bility indices. We require a positive a monotonically not decreasing function v
and, without loss of generality, we suppose v(0) = 0. The monotonicity of v is
legitimately imposed to give a heavier weight to the larger jumps. For sake of
shortness, and coherently with the remarks in the previous sections, from now on
we will indicate the term sign( j− i)v(| j− i|) with v( j− i).

Proposition 2.1 1. MONOTONICITY
An index I is said monotone if P ≺ Q implies I(P) < I(Q), where ” ≺ ”
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means that the degree of mobility of P is lower than Q’s. The index Iω,v is
monotone by definition.

Proof: the definition of monotonicity is introduced in Shorrocks (1978, p.
1015) with the aim to give ”a quasi-ordering over the set P”. This defini-
tion is not practically applicable because we can not know a priori if P≺ Q
or viceversa. To solve this drawback we propose a different point of view,
considering the index as a tool to define the order in P . Then, we define
the order P ≺ Q if I(P) < I(Q), and the monotonicity is met by definition.
In this case we define P ≺ Q, in the sense of the prevailing direction, if
Iω,v(P)< Iω,v(Q), for a given choice of ωi and v.

2. BOUNDEDNESS
For every choice of ωi and v, and for every P ∈P we have

m1 ≤ Iω,v(P)≤ m2

where m1 < 0 and m2 > 0 are constants, not depending on P, defined by:

m1 =
k

∑
i=1

ωiv(i−1)

m2 =
k

∑
i=1

ωiv(k− i)

Proof: historically an index I is required to assume values in the set [0,1].
In the case of directional indices, we need to consider a function I assuming
also negative values, because the sign is the primary representation of the
prevailing direction. We can prove that every index in the family defined in
Eq. 1 assumes values in the closed and bounded interval [m1,m2]. Let P−
and P+ be two matrices in P defined as follows:

P− =


1 0 . . . 0
1 0 . . . 0
...

... . . . ...
1 0 . . . 0

 and P+ =


0 0 . . . 1
0 0 . . . 1
...

... . . . ...
0 0 . . . 1

 (2)

then Iω,v(P+) = m2 and Iω,v(P−) = m1. Consider P ∈P such that P 6= P+:
consequently there exists at least one l ∈ {1, . . . ,k} such that the l-th row
of P is (pl1, . . . , plk−1, plk) 6= (0, . . . ,0,1). To prove that I(P) < I(P+) it is
enough to prove that the l-th term ωl ∑

k
j=1 pl jsign( j− l)v(| j− l|) in the sum
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for I(P) is smallest than the corresponding term ωlv(k− l) in the sum for
I(P+). In fact, thanks to the monotonicity of v, we have:

k

∑
j=1

pl jsign( j− l)v(| j− l|) =−
l−1

∑
j=1

pl jv(l− j)+
k

∑
j=l+1

pl jv( j− l)

<
k

∑
j=l+1

pl jv( j− l)≤
k

∑
j=l+1

pl jv(k− l)< v(k− l)
k

∑
j=1

pl j = v(k− l)

Analogously, if P 6= P−:

k

∑
j=1

pl jsign( j− l)v(| j− l|) =−
l−1

∑
j=1

pl jv(l− j)+
k

∑
j=l+1

pl jv( j− l)

>−
l−1

∑
j=1

pl jv(l− j)≥
l−1

∑
j=1

pl jv(l−1)< v(l−1)
k

∑
j=1

pl j = v(l−1)

Consequently −m1 < I(P)<+m2 for every matrix P 6= P+,P−.

3. PERFECT MOBILITY
The index Iω,v is said strongly perfect mobile because it satisfies Iω,v(P) =
m1 if and only P = P− (perfect downsizing) and Iω,v

∗ (P) = m2 if and only
P = P+ (perfect upsizing).

Proof: boundedness and strong perfect mobility have been proved at the
same time.

4. IMMOBILITY
An index I satisfies the (strong) immobility when I(P) = 0 if (and only if) the
degree of mobility of the matrix P is equal to zero. In the case of directional
indices we can prove that:

(a) if ωi =
1
k , for every i, and P is a symmetric matrix, then Iω,v(P) = 0.

(b) for every choice of ω , if P is a matrix such that for every i = 1, . . . ,k
and for every l = i−1, . . . ,k− i it holds pii−l = pii+l , then Iω,v(P) = 0.

Proof: consider a symmetric matrix P∈P , having chosen ωi≡ 1
k , for every

i = 1, . . . ,k. Then the two terms

ωi pi jsign( j− i)v(| j− i|)

and
ω j p jisign(i− j)v(|i− j|)
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cancel out for every i and j, and Iω,v(P) = 0, proving (a).
Analogously, if pii−l = pii+l for every i = 1, . . . ,k and l = i− 1, . . . ,k− i
(which means pii±l = 0 if the correspondent pii∓l is not defined) then the
two terms

ωi pii−lsign(−l)v(l)

and
ωi pii+lsign(+l)v(l)

cancel out and I(P) = 0 again, proving (b).
We note that the two cases described in (a) and (b) are actually related to
the absence of mobility, in the sense of prevailing direction. Indeed, in both
the cases, there is a sort of symmetry which makes positive contributes to
the mobility to be balanced by the negative ones (an explicit example will
be provided in the following section). Nevertheless we remark that (a) and
(b) do not cover the whole set of matrices with null value of the index. In
this sense, only the weak version of immobility is proved.

2.3.1 Normalization of Iω,v

The last proposition proves that the function Iω,v assumes values in the closed and
bounded interval [m1,m2], where m1 < 0 and m2 > 0 and both depend on k, v and
{ωi}i. A further transformation of the index is required, to obtain a function with
values in [−1,+1] which makes easier the comparison among different matrices.
The naive idea consists in calculating the linear transformation I ∈ [m1,m2]→ I′ ∈
[−1,+1] given by the formula I′= 2

m1+m2
I+ m1−m2

m1+m2
. Unfortunately this choice has

a relevant drawback when the interval [m1,m2] is not symmetric respect to 0, that
is when m2 6=−m1. Indeed it happens that matrices with the original index value
Iω,v(M)< 0 result to have positive normalized value I′(M) and viceversa.
To solve such a drawback we propose a different transformation to normalize the
index, according with the following definition:

I′ =

{
− 1

m1
I if I < 0

1
m2

I if I > 0
(3)

From now on we will indicate with Iω,v (or, shortly, with I) the index defined in
Eq. 1, and with I′ its normalized version.

3 The distribution of the mobility
To analyze some mathematical properties and the expected behavior of the direc-
tional index, we perform the following trial: assuming that, given k, transition
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matrices are uniformly distributed in P , we randomly draw 20000 matrices and
we evaluate the corresponding index value. On this basis we obtain the observed
density distribution of I (built up using 100 histograms), which provides some in-
formation on its expected behavior, when evaluated on a specific matrix.
In the following we will consider mainly matrices with 3, 6 and 9 states, since
these three values represent typical numbers of classes used to analyze empirical
datasets (among others see Frydman et al (1985), Fougere and Kamionka (2003),
Geweke et al (1986) and Frydman and Kadam (2004)).
For sake of simplicity we set v( j− i) = sign( j− i)| j− i|. Different choices of v
will be treated in Sect. 4.2.

3.1 The directional index as a mixture
Any index in the family (1) can be split as a sum of k terms, each one describing
the mobility due to individuals starting from state i, for i = 1, . . . ,k. In fact we can
write

Iω,v(P) =
k

∑
i=1

ωiIi(P)

where Ii(P) = ∑
k
j=1 pi jv( j− i). In consequence of that, the index is actually a

mixture of different terms Ii. Then we start the analysis drawing 20000 matrices
and evaluating the term Ii(P) for a fixed i.

Fig. 1 displays the observed distribution of I1, I2 and I3, that is the contribution
to the index value given by individuals starting from the first, second and third
state, for k =3, 6 and 9. To have a deeper insight we consider as an example the
term I1, varying k, and we evaluate skewness and kurtosis, showed in Fig. 2.

In the following we list some evident features of the distributions.

• The distribution’s shape is strongly symmetric and does not vary with i,
whereas it results to be shifted and centered in its mean value 1

k ∑ j v( j− i)
(see Sect. 3.3). The skewness is, as expected, around zero.

• The same distribution is triangular for small k’s, and tends to be closer and
closer to a Normal distribution when k increases. In fact the kurtosis grows
with k and tends to three.

• Every term Ii is a function of P assuming values among its minimum, given
by v(1− i), and its maximum, equal to v(k− i).

• The variance of Ii grows with k, as a consequence of its increasing range
v(k− i)− v(i−1).
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Figure 1: Contribution to the mobility of the first three states, for k = 3,6,9.
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Figure 2: Skewness and kurtosis of I1, w.r.o. k.

The knowledge of the distribution of every Ii is useful to deduce the shape of
the distribution of I. Furthermore, for large k’s; we can say that such distribution
is approximately a mixture of Normal distributions.

3.2 The normalized directional index compared with other mo-
bility indices

We propose here the comparison of the directional index with other indices, in
particular with Itr, I2 and Idet . From now on we will use the normalized index
I′, given by Eq. 3, because it makes easier the comparison with the indices and
different values of k. Fig. 3 displays the observed distribution of I′, again based
on 20000 draws. The weights ωi are equal to 1/k and v( j− i) = sign( j− i)| j− i|
as before.

Figure 3: Density distribution of the normalized index I′, for k =3, 6 and 9, with
ωi ≡ 1

k and v( j− i) = sign( j− i)| j− i|.

We repeat the same experiment for the indices Itr, I2 and Idet (Fig. 41, 5, and
1Note that the trace index is not normalized, then we normalize it by dividing by its maximum
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6). The shape of the resulting distributions reveal a strong asymmetry. The deter-
minant index represents an extreme case because it shows an high concentration
around 1.

Figure 4: Trace index for k = 3, 6 and 9.

Figure 5: Second eigenvalue index for k = 3, 6 and 9.

Figure 6: Determinant index for k = 3, 6 and 9.

value k−1
k .
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The decreasing variance of the normalized index with respect to k can be ex-
plained by the fact that both the variance and the range in the not-normalized
version of the index Iω,v tend to increase with k. This is not the only reason, in
fact we note that Itr, I2 and Idet have the same behavior. The decreasing variance
can be motivated observing that if the number of states increases, individuals have
more chances to move. As a consequence the absolute measures of mobility tend
to assume larger values with higher frequency. This claim is supported by the fact
that the distribution of Itr, I2 and Idet is shifted (and more concentrated) towards 1
when k increases. From the point of view of the directional indices, the (positive)
contribute to the mobility given by individuals moving from i to j, with i < j, is,
with higher probability, balanced by the (negative) contributes due to movements
in the opposite direction. In consequence of that the index assumes with higher
probability values near 0. In this sense the index value should be read considering
also the number of states k, since I′= 0.2, for example, corresponds to a rarer case
for k = 9 than for k = 3.

3.3 The expected value of Iω,v

We provide now a formula for the expected value of the not-normalized index
I(P). By linearity we have E(I(P)) = ∑ωiE(Ii), where Ii is a function only of
the i-th row of P, indicated with (pi1, . . . , pik). Rows of P are random vectors in
the simplex ∆k−1 = {(x1, . . . ,xk) ∈ Rk|xi > 0, ∑xi = 1}. As before we suppose
that vectors are uniformly distributed in ∆k−1, with p.d.f. f (P(i)) ≡ (k−1)!. The
expected value of Ii is

E(Ii) =
∫

∆k−1

f (P(i))I(P(i))dP(i) = (k−1)!∑
j

v( j− i)
∫

∆k−1

pi jdP(i)

Let g j be defined by g j(x1, . . . ,xk) = x j, then
∫

∆k−1
g j(x)dx= 1

k! . In fact it is always
possible to reorder the coordinates for obtaining x j = xk−1 and rewriting ∆k−1 as

∆k−1 = [0,1]× [0,1− x1]× . . .× [0,1−
k−2

∑
j=1

x j]

(it is a k−1-dimensional space in Rk), then:∫
∆k−1

xkdx =
∫ 1

0

(∫ 1−x1

0

(
. . .
∫ 1−∑

k−2
j=1 x j

0
xk−1dxk−1

)
. . .dx2

)
dx1 =

=
1
2

∫ 1

0

∫ 1−x1

0

. . .
∫ 1−∑

k−3
j=1 x j

0

(
1−

k−2

∑
j=1

x j

)2

dxk−2

 . . .dx2

dx1 =
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=
1
2
· 1

3

∫ 1

0

∫ 1−x1

0

. . .
∫ 1−∑

k−4
j=1 x j

0

(
1−

k−3

∑
j=1

x j

)3

dxk−3

 . . .dx2

dx1 =

= . . .=
1
k!

Consequently we have

E(I(P(i))) =
1
k ∑

j
v( j− i)

and
E(I(P)) =

1
k ∑

i
ωi ∑

j
v( j− i)

Note that when ωi are symmetric, that is ω1 = ωk, ω2 = ωk−1 etc..., the the ex-
pected value is equal to zero.

4 The role of {ωi} and v

4.1 The importance of the weights ωi

In many empirical applications of transition matrices and mobility indices, we
do not have information on the weights to give to the i-th state. We consider
now the starting distribution p0, whose element p0(i) is the probability of starting
from i (or the observed percentage of individuals starting from i). In the previous
sections we have decomposed the directional index as a mixture of contributions
due to individuals starting from different states; in the light of that we propose to
assign to p0 a role in the degree of mobility, by setting ωi = p0(i), for every i =
1, . . . ,k. The advantages of this choice are pointed out by the following example:
we consider k = 2, and the transition matrix

P =

[
0 1
1 0

]
According with P, every individual is forced to move from its starting state. Eval-
uating different indices on P we obtain:

• IB(P) is not evaluable, because the stationary distribution π does not exist;

• Idet(P) = I2(P) = Ie(P) = 0;

• Itr(P) = 1.
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Such results are not surprising: Idet , I2(P) and Ie(P) are functions of the eigen-
values, and then they measure the rate of convergence towards the stationary dis-
tribution, equal to 0 since the chain ruled by P does not converge. On the other
hand Itr reaches the maximum value because it describes the tendency to leave the
current state.
None of the mentioned indices depend on the number of individuals starting from
every state. On the contrary, from the point of view of the prevailing direction, we
claim that:

1. if individuals are uniformly distributed among the two states, movements
towards left cancel out with movements towards right, and the whole mo-
bility should be null;

2. if the starting numbers of individuals in the states are not balanced, the
mobility value should be influenced by the fact that a larger number of in-
dividuals moves from left to right than from right to left, and viceversa.

In the previous example, since k = 2, we have p0 = (p0(1),1− p0(1)). To analyze
the influence of p0 on the mobility, we calculate the directional index I′(P) for
every value p0(1) ∈ [0,1]. Fig. 7 displays the variation of the index value respect
to the percentage of individuals in the first state.

Figure 7: Index value I′ varying the weights ωi, with k = 2.

When the sample is equally distributed among the states, positive contributes
to the mobility are perfectly balanced by the negative ones, and the index is equal
to 0 (as required by point 4a of Prop. 2.1). In the extreme case of p0(1) = 1 (or,
equivalently, p0(1) = 0), the individuals can provide only positive contributes to
the mobility, and the index is equal to 1. In this sense, the directional index allows
a deeper insight in the mobility of the sample under study.
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4.2 The role of v

The function v in the index has the role to provide a measure for the covered
distance, given by | j− i|, i, j = 1, . . . ,k. In the previous sections we have used
a linear measure of that distance. It means that jumps from a give state i to the
state i+ 2 has a double weight in the mobility measure with respect to the jump
from i to i+ 1. Such linear measure of the jumps is a suitable choice in many
empirical cases, for example when the classes are equally spaced, such as the
income subdivided in fractiles (Geweke et al (1986)), or when the variable under
study is qualitative, such as the bond ratings (Frydman and Kadam (2004)).
The relevance of the function v become evident with transition matrices based on
not equally spaced classes. This is the case of income’s matrices where the states
are intervals increasing in the length (Champernowne (1953)). In such cases we
might need a mobility measure which includes the fact that moving among farther
states can require, for example, an exponentially increasing effort.
We conclude by showing the influence of the function v on the distribution of
I′, still based on 20000 draws. Fig. 8 displays mean and standard error of I′,
having set v( j− i) = sign( j− i)| j− i|, v( j− i) = sign( j− i)| j− i|1/2, v( j− i) =
sign( j− i)| j− i|2, v( j− i) = sign( j− i)(e| j−i|− 1). Weights are still equal to 1

k .
As expected, the choice of v has not a relevant influence on the mean, which,
according with Sect. 3.3, is equal to zero. On the other hand we note that the
standard error is higher, particularly if we choose an exponential v.
To conclude we note that we can not propose an objective method for choosing
v, as in the case of the weights ω , because such choice is strictly related to the
specific dynamics and to the kind of variable we are working with.

Figure 8: Mean and standard error of I′ w.r.o. k, for squared, linear, quadratic and
exponential v.
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Conclusions
In this work we face the problem of defining a mobility index, which is a function
of the transition matrix, able to indicate both the intensity of the mobility in the
dynamics under study and its prevailing direction. This kind of index represents
a useful tool when we treat ordered economic variables such as firms size or in-
come, which can be affected by downsizing or worsening.
We propose a family of new indices which are able, besides providing informa-
tion on the prevailing direction, to guarantee the possibility of assigning a different
role to individuals starting from different states, and increasing weights to larger
jumps. All the indices in such family are equipped with the properties of bounded-
ness, strong perfect mobility and weak immobility, and they can be used to reveal
an order among transition matrices in the set P .
Further researches will regard an application to data derived from administrative
archives, with an analysis of the properties of the sampling distribution of the
directional indices.

Acknowledgements
The authors wish to thank E. Fabrizi for his constructive suggestions.

References
Alcalde-Unzu J, Ezcurra R, Pascual P (2006) Mobility as a movement: A measur-

ing proposal based on transition matrices. Econ Bull 4(22):1–12

Bartholomew D (1973) Stochastic Models for Social Processes, 2nd edn. London,
Wiley

Champernowne DG (1953) A Model of Income Distribution. The Economic Jour-
nal 63(250):318–351

Fougere D, Kamionka T (2003) Bayesian Inference for the Mover-Stayer Model
of Continuous Time. J Appl Econ 18:697–723

Frydman H, Kadam A (2004) Estimation in the continuous time Mover Stayer
model with an application to bond rating migration. Appl Stoch Models in Busi-
ness and Industry 20:155–170

Frydman H, Kallberg J, Kao D (1985) Testing the adequacy of markov chain
and mover-stayer models as representation of credit behavior. Oper Res
33(6):1203–1214

17



Geweke J, Robert C, Gary A (1986) Mobility Indices in Continuous Time Markov
Chains. Econometrica 54(6):1407–1423

Parker S, Rougier J (2001) Measuring Social Mobility as Unpredictability. Eco-
nomica 68:63–76

Shorrocks A (1978) The measurement of Mobility. Econometrica 46(5):1013–
1024

Sommers P, Conlinsk J (1979) Eigenvalue Immobility Measure for Markov
Chains. J of Mathematical Society 6:253–276

18


	COPERTINAFerrettiGanugi83
	WP_Ferretti_Ganugi83

