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This paper considers the two-way error components model (ECM) estimation of seemingly
unrelated regressions (SUR) on unbalanced panel by generalized least squares (GLS). As
suggested by Biern (2004) for the one-way case, in order to use the standard results for the
balanced case the individuals are arranged in groups according to the number of times they
are observed. Thus, the GLS estimator can be interpreted as a matrix weighted average of
the group specific GLS estimators with weights equal to the inverse of their respective

covariance matrices.
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1. INTRODUCTION

The error components model (ECM) is the most frequently used approach to estimate
models on panel data. The phenomenon of missing observations—not all cross-sectional
units are observed during all time periods—is a problem that often occurs in practice: the
unbalanced panel is the rule rather than the exception when the data come from large-
scale surveys. Bigrn (1981) and Baltagi (1985) discuss the single-equation ECM with
missing observations, but they focus on the one-way case, where only the individual-
specific effects are considered. Wansbeek and Kapteyn (1989) and Davis (2002) extend
this estimation method to the two-way case, where both the individual-specific and the
time-specific effects are taken into account, as well as to the multi-way case, where a

third specific effect can be considered, for example the location effects'.

* This research has been carried out as part of the WEMAC (World Econometric Modelling of Arable
Crops) research project (Scientific coordinator: Catherine Benjamin), funded by the European Commission
under the 6™ Framework programme. The FADN data have been provided in the context of that project.

* Dipartimento di Scienze Economiche e Sociali, Universitd Cattolica del Sacro Cuore, via Emilia
Parmense 84, 29122 Piacenza, Italy (silvia.platoni@unicatt.it).

! Among the recent empirical applications, Boumahdi, Chaaban and Thomas (2004) estimate the Lebanon
import demand elasticities using a three-way ECM—nested and non-nested—in which product, country and
time effects are introduced.
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All these papers apply the ECM to the single-equation case. Baltagi (1980) and Magnus
(1982) extend the estimation procedure of the single-equation model for balanced panels to
the case of seemingly unrelated regressions (SUR), while Biern (2004) proposes a
parsimonious technique to estimate one-way SUR systems on unbalanced panel data.

The purpose of this paper is to extend the Generalized Least Squares (GLS) estimation
of the SUR system suggested by Biern (2004) to the case of the two-way ECM for
unbalanced panels, considering not only the individual-specific effect, but also the time-
specific effect. This extension is rather important, since the estimation of the time-specific
effects is likely to play an important role in many practical situations, especially when the
time period is sufficiently long. For example a parametric trend is often used to
parameterize the effect (on the response variable) either of technical improvements in
case of panels of firms or of the change in tastes over time in case of panels of
households.

In order to use the standard results for the balanced case, the key element of the Biorn
(2004)’s technique is arranging the data such that individuals are grouped according to
the number of times they are observed. Extending this approach to the two-way SUR
allows to estimate systems of equations also on large unbalanced panel databases with a
relevant time dimension.

The structure of the paper is the following: in section 2 we introduce the logic and the
notation of the single-equation case, while in section 3 we develop the corresponding

SUR system. Finally, in section 4 some simulation results are provided for illustrative

purpose.

2. SINGLE-EQUATION TWO-WAY ECM FOR UNBALANCED PANELS

We analyze an unbalanced panel characterized by a total of n observations, with N

individuals (indexed i=1,...,N ) observed over T periods (indexed ¢=1,...,7"). Let T,

denote the number of times the individual i is observed and N, the number of individuals
observed in period . Hence ZIJ} = th, =n.

In the following we consider the regression model”

yit=X;t B+/ui+vt+uit’ (1)

Ixk kx1

? Throughout the paper, all vectors and matrices are in boldface.
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where X, isa 1xk vector of explanatory variables and B a & x1 vector of parameters, s,
is the individual-specific effect, v, the time-specific effect and u, the remainder error

term. Since the panel is unbalanced, the standard projection and transformation results no
longer hold. Thus, Wansbeek and Kapteyn (1989) propose to order the data on the N

individuals in T consecutive sets, one for each period. Let D, be the N,xN matrix
obtained from the N xN identity matrix I, by omitting the rows corresponding to

individuals not observed in period . Using the matrices A, =(Df,..., D} )" and
nxN NxN; NxNp

A, =blockdiag[ D, 1, ]=blockdiag[t, ], where 1, and 1, are vectors of ones of
nxT N, xN Nx1 N,x1

dimension N and N, respectively, we can define the diagonal matrices A, =A’ A =~ and

NN Nxn nxN

A=A, A, , as well as the matrix of zeros and ones A, =A) A , indicating the absence
T<T Txn nxT TxN Txn pxN

or presence of an individual in a certain time period. Moreover, we can consider the

matrix A =(A

A »A,), which gives the dummy-variable structure for the unbalanced

nxN nxT'

panel model (see Baltagi, 2005). Hence, using matrix notation, we can write

y=XB+A, p+A v+u=XB+eg, )

nxl nxk o axN Nl axT Tx1  nx1 nxk pyq  nxl

where X is a nxk matrix of explanatory variables and ¢, = &, +v, +u, the composite

error term.

In the fixed effects (FE) case, where the error components x; and v, are parameters to

be estimated, we assume the following (see Appendix A for details).

e (FE.1) Strict exogeneity: the set of explanatory variables in each time period x,, is
Nk

uncorrelated with the idiosyncratic error u, and the set of explanatory variables for

each individual x,,,, is also uncorrelated with the same idiosyncratic error u,, .
Tk

e (FE.2) Consistency: the within estimator is asymptotically well behaved, in the sense
that the “adjusted” outer product matrix has the appropriate rank.
e (FE.3) Homoscedasticity and no serial correlation: the conditional variance-

covariance matrix of the idiosyncratic error terms u, coincides with the

it
unconditional one, and it is characterized by constant variances and zero covariances.

The assumptions FE.1 and FE.3 guarantee the efficiency of the within estimator.
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In the random effect (RE) case, where all error components are random variables, we
assume the following (see Appendix B for details).
e (RE.l.a) Strict exogeneity: same definition as assumption FE.1.

e (RE.L.b) and (RE.1.c) Orthogonality conditions: both x and v, are orthogonal to the

corresponding sets of explanatory variables x,,,, and X,,;, .
Tk N,k

e (RE.2) Consistency: the RE GLS estimator is consistent, in the sense that the
weighted outer product matrix has the appropriate rank.
e (RE.3a), (RE.3b) and (RE.3c) Homoscedasticity and no serial correlation: the

conditional variance-covariance matrix of the idiosyncratic error terms u, is

characterized by constant variances and zero covariances; in addition, the variance of

both the individual specific effects g and the time-specific effects v, is constant.

3. Two-WAY SUR SYSTEMS FOR UNBALANCED PANELS

Bigrn (2004) estimates a one-way SUR system of equations on unbalanced panel data.
Thus, he considers only the individual-specific effect, while in this paper we extend his

analysis considering also the time-specific effect.

3.1. MODEL AND NOTATION

Grouping individuals according to the number of times they are observed, as suggested by
Bigrn (2004) for the one-way case, is essential also in our two-way SUR systems, that
would not be manageable adopting traditional estimation techniques. This can be done as

follows.

Let N, denote the number of individuals observed exactly in p periods, with

p=1...,T. Hence zpﬁp =N and zp(ﬁpp)=n. We assume that the 7 groups of

individuals are ordered such that the N, individuals observed once come first, the N>
individuals observed twice come second, etc. Hence with C, :Z:zlﬁh being the
cumulated number of individuals observed at most p times, the index sets of the
individuals observed exactly p times can be written as /, ={C,  +1,...,C,}. Note that
I, may be considered as a pure cross section and /,, with p>2, as a pseudo-balanced

panel with p observations for each individual. This structure allows to use a number of

results derived for the two-way SUR in the balanced case.
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If &, is the number of regressors for equation m , the total number of regressors for
the system is K = ZZ:]km . Stacking the M equations, indexed by m =1,...,M , for the

observation (i,t) we have

y. =X, B WtV ot =X, B+e,, (3)

Mx1  MxK Kx1 Mxl Mxl  Mxl  MxKKx1  Mx]

where X, =diag[x,,....,X,,] and p=(p],....p,,) " . If we do not have cross-equation
MxK Ixk, Ixky, Ixk, Ixky,

restrictions, we can assume E(u,, | X, X5>X,) =0 and then

mit

E(,. | X,>X5,05- X4, ) =B, |X,.,)=X,.B,. On the contrary, if we have cross-

equation restrictions we can only assume E(u,|x,)=0 where u, =(u,,,...,u,,) and
Mx1

. ! !
X, = (X5 X505 Xy ) - With g = (g0, 2,) and v, =(v,,,...,v,,) we assume

IxK iy o
2 . .
= o i=i
E( 4, 15 o
( J ) = 0 i # l",
2 '
E(v,,.v, Vo “
( n ) = 0 t#t,
— 2 . .
E (umit’uﬁ'ﬂ) h O-”m, l - l and t =¢
. = 0 i#1’' and/ort¢t!’
and then W, =ty s dy) V, =VeesVor) ind
" Txl1

f— 1 .
U, = (U5 Uynse s Uz sUprse-sly,yy ) are random  vectors with zero means and

nxl

covariance matrix

um Hmj 0
El|v, (u’j v u ) =1 0 o, 0 (5)
u, 0 0 o

* As Biorn (2004) suggests, if the coefficient vectors are not disjointed across equations, we can redefine

B as the complete coefficient vector (without duplication) and the regression matrix as
Kx1

_ ’ ’ ’ ’ th
X, =(xy,,X5,,...X,,) where the k" element of x ,
MxK kyx1l kyx1 ks 1xk,

m"™ equation which corresponds to the k" coefficient in B or (ii) is zero if the k™ coefficient does not

Kx1

(i) contains the observation on the variable in the

occur in the m™ equation.
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b _— ! ’ !/ _ ! ! !
With Bo=yseslyw) s V =(Vires Vo) and

NM x1 TM x1

—_ ! ! ! ! ! ! :
u = (U, U, U, W, W ) since we have p ~| 0,2 |, v ~|0,X | and
nMx1 / NMx1 MM TM x1 MxM

mj

u ~ (0, )y ) with X, :[0'2 ], ) =|:O'3 } and X :[of }, we can assume that the

nM x1 MxM Hmj mj

expected values of p,,, , v,,, and u, are zero and their covariance matrices are equal

Mx1 Mx1 Mx1
to £,, X, and X .Itfollows that E(g, €/,)=0, X, 6+, X, +0,0, L, with J, =1
MxM  MxM MxM M1 IxM MxM MxM MxM

for i=7"and J, =0 for i #i', 5, =1 for t=¢" and 6, =0 for t #¢'.

!

Let us consider y,,, =(¥i;,..»¥},)' X, = (Xj;,.... X)) and &, =(g},...,8,) for

pMx1 M M pmxk  KxM KxM pMx1 M IxM
iel, (andthen for i=1,...,C,C +1,...,C,,...,C. +1,...,C, with C;, =N).

We define the matrix A, indicating in which period ¢ the individual i of the group
PMXTM

p is observed. For example, with 7 =4, if the individual i is observed in the periods

t =2 and t =4 (the individual i belongs to group p =2 ) we have
o I, O 0

MxM MxM MxM  MxM
Ai(Z) = )
0o 0 o0 I,

2Mx4M
MxM MxM MxM MxM

where I, is an identity matrix of dimension M . This is a convenient way of structuring

the data in order to obtain vectors of time-specific errors of appropriate dimension. In

fact, considering v , for the individual i € / we can define the vector v, = A,
TM x1 P Il\/(lpi Ml(]’ijzxf TM x1
pMx pM x

and write the model

Yio) = Xin) KE1+(‘p® M }F"i(pﬁ“i(p) =X, B+e,), (6)

pMx1 PM <K pxl Mx pMx1  pMx1 pPM <K x pMx1

where 1, is a vector of ones of dimension p. The variance-covariance matrix of the

composite error term Ep) is given by

Q = E(e,.(,,) e,.’(,,)j = L®(Z,+X H+J,Q%, =

pMxpM pMx1 1xpM pxp MM P<p MxM
= E, ®(L,+X,)+J,®(X,+X,)+J, ®L, = (7)
= E,®(L,+X)+J,®(Z,+%,)+J,®pE, =
= E,®(Z,+I }+J,®(Z, +X, +pL,),

Pxp MxM Pxp MxM
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where 1, is an identity matrix of dimension p, J, a matrix of ones of dimension p,

Ep:Ip—Jp and J =

» 7” Since E, and J, are symmetric, idempotent and have

orthogonal columns, the inverse of the variance-covariance matrix is

Q' =E,®(Z,+%,) +J,®(L, +L,+pZ,) . (8)
P p u v 4 u v 7

pPMxpM pxp MxM PXp MxM

3.2. GLS ESTIMATION

If we assume that X , X and X, are known, we can write the GLS estimator for B as

the problem of minimizing

T
228, @) g, =

p=1 ;ef,, IxpM PM*pM ppx] , (9)
2 -1 ' T -1
=X, [EP ®(L, +X,) ]si(p) D8, [JP ®(Z,+X, +pE,) }si(p).
p=1 iEIp IxpM PM xpM pMx1 p=l fE]p Ix pM PMxpM pPMx1

If we apply GLS on the observations for the individuals observed p times we obtain

m{zx, o X(} [zw oy )}
Kx1

iel prM PMxpM pM =K iel prM FMXPM prl

= XX, [E, ©(2, +5,) " X, + XX, [EP ®(%, +X, +pE, )‘l}xi(p) x (10)

iel, KxpM PpMxpM pMxK i€, KxpM pMxpM pPMxK

x| 2. X, [Ep ®(%,+L,) } Yio + 2 X0 [jp ®(%,+X,+pE,) } Yin |

iel, KxpM pMxpM pM 1 i€l, KxpM PMxpM pMx1

while the full GLS estimator is

-1
T
GLS ' - '
Ty, X 22X, @y,
KX p=liel, prM pWXPM MxK p=liel, prM pMxpM M><1

-1

- ZT:Zx;(p)[Ep@)( =) X +ZZX [ ®(%, +X, +pE,) ]xi(p) x (1)

p=liel, KxpM PMxpM prK p=liel, prM PpMxpM pMxK
T —
' ’
(X, (B0, +2) v, + 23X, [T, 0(2, 02,4 p2,) ]y, |
p=liel, KxpM PMxpM prl p=liel, pr’\/l pMxpM pMx1

3.3. ESTIMATION OF THE COVARIANCE MATRICES

The next step is to find an appropriate technique to estimate the three error component

variance-covariance matrices of the two-way SUR system X , X  and X . This can

v
MxM  MxM MxM

be achieved adopting either the within-between procedure suggested by Biern (2004) for
the one-way SUR or the Quadratic Unbiased Estimator (QUE) procedure suggested by
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Wansbeek and Kapteyn (1989) for the single equation case. In the following sub-sections

we modify both procedures making them suitable for the two-way SUR system.

3.3.2. THE QUE PROCEDURE

The QUE procedure considers the FE residuals e, =y,—X, B, for the equation

nxl1 nxl nxk, k,x1

m=1,...,M . If we assume that the matrix X  contains a vector of ones, we have to

nka
define the centered residuals f, =E -e, =e, —e, , where E =1 —J , with I being an
nx1 nxn  nx1 n><l
identity matrix of dimension n, J, =2 and J, a matrix of ones of dimension n (see
Wansbeek and Kapteyn, 1989). Thus, we can obtain the adapted QUE’s for au . Uz,,,,.
and o, by equating
q,, =1 Q)
1><n nxn "Xl
qN, _f’A A Av fm’ (12)

1><,, n><T T><T Txn nx1

' ’
a, =1/ A, AVALT,
1><n n><N NXN Nxn nx1

where Q[A] is the projection matrix onto the null-space of nx(ﬁm (see Appendix A), to

nxn

their expected values (see Appendix C)

E(qnm/):(n—T—N+1+kmj—km—kj)-ofm/,
E(qNW_ ) =(T+kNW_ —ky, —1)~0'5W +(1-4,)-0% +(n—/1v)-afm/, (13)
E(qTW) (N+kr,,y,_kom/_1)'0,42@*(” l)aﬂm/ﬁt(N A,)-o D

where we have defined kmjEtr((X;nQ[A]Xm)*lX;nQ[A]Xj(X’jQ[A]Xj)”X_’/.Q[A]Xm),

N 2

’ 1wt ’ ’ UAMAL, i\le}
kN'ﬂJ Etr(()(m()[A]Xm) 1XmQ[A]Xj(XjQ X, ) X A A lAva)a A = Ay — z

y2 n n s

14 n

ey, =0((X,QpX,) " X, QX (X QX)) XA AALX, ), A, =t = Z,uvf and

A X (X QX )™ X0, QX (X)Qp X)) X,
0 = .

mj n

The difference with respect to the single equation case is that the centered residuals

f,and f, may refer to different equations. Since k,, =k, ky =k, . k =k; and

mj 2

: 2 2 2 2 2 2
k, =k, obviouslywehave o, =0, ,0, =0, and o, =0
Jjm mj jm

Uy 2 Hijm Hij Vim Vmj
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3.3.2. THE WITHIN-BETWEEN PROCEDURE

As the QUE procedure, the within-between procedure considers the FE residuals

e, =y,— X, B"" for the individual i in period 7. As before, if we assume that the
Mx1 MxI MxK Kxl

matrix X, always contains M vectors of ones (a vector of ones for each equation m ),
MxK

we have to define the consistent centered residuals f, =e,— e , where
Mx1
Mx1 Mx1

Yo PN
[ i
E — il b=l M 121 Lajet Emit 4
n n ‘

m

Therefore the M xM matrices of within individuals,

between individuals and between times® (co)variations in the f’s of the different

equations are the following:

B =37 (T.-T)(T.-T). (14)
MxM il Mxl bt
B =2, (L, -T)(L.-T).
MxM t=1 Mx1 IxM
where for each equation m we have f = z;f"’", 1 = Z%j;"” and

i t

or between times

DD NN TR W D D I D SR AT )
f;n_ ln1 - 1n f;n_ 1n1 - 1 . The

n

(co)variation Bf,. is needed to adapt the Biorn’s (2004) procedure to the two-way ECM. In

Appendix D equation A(21) allows us to conclude that

- W,
X = ,
~ B, -(N-1)-X
f u
%, = — (15)
MxM n— T

are consistent and unbiased estimators of £, X and X, .
MxM  MxM MxM

* To obtain consistent estimates of the variance-covariance matrices, we need consistent residuals (Biern,
2004). In the two-way case, since the QUE procedure is based on the FE residuals, for coherence we use the
same FE residuals, and then the corresponding M x1 consistent centered residuals f,, also in the within-
between procedure.

> Kang (1985) uses the between time periods estimator to build the equivalent tests for the two-way error
components model.
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4. SIMULATION RESULTS

In order to analyze the performances of the proposed techniques, in this section we
develop a simple simulation on a three equations system (M =3). We assume an
unbalanced panel with a large number of individuals ( N = 4000 ) extended over a rather
long time period (7 =8). This should mimic a real world situation of a large unbalanced
panel for which the two-way SUR system is the appropriate model. The simulated model

1S

nw =By +Bix +B,x +é,
Y, =Py thyx APy x, +B5x, &,
s =Py By X, X+,

where B, =(15,6,—3)', B, =(10,—3,8,—2)’ and B, =(20,—2,5)’, which imply the cross
equations restrictions B, =/, and f,,=/f,,. We consider the following variance-

covariance matrices®

968.5 882 21.5 §7.52 1581 -4.65 8628 17.39 -5.94
X, = 7252 550 |, &, = 79.97 589 | and X = 7798 753 |.
513.4 53.22 56.46

Finally, the scalars x,, have been generated according to the scheme introduced by

Nerlove (1971) and used, among others, by Baltagi (1981) and Wansbeek and Kapteyn
(1989)

X, =0.1-+05-x, , +@

i3
with @,, following the uniform distribution [ .5] and x,, =5+10- @, .

In order to construct the unbalanced panel, we have adopted the procedure currently
used for rotating panels, in which we have approximately the same number of individuals
every year: a fixed percentage of individuals (20% in our case’) is replaced each year, but

they can re-enter the sample in the following years. Thus, for each group p we have the
following number of individuals: Ny =962, N> =769, N3 =615, Ny =492, Ns =394,
No =315, N7 =252 and Ns =201 (and then n =13545).

The results of a 150-run simulation are shown in table 1.

The covariance matrices estimated through the one-way within-between procedure are

® The three variance-covariance matrices have been randomly generated using the sprandsym command in
MatLab, that produces positive-definite symmetric matrices with all non-zero entries.

7 Also in Wansbeek and Kapteyn (1989) each period 20% of the households in the panels is removed
randomly.
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Zﬂz 713.7265 -55.4356 157.2077  13.3276

957.0824 -87.8098  22.7150 173.2044  32.7289 -10.4171
and X = ,
506.7917 110.9417

while those estimated through the two-way QUE procedure are

Yy =

u 723.5082  -54.7695 79.4254  5.9641 77.9915  7.5897

967.8692 -85.9968  22.2379 86.9819 15.8670 -5.0449 86.3215 17.3926 -5.8825
, X, = and X =
513.6266 54.0729 56.5285

and those estimated through the two-way within-between procedure are

Y = =

u 731.2457 -54.2465

518.9794

79.6144  5.9480 97.7202  9.2659

976.2906 -84.4980  21.8235
9ZV
54.2076 69.6443

87.2374 15.8408 -5.0379 108.0565 21.4853 -7.3919
and X = .

In table 1 we present the means and the variances of the estimated parameters, the
average standard errors and the average variances of the error term components.

While to estimate all the single-equation version of the model (FE one-way, RE GLS
one-way, RE ML one-way and RE ML two-way) we used the commands built in the
econometric software TSP version 5.0, we computed the FE two-way, the RE GLS two-
way, the SUR GLS one-way and the two versions of the SUR GLS two-way—adopting
either the QUE procedure or the within-between procedure—through a specific routine
written in 7SP version 5.0.

The advantages of adopting a two-way specification for analyzing our unbalanced
panel (through either single-equations or a system of equations) are clear when we
analyze the estimated variance-covariance matrices. For example, all the one-way

techniques produce biased estimates for the variances of the idiosyncratic error term

o, : when the time dimension in the data is relevant, two-way techniques produce better

mm

estimates since they allow to disentangle the time component from the remainder error
term.

This is true also comparing the SUR GLS one-way with both versions of the SUR GLS
two-way, even though, between the two procedures we have proposed in the previous
sections, the QUE turns out to be more precise than the within-between.

In terms of parameter estimates, it is clear the system of equation techniques perform
better than the single equation ones, although the gain in efficiency of the SUR GLS two-
way may become more relevant for a panel with a longer time dimension.

In general, we can conclude that all the estimates obtained are consistent, but the SUR
GLS two-way procedures guarantee a gain in efficiency. Moreover the parameters and the
variances estimated with the SUR GLS two-way adopting the QUE procedure tend to be

closer to the true values.
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APPENDIX A: FIXED EFFECTS ESTIMATION ASSUMPTIONS

Adapting the formulation proposed by Wooldridge (2002) for the one-way case to the

two-way case, the assumptions related to the FE estimation are the following.

FE.1  Strict exogeneity: the set of explanatory variables in each time period x,,, is
Nk

uncorrelated with the idiosyncratic error u, and the set of explanatory variables

for each individual x,,, is also uncorrelated with the same idiosyncratic error
Tk

This means that

E(”iz 13§k7/’li’vt):E Uy 1 Xy > HisVy =E|u, Xiiny > M5V =0,
IxN,k IxTik
where 13501E(x“,...,xlTl,le,...,XZTz,...,xNZV) or 1X)fmE(x“,...,XNII,XU,...,xsz,...,XNTT),
X,y = (X Xg00 Xy ) and X, = (X, X550, X2 )
1xkN, IxKT;

Therefore we have strict exogeneity of {x,:i=L...,N;t=L1...,T} or
Ixk

{x,:t=1,...,T;i=1,...,N,} conditional on the unobserved effects.
Ixk

FE.2  Consistency: the within estimator is asymptotically well behaved, in the sense
that the “adjusted” outer product matrix has the appropriate rank.
The idea of estimating B under assumption FE.1 is to transform the equation to
kx1

eliminate the unobserved effects 4 and v,. When we have an unbalanced panel, the
simple projection and transformation results no longer hold. Therefore, following
Wansbeek and Kapteyn (1989), we order the data on the N individuals in 7' consecutive
sets and we define the following matrices:

A 1 At =1 A _ _
A:AV—A#ANATN—(In—A#AN A#j-AV_ L—P, A, =Q, A,

nxT nxI pxN NxN NxT nxn  pxN NxN Nxn nxT nxT
nxn nxn

nxT nxn

Q=A—-Ap Az_\/] Ary :AL'[AV_A;[ Az_\/] A;"NJZA:/' A =A, Q[AI]AV'

=T TxT  TxN NxN NxT Txn \ nxT  pxN NxN NxT Txn nxT Txn oy nxT

Hence the projection matrix onto the null-space of A is:
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=T -A AJA |-AQ A'= - A QA .
%)[ﬁ] (nxnn nxxNX]yval;zJ nxTy% Txn Q[Ay] Q[Ay} nxl;-yg' TX‘;,Q[A#]

Given the previous within transformation, we can perform the regression

Quy =Qu X B+Q,u. (A1)

nxn nxn nxn

Finally, in order to ensure that the FE estimator is well behaved asymptotically, we

need the following standard rank condition:

kxn
nxn

rank (X’Q[A] Xk] =k. (A.2)

If x, contains an element that does not vary over time for any i, then the
Ixk

corresponding element in X, from the matrix 5(k = Q[ Al Xk is identically zero for all ¢ and
Ixk nx nx

nxn

for any draw from the cross section. Since X contains a column of zeros, assumption

nxk
FE.2 cannot be true. Thus, assumption FE.2 shows explicitly why time-constant variables

are not allowed in FE.

FE.3 Homoscedasticity and no serial correlation: the conditional variance-

covariance matrix of the idiosyncratic error terms u, coincides with the

unconditional one, and it is characterized by constant variances and zero

covariances

E(u u’

nx1 Ixn

2
X :ﬂth):O'u I .

X
Ixnk nxn

The FE estimator can be expressed as

-1
v -(xoux] [xeuy ) (A

kx1 nxn nxl

Without further assumptions, the FE estimator is not necessarily the most efficient

estimator based on assumption FE.1. Since E(u|x,z,v,)=0 by assumption FE.1,

assumption FE.3 is the same as saying Var(ulx,u,v,)=oc.1, if assumption FE.1 also

holds. It is useful to think of assumption FE.3 as having two parts. The first is that

E(uu'|x, z,v,) = E(uu’), which is standard in system estimation contexts. The second is

1

that the unconditional variance matrix E(uu’) has the special form o’I,. This implies
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that the idiosyncratic errors u, have a constant variance across i and across ¢
E(u.)=o0_ and are serially uncorrelated E(uu,)=0 forall i=j,t#s,all i#j,t=s

andall i+ j,t#s.

APPENDIX B: RANDOM EFFECTS ESTIMATION ASSUMPTIONS

Adapting again the formulation proposed by Wooldridge (2002) to the two-way case, the

assumptions related to the RE estimation are the following.

RE.l.a Strict exogeneity: the set of explanatory variables in each time period x,,, is
Nk

uncorrelated with the idiosyncratic error u, and the set of explanatory variables

for each individual x,,, is also uncorrelated with the same idiosyncratic error
Tk

This means that

it

E(u

1X’:ui’Vz):E u; Xt{T}’:Ui’Vt =E u;
xnk

1N,k

Xinp His Ve | = 0,

IxT:k

where x , x,,, and x,,,, have been already defined in Appendix A.
Ixkn
1xkN, IXAT,

RE.1.b Orthogonality between p and each Xy

IxTik

Xiwy | = E(4;)=0.

IxT;k

E| y

RE.l.c Orthogonality between v, and each x,,,, E(xlt,xzt,...,xw):

IxkN,
E (v[

While assumption RE.1.a is identical to assumption FE.1, the key difference with

IxN,k

xt{T}JE(VI)O.

respect to the FE case is that we assume also RE.1.b and RE.1.c. In other words, while for

FE analysis E(ﬂ,-|x,~{N}) is allowed to be any function of x,,, and E(v[x,,) any
IxTk 1xkN,

i
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function of x,;,, for the RE analysis this is not allowed. In fact assumptions RE.1.b and

RE.1.c allow to derive the traditional asymptotic variance for the RE estimator.

RE.2  Consistency: the RE GLS estimator is consistent, in the sense that the weighted

outer product matrix has the appropriate rank.

A standard RE analysis adds assumptions on the idiosyncratic errors that give Q a

nxn

special form. The first assumption is that the idiosyncratic errors u, have a constant

unconditional variance across i and across ¢

E(u;)=0. (A.4)

it
The second assumption is that the idiosyncratic errors are serially uncorrelated

E(uu,)=0 (alli=j,t=sandalli= j,t=sandall i  j,t 5). (A.5)

it js

Under these two assumptions (special to RE), we can derive the variances and

covariances of the elements of & . Under assumption RE.l.a we have E(zu,)=0 and

nxl1

E(vu,)=0 and given E(xv,)=0 we have
E(g.z):o'j+0'f+0',f.

it

Also for ¢ # 5 we have

E(gitgis) = E|:(:ui TV, +uit)(/ui TV, FU ):I = 6;21’
and for i # j we have

E(gl.tgﬂ) = E[(,ui +v, +ul.,)(,uj +v, +ujt)} =0

In fact the covariances are characterized by

_ 2 2 2 S
Cov(git,gjs) =o,+t0,+0, fori=j,t=s,
2 . .
=0, fori=j,t#s,
=0 fori# j,t=s,
=0 fori+ j,t#s.

If we order the data on the N individuals in 7" consecutive sets (see Wansbeek and

Kapteyn 1989 and Baltagi 2005), under assumption RE.1.a, (A.4) and (A.5), Q takes the

special form

Q=E(ee|=c’T +52A, A+’ A A, (A.6)
nxn nx1 Ixn won HoHE R v v
nxn nxN Nxn nxT Txn
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Therefore, the appropriate rank of the weighted outer matrix is

kxn nxn nxk

rmm(xxr*x):k; (A7)

For efficiency of feasible GLS, we assume that the variance matrix of € conditional

on X 1is constant
Ixnk

2
E git it

Ixk

— 2\ _ 2 2 2
X, j_E(gi,)—a#vLav +0,

_ _ 2
E gltgzs Xi{N} - E(gltgzs) - O-y

IxTk
i E(sz—:'

nx11xn

éJzE(sg) (A.8)

nxl 1xn

E| &,,[%,m :E(gg ):02

it™ jt it™ jt 14
IxN,k

k) E(g”gjs) 0

it™ js

E(gg

Assumptions (A.4), (A.5) and (A.8) are implied by the third RE assumption.

RE.3 Homoscedasticity and no serial correlation: the conditional variance-

covariance matrix of the idiosyncratic error terms wu, is characterized by

constant variances and zero covariances; in addition, the variance of both the

individual specific effects x, and the time-specific effects v,is constant. This

means that

a. E(uu

nxl Ixn

2
lxnk’ i t) O-u In ?

nxn

The assumption RE.3.a is identical to assumption FE.3. Under assumption RE.3.a, we

have (i) E(u. |1Xk, u,v)=c., which implies assumption (A.4), and (ii)

E(u,u ﬂ\x ,,ui,vt)=0(i¢j), E(u,u ,S\x ,,ul.,vt)=0(t¢s) and
1><N k 1><Tk

E(u,u ,s| X 5 HhysV, v,)=0(G#j,t#s), which imply assumption (A.5). But assumption
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RE.3.a is stronger because it assumes that the conditional variances are constant and the

conditional covariances are zero. Along with assumption RE.1.b, assumption RE.3.b is

the same as Var( ,u,,|xl.{ N}) = Var(u,) = afl and along with assumption RE.1.c, assumption
IxTik

RE.3.c is the same as Var(v,|xt{T}):Var(vt):af . Moreover, under assumption RE.3,
IxN,k

assumption (A.8) holds and Q has the form (A.6).

To implement a FGLS procedure, assume that we have consistent estimator of o, 0'2

and o~ . Then we can form

Q=6"1,+62A,A +6A, A, (A.9)
mn nxn nxN Nxn nxT Txn
and the RE estimator is
~ 71 ~
BGLS:(X’Q x) (X’Q y). (A.10)
x1 kxn nxn nxk kxn nxn nxl

APPENDIX C: PROOF OF (13)

m

1
Since e, =y, - X,B." :[In -X,, (X;Q[A]Xm) X;Q[A]}ym by definition we can write

e, =M -y, =M

m m

-g, . We assume that there is a constant term and then we consider the

m

centered residuals f =E -e =E ‘M -g . With Qy; idempotent,

Q[A] ‘A, =Q[A] ‘A, =0 and Q[A] Q=0 -Q[A] we have

' ’ _ 2 ’ 2 2 2
AM, Qmj Mj. A, = o Ay ALy + o, A+ o, A+
Txn nxn  pxp  npxn #xT TxN NxT T TxT
a s (A.11)
2 ! ! ' ’ ! ’
+o, AX | X Q[A] X, | X, Q[A} X, | X Q[A] X, | XA,
Txn nxk, \ kyxn 0" nxk, K xnpn mxk; \ kpxn pxp” nxk; kjxn nxT
and
' ' _ 2 2 2 ' 2
AM, Q M A = o, AN+0'VW ALy ATN+0'% A+
Nxn nXn pxp  nxn nxN NxN NxT TxN NxN |
. - (A.12)
2 ! ’ ' ' ’
+O—um/- Ay Xm Xm Q[A] Xm Xm Q[A] Xj Xj Q[A] Xj Xf Aﬂ ’
Nxn nxky, \ kyxn " nxk, knXn pn nxk; \ kjxn pxp nxk; kjxn nxN

and we obtain
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E(g,,) =E u;M;EnQ[A]Eanu”j trE(Q E,M,u,u M E J:

Ixn nxn AXn " onxn nxn nxl nxn  nxn n><l lxn nxn MXn

nxn

=t

=

n mXn- pxn nxn

. nxn 0 nxn (A.13)
Q[A]]O' +tr {meA] kj X, QuX,| X QyX, | X/QyX, ‘o, +

xRy g xR i

QuE,M,Q, M E j tr Q[A(I—"”)M Q, M’(I— jz
n

Il
=3

nxn X pxn XM mxk\ kpxn e nxk; kpxn pxn nka

y

—1 -1
o [k  Qpy J X, Qu X, o, —t| X;Qu X, | X;QX, oy,

nxn XM K ij" nxn ”Xk, k X1 pxn "Xk

and
-1
=E|u'M’E,A, A} AE M, u, |=tE[ A} A/E,M,u,u'M'E, A,
lxn nxn hxn nxT TxT Txn nxn  nxn nxl TXT Txn nxn nxn  nxl |xy pxp wxn nxT
(M [
-1
=tr| A A/E, M, @ M'E A, |=tr] A} A/|T,—=2 M, Q@ M[1,—=% A |=
TxT Txn nxXn XN pxp opxp MXR nxT TxT Txn n nXn pxp pxn n nxT
nxn nxn
uM, Q M,
—tr A;-l A‘l/ Mm Qij; Av lxn nXn pxn nxn nxl_ (A14)
TxT Txn nxn  pxp  pxn n¥T n
_ 2 2 2
—(T+kij) o, 10, +no, +
-1 -1
’ ’ ’ ’
vQ ‘o uy U X X, QX | X, QX X' QX | X,
1><n nxn n><1 lxnnxk,,, ko xn s ¥k N pen nxk k< nxk ij,,nxl
and

mj m-mj

Ixn nxn NXn anNxNNX,, nxn nxn  nxl NXNNX,, nmxn mxn nxl \xp pxp WXN pxN

Eg, ) E[u M'E,A,A}ALE,M, u j trE(A A'E,M,u u’M’EAj

=tr(A;¢A;EnM”,QMjM;EnAJ:tr A;@A;(In—ﬁijszny.M;[ln—‘"‘"jA -

H
NXN Nxp X0 mXn pxp pxn X1 pxN NN Nxn n XN pxn o nxn n nxN
, , nxn nxn
l,anﬂijjln Al
=t AyA, M, Q M'A |22 w2 (A.15)
NXNNXn nXn- pxp nxn an n

2
)'Gum/ +n-0ym/ +N o, +
-1

-1
1 Qmjln+0' X, (X Q X ] X' Q[A] 1 X" Q S X,

mj
Ixn pxp nxl Ixnnxk,, \ k,xn nxk

m nxn K Xn pin nxk kyxn pxn n><k k/xn”X]

>

where J, =1,V and 1, is a vector of ones of dimension 7.

n

APPENDIX D: PROOF OF (15)

Since the o) ’s, the v ) ’s and u, ’s are independent, from the equations in (14) we
Mxl Mxl Mx

can write
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efw ) w )

MxM MxM
E| BS =E(B5]+E(ij,
MxM MxM MxM
E[ B :E(Bjjm(ng,
MxM MxM MxM

where the within individuals (co)variation is

!

O, U, -u,) =

1 Mx1 1><M

u[. —u,

MN

>>

—

t

N
N

Eal]]

N——I

M><1 1><M

N
SYuw-Yruw -y

i=1 t=1 M><1 IxM i=1 Mx11xM =1

the between individuals (co)variations are

=7 (1 =), ) =in Wiy Wiy —1 B

(A.16)

(A.17)

(A.18)

(A.19)

or

M><M 1 1 ><1 IxM i=1 Mxl  IxM Mx11xM
N
!
B¢ =ZZ(ui. —u)(ui. - ) :Z]: u.u, -nuu
MxM i=1 Mx1 IxM i1 Mxiby MM
and the between times (co)variations are
ZN ( )( ) ZN v, -nvy
M><M M><11><M
M><1 1><M M><1 1><M
ZN u —u ZN u,u,-nuu
MM M><1 1><M =1 Mo b MxibM”
7 N, N
- z:l”m[r — _ zi:lumir Z: z Uit Z, - Tty )
where Upie = ‘[7',7 ’ Upr = N, > um n n
— ZLIZ:’\;IIUW’ _ ZZ;I(N[-ITI,"_,) i Z;ZI(T,/JW) d = _ ZZ;I(NI‘VmI)
u, = n - n > Mm T n an Vm - n .
. ! f—
Since E(g,g,)=0,X,+0,X, +6,0,%,, where E(W, ,Win,) = 0,2
’ _ .
E(vV, Vi) =0,E, and E(wu,)=5,0,X, it follows that
T 2
— ( )L, — Q, NOE, — z
B = 227 | BEv) = T2 and (@) =2
n n

Therefore from the equations in (A.17), (A.18) and (A.19) we have
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N T N Zu T Eu
ElW, [=>Yx% - L= -> N =(n-N-T)- %, ,
MxM i=l =1 i=1 ; =1 ¢ MxM
N N N
) Srn (e (g )
MxM i=1 i=1 i=1 MxM
N
E(Bf :z( [-ZTuj—n-Z" =(N-1)-Z,, (A.20)
X i= i I’l X
MxM Tl . MxM .
E(Bf =>N, zv—n-(ZNf]-zv nzz(n—ZNf/nj T,
MxM t=1 t=1 t=1 MxM
L )X z
E| B [=)|N -Zt|-n-"t=(T-1)- X
(Mxl;\/[ ;( ' NtJ " n ( )Mxt}t/l

E|W, |=(n—-N-T)-X,,
MxM MxM
N
E| B =[n—27;2/nJ-Zﬂ+(N—l)-Zu, (A.21)
MxM i=l1 MxM MxM
T
E| B =(n—ZNt2/nj L +(T-1)- %,
MxM t=1 MxM MxM
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