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This paper considers the two-way error components model (ECM) estimation of seemingly 
unrelated regressions (SUR) on unbalanced panel by generalized least squares (GLS). As 
suggested by Biørn (2004) for the one-way case, in order to use the standard results for the 
balanced case the individuals are arranged in groups according to the number of times they 
are observed. Thus, the GLS estimator can be interpreted as a matrix weighted average of 
the group specific GLS estimators with weights equal to the inverse of their respective 
covariance matrices. 

KEYWORDS Unbalanced panels; Error Components Model; Seemingly Unrelated 
Regressions. 
JEL CLASSIFICATION C13; C23; C33. 

1. INTRODUCTION 

The error components model (ECM) is the most frequently used approach to estimate 
models on panel data. The phenomenon of missing observations—not all cross-sectional 
units are observed during all time periods—is a problem that often occurs in practice: the 
unbalanced panel is the rule rather than the exception when the data come from large-
scale surveys. Biørn (1981) and Baltagi (1985) discuss the single-equation ECM with 
missing observations, but they focus on the one-way case, where only the individual-
specific effects are considered. Wansbeek and Kapteyn (1989) and Davis (2002) extend 
this estimation method to the two-way case, where both the individual-specific and the 
time-specific effects are taken into account, as well as to the multi-way case, where a 
third specific effect can be considered, for example the location effects1. 

                                                 
♣ This research has been carried out as part of the WEMAC (World Econometric Modelling of Arable 
Crops) research project (Scientific coordinator: Catherine Benjamin), funded by the European Commission 
under the 6th Framework programme. The FADN data have been provided in the context of that project. 
♠ Dipartimento di Scienze Economiche e Sociali, Università Cattolica del Sacro Cuore, via Emilia 
Parmense 84, 29122 Piacenza, Italy (silvia.platoni@unicatt.it). 
1 Among the recent empirical applications, Boumahdi, Chaaban and Thomas (2004) estimate the Lebanon 
import demand elasticities using a three-way ECM—nested and non-nested—in which product, country and 
time effects are introduced. 
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All these papers apply the ECM to the single-equation case. Baltagi (1980) and Magnus 
(1982) extend the estimation procedure of the single-equation model for balanced panels to 
the case of seemingly unrelated regressions (SUR), while Biørn (2004) proposes a 
parsimonious technique to estimate one-way SUR systems on unbalanced panel data. 

The purpose of this paper is to extend the Generalized Least Squares (GLS) estimation 
of the SUR system suggested by Biørn (2004) to the case of the two-way ECM for 
unbalanced panels, considering not only the individual-specific effect, but also the time-
specific effect. This extension is rather important, since the estimation of the time-specific 
effects is likely to play an important role in many practical situations, especially when the 
time period is sufficiently long. For example a parametric trend is often used to 
parameterize the effect (on the response variable) either of technical improvements in 
case of panels of firms or of the change in tastes over time in case of panels of 
households. 

In order to use the standard results for the balanced case, the key element of the Biørn 
(2004)’s technique is arranging the data such that individuals are grouped according to 
the number of times they are observed. Extending this approach to the two-way SUR 
allows to estimate systems of equations also on large unbalanced panel databases with a 
relevant time dimension. 

The structure of the paper is the following: in section 2 we introduce the logic and the 
notation of the single-equation case, while in section 3 we develop the corresponding 
SUR system. Finally, in section 4 some simulation results are provided for illustrative 
purpose. 

2. SINGLE-EQUATION TWO-WAY ECM FOR UNBALANCED PANELS 

We analyze an unbalanced panel characterized by a total of n  observations, with N  

individuals (indexed 1, ,i N= … ) observed over T periods (indexed 1, ,t T= … ). Let iT  

denote the number of times the individual i  is observed and tN  the number of individuals 

observed in period t . Hence i ti t
T N n= =∑ ∑ . 

In the following we consider the regression model2 

 
11

,it it i t it
kk

y uμ ν
××

′= + + +x β  (1) 

                                                 
2 Throughout the paper, all vectors and matrices are in boldface. 
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where itx  is a 1 k×  vector of explanatory variables and β  a 1k ×  vector of parameters, iμ  

is the individual-specific effect, tν  the time-specific effect and itu  the remainder error 

term. Since the panel is unbalanced, the standard projection and transformation results no 
longer hold. Thus, Wansbeek and Kapteyn (1989) propose to order the data on the N  

individuals in T  consecutive sets, one for each period. Let tD  be the tN N×  matrix 

obtained from the N N×  identity matrix NI  by omitting the rows corresponding to 

individuals not observed in period t . Using the matrices 
1

1( , , )
T

T
N N N Nn N

μ
× ××

′ ′ ′≡ D D…Δ  and 

1 1

blockdiag[ ] blockdiag[ ]
t

t t

t N N
n T N N N N
ν
× × × ×

≡ =D ιΔ ι , where Nι  and 
tNι  are vectors of ones of 

dimension N and tN  respectively, we can define the diagonal matrices N
N N N n n N

μ μ
× × ×

′≡Δ Δ Δ  and 

T
T T T n n T

ν ν
× × ×

′≡Δ Δ Δ , as well as the matrix of zeros and ones TN
T N T n n N

ν μ
× × ×

′≡Δ Δ Δ , indicating the absence 

or presence of an individual in a certain time period. Moreover, we can consider the 

matrix 
( )

( )
n N T n Tn N

,μ ν× + ××

≡Δ Δ Δ , which gives the dummy-variable structure for the unbalanced 

panel model (see Baltagi, 2005). Hence, using matrix notation, we can write 

 
1 1 11 11 1

,
n k n kT n nk kn N n Tn N

μ ν× ×× × ×× ×× × ××

= + + + = +y X Δ μ Δ ν u Xβ β ε  (2)  

where X  is a n k×  matrix of explanatory variables and it i t ituε μ ν= + +  the composite 

error term. 

In the fixed effects (FE) case, where the error components iμ  and tν  are parameters to 

be estimated, we assume the following (see Appendix A for details).  

• (FE.1) Strict exogeneity: the set of explanatory variables in each time period { }
t

t T
N k

x  is 

uncorrelated with the idiosyncratic error itu  and the set of explanatory variables for 

each individual { }
i

i N
T k

x  is also uncorrelated with the same idiosyncratic error itu .  

• (FE.2) Consistency: the within estimator is asymptotically well behaved, in the sense 
that the “adjusted” outer product matrix has the appropriate rank. 

• (FE.3) Homoscedasticity and no serial correlation: the conditional variance-

covariance matrix of the idiosyncratic error terms itu  coincides with the 

unconditional one, and it is characterized by constant variances and zero covariances. 
The assumptions FE.1 and FE.3 guarantee the efficiency of the within estimator. 
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In the random effect (RE) case, where all error components are random variables, we 
assume the following (see Appendix B for details). 

• (RE.1.a) Strict exogeneity: same definition as assumption FE.1. 

• (RE.1.b) and (RE.1.c) Orthogonality conditions: both iμ  and tν are orthogonal to the 

corresponding sets of explanatory variables { }
i

i N
T k

x  and { }
t

t T
N k

x . 

• (RE.2) Consistency: the RE GLS estimator is consistent, in the sense that the 
weighted outer product matrix has the appropriate rank. 

• (RE.3a), (RE.3b) and (RE.3c) Homoscedasticity and no serial correlation: the 

conditional variance-covariance matrix of the idiosyncratic error terms itu  is 

characterized by constant variances and zero covariances; in addition, the variance of 

both the individual specific effects iμ  and the time-specific effects tν  is constant. 

3. TWO-WAY SUR SYSTEMS FOR UNBALANCED PANELS 

Biørn (2004) estimates a one-way SUR system of equations on unbalanced panel data. 
Thus, he considers only the individual-specific effect, while in this paper we extend his 
analysis considering also the time-specific effect. 

3.1. MODEL AND NOTATION 

Grouping individuals according to the number of times they are observed, as suggested by 
Biørn (2004) for the one-way case, is essential also in our two-way SUR systems, that 
would not be manageable adopting traditional estimation techniques. This can be done as 
follows. 

Let pN  denote the number of individuals observed exactly in p  periods, with 

1, ,p T= … . Hence pp
N N=∑  and ( )pp

N p n=∑ . We assume that the T  groups of 

individuals are ordered such that the 1N  individuals observed once come first, the 2N  

individuals observed twice come second, etc. Hence with 
1

p
hp h

C N
=

=∑  being the 

cumulated number of individuals observed at most p  times, the index sets of the 

individuals observed exactly p  times can be written as 1{ 1, , }p p pI C C−= + … . Note that 

1I  may be considered as a pure cross section and pI , with 2p ≥ , as a pseudo-balanced 

panel with p  observations for each individual. This structure allows to use a number of 

results derived for the two-way SUR in the balanced case. 
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If mk  is the number of regressors for equation m , the total number of regressors for 

the system is M
mm 1

K k
=

= ∑ . Stacking the M  equations, indexed by 1, ,m M= … , for the 

observation ( ),i t  we have 

 { } { }
1 11 1 11 1

,it it i N t T it it it
K KM M×K M M×K MM M× ×× × ×× ×

= + + + = +y X β μ ν u X β ε  (3) 

where 
1

1
1 1

diag[ ]
M

it it Mit
M K k k

, ,
× × ×
=X x x…  and 

1

1
1 1

( )
M

M
k k

, ,
× ×

′ ′ ′=β β β… 3. If we do not have cross-equation 

restrictions, we can assume 1 2E( | , , , ) 0mit it it Mitu =x x x…  and then 

1 2E( | , , , ) E( | )mit it it Mit mit mit mit my y= =x x x x x β… . On the contrary, if we have cross-

equation restrictions we can only assume E( | ) 0it it =u x  where 1
1

( , , )it it Mit
M

u u
×

′≡u …  and 

1 2
1

( , , , )it it it Mit
K×
≡x x x x… . With { } 1

1

( , , )i N i Mi
M

μ μ
×

′=μ …  and { } 1
1

( , , )t T t Mt
M

ν ν
×

′=ν …  we assume 

 

( )

( )

( )

2

2

2

E
0 ,

E
0 ,

 and E
0  and/or ,

mj

mj

mj

μ
mi ji'

ν
mt jt'

u
mit ji't'

σ i i'μ ,μ
i i'

σ t t'ν ,ν
t t'

σ i i' t t'u ,u
i i' t t'

⎧= =
⎨
= ≠⎩
⎧= =
⎨
= ≠⎩
⎧= = =
⎨
= ≠ ≠⎩

 (4) 

and then 1
1

( , , )m m mN
N

μ μ
×

′≡μ … , 1( , , )m m mT
T 1

ν ν
×

′≡ν …  and 

111 12 1 21( , , , , , , )
Nm m m m T m mNT

n 1
u u u u u

×

′≡u … …  are random vectors with zero means and 

covariance matrix 

 ( )
2

2

2

0 0
E 0 0 .

0 0

mj

mj

mj

m

m j j j

m u

μ

ν

σ
σ

σ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎢ ⎥⎜ ⎟⎜ ⎟ ′ ′ ′ = ⎢ ⎥⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦

μ
ν μ ν u
u

 (5) 

                                                 
3 As Biørn (2004) suggests, if the coefficient vectors are not disjointed across equations, we can redefine 

1K×
β  as the complete coefficient vector (without duplication) and the regression matrix as 

1 2 1

1 2
1 1

( )
M

it it it Mit
M K k k k

, ,...,
×× × ×

′ ′ ′ ′=X x x x  where the thk  element of 
1 m

mit
k×

x  (i) contains the observation on the variable in the 

thm  equation which corresponds to the thk  coefficient in 
1K×
β  or (ii) is zero if the thk  coefficient does not 

occur in the thm  equation. 
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With 1{ } { }
1

( , , )N N N
NM×

′ ′ ′≡μ μ μ… , 1{ } { }1
( , , )T T TTM×
′ ′ ′≡ν ν ν…  and 

111 12 1 211
( , , , , , , )

NT NTnM×
′ ′ ′ ′ ′ ′≡u u u u u u… … , since we have 

1
0,

NM M M
μ

× ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

μ Σ∼ , 
1

0,
TM M M

ν× ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

ν Σ∼  and 

1
0, unM M M× ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

u Σ∼  with 2
mjμ μσ⎡ ⎤= ⎣ ⎦Σ , 2

mjν νσ⎡ ⎤= ⎣ ⎦Σ  and 2
mju uσ⎡ ⎤= ⎣ ⎦Σ , we can assume that the 

expected values of { }
1

i N
M×

μ , { }
1

t T
M×

ν  and 
1

it
M×
u  are zero and their covariance matrices are equal 

to 
M M

μ
×

Σ , 
M M

ν
×
Σ  and u

M M×
Σ . It follows that 

11
E( )it i t ii tt ii tt u

M M M M M MM M
μ νδ δ δ δ′ ′ ′ ′ ′ ′

× × × ××

′ = + +ε ε Σ Σ Σ  with 1iiδ ′ =  

for i i′=  and 0iiδ ′ =  for i'i ≠ , ' 1ttδ =  for t't =  and 0ttδ ′ =  for t't ≠ . 

Let us consider ( ) 1
11 1

( , , )i p i ip
MpM M×× ×

′ ′ ′≡y y y… , ( ) 1( , , )i ipi p
K M K MpM K × ××

′ ′ ′≡X X X…  and ( ) 1
1 11

( , , )i ipi p
M MpM × ××

′ ′ ′≡ε ε ε…  for 

pIi∈  (and then for 1 1 2 11, , , 1, , , , 1, ,T Ti C C C C C−= + +… … … …  with NCT = ). 

We define the matrix ( )i p
pM×TM

Δ  indicating in which period t  the individual i  of the group 

p  is observed. For example, with 4T = , if the individual i  is observed in the periods 

2t =  and 4t =  (the individual i  belongs to group 2p = ) we have 

 ( )2
2 4

,
MM M M M M MM M

i
MM M M M M M M M M M

× × ××

× × × × ×

⎡ ⎤
⎢ ⎥≡
⎢ ⎥
⎣ ⎦

0 I 0 0
Δ

0 0 0 I
 

where MI  is an identity matrix of dimension M . This is a convenient way of structuring 

the data in order to obtain vectors of time-specific errors of appropriate dimension. In 

fact, considering 
1TM×

ν , for the individual pIi∈  we can define the vector ( ) ( ) 11
i p i p TMpM pM TM ×
× ×

≡ν Δ ν  

and write the model 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1111 1 1 1

,p ii p i p i p i p i p i p
K KMppM pM K pM pM pM K pM× ×××× × × × × ×

⎛ ⎞
= + ⊗ + + = +⎜ ⎟

⎝ ⎠
y X β ι μ ν u X β ε  (6) 

where pι  is a vector of ones of dimension p . The variance-covariance matrix of the 

composite error term ( )i pε  is given by 

 

( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )

1 1

E

,

p p u pi p i p
M×M M×MpM× pM p× p p× ppM pM

p u p u p

p u p u p

p u p u
M×Mp× p p× p M×M

p
p

ν μ

ν ν μ

ν ν μ

ν ν μ

ε ε
× ×

⎛ ⎞
′= = ⊗ + + ⊗ =⎜ ⎟⎜ ⎟

⎝ ⎠
= ⊗ + + ⊗ + + ⊗ =
= ⊗ + + ⊗ + + ⊗ =
= ⊗ + + ⊗ + +

Ω I Σ Σ J Σ

E Σ Σ J Σ Σ J Σ
E Σ Σ J Σ Σ J Σ
E Σ Σ J Σ Σ Σ

 (7) 
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where pI  is an identity matrix of dimension p , pJ  a matrix of ones of dimension p , 

p p p= −E I J  and p
p p= JJ . Since pE  and pJ  are symmetric, idempotent and have 

orthogonal columns, the inverse of the variance-covariance matrix is 

 ( ) ( ) 11-1 .p p u p u
M MpM pM p p p p M M

pν ν μ

−−

×× × × ×

= ⊗ + + ⊗ + +Ω E Σ Σ J Σ Σ Σ  (8) 

3.2. GLS ESTIMATION 

If we assume that μΣ , νΣ  and uΣ  are known, we can write the GLS estimator for β  as 

the problem of minimizing 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1 1 1
11

1 11 1 1 1

.
p

p p

T

pi p i p
p i I pM pMpM pM

T T

p u p ui p i p i p i p
p i I p i IpM pM pM pMpM pM pM pM

pν ν μ

−

= ∈ ×× ×
−−

= ∈ = ∈× × × ×× ×

′ =

⎡ ⎤⎡ ⎤′ ′= ⊗ + + ⊗ + +⎢ ⎥⎣ ⎦ ⎣ ⎦

∑∑

∑∑ ∑∑

ε Ω ε

ε E Σ Σ ε ε J Σ Σ Σ ε
 (9) 

If we apply GLS on the observations for the individuals observed p times we obtain 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1 1

1 1
1

11       

         

p p

p p

GLS
p p pi p i p i p i p

i I i IK pM pM pM pMK pM pM K K pM pM

p u p ui p i p i p i p
i I i IK pM pM K K pM pM KpM pM pM pM

pν ν μ

−

− −

∈ ∈× × ×× × × ×
−

−−

∈ ∈× × × ×× ×

⎡ ⎤ ⎡ ⎤
′ ′= × =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤

⎡ ⎤⎡ ⎤⎢ ⎥′ ′= ⊗ + + ⊗ + + ×⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥
⎣ ⎦

∑ ∑

∑ ∑

β X Ω X X Ω y

X E Σ Σ X X J Σ Σ Σ X

( ) ( ) ( ) ( ) ( ) ( )
11

1 1

,
p p

p u p ui p i p i p i p
i I i IK pM pM K pM pMpM pM pM pM

pν ν μ

−−

∈ ∈× × × ×× ×

⎡ ⎤
⎡ ⎤⎡ ⎤⎢ ⎥′ ′× ⊗ + + ⊗ + +⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥

⎣ ⎦
∑ ∑X E Σ Σ y X J Σ Σ Σ y

 (10) 

while the full GLS estimator is 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1 1

1 1 1 1

11

1 1
       

p p

p p

T T
GLS

p pi p i p i p i p
K p i I p i IpM pM pM pMK pM pM K K pM pM

T T

p u p ui p i p i p i p
p i I p i IK pM pM K K pM pM KpM pM pM pM

pν ν μ

−

− −

× = ∈ = ∈× ×× × × ×

−−

= ∈ = ∈× × × ×× ×

⎡ ⎤ ⎡ ⎤
′ ′= × =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡

⎡ ⎤⎡ ⎤′ ′= ⊗ + + ⊗ + +⎢ ⎥⎣ ⎦ ⎣ ⎦

∑∑ ∑∑

∑∑ ∑∑

β X Ω X X Ω y

X E Σ Σ X X J Σ Σ Σ X

( ) ( ) ( ) ( ) ( ) ( )

1

11

1 11 1

          .
p p

T T

p u p ui p i p i p i p
p i I p i IK pM pM K pM pMpM pM pM pM

pν ν μ

−

−−

= ∈ = ∈× × × ×× ×

⎤
⎢ ⎥ ×
⎢ ⎥
⎣ ⎦
⎡ ⎤

⎡ ⎤⎡ ⎤⎢ ⎥′ ′× ⊗ + + ⊗ + +⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥
⎣ ⎦
∑∑ ∑∑X E Σ Σ y X J Σ Σ Σ y

 (11) 

3.3. ESTIMATION OF THE COVARIANCE MATRICES 

The next step is to find an appropriate technique to estimate the three error component 

variance-covariance matrices of the two-way SUR system 
M M

μ
×

Σ , 
M M

ν
×
Σ  and u

M M×
Σ . This can 

be achieved adopting either the within-between procedure suggested by Biørn (2004) for 
the one-way SUR or the Quadratic Unbiased Estimator (QUE) procedure suggested by 
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Wansbeek and Kapteyn (1989) for the single equation case. In the following sub-sections 
we modify both procedures making them suitable for the two-way SUR system. 

3.3.2. THE QUE PROCEDURE 

The QUE procedure considers the FE residuals 
1 1 1m m

WT
m m m m

n n n k k× × × ×
≡ −e y X β  for the equation 

1, ,m M= … . If we assume that the matrix 
m

m
n k×
X  contains a vector of ones, we have to 

define the centered residuals 
1 1 1

m n m m m
n n n n n

e
× × × ×
≡ ⋅ = −f E e e  , where n n n= −E I J , with nI  being an 

identity matrix of dimension n, n
n n= JJ  and nJ  a matrix of ones of dimension n (see 

Wansbeek and Kapteyn, 1989). Thus, we can obtain the adapted QUE’s for 2
mjuσ , 2

mjμσ  

and 2
mjνσ  by equating 

 

[ ]Δ
11

1

11
1

11

,

,

mj

mj

mj

n j m
nn n n

N j T m
T Tn T T n nn

T j N m
N N nn N N nn

q

q

q

ν ν

μ μ

×× ×

−

×× × ××

−

× ×× ××

′≡

′ ′≡

′ ′≡

f Q f

f Δ Δ Δ f

f Δ Δ Δ f

 (12) 

where [ ]Δ
n n×

Q  is the projection matrix onto the null-space of 
( )n N T× +
Δ  (see Appendix A), to 

their expected values (see Appendix C) 

 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2 2 2
0

2 2 2
0

E 1 ,

E 1 ,

E 1 ,

mj mj

mj mj mj mj mj mj

mj mj mj mj mj mj

n mj m j u

N N u

T T u

q n T N k k k

q T k k T n

q N k k n N

μ μ ν ν

μ μ ν ν

σ

σ λ σ λ σ

σ λ σ λ σ

= − − + + − − ⋅

= + − − ⋅ + − ⋅ + − ⋅

= + − − ⋅ + − ⋅ + − ⋅

 (13) 

where we have defined [ ] [ ] [ ] [ ]
1 1

Δ Δ Δ Δtr(( ) ( ) )mj m m m j j j j mk − −′ ′ ′ ′≡ X Q X X Q X X Q X X Q X , 

[ ] [ ] [ ]
1 1 1

Δ Δ Δtr(( ) ( ) )
mjN m m m j j j j T mk ν ν

− − −′ ′ ′ ′ ′≡ X Q X X Q X X Q X X Δ Δ Δ X , 
2

1

N
in n i

T
n nλ μ μ

μ
=

′ ′ ∑≡ =ι Δ Δ ι , 

[ ] [ ] [ ]
1 1 1

Δ Δ Δtr(( ) ( ) )
mjT m m m j j j j N mk μ μ

− − −′ ′ ′ ′ ′≡ X Q X X Q X X Q X X Δ Δ Δ X , 
2

1

T
tn n t

N

n nλ ν ν
ν

=′ ′ ∑≡ =ι Δ Δ ι  and 

[ ] [ ] [ ]
1 1

Δ Δ Δ( ) ( )
0

n m m m m j j j j n

mj nk
− −′ ′ ′ ′ ′

≡
ι X X Q X X Q X X Q X X ι . 

The difference with respect to the single equation case is that the centered residuals 

jf and mf  may refer to different equations. Since jm mjk k= , 
jm mjN Nk k= , 

jm mjT Tk k=  and 

jm mj0 0k k=  obviously we have 2 2
jm mju uσ σ= , 2 2

jm mjμ μσ σ=  and 2 2
jm mjν νσ σ= . 
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3.3.2. THE WITHIN-BETWEEN PROCEDURE 

As the QUE procedure, the within-between procedure considers the FE residuals 

11

WT
it it it

KM M×1 M×K ××
≡ −e y X β  for the individual i  in period t . As before, if we assume that the 

matrix it
M K×
X  always contains M  vectors of ones (a vector of ones for each equation m ), 

we have to define the consistent centered residuals 
11 1

it it MM M ×× ×
= −f e e , where 

1 1 1 1

N T T Ni t
mit miti t t i

e e
m n ne = = = =∑ ∑ ∑ ∑= = 4. Therefore the MM ×  matrices of within individuals, 

between individuals and between times5 (co)variations in the f ’s of the different 
equations are the following: 

 

( )( )

( )( )

( )( )

1 1 1 1

1 1 1

1 1 1

,

,

,

iTN

f it i t it i t
i tM M M M
N

C
f i i i

iM M M M
T

T
f t t t

tM M M M

T

N

= =× × ×

=× × ×

=× × ×

′= − − − −

′= − −

′= − −

∑∑

∑

∑

W f f f f f f

B f f f f

B f f f f

i i i i

i i

i i

 (14) 

where for each equation m  we have 1

Ti
mitt

i

f
mi Tf =
⋅

∑= , 1

Nt
miti

t

f
m t Nf =
⋅

∑=  and 

1 1 1
( )

N T Ni
mit i mii t i

f T f
m n nf ⋅= = =

⋅∑ ∑ ∑= =  or 1 1 1
( )

T N Tt
mit t m tt i t

f N f
m n nf ⋅= = =

⋅∑ ∑ ∑= = . The between times 

(co)variation T
fB  is needed to adapt the Biørn’s (2004) procedure to the two-way ECM. In 

Appendix D equation A(21) allows us to conclude that 

 
( )

( )

2

2

1

1

ˆ ,
ˆ1ˆ ,

ˆ1ˆ

i

t

f
u

M M
C
f u

N
TM M
n

i
T
f u

T
M M N

n
t

n N T
N

n

T

n

μ

ν

×

×

=

×

=

=
− −
− − ⋅

=
−

− − ⋅
=

−

∑

∑

W
Σ

B Σ
Σ

B Σ
Σ

 (15) 

are consistent and unbiased estimators of 
M M

μ
×

Σ , 
M M

ν
×
Σ  and u

M M×
Σ . 

                                                 
4 To obtain consistent estimates of the variance-covariance matrices, we need consistent residuals (Biørn, 
2004). In the two-way case, since the QUE procedure is based on the FE residuals, for coherence we use the 
same FE residuals, and then the corresponding 1M ×  consistent centered residuals itf , also in the within-
between procedure. 
5 Kang (1985) uses the between time periods estimator to build the equivalent tests for the two-way error 
components model. 
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4. SIMULATION RESULTS 

In order to analyze the performances of the proposed techniques, in this section we 
develop a simple simulation on a three equations system ( 3M = ). We assume an 
unbalanced panel with a large number of individuals ( 4000N = ) extended over a rather 

long time period ( 8T = ). This should mimic a real world situation of a large unbalanced 
panel for which the two-way SUR system is the appropriate model. The simulated model 
is  

1 10 11 1 12 2 1

2 20 21 1 22 2 23 3 2

3 30 32 2 33 3 3

y x x ,
y x x x ,
y x x ,

β β β ε
β β β β ε
β β β ε

= + ⋅ + ⋅ +
= + ⋅ + ⋅ + ⋅ +
= + ⋅ + ⋅ +

 

where ( )1 15,6, 3 ′= −β , ( )2 10, 3,8, 2 ′= − −β  and ( )3 20, 2,5 ′= −β , which imply the cross 

equations restrictions 12 21β β=  and 23 32β β= . We consider the following variance-

covariance matrices6 

968.5 88.2 21.5 87.52 15.81 4.65 86.28 17.39 5.94
725.2 55.0 79.97 5.89 77.98 7.53

513.4 53.22 56.46
,  and .uμ ν

− − −
−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Σ Σ Σ  

Finally, the scalars kitx  have been generated according to the scheme introduced by 

Nerlove (1971) and used, among others, by Baltagi (1981) and Wansbeek and Kapteyn 
(1989) 

10.1 0.5 ,kit kit kitx t x ω−= ⋅ + ⋅ +  

with kitω  following the uniform distribution 1 1
,2 2[ ]−  and 0 05 10ki kix ω= + ⋅ . 

In order to construct the unbalanced panel, we have adopted the procedure currently 
used for rotating panels, in which we have approximately the same number of individuals 
every year: a fixed percentage of individuals (20% in our case7) is replaced each year, but 
they can re-enter the sample in the following years. Thus, for each group p we have the 

following number of individuals: 1 962N = , 2 769N = , 3 615N = , 4 492N = , 5 394N = , 

6 315N = , 7 252N =  and 8 201N =  (and then 13545n = ). 
The results of a 150-run simulation are shown in table 1. 
The covariance matrices estimated through the one-way within-between procedure are 

                                                 
6 The three variance-covariance matrices have been randomly generated using the sprandsym command in 
MatLab, that produces positive-definite symmetric matrices with all non-zero entries. 
7 Also in Wansbeek and Kapteyn (1989) each period 20% of the households in the panels is removed 
randomly. 
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957.0824 -87.8098 22.7150 173.2044 32.7289 -10.4171
713.7265 -55.4356 157.2077 13.3276

506.7917 110.9417
and ,uμ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Σ Σ  

while those estimated through the two-way QUE procedure are 
967.8692 -85.9968 22.2379 86.9819 15.8670 -5.0449 86.3215 17.3926 -5.8825

723.5082 -54.7695 79.4254 5.9641 77.9915 7.5897
513.6266 54.0729 56.5285

,  and uμ ν

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Σ Σ Σ  

and those estimated through the two-way within-between procedure are 

976.2906 -84.4980 21.8235 87.2374 15.8408 -5.0379 108.0565 21.4853 -7.3919
731.2457 -54.2465 79.6144 5.9480 97.7202 9.2659

518.9794 54.2076 69.6443
,  and .uμ ν

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Σ Σ Σ  

In table 1 we present the means and the variances of the estimated parameters, the 
average standard errors and the average variances of the error term components. 

While to estimate all the single-equation version of the model (FE one-way, RE GLS 
one-way, RE ML one-way and RE ML two-way) we used the commands built in the 
econometric software TSP version 5.0, we computed the FE two-way, the RE GLS two-
way, the SUR GLS one-way and the two versions of the SUR GLS two-way–adopting 
either the QUE procedure or the within-between procedure–through a specific routine 
written in TSP version 5.0. 

The advantages of adopting a two-way specification for analyzing our unbalanced 
panel (through either single-equations or a system of equations) are clear when we 
analyze the estimated variance-covariance matrices. For example, all the one-way 
techniques produce biased estimates for the variances of the idiosyncratic error term 

2
mmuσ : when the time dimension in the data is relevant, two-way techniques produce better 

estimates since they allow to disentangle the time component from the remainder error 
term. 

This is true also comparing the SUR GLS one-way with both versions of the SUR GLS 
two-way, even though, between the two procedures we have proposed in the previous 
sections, the QUE turns out to be more precise than the within-between. 

In terms of parameter estimates, it is clear the system of equation techniques perform 
better than the single equation ones, although the gain in efficiency of the SUR GLS two-
way may become more relevant for a panel with a longer time dimension. 

In general, we can conclude that all the estimates obtained are consistent, but the SUR 
GLS two-way procedures guarantee a gain in efficiency. Moreover the parameters and the 
variances estimated with the SUR GLS two-way adopting the QUE procedure tend to be 
closer to the true values. 
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APPENDIX A: FIXED EFFECTS ESTIMATION ASSUMPTIONS 

Adapting the formulation proposed by Wooldridge (2002) for the one-way case to the 
two-way case, the assumptions related to the FE estimation are the following. 

FE.1  Strict exogeneity: the set of explanatory variables in each time period { }
t

t T
N k

x  is 

uncorrelated with the idiosyncratic error itu  and the set of explanatory variables 

for each individual { }
i

i N
T k

x  is also uncorrelated with the same idiosyncratic error 

itu .  

This means that 

( ) { } { }1
1 1

E , , E , , E , , 0,
t i

it i t it i t it i tt T i Nnk
N k T k

u u uμ ν μ ν μ ν
×

× ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

x x x  

where 
1 211 1 21 21

, , , , , , , )
NT T NTkn×

≡x (x x x x x… … …  or 
1 211 1 12 21

, , , , , , , )
TN N N Tkn×

≡x (x x x x x… … … , 

{ } 1 2
1

( , , , )
t

t

t T t t N t
kN×

≡x x x x…  and { } 1 2
1

( , , , )
i

i

i N i i iT
kT×

≡x x x x… . 

Therefore we have strict exogeneity of 
1

{ : 1, , ; 1, , }it i
k

i N t T
×

= =x … …  or 

1
{ : 1, , ; 1, , }it t

k
t T i N

×
= =x … …  conditional on the unobserved effects.  

FE.2  Consistency: the within estimator is asymptotically well behaved, in the sense 
that the “adjusted” outer product matrix has the appropriate rank. 

The idea of estimating 
1k×
β  under assumption FE.1 is to transform the equation to 

eliminate the unobserved effects iμ  and tν . When we have an unbalanced panel, the 

simple projection and transformation results no longer hold. Therefore, following 
Wansbeek and Kapteyn (1989), we order the data on the N  individuals in T  consecutive 
sets and we define the following matrices: 

1 1
Δ Δ

1 1

,N TN n N nn T n T N N N T n n N N n T n n n T n Tn N n N N n n n n n

T TN N TN N TN n TT T T T T N N N N T T n n T N N N T T nn N

μ μ
ν μ μ μ ν ν ν

ν ν μ ν

− −
⎡ ⎤ ⎡ ⎤× ⎣ ⎦ ⎣ ⎦× × × × × × × × ×× × × × ×

− −

×× × × × × × × × × ××

⎛ ⎞⎛ ⎞′ ′≡ − = − ⋅ = − ⋅ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞′ ′ ′ ′ ′≡ − = ⋅ − = ⋅ =⎜ ⎟
⎝ ⎠

Δ Δ Δ Δ Δ I Δ Δ Δ Δ I P Δ Q Δ

Q Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ [ ]1Δ
.

T n n Tn n
ν ν
× ××

Q Δ

 

Hence the projection matrix onto the null-space of Δ  is: 
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[ ]
1

Δ Δ Δ Δ
.n N n T T nT T T Tn n N N n T T nn N N nn n n n n n n n

μ μ μ
μ μ ν ν

− −−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤× × ⎣ ⎦ ⎣ ⎦ ⎣ ⎦× ×× × × ×× ×× × × ×

⎛ ⎞′ ′ ′= − − = −⎜ ⎟
⎝ ⎠

Q I Δ Δ Δ Δ Q Δ Q Q Δ Q Δ Q  

Given the previous within transformation, we can perform the regression 

 [ ] [ ] [ ]Δ Δ Δ 11 1
.

n k nn kn n n n n n
× ×× ×× × ×

= +Q y Q X β Q u  (A.1) 

Finally, in order to ensure that the FE estimator is well behaved asymptotically, we 
need the following standard rank condition: 

 [ ]Δrank  .
k n n k

n n

k
× ×

×

⎛ ⎞
′ =⎜ ⎟

⎝ ⎠
X Q X  (A.2) 

If 
1

it
k×

x  contains an element that does not vary over time for any i , then the 

corresponding element in 
1

it
k×

x  from the matrix [ ]Δn k n k
n n

× ×
×

=X Q X  is identically zero for all t  and 

for any draw from the cross section. Since 
n k×
X  contains a column of zeros, assumption 

FE.2 cannot be true. Thus, assumption FE.2 shows explicitly why time-constant variables 
are not allowed in FE. 

FE.3  Homoscedasticity and no serial correlation: the conditional variance-

covariance matrix of the idiosyncratic error terms itu  coincides with the 

unconditional one, and it is characterized by constant variances and zero 
covariances 

( ) 2

111
E , , .i t u nnkn n n n

μ ν σ
×× × ×

′ =u u x I  

The FE estimator can be expressed as 

 [ ] [ ]

1

Δ Δ
1 1

.WT

n k n k n kk nn n n n

−

× × ×× ×× ×

⎛ ⎞ ⎛ ⎞
′ ′= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
β X Q X X Q y  (A.3) 

Without further assumptions, the FE estimator is not necessarily the most efficient 

estimator based on assumption FE.1. Since E( | , , )i tμ ν =u x 0  by assumption FE.1, 

assumption FE.3 is the same as saying 2Var( | , , )i t u nμ ν σ=u x I  if assumption FE.1 also 

holds. It is useful to think of assumption FE.3 as having two parts. The first is that 

E( | , , ) E( )i tμ ν′ ′=uu x uu , which is standard in system estimation contexts. The second is 

that the unconditional variance matrix E( )′uu  has the special form 2
u nσ I . This implies 
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that the idiosyncratic errors itu  have a constant variance across i  and across t  
2 2E( )it uu σ=  and are serially uncorrelated E( ) 0it jsu u =  for all ,i j t s= ≠ , all ,i j t s≠ =  

and all ,i j t s≠ ≠ . 

APPENDIX B: RANDOM EFFECTS ESTIMATION ASSUMPTIONS 

Adapting again the formulation proposed by Wooldridge (2002) to the two-way case, the 
assumptions related to the RE estimation are the following. 

RE.1.a  Strict exogeneity: the set of explanatory variables in each time period { }
t

t T
N k

x  is 

uncorrelated with the idiosyncratic error itu  and the set of explanatory variables 

for each individual { }
i

i N
T k

x  is also uncorrelated with the same idiosyncratic error 

itu . 

This means that 

( ) { } { }1
1 1

E , , E , , E , , 0,
t i

it i t it i t it i tt T i Nnk
N k T k

u u uμ ν μ ν μ ν
×

× ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

x x x  

where 
1 kn×
x , { }

1 t

t T
kN×

x  and { }
1 i

i N
kT×

x  have been already defined in Appendix A. 

RE.1.b  Orthogonality between iμ  and each { }
1 i

i N
T k×

x :  

{ } ( )
1

E E 0.
i

i ii N
T k

μ μ
×

⎛ ⎞
⎜ ⎟ = =
⎜ ⎟
⎝ ⎠

x  

RE.1.c  Orthogonality between tν  and each ( ){ } 1 2
1

, ,...,
t

t

t T t t N t
kN×

≡x x x x :  

{ } ( )
1

E E 0.
t

t tt T
N k

ν ν
×

⎛ ⎞
⎜ ⎟ = =
⎜ ⎟
⎝ ⎠

x  

While assumption RE.1.a is identical to assumption FE.1, the key difference with 
respect to the FE case is that we assume also RE.1.b and RE.1.c. In other words, while for 

FE analysis { }
1

E( | )
i

i i N
T k

μ
×

x  is allowed to be any function of { }i Nx  and { }
1

E( | )
t

t t T
kN

ν
×

x  any 
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function of { }t Tx , for the RE analysis this is not allowed. In fact assumptions RE.1.b and 

RE.1.c allow to derive the traditional asymptotic variance for the RE estimator. 

RE.2 Consistency: the RE GLS estimator is consistent, in the sense that the weighted 
outer product matrix has the appropriate rank. 

A standard RE analysis adds assumptions on the idiosyncratic errors that give 
n n×
Ω  a 

special form. The first assumption is that the idiosyncratic errors itu  have a constant 

unconditional variance across i  and across t  

 ( )2 2E .it uu σ=  (A.4) 

The second assumption is that the idiosyncratic errors are serially uncorrelated 

 ( ) ( )E 0 all ,  and all ,  and all , .it jsu u i j t s i j t s i j t s= = ≠ ≠ = ≠ ≠  (A.5) 

Under these two assumptions (special to RE), we can derive the variances and 

covariances of the elements of 
1n×
ε . Under assumption RE.1.a we have ( )E 0i ituμ =  and 

( )E 0t ituν =  and given ( )E 0i tμν =  we have 

( )2 2 2 2E .it uμ νε σ σ σ= + +  

Also for t s≠  we have 

( ) ( )( ) 2E E ,it is i t it i s isu u με ε μ ν μ ν σ= + + + + =⎡ ⎤⎣ ⎦  

and for i j≠  we have 

( ) ( )( ) 2E E .it jt i t it j t jtu u νε ε μ ν μ ν σ⎡ ⎤= + + + + =⎣ ⎦  

In fact the covariances are characterized by 

( ) 2 2 2

2

2

Cov , for , ,

for , ,
for , ,

0 for , .

it js u i j t s

i j t s
i j t s
i j t s

μ ν

μ

ν

ε ε σ σ σ

σ
σ

= + + = =

= = ≠
= ≠ =
= ≠ ≠

 

If we order the data on the N  individuals in T  consecutive sets (see Wansbeek and 

Kapteyn 1989 and Baltagi 2005), under assumption RE.1.a, (A.4) and (A.5), 
n n×
Ω  takes the 

special form  

 ( ) 2 2 2

11
E .u nn n n n n n n T T nn N N n

μ μ μ ν ν νσ σ σ
× × × × × ×× ×

′ ′ ′= = + +IΩ ε ε Δ Δ Δ Δ  (A.6) 
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Therefore, the appropriate rank of the weighted outer matrix is 

 ( )1rank .
k n n n n k

k−

× × ×
′ =X XΩ  (A.7) 

For efficiency of feasible GLS, we assume that the variance matrix of ε  conditional 

on 
1 nk×
x  is constant 

 

( )

{ } ( )

{ } ( )

( ) ( )

( ) ( )

2 2 2 2 2

1

2

1

111 11

2

1

1

E E

E E
E E .

E E

E E 0

i

t

it it it u
k

it is it isi N
T k

nkn n n n

it jt it jtt T
N k

it js it jsnk

μ ν

μ

ν

ε ε σ σ σ

ε ε ε ε σ

ε ε ε ε σ

ε ε ε ε

×

×

×× × × ×

×

×

⎫⎛ ⎞ = = + + ⎪⎜ ⎟
⎝ ⎠ ⎪

⎪⎛ ⎞
⎪⎜ ⎟ = =

⎜ ⎟ ⎪⎪⎝ ⎠ ′ ′=⎬
⎪⎛ ⎞
⎪⎜ ⎟ = =

⎜ ⎟ ⎪⎝ ⎠ ⎪
⎪= = ⎪⎭

x

x
x

x

x

ε ε ε ε  (A.8) 

Assumptions (A.4), (A.5) and (A.8) are implied by the third RE assumption. 

RE.3 Homoscedasticity and no serial correlation: the conditional variance-

covariance matrix of the idiosyncratic error terms itu  is characterized by 

constant variances and zero covariances; in addition, the variance of both the 

individual specific effects iμ  and the time-specific effects tν is constant. This 

means that 

a. ( ) 2

111
E , , ,i t u nnkn n n n

μ ν σ
×× × ×

′ =u u x I  

b. { }
2 2

1

E ,
i

i i N
T k

μμ σ
×

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

x  

c. { }
2 2

1

E .
t

t t T
N k

νν σ
×

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

x  

The assumption RE.3.a is identical to assumption FE.3. Under assumption RE.3.a, we 

have (i) 2 2

1
E( | , , )it i t unk

u μ ν σ
×

=x , which implies assumption (A.4), and (ii) 

{ }
1

E( | , , ) 0 ( )
t

it jt i tt T
N k

u u i jμ ν
×

= ≠x , { }
1

E( | , , ) 0 ( )
i

it is i ti N
T k

u u t sμ ν
×

= ≠x  and 

1
E( | , , ) 0 ( , )it js i tnk

u u i j t sμ ν
×

= ≠ ≠x , which imply assumption (A.5). But assumption 
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RE.3.a is stronger because it assumes that the conditional variances are constant and the 
conditional covariances are zero. Along with assumption RE.1.b, assumption RE.3.b is 

the same as { }
2

1

Var( | ) Var( )
i

i ii N
T k

μμ μ σ
×

= =x  and along with assumption RE.1.c, assumption 

RE.3.c is the same as { }
2

1

Var( | ) Var( )
t

t tt T
N k

νν ν σ
×

= =x . Moreover, under assumption RE.3, 

assumption (A.8) holds and 
n n×
Ω  has the form (A.6). 

To implement a FGLS procedure, assume that we have consistent estimator of 2
uσ , 2

μσ  

and 2
νσ . Then we can form 

 2 2 2ˆ ˆ ˆ ˆu nn n n n n T T nn N N n
μ μ μ ν ν νσ σ σ

× × × ×× ×

′ ′= + +IΩ Δ Δ Δ Δ  (A.9) 

and the RE estimator is 

 ( ) 1

1 1

ˆ ˆ .GLS

k n n n n k k n n nk n

−

× × × × ×× ×

⎛ ⎞′ ′= ⎜ ⎟
⎝ ⎠

β X X X yΩ Ω  (A.10) 

APPENDIX C: PROOF OF (13) 

Since [ ]( ) [ ]
1

Δ Δ
WT

m m m m n m m m m m

−⎡ ⎤′ ′≡ − = −⎢ ⎥⎣ ⎦
e y X β I X X Q X X Q y  by definition we can write 

m m m m m= ⋅ = ⋅e M y M ε . We assume that there is a constant term and then we consider the 

centered residuals m n m n m m= ⋅ = ⋅ ⋅f E e E M ε . With [ ]ΔQ  idempotent, 

[ ] [ ]Δ Δμ ν⋅ = ⋅ =Q Δ Q Δ 0  and [ ] [ ]
2

Δ Δuσ⋅ = ⋅Q Ω Q  we have 

 
[ ] [ ] [ ]

2 2 2 2

11

2
Δ Δ Δ

mj mj mj

mj
m m m m j j j j

m mj j TN TN T u T
T T T TT n n n n T T N N Tn n n n

u m m m m j j j j
T n n k k n n k k n n Tn k k n n k k nn n n n n n

ν ν μ ν

ν ν

σ σ σ

σ

× ×× × × × ×× ×
−−

× × × × × ×× × × ×× × ×

′ ′ ′= + + +

⎛ ⎞⎛ ⎞
′ ′ ′ ′ ′+ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Δ M Ω M Δ Δ Δ Δ Δ

Δ X X Q X X Q X X Q X X Δ
 (A.11) 

and 

 
[ ] [ ] [ ]

2 2 2 2

11

2
Δ Δ Δ ,

mj mj mj

mj
m m m m j j j j

m mj j N TN TN u N
n n N N N T T N N NN n n Nn n n n

u m m m m j j j j
n k k n n k k nN n n Nn k k n n k k nn n n n n n

μ μ μ ν

μ μ

σ σ σ

σ

× × × × ×× ×× ×
−−

× × × ×× ×× × × ×× × ×

′ ′ ′= + + +

⎛ ⎞⎛ ⎞
′ ′ ′ ′ ′+ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Δ M Ω M Δ Δ Δ Δ Δ

Δ X X Q X X Q X X Q X X Δ
 (A.12) 

and we obtain 
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( ) [ ] [ ]

[ ] [ ]

Δ Δ
1 11 1

Δ Δ

E E trE

tr tr

mjn j j n n m m n m m j j n
n n n n n n n n n n n n n nn n n n n nn n n n

n n n n
n m mj j n n m mj j n

n n n n n n n nn n n n n n n nn n n n
n n n

q  

=
n n

× × × × × × × ×× × × ×× ×

× × × ×× × × ×× ×
× ×

⎛ ⎞ ⎛ ⎞
′ ′ ′ ′= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ′ ′⎛ ⎞ ⎛ ⎞′ ′= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

u M E Q E M u Q E M u u M E

ι ι ι ι
Q E M Ω M E Q I M Ω M I

[ ] [ ] [ ] [ ] [ ]

[ ] [ ]

11

2 2
Δ Δ Δ Δ Δ

1

Δ Δ

tr tr

tr

mj mj
m m m mj j j j

mj
m m m m

n

u m m m j j j j m u
k n n k k n n kn k k n n k k nn n n n n n n n n n

m m m m u
k n n k k n n kn n n n

σ σ

σ

−−

× × × ×× × × ×× × × × ×

−

× × × ×× ×

⎛ ⎞
⎜ ⎟=⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟′ ′ ′ ′= ⋅ + ⋅ +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟′ ′− ⋅⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

Q X Q X X Q X X Q X X Q X

X Q X X Q X [ ] [ ]

1

2 2
Δ Δtr

mj

j j j j

j j j j u
k n n k k n n kn n n n

σ
−

× × × ×× ×

⎛ ⎞⎛ ⎞
⎜ ⎟′ ′− ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

X Q X X Q X

 (A.13) 

and 

( ) -1 -1

1 11 1

-1 -1

E E trE

tr tr

mjN j j n T n m m T n m m j j n
T T T Tn n n T T n n n n n n T n n n n n n n n n Tn n n n n n

n
T n m mj j n T n

T T T TT n n n n n n n n T T nn n n n

q ν ν ν ν

ν ν ν

× ×× × × × × × × × × × × ×× × × ×

× ×× × × × × ×× ×

⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′ ′= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

′⎛ ⎞′ ′ ′= = −⎜ ⎟
⎝ ⎠

u M E Δ Δ Δ E M u Δ Δ E M u u M E Δ

ι ι
Δ Δ E M Ω M E Δ Δ Δ I

( )

1 1-1

2 2 2

2

1 1 1

tr

mj mj mj mj

mj

n n n
m mj j n

n n n Tn n n n
n n n n

n m mj j n
n n n nn n n n

T m mj j
T T T n n n n Tn n n n

N u

nn mj n u n
n n nn n

n n

n
T+k T n

ν

ν ν

μ νσ σ σ

σ

× ×× ×
× ×

× × ×× ×

× × × ×× ×

× × ××

⎛ ⎞′⎛ ⎞ ⎛ ⎞⎜ ⎟′ − =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟
⎝ ⎠

′ ′
⎛ ⎞′ ′= − =⎜ ⎟
⎝ ⎠

= ⋅ + ⋅ + ⋅ +

′ ′+ ⋅

−

ι ι
M Ω M I Δ

ι M Ω M ι
Δ Δ M Ω M Δ

ι Ω ι ι X [ ] [ ] [ ]

11

Δ Δ Δ
1m m m m j j j j

m m m m j j j j n
n k k n n k k n nn k k n n k k nn n n n n n

n

−−

× × × × ×× × × ×× × ×

⎛ ⎞⎛ ⎞
′ ′ ′ ′⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

X Q X X Q X X Q X X ι

 (A.14) 

and 

 

( ) -1 -1

1 11 1

-1 -1

E E trE

tr tr

mjT j j n N n m m N n m m j j n
n n N N n n n n n N N n n n n n n nn N N n N n n Nn n n n n n

n
N n m mj j n N n

N N n n n n n n N NN n n N N nn n n n

q μ μ μ μ

μ μ μ

× × × × × × × × × ×× × × ×× × × ×

× × × × ×× × ×× ×

⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′ ′= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

′⎛ ⎞′ ′ ′= = −⎜ ⎟
⎝ ⎠

u M E Δ Δ Δ E M u Δ Δ E M u u M E Δ

ι ι
Δ Δ E M Ω M E Δ Δ Δ I

( )

1 1-1

2 2 2

2

1 1 1

tr

mj mj mj mj

mj

n n n
m mj j n

n n n Nn n n n
n n n n

n m mj j n
n n n nn n n n

N m mj j
N N n nN n n Nn n n n

T u

nn mj n u n
n n nn n

n n

n
N+k n N

μ

μ μ

μ νσ σ σ

σ

× ×× ×
× ×

× × ×× ×

× ×× ×× ×

× × ××

⎛ ⎞′⎛ ⎞ ⎛ ⎞⎜ ⎟′ − =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟
⎝ ⎠

′ ′
⎛ ⎞′ ′= − =⎜ ⎟
⎝ ⎠

= ⋅ + ⋅ + ⋅ +

′ ′+ ⋅

−

ι ι
M Ω M I Δ

ι M Ω M ι
Δ Δ M Ω M Δ

ι Ω ι ι X [ ] [ ] [ ]

11

Δ Δ Δ
1
,

m m m m j j j j

m m m m j j j j n
n k k n n k k n nn k k n n k k nn n n n n n

n

−−

× × × × ×× × × ×× × ×

⎛ ⎞⎛ ⎞
′ ′ ′ ′⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

X Q X X Q X X Q X X ι

 (A.15) 

where n n n′=J ι ι  and nι  is a vector of ones of dimension n. 

APPENDIX D: PROOF OF (15) 

Since the { }
1

i N
M×

μ ’s, the { }
1

t T
M×

ν ’s and 
1

it
M×
u ’s are independent, from the equations in (14) we 

can write 
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⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

W W

B B B

B B B

 (A.16) 

where the within individuals (co)variation is 

 
( )( )

1 11 1

11 11 111 1 1 1
,

i

i
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u it i t it i t
M M M Mi t

TN N T

it it i i i t t t
M M M M M Mi t i t

T N

× × ×= =

× × × × × ×= = = =

′= − − − − =

′ ′ ′= − −

∑∑

∑∑ ∑ ∑

W u u u u u u

u u u u u u

i i i i

i i i i

 (A.17) 

the between individuals (co)variations are  

 
{ }( ) { }( ) { } { }

( )( )
111 1 1 11 1

11111 11 1

,
N N

C
i ii N i N i N i N

M Mi iM M M MM M
N N

C
u i i i i i i M MM M M MM Mi i

T T n

T T n

μ
× ×= =× × ×× ×

× ×× × ×× ×= =

′ ′ ′= − − = −

′ ′ ′= − − = −

∑ ∑

∑ ∑

B μ μ μ μ μ μ μ μ

B u u u u u u u ui i i i

 (A.18) 

and the between times (co)variations are  

 
{ }( ) { }( ) { } { }

( )( )

111 1 1 11 1

11111 11 1

,

,

T T
T

t tt T t T t T t T M MM M t t M MM M
T T

T
u t t t t t t M MM M M MM Mt t

N N n

N N n

ν × ×× = = × ×× ×

× ×× × ×× ×= =

′ ′ ′= − − = −
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∑ ∑
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B u u u u u u u ui i i i

 (A.19) 

where 1

Ti
mitt

i

u
mi Tu =∑=i , 1

Nt
miti

t

u
m t Nu =∑=i , 1 1 1

( )
N T Ni

mit i mii t i
u T u

m n nu = = =
⋅∑ ∑ ∑= = i  or 

1 1 1
( )

T N Tt
mit t m tt i t

u N u
m n nu = = =

⋅∑ ∑ ∑= = i , 1
( )

N
i mii

T
m n

μ
μ =

⋅∑=  and 1
( )

T
t mtt

N
m n

ν
ν =

⋅∑= . 

Since E( )it i t ii tt ii tt uμ νδ δ δ δ′ ′ ′ ′ ′ ′′ = + +ε ε Σ Σ Σ , where { } { }E( )i N i N ii μδ′ ′′ =μ μ Σ , 

{ } { }E( )t T t T tt νδ′ ′′ =ν ν Σ  and E( )it i t ii tt uδ δ′ ′ ′ ′′ =u u Σ , it follows that E( ) u

ii i T
′ = Σu ui i , 

E( ) u

tt t N
′ = Σu ui i , 

2
1

2

( )E( )
N

ii
T

n
μ=

⋅∑′ =
Σμμ , 

2
1

2

( )E( )
T

tt
N

n
ν=

⋅∑′ =
Σνν  and E( ) u

n
′ = Σuu . 

Therefore from the equations in (A.17), (A.18) and (A.19) we have 
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 (A.20) 

and combining the equations in (A.20) with the equations in (A.16) we obtain 
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