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Abstract 

The birth order literature emphasizes the role of parental investments in explaining why 
firstborns have higher human capital outcomes than their laterborn siblings. We use birth 
order as a proxy for investments and interact it with genetic endowments. Exploiting only 
within-family variation in both ensures they are exogenous as well as orthogonal to each other. 
As such, our setting is informative about the existence of dynamic complementarity in skill 
production. Our empirical analysis exploits data from 15,019 full siblings in the UK Biobank. We 
adopt a family-fixed effects strategy combined with instrumental variables to deal with 
endogeneity issues arising from omitted variables and measurement error. We find that birth 
order and genetic endowments interact: those with above-average genetic endowments 
benefit disproportionally more from being firstborn compared to those with below-average 
genetic endowments. This finding is a clean example of how genetic endowments (`nature’) 
and the environment (`nurture’) interact in producing educational attainment. Moreover, our 
results are consistent with the existence of dynamic complementarity in skill formation: 
additional parental investments associated with being firstborn are more ‘effective’ for those 
siblings who randomly inherited higher genetic endowments for educational attainment. 
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1. Introduction 
It is increasingly understood that important individual outcomes such as educational 

attainment are influenced by a complex interplay between ‘nature’ (i.e., genetic variation) and 

‘nurture’ (i.e., environmental circumstances; see e.g., Rutter, Moffitt, and Caspi, 2006; 

Heckman, 2007). For example, the formation of skills relevant to educational attainment may 

result from dynamic complementarity between initial endowments and parental investments 

(Cunha & Heckman, 2007). Empirically estimating the contribution of genetic endowments and 

environments, and their possible interaction, is however complicated by the endogenous 

nature of both. Indeed, environmental characteristics are partially heritable and typically 

cluster together; e.g., higher educated parents tend to have higher incomes. Hence, it is not 

straightforward to disentangle what may be driving the ‘environment-effect’. Similarly, 

although several population studies have found specific genetic variants that are associated 

with human capital outcomes such as educational attainment (Lee et al., 2018; Okbay et al., 

2016; Rietveld et al., 2013), genetic variation is only random conditional on parental genetic 

variation (e.g., Lawlor, Harbord, Sterne, Timpson, & Davey Smith, 2008; Smith & Ebrahim, 

2003). Not controlling for the latter implies that the ‘gene-effect’ may in fact reflect ‘genetic 

nurture’ – that is, the parental genotype can shape the environment in which children grow 

up, thereby producing a spurious association between the child’s genetic variants and their 

outcomes (Belsky et al., 2018; Kong et al., 2018).  

This paper is the first to exploit exogenous variation in both genetic endowments for education 

and the family environment to analyse gene-environment interactions for educational 

attainment. Genetic endowments are measured using a so-called “polygenic score” (PGS) – a 

highly predictive index constructed as the sum of all measured genetic variants, weighted by 

the strength of their correlation with educational attainment (Dudbridge, 2013; Lee et al., 

2018). Our measure of the environment is an individual’s birth order, which is consistently 

negatively correlated with educational attainment in developed countries (see e.g. Behrman 

et al., 1986; Black, Devereux, and Salvanes, 2005; Kantarevic et al., 2006; Booth and Kee, 2009; 

De Haan, 2010; Bagger et al., 2013; De Haan, Plug, and Rosero, 2014).  

We overcome endogeneity issues by exploiting within-family variation in both genetic and birth 

order effects. Indeed, siblings’ birth order is random within families (e.g., Damian and Roberts, 

2015), and genetic variants are randomly assigned across siblings within a family according to 
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Mendel’s Law. Hence, genetic variants are unrelated to birth order by construction. 1  We 

believe this is the first study in which both genetic variation and environments are truly 

exogenous, providing a compelling context in which we can fundamentally improve our 

understanding of the gene-environment interplay in shaping life outcomes. Do advantageous 

environments complement genetic advantages? Answering this question constitutes our first 

main contribution to the literature. 

We choose birth order as a measure of the environment not merely for being conveniently 

uncorrelated with genetic endowments. In fact, economic theories of skill production provide 

a specific hypothesis of the sign of the interaction term, and our specific application is 

informative about the existence of “dynamic complementarity” in skill formation. Cunha and 

Heckman (2007) propose a model in which skills at period t+1 (θt+1) are produced according 

to the production function 𝑓𝑓:  

𝜽𝜽𝒕𝒕+𝟏𝟏 = 𝒇𝒇𝒕𝒕(𝜽𝜽𝒕𝒕,𝒉𝒉, 𝑰𝑰𝒕𝒕) (1) 

where ℎ  denotes parental characteristics and 𝐼𝐼𝑡𝑡  reflects parental investments in period t. 

Iteratively substituting equation (1) implies a model in which skills are a function of initial 

endowments 𝜃𝜃0 , family-invariant parental characteristics ℎ, as well as the entire history of 

parental investments 𝐼𝐼0, … , 𝐼𝐼𝑡𝑡  (Heckman, 2007). A signature feature of the skill production 

function is the concept of dynamic complementarity, where skills raise the productivity of later 

investment �𝜕𝜕
2𝜃𝜃𝑡𝑡+1
𝜕𝜕𝜃𝜃𝑡𝑡𝜕𝜕𝐼𝐼𝑡𝑡

> 0� . In other words, children with higher (genetic) endowments 

(captured by 𝜃𝜃0)  benefit the most from parental investments 𝐼𝐼0, … , 𝐼𝐼𝑡𝑡. 

We use the individual’s birth order as an exogenous and highly predictive proxy for parental 

investments because we do not observe parental investments directly, and because realized 

parental investments are endogenous to the child’s endowments (e.g., Becker and Tomes, 

1986; Almond and Mazumder, 2013; Breinholt and Conley, 2019; Sanz-de-Galdeano and 

Terskaya, 2019). The theoretical literature on the ‘quantity-quality trade-off’ (Becker, 1960; 

Becker & Lewis, 1973; Becker & Tomes, 1976; Galor & Weil, 2000) shows that with each 

additional child, it is more expensive to maintain the same ‘quality’ children (i.e., with the same 

level of education or health), implying that parents invest less in laterborn children. Moreover, 

 
1 A systematic relationship between birth order and genes could arise when parents base their fertility decisions 
on the observed genetic endowments of their offspring, i.e., a stopping rule depending on the “quality” of children 
(e.g., Eirnæs & Pörtner, 2004). We find no such evidence in our sample; we discuss this below. 
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with parental preferences for fairness in investments over equality in outcomes (see e.g., 

Berry, Dizon-Ross, & Jagnani (2020)), parents tend to distribute their resources equally over 

their children, leading to natural reductions in time investments in laterborn children 

compared to their firstborn siblings.2  

Indeed, firstborns have undivided attention until the arrival of the second child (Breining, 

Doyle, Figlio, Karbownik, & Roth, 2020), and the empirical literature suggests that a dominant 

channel through which birth order affects educational attainment is parental time investments 

(see e.g., Birdsall, 1991; Black, Grönqvist, & Öckert, 2018; Breining et al., 2020; De Haan et al., 

2010; Monfardini & See, 2012; Pavan, 2016; Price, 2008). Using the American Time Use Survey 

(ATUS), Price (2008) shows that firstborns receive 20-30 minutes more daily quality time 

compared to their younger siblings (see also Black et al., 2018; Monfardini & See, 2012). 

Lehmann, Nuevo-Chiquero, & Vidal-Fernandez (2018) additionally show that with laterborn 

children, mothers postpone prenatal care, breastfeed less, and are more likely to smoke when 

not breastfeeding. Hence, while we do not dismiss other potential channels through which 

birth order may affect educational attainment,3 parental investments are a prominent channel 

through which these effects arise, consistent with the evidence that parental investments are 

an important input into the child’s skill production (e.g., Del Boca, Flinn, & Wiswall, 2014). 

The theory of skill production, and in particular the concept of dynamic complementarity 

therefore provides a clear prediction for the sign of the Gene-by-Environment (G×E) 

interaction term: in a sample of siblings, being firstborn should show a positive interaction with 

genetic endowments. Hence, apart from providing a rare context in which economic theory 

helps formulate hypotheses about fundamental interactions between genetic variation and 

the environment, estimating the interaction between birth order and genetic endowments 

provides a unique setting to empirically test for dynamic complementarity. This constitutes our 

second main contribution. 

 
2 To illustrate the importance of this environmental determinant, Handy & Shester (2020) estimate that the rise 
in the fraction of later-born children was responsible for 20-35% of the stagnation in college completion among 
US baby-boom cohorts born between 1946 and 1974. 
3 Eirnæs & Pörtner (2004) distinguish three additional environmental channels through which birth order effects 
may arise: (i) younger children may benefit from the interaction with their older siblings; (ii) firstborns benefit 
from a lower maternal age and better maternal immune system (e.g., Behrman, 1988; Black et al., 2016); and (iii) 
in some societies the oldest son (or older children more generally) are favoured as they are the first to become 
economically independent. Hotz & Pantano (2015) additionally argue that parents may demand a higher level of 
discipline for firstborns to set an example for laterborn children, which may also affect educational attainment.  
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Our empirical analysis exploits data from 15,019 full siblings from the UK Biobank, a population-

based sample from the United Kingdom (Fry et al., 2017). To measure participants’ genetic 

endowments, we construct polygenic scores for educational attainment based on the results 

from our own tailor-made genome-wide association study (GWAS) that uses the UK Biobank 

sample but excludes all siblings and their relatives.4 We adopt a family fixed effects approach 

to exploit within-family differences in genetic endowments and birth order to study the G, E 

and G×E effects on educational attainment, and we apply Obviously-Related Instrumental 

Variables estimation (ORIV, Gillen, Snowberg, & Yariv, 2019) to reduce measurement error in 

the polygenic score. We focus on firstborns versus laterborns, since the literature suggests 

birth order effects are particularly salient at this margin (e.g., Breining et al., 2020). 

We confirm earlier findings that laterborns have a lower level of education than firstborns, and 

that one’s genetic endowment for education is a strong predictor of years of education. We 

also confirm the long-held conjecture that genetic endowments do not differ systematically 

across birth order within a family. This finding corroborates that birth order effects must be 

due to environmental influences, such as greater parental time investments in firstborns. Our 

main finding is that birth order and genetic endowments interact: being firstborn and having 

higher genetic endowments for education exhibit a positive interaction, meaning that those 

with a high polygenic score benefit disproportionally more from being firstborn compared to 

those with a low polygenic score. This finding is a clean example of how genetic endowments 

and the environment interact in producing important life outcomes such as educational 

attainment. Moreover, our empirical results are consistent with the existence of dynamic 

complementarity in skill formation: additional parental time investments associated with being 

firstborn are more ‘effective’ among those siblings who randomly inherited higher genetic 

endowments for educational attainment. 

Our paper speaks to three main literatures. First, we contribute to an emerging literature on 

gene-environment interactions (G×E), which addresses how the environment moderates the 

effect of genetic variants, and vice versa. Previous studies have typically examined interactions 

between polygenic scores and endogenous environments such as socio-economic status (e.g., 

(Barth, Papageorge, & Thom, 2020; Bierut, Biroli, Galama, & Thom, 2018; Ronda et al., 2020), 

childhood trauma (e.g., Mullins et al., 2016; Peyrot et al., 2014), or partner’s death (e.g., 

 
4 See Appendix A for definitions and explanations of the genetic terms used here. 
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Domingue, Liu, Okbay, & Belsky, 2017). The interpretation of these findings is complicated, 

because individuals with certain genetic predispositions may self-select into different 

environments (known as gene-environment correlation, or rGE; see Jencks, 1980; Schmitz & 

Conley, 2017a). In these analyses, therefore, the ‘environmental effect’ could be reflecting the 

effect of one’s genotype through rGE, and the ‘genetic effect’ could be reflecting the rearing 

environment shaped by parental genotype (‘genetic nurture’). A handful of studies use 

exogenous variation in environments to study G×E in educational attainment. For example, 

Conley & Rauscher (2013) analyse how random differences in the prenatal environment alter 

the genetic effects on education, depression, and delinquency. In a more recent study, Schmitz 

& Conley (2017b) use a polygenic score for educational attainment jointly with Vietnam War 

conscription as a natural experiment to study their interaction effect on educational 

attainment. 5  We push this literature one step further by not only considering exogenous 

variation in the environment, but also in genetic endowments by exploiting within-family 

variation in polygenic scores. 

A second strand of literature that we speak to is the literature on birth order effects. This 

literature consistently finds that in developed countries, laterborn children have lower 

educational attainment. Birth order effect have also been found for other outcomes, though 

sometimes with mixed results, such as intelligence (Black, Devereux, & Salvanesz, 2011), health 

(Black, Devereux, & Salvanes, 2016; Pruckner et al., 2019), personality and leadership skills 

(Black et al., 2018), and delinquency (Breining et al., 2020). We contribute to this literature by 

studying heterogeneity in the birth order effect on educational attainment with respect to 

genetic endowments. The potential interaction between birth order and genetic endowments 

is not merely an important source of heterogeneity in the treatment effect, but one that – if 

present – carries over to the next generation, potentially exacerbating intergenerational 

inequalities (Havari & Savegnago, 2020). 

Finally, we speak to the literature on skill production and dynamic complementarity  (Cunha & 

Heckman, 2007; Cunha et al., 2010; Todd & Wolpin, 2003). Estimating dynamic 

complementarity in skill formation requires independent variation in initial endowments and 

subsequent investments, or, alternatively, exogenous variation in sequential investments over 

 
5 Studies with other outcomes that exploit exogenous environments include, e.g., Barcellos, Carvalho, & Turley 
(2018), Schmitz & Conley (2016) and Pereira, van Kippersluis, & Rietveld (2020). 
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time (Almond & Mazumder, 2013; Johnson & Jackson, 2019). Hence, empirically testing for 

dynamic complementarity is extremely challenging (Almond, Currie, & Duque, 2018). Indeed, 

the previous literature has almost exclusively focused on early-life outcomes such as 

birthweight as a measure of endowments (e.g., Datar, Kilburn, & Loughran, 2010; Figlio, 

Guryan, Karbownik, & Roth, 2014). However, such early life outcomes are affected by prenatal 

investments (Aizer & Cunha, 2012), meaning they partially capture parental choices and are 

therefore endogenous. Furthermore, parents respond to children’s endowments (e.g. 

Adhvaryu & Nyshadham, 2016; Aizer & Cunha, 2012; Almond & Mazumder, 2013; G. S. Becker 

& Tomes, 1986; Bharadwaj, Eberhard, & Neilson, 2018; Datar et al., 2010; Frijters, Johnston, 

Shah, & Shields, 2013; Giannola, 2020; Hsin & Felfe, 2014), with recent studies suggesting that 

parental investments also respond to the genetic endowments of children (Breinholt & Conley, 

2019; Fletcher, Wu, Zhao, & Lu, 2020; Houmark, Ronda, & Rosholm, 2020; Sanz-de-galdeano 

& Terskaya, 2019). Hence, measures of children’s endowments are rarely clean of parental 

investments, and parental investments are rarely independent of endowments, posing a 

formidable empirical challenge to accurately identify dynamic complementarities in skill 

formation.6  

We contribute to this literature by using exogenous variation in genetic endowments and 

parental investments. Indeed, our measure of endowments is randomly assigned within 

families and fixed at conception. It is therefore clean from parental investments.  Furthermore, 

we proxy for parental investments using individuals’ birth order, which is strongly associated 

with parental investments, but uncorrelated with genetic endowments. Essentially, employing 

birth order as a proxy for parental investments exploits the natural reduction in the time and 

money available with the arrival of a laterborn child, and is thus independent of the child’s 

endowments. Using random within-family variation in genetic endowments and (birth order-

induced) parental time investments, provides an innovative setting to empirically test for 

dynamic complementarity in skill formation. We show that the use of such within-family G×E, 

exploiting exogenous G as well as E, provides a novel way to test for dynamic complementarity 

more generally, which is not restricted to birth order effects, but extends to other (exogenous) 

 
6 A recent set of papers has examined rare cases where exogenous variation exists in both initial endowments as 
well as later-life investments, with mixed evidence. Some studies find evidence consistent with dynamic 
complementarity (Adhvaryu et al., 2019; Duque et al., 2018; Gunnsteinsson et al., 2014; Johnson & Jackson, 2019), 
whereas others find weaker evidence or even substitutability between endowments and investments (Lubotsky 
& Kaestner, 2016; Malamud et al., 2016; Rossin-Slater & Wüst, 2020). See Appendix C for a detailed overview.  
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parental investments and policy changes (e.g., on reducing student-teacher ratios). By 

informing the shape and properties of the production function for skill, our analysis is an 

important precursor to a structural model where parents face the child’s skill production 

function alongside budget and time constraints to decide between own consumption and 

investments in their children. Our supportive evidence for dynamic complementarity 

emphasizes the importance of early-life investments being followed-up by later-life 

investments to reap the full benefits in terms of human capital outcomes (e.g., Cunha & 

Heckman, 2007).  

The remainder of this paper is organized as follows. In section 2, we outline our empirical 

strategy. Section 3 discusses the data source. In section 4 we present our main results and a 

number of robustness checks. Section 5 provides a discussion of our results and concludes. 

2. Empirical Strategy 
We analyse the gene-environment (G×E) interaction between one’s genetic predisposition 

towards educational attainment and birth order as an important environmental determinant 

of education. The empirical specification is rooted in the skill production function (1), where 

we assume that adult educational attainment is an increasing function of acquired skills by the 

end of childhood 𝑔𝑔(𝜃𝜃𝑇𝑇+1) as in  Cunha & Heckman (2008, equation 2) and Cunha et al. (2010, 

equation 2.2). 

Following Todd & Wolpin (2003) and Cunha & Heckman (2008), we specify a linear production 

function, where years of completed education 𝒀𝒀 is a function of initial endowments 𝜃𝜃0, the 

history of parental investments 𝐼𝐼, and unobserved parental characteristics ℎ. Empirically, we 

measure initial endowments by the polygenic score for educational attainment (𝑮𝑮), the history 

of parental investments is proxied by an indicator for being firstborn (𝑬𝑬 ), and parental 

characteristics are subsumed into the family fixed effect 𝜹𝜹𝒋𝒋. We go beyond Todd & Wolpin 

(2003) and Cunha & Heckman (2008) by allowing for an interaction term between 𝑮𝑮 and 𝑬𝑬, to 

allow for dynamic complementarities. This leads to the following specification 

𝒀𝒀𝒊𝒊𝒊𝒊 = 𝜶𝜶𝟏𝟏 + 𝜶𝜶𝟐𝟐𝑮𝑮𝒊𝒊𝒊𝒊 + 𝜶𝜶𝟑𝟑𝑬𝑬𝒊𝒊𝒊𝒊 + 𝜶𝜶𝟒𝟒𝑮𝑮𝒊𝒊𝒊𝒊 × 𝑬𝑬𝒊𝒊𝒊𝒊 + 𝜶𝜶𝟓𝟓𝑿𝑿𝒊𝒊𝒊𝒊 +  𝜹𝜹𝒋𝒋 + 𝝃𝝃𝒊𝒊𝒊𝒊 (2)  

where for each individual i in family j, 𝑌𝑌𝑖𝑖𝑖𝑖 is years of education, 𝐸𝐸𝑖𝑖𝑖𝑖 is equal to one for those 

who are firstborn and zero otherwise, and 𝐺𝐺𝑖𝑖𝑗𝑗  is the standardized polygenic score for 

education (see section 3 and Appendix A for more information on its construction). 𝐺𝐺𝑖𝑖𝑖𝑖 × 𝐸𝐸𝑖𝑖𝑖𝑖 
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is the interaction term. 𝑿𝑿𝒊𝒊𝒋𝒋 is the set of individual level controls, including gender, month and 

year of birth dummies (Black et al., 2005; Handy & Shester, 2020). It also includes the vector 

of the first 40 principal components (PCs) of the genetic relatedness matrix.7 Finally, 𝜹𝜹𝒋𝒋 denote 

family fixed effects and 𝝃𝝃𝒊𝒊𝒊𝒊 is the error term. We employ heteroskedasticity-robust standard 

errors, clustered at the family level. The parameter 𝛼𝛼2 captures the association between the 

standardized polygenic score for education and the years of schooling, whilst 𝛼𝛼3 estimates the 

average advantage in years of schooling for firstborn children compared with their laterborn 

siblings. 𝛼𝛼4 shows the extent to which the polygenic score and being first born complement 

each other’s effect on education and is therefore informative about the existence of putative 

G×E effects and dynamic complementarity.8  

Following Black et al. (2005, 2011), Heiland (2009), Lehmann, Nuevo-Chiquero, & Vidal-

Fernandez (2018), we compare within-family and between-family specifications. The inclusion 

of family fixed effects ensures that variation in the polygenic score and birth order is random, 

making polygenic score and birth order are orthogonal to each other. 9  Hence, we avoid 

endogeneity concerns arising from omitted variables by comparing siblings within the same 

family. 

Since the GWAS underlying the construction of a polygenic score is based on a finite sample, 

our estimated polygenic score is a noisy proxy for the true (latent) polygenic score (e.g.,  

Benjamin, Daniel Cesarini, Laibson, & Turley, 2020; van Kippersluis et al., 2020). Moreover, the 

GWAS on basis of which the polygenic score was constructed did not control for parental 

genotypes, again leading to measurement error in the resulting polygenic score (Trejo & 

Domingue, 2019). Both sources of measurement error lead to an attenuation bias in the 

coefficient of the polygenic score.10 While we cannot solve the attenuation bias arising from 

 
7 Genetic principal components (PCs) can be used to control for subtle forms of population stratification (i.e., 
correlations between allele frequencies and environmental factors across subpopulations in the sample) in a 
between-family (population-level) analysis (Price et al., 2006; Rietveld et al., 2014). Although not strictly necessary 
to include in the within-family analysis due to the inclusion family fixed effects, we keep the PCs in all specifications 
to facilitate a clean comparison between the between-family and within-family results. 
8  In section 4.5, we study the interaction effect using more flexible approaches than the linear interaction 
presented here. 
9  In section 4.5, we further test robustness to including a dummy for the lastborn child to assess whether 
endogenous fertility decisions on basis of genetic endowments influence our results. 
10 The reason why classical measurement error as a result of finite-sample bias leads to attenuation bias is well 
known. It is more subtle why the exclusion of parental genotype in the discovery GWAS leads to an attenuation 
bias. The reason is that any polygenic score will reflect both direct genetic effects arising from the individual’s 
genotype as well as indirect genetic effects arising from the omitted parental genotypes. The latter effects are 
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the omission of parental genotype in the GWAS, we follow DiPrete, Burik, & Koellinger (2018) 

and van Kippersluis et al. (2020) in applying Instrumental Variables (IV) to tackle the classic 

measurement error problem. More specifically, we split our discovery GWAS sample into two 

equal halves and construct two polygenic scores based on the two discovery samples. Even 

though the two polygenic scores individually have lower predictive power, the measurement 

error in the two is plausibly orthogonal and so they can be used as instrumental variables for 

each other. Using these two polygenic scores, we apply Obviously-Related Instrumental 

Variables (ORIV; Gillen et al., 2019). See Appendix C for more details.  

3. Data  
We use data from the UK Biobank (2006-2010), a population-based cohort with approximately 

500,000 individuals aged between 40-69 at the time of interview and living within a radius of 

40 km from one of the 22 assessment centres in England, Wales, and Scotland (Fry et al., 2017). 

It contains survey data, biomarker and DNA samples, physical measurements, and linkage to 

inpatient registers and death records (Sudlow et al., 2015). Because participation in the UK 

Biobank is voluntary, it is not a representative sample of the UK population (see Fry et al. (2017) 

for a detailed analysis). 

We apply the following sample selection criteria. We begin with 502,498 consented individuals. 

We follow the literature and remove those of non-European descent (92,892 observations), 

twins and multiple births (9,310 observations), and individuals with missing or conflicting 

information regarding the number of siblings and/or family size (3,801 observations). In doing 

so, we arrive at a sample of 396,494 individuals. We further restrict this sample to individuals 

with at least one sibling11 in the UK Biobank and without missing values on any of the variables 

included in our analysis (i.e., years of education, birth order, family size, year and month of 

birth, principal components, gender, and the polygenic score for education). Since the UK 

Biobank did not specifically target families, this leads to a final sample size of N = 15,019 

siblings. 

 
known as ‘genetic nurture’ (e.g., Kong et al., 2018). When applied within families, the differences in the polygenic 
score arising from parental genotype are spurious since parental genotype is the same across siblings. Hence, part 
of the differences across siblings in the polygenic score is spurious and can be considered measurement error 
attenuating the resulting within-family estimates (Trejo & Domingue, 2019).  
11 Siblings are identified based on the genetic data; there are no self-reported siblings in the UK Biobank. See 
Appendix B for the full procedure followed to identify siblings. 
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We follow the literature (see e.g. Lee et al., 2018; Okbay et al., 2016; Rietveld et al., 2013) and 

convert individuals’ qualifications to equivalent years of education using the International 

Standard Classification of Education (ISCED).12 The average years of education for the sibling 

sample is 13.9 years (see Table 1). 

We construct individuals’ birth order on the basis of their response to a question of how many 

older siblings they have. If a respondent reports zero older siblings, the birth order is set to 

one. For individuals with missing information on the number of older siblings, we determine 

birth order based on family size and birth year of the individual and his/her siblings if all of 

them are present in the UK Biobank. This adds information on birth order for 1,752 siblings in 

our analysis sample.  Table 1 shows that we have 5,911 firstborns (39.4%), with an average 

birth order of 1.91 (where we have censored birth order at 5 for the 245 respondents with 

birth order beyond 5). Around 37% of our sample is lastborn, and the average family size is 3 

(i.e., the average number of siblings is 2).  

 

Our measure of genetic endowment for education is the polygenic score for education. A 

polygenic score is a weighted sum of genetic variants called Single Nucleotide Polymorphisms 

(SNPs, see Appendix A for details). The SNP weights are determined by the association between 

a SNP and years of education (Dudbridge, 2013) in an independent (discovery) sample: 

 
12 Years of education ranges from 7 to 20, where College or University degree is equivalent to 20 years, National 
Vocational Qualification (NVQ), Higher National Diploma (HND), or Higher National Certificate (HNC) to 19 years, 
other professional qualifications to 15 years, having an A or AS levels or similar to 13 years, O levels, (General) 
Certificate of Secondary Education ((G)CSE) to 10 years, and if none of the above to the lowest level of 7 years. 

Table 1: Descriptive statistics analysis sample (N = 15,019) 
Variable Mean S.D. Min. Max. 
Years of education 13.899 5.020 7.000 20.000 
Firstborn (1/0) 39.4% 

   

PGS for years of education 0.000 1.000 -3.938 4.166 
Birth order 1.913 0.997 1.000 5.000 

Secondborn  41.51%    
Thirdborn 11.23%    
Fourthborn 4.31%    
Fifth- or laterborn 3.60%    

Family size 2.987 1.527 2.000 14.000 
Last child (1/0) 36.9% 

   

Male (1/0) 42.5% 
   

Notes: S.D. = Standard deviation; Min. = Minimum; Max. = Maximum. 
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𝑃𝑃𝑃𝑃𝑆𝑆𝑖𝑖 = ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖
𝐽𝐽
𝑗𝑗=1 ,                                                                           (3) 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 is the value for the polygenic score for individual i, 𝛽𝛽𝑗𝑗 is the regression coefficient 

of SNP j (𝑗𝑗 = 1, … , 𝐽𝐽) from the GWAS, and 𝑥𝑥𝑖𝑖𝑖𝑖 is the genotype of individual i for SNP j (coded as 

0, 1 or 2, indicating the number of “effect” alleles). The polygenic scores are standardized 

within the sibling sample to have mean 0 and standard deviation 1.  

The polygenic score measures the genetic predisposition towards educational attainment 

within the environmental context and demographic characteristics of the discovery GWAS 

sample (Domingue, Trejo, Armstrong-Carter, & Tucker-Drob, 2020). It is therefore preferable 

to select discovery and analysis samples from the same environmental context, especially 

when analysing gene-environment interactions. At the same time, the discovery sample should 

be independent of the analysis sample to avoid overfitting (Dudbridge, 2013). As an optimal 

balance, we therefore construct the polygenic score by using the weights from our own tailor-

made GWAS that uses the UK Biobank sample without siblings and their relatives. Siblings’ 

relatives were identified on the basis of their genetic data. The GWAS discovery sample 

comprises 392,771 individuals from the UK Biobank; we use the summary statistics from these 

analyses to create the polygenic scores on the sample of 15,019 siblings. This tailor-made 

polygenic score alleviates the differences between the discovery and the analysis samples in 

terms of demographics and environmental context, as well as measurement (i.e., the variables 

of interest are measured in the same way (Elam, Clifford, Shaw, Wilson, & Lemery-Chalfant, 

2019; Tropf et al., 2017). Moreover, running our own GWAS enables the construction of two 

independent polygenic scores, obtained by splitting the discovery GWAS sample into two equal 

halves, that can be used in ORIV. This approach has been shown to outperform a single 

polygenic score that is based on meta-analysing multiple cohorts (van Kippersluis et al., 

2020).13  

  

 
13 As a robustness check, we constructed a polygenic score based on the meta-analysed GWAS results of Okbay 
et al. (2016) including 23andMe summary statistics and our own UK Biobank discovery sample GWAS. As 
expected, this polygenic score is more predictive for educational attainment than the polygenic score constructed 
on the basis of the UK Biobank only. However, this polygenic score is based on several discovery cohorts from 
very different environmental contexts and does not allow us to use ORIV since we do not have access to all 
underlying samples to allow us to create multiple polygenic scores. The results are qualitatively the same, but as 
expected given that this polygenic score reflects a different environmental context (see e.g., Domingue et al. 
2020), the interaction effect is estimated to be smaller and does not reach statistical significance at conventional 
levels (results available upon request from the authors). 
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4. Results 

4.1. Predictive power of the polygenic score for educational attainment 

Figure 1 shows that our polygenic score for years of education is normally distributed. We 

divide the polygenic score in 200 bins; the dots represent the average years of education for 

each bin. The line through the dots is obtained from a local polynomial regression of years of 

education on our polygenic score. In line with the literature (Lee et al., 2018; Okbay et al., 2016; 

Rietveld et al., 2013), the polygenic score is positively correlated with years of education (r = 

0.24, p < 0.001). The average difference between those two standard deviations below the 

mean of the polygenic score, and those two standard deviations above the mean is almost 4 

years of completed education, highlighting the substantial predictive power of the polygenic 

score. Furthermore, Figure 1 suggests the relationship is approximately linear, with little 

suggestion of any strong non-linearities between years of education and the polygenic score. 

 

Figure 1. The relationship between the standardized polygenic score and years of education 
in the analysis sample. 

 

Table 2 shows that the incremental R2 of the polygenic score (i.e., the additional variance 

explained by the polygenic score after controlling for gender, month and year of birth, and the 

first 40 principal components) is 6.0% in the between-family analysis (i.e., 0.095-0.035=0.060; 

Columns 1 and 2). In the specifications with family fixed effects (Columns 3 and 4), the 

incremental (within) R2 for the polygenic score is reduced to 1.0%. This reduction in predictive 

power when moving from between-family to within-family estimates is well-established in the 
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literature (see e.g., Koellinger & Harden, 2018; Kong et al., 2018; Lee et al., 2018; Rietveld et 

al., 2013; Selzam et al., 2019). The reduction reflects the fact that family fixed effects account 

for the shared family environment and parental genotype, which was not accounted for in the 

between-family specification. In terms of the effect sizes, we observe that a one standard 

deviation increase in the polygenic score is associated with an increase of 1.23 years of 

education. With family fixed effects, the effect size is reduced to 0.633. 

 

Table 2. Results of the regressions of years of education on the polygenic score (PGS).  
Between-family analysis  Within-family analysis 

 (1) (2)  (3)  (4) 
PGS for years of education 

 
1.234***  

 
0.633***  

(0.038)  
 

(0.071) 
Constant 15.664*** 15.099***  15.383*** 15.227***  

(1.696) (1.766)  (2.336) (2.433) 
R2  0.035 0.095   0.028 0.038 
N 15,019 15,019  15,019 15,019 
Notes: Robust standard errors in parentheses, clustered by family in the within-family 
analysis; * p<0.10, ** p<0.05, *** p<0.01; Coefficients for the control variables (year and 
month of birth, gender and the first 40 principal components) are not displayed, but 
available upon request from the authors. 

 

 

4.2. The relationship between birth order and educational attainment 

Figure 2 shows the raw differences (without family fixed effects and other control variables) in 

years of education by birth order (panel A). While the first three children achieve similar levels 

of education on average, the averages for children with higher birth order are clearly lower 

(albeit with higher variances). When pooling all laterborns together (panel B), the difference 

between firstborns and laterborns is relatively small but clearly visible. 
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Figure 2. The relationship between birth order and years of education in the analysis sample. 

 

Table 3. Results of the regressions of years of education on different specifications of birth 
order. 

 Between-family analysis  Within-family analysis 
 (1) (2)  (3) (4) 

Firstborn 0.334*** 
 

 0.362*** 
 

 
(0.089) 

 
 (0.111) 

 

2nd born 
 

-0.302***  
 

-0.348***   
(0.093)  

 
(0.124) 

3rd born  
 

-0.317**  
 

-0.391   
(0.148)  

 
(0.243) 

4th born 
 

-0.846***  
 

-0.544   
(0.226)  

 
(0.366) 

5th born 
 

-0.878***  
 

-0.090 
  

(0.271)  
 

(0.483) 
Constant  16.021*** 16.219***  14.476*** 14.898***  

(1.752) (1.743)  (2.333) (2.333) 
R2  0.044 0.044  0.030 0.030 
N 15,019 15,019  15,019 15,019 
Notes: Robust standard errors in parentheses, clustered by family in the within-family 
analysis; * p<0.10, ** p<0.05, *** p<0.01; Coefficients for the control variables (year and 
month of birth, gender and the first 40 principal components) are not displayed, but 
available upon request from the authors. 
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Table 3 confirms the birth order effects in the specifications with and without family fixed 

effects, and shows that conditional on the control variables, the differences become more 

salient. We observe a consistent gap of 0.3-0.4 years of schooling between first- and laterborn 

children. The direction and magnitude of the effect is robust to using the binary indicator or 

the categorical variable for birth order. The within-family effect sizes for birth orders higher 

than three do not reach statistical significance due to the relatively small number of 

observations (see Table 1).     

4.3. The relationship between birth order and the polygenic score for years of 
education 

To measure causal gene-environment interactions, it is important to show that birth order is 

orthogonal to the polygenic score. Figure 3 provides a first impression on the raw relationship 

between the two measures, without controlling for family fixed effects or other control 

variables. Panel A illustrates that educational attainment polygenic scores for later-born 

children tend to be slightly lower. The same pattern holds when reducing the comparison to 

firstborns versus laterborns in Panel B. However, these differences are not statistically 

significant. Furthermore, the distributions of the polygenic score by birth order are the same 

(Panels C and D).  

 

Figure 3. The relationship between birth order and the polygenic score for years of education 
in the analysis sample. 
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Consistent with the graphical evidence, Table 4 shows a slight difference of 0.04 standard 

deviations in the polygenic score between firstborn and laterborn children in the between-

family analysis. However, when looking at this relationship within families, the difference 

becomes neither economically nor statistically significant. 14  These results establish the 

presumption that firstborns on average do not have different genetic endowments compared 

to their laterborn siblings (c.f. Mendel’s law). The results also corroborate the notion that there 

is no gene-environment correlation (rGE) between the polygenic score and birth order.   

 

Table 4. Results of the regressions of polygenic score for educational 
attainment on birth order. 
  Between-family analysis  Within-family analysis 
  (1)  (2)  (3)  (4) 
Firstborn  -0.041** 

 
 -0.016 

 
 

(0.018) 
 

 (0.018) 
 

2nd born  
 

0.040**  
 

0.018   
(0.019)  

 
(0.020) 

3rd born  
 

0.073**  
 

0.022   
(0.031)  

 
(0.038) 

4th born 
 

-0.027  
 

0.018   
(0.045)  

 
(0.057) 

5th born 
 

-0.037  
 

0.036   
(0.055)  

 
(0.077) 

Constant 0.544 0.488  0.288 0.279  
(0.343) (0.341)  (0.382) (0.383) 

R2  0.018 0.018  0.012 0.012 
N 15,019 15,019  15,019 15,019 
Notes: Robust standard errors in parentheses, clustered by family in the 
within-family analysis; * p<0.10, ** p<0.05, *** p<0.01; Coefficients for the 
control variables (year and month of birth, gender and the first 40 principal 
components) are not displayed, but available upon request from the authors. 

 

 

 

 

 
14 The fact that in the within-family analysis, there is no significant differences in polygenic scores across birth 
order suggests that the raw relationship depicted in Figure 3 is mostly driven by family size. This is indeed what 
we confirm, with the coefficient on the control variable family size being negative and statistically significant in 
the between-family analysis. 
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4.4. Gene-environment interaction and dynamic complementarity of skill 
formation 

Table 5 presents the gene-environment interaction results in the between-family and within-

family analyses. Comparing Columns 1 and 4 in Table 5 to the estimates presented above (Table 

2 and Table 3) shows that the addition of the educational attainment polygenic score does not 

affect the direct effect of birth order on years of schooling. This comparison confirms once 

again that the polygenic score and birth order are independent. A one standard deviation 

increase in the polygenic score is estimated to raise years of education by 1.23 years (between-

family analysis) and 0.64 years (within-family analysis). Furthermore, firstborns enjoy on 

average 0.37-0.40 extra years of schooling compared with laterborns.  

 

Table 5. Results of the regressions of years of education on the gene-environment interaction. 
 Between-family analysis   Within-family analysis 
 (1) (2) (3)  (4) (5) (6) 
 OLS OLS ORIV  OLS OLS ORIV 
Firstborn 0.384*** 0.384*** 0.404***  0.372*** 0.368*** 0.371*** 

(0.080) (0.080) (0.080)  (0.110) (0.110) (0.110) 
PGS for years of education  1.227*** 1.186*** 1.528***  0.635*** 0.574*** 0.823*** 

(0.041) (0.049) (0.062)  (0.071) (0.078) (0.101) 
Firstborn × PGS for years of 
education 

 0.108 0.184**   0.162** 0.224** 
 (0.073) (0.093)   (0.081) (0.100) 

Constant 15.353**
 

15.353**
 

14.683**
 

 14.293*** 14.282*** 14.144*** 
(1.807) (1.818) (1.838)  (2.431) (2.449) (4.479) 

R2  0.102 0.103   0.040 0.040  
Cragg-Donald F-stat.   4887.542    4068.062 
N 15,019 15,019 15,019  15,019 15,019 15,019 
Notes: Robust standard errors in parentheses, clustered by family in the within-family analysis; * p<0.10, 
** p<0.05, *** p<0.01; Coefficients for the control variables (year and month of birth, gender and the first 
40 principal components) are not displayed, but available upon request from the authors. 

 

The between-family design shows an economically meaningful and positive interaction 

between the polygenic score and being firstborn of 0.108 (Column 2). Yet, it is not statistically 

significant at conventional thresholds. When we use Obviously-Related Instrumental Variables 

(ORIV) regression (Column 3), the interaction term becomes statistically significant, suggesting 

that measurement error in the polygenic score attenuates the main effect of the polygenic 

score and the interaction term. In the family fixed effects specification, we find that the 

interaction effect is significant in both the OLS and the ORIV specifications. The measurement 
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error correction makes the interaction term stronger, both statistically and in terms of the 

effect size (0.162 vs. 0.224).  

As a complementary approach to test the statistical significance of our main results, we also 

conducted randomization inference by employing 10,000 permutations of the polygenic score 

and birth order, each time re-estimating the within-family specification (Fisher, 1935; 

Rosenbaum, 2002). This approach does not rely on repeated sampling of a hypothetical 

population and enables gauging how rare the size and significance of our interaction effect is 

for other permutations of the polygenic score and birth order. Figure 4 provides the 

distribution of t-statistics for all 10,000 permutations with the t-statistic of the actual estimate 

shown as a solid line. The t-statistic of the estimated interaction term has an exact p-value (i.e., 

the proportion of t-statistics more extreme than our estimate) of 0.04. 

The positive and statistically significant interaction term provides strong evidence for gene-

environment interactions in education, and is consistent with the existence of dynamic 

complementarity in skill formation: the effect of being firstborn (associated with more parental 

investments) is complementary to a higher value for the polygenic score for years of education. 

In other words: those with a higher polygenic score benefit more from the increased parental 

investments associated with being firstborn. The magnitude of the coefficients suggests that 

for those with a below-average polygenic score, there is no advantage of being firstborn. In 

contrast, for those with a high polygenic score, being firstborn increases one’s years of 

education. For example, firstborns with a polygenic score two standard deviations above the 

mean on average enjoy 0.8 additional years of education compared to their laterborn siblings.  
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Figure 4. Distribution of the t-statistic for the G×E interaction term on basis of randomization 
inference. 

 

4.5. Robustness checks 

In this section we check the robustness of our results against potential non-linearities in the 

functional form of the polygenic score as well as birth order, and to the addition of further 

control variables. While the linear form adopted in section 4.4 seems justified by the visual 

relationship in Figure 1, we explore robustness of our results by allowing for possible non-

linearities. Table 6 compares the within-family specification in continuous form (replicated in 

Column 1 for comparison), with those where we specify the polygenic score in binary form 

(above and below the mean, Column 2), in quartiles (Column 3) and in squared form (Column 

4). We observe positive interaction terms across all specifications. In line with our main 

findings, the effect of being firstborn is insignificant for those with a lower polygenic score, and 

the effects are concentrated among those in the upper half of the polygenic score distribution. 

We also find that the main result in Column 1 is robust to specifying a quadratic in the polygenic 

score.   
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Table 6. Results of the regressions of years of education on the gene-environment interaction; 
Robustness to non-linearities in the polygenic score. 
 Within-family analysis 
  (1) (2) (3) (4) 
Firstborn 0.368*** 0.171 0.198 0.377*** 

(0.110) (0.145) (0.195) (0.127) 
PGS for years of education 0.574*** 

  
0.573*** 

(0.078) 
  

(0.078) 
Firstborn × PGS for years of education 0.162** 

  
0.164** 

(0.081) 
  

(0.082) 
PGS for years of education (>mean) 

 
0.424*** 

 
  

(0.137) 
 

 
Firstborn × PGS for years of education 
(>mean) 

 
0.376** 

 
  

(0.175) 
 

 
PGS for years of education (2nd quartile) 

  
0.437**    
(0.185)  

PGS for years of education (3rd quartile) 
  

0.486**    
(0.192)  

PGS for years of education (4th quartile) 
  

1.133***    
(0.208)  

PGS for years of education (2nd quartile) × 
Firstborn 

  
-0.040    
(0.271)  

PGS for years of education (3rd quartile) × 
Firstborn 

  
0.457*    
(0.258)  

PGS for years of education (4th quartile) × 
Firstborn 

  
0.261    

(0.240)  
PGS for years of education (squared)    0.032 
    (0.047) 
PGS for years of education (squared) × 
Firstborn  

   -0.008 
   (0.062) 

Constant 14.282*** 14.100*** 13.766*** 14.227***  
(2.449) (2.375) (2.421) (2.448) 

R2 0.040 0.033 0.046 0.040 
N 15,019 15,019 15,019 15,019 
Notes: Robust standard errors in parentheses, clustered by family; * p<0.10, ** p<0.05, *** p<0.01; 
Coefficients for the control variables (year and month of birth, gender and the first 40 principal 
components) are not displayed, but available upon request from the authors. 

 

Table 7 reports the sensitivity of the results to an alternative specification of birth order. 

Column 1 replicates the results from Table 5 for comparison. In Column 2, we include dummies 

for each birth rank with firstborns as the reference category. Hence, we expect the effects to 

be reversed as compared to Column 1. All point estimates of the main effects and the 

interaction terms are in line with the birth order literature and consistent with dynamic 

complementarity: on average, those born later have a lower educational attainment compared 
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to firstborns and benefit less from having a high polygenic score. The estimates for rank 3 and 

higher are rather imprecisely estimated due to the relatively small sample sizes with a birth 

rank of 3 or higher, but again in line with our main results. 

Table 7. Results of the regressions of years of education on the gene-environment interaction; 
Robustness to non-linearities in birth order. 
 Within-family analysis 
 (1) (2) 
PGS for years of education 0.574*** 0.734*** 

(0.078) (0.087) 
Firstborn 0.368***  
 

(0.110)  

Firstborn × PGS for years of education 0.162**  

(0.081)  

2nd born   -0.354***  
 (0.124) 

3rd born   -0.394  
 (0.243) 

4th born   -0.533  
 (0.365) 

5th born   -0.097  
 (0.485) 

2nd born × PGS for years of education  -0.166* 
 (0.085) 

3rd born × PGS for years of education  -0.188 
 (0.142) 

4th born × PGS for years of education  -0.010 
 (0.247) 

5th born × PGS for years of education   -0.118 
 (0.294) 

Constant 14.282*** 14.720***  
(2.449) (2.454) 

R2  0.040 0.041 
N 15,019 15,019 

Notes: Robust standard errors in parentheses, clustered by family; * p<0.10, ** p<0.05, *** p<0.01; 
Coefficients for the control variables (year and month of birth, gender and the first 40 principal 
components) are not displayed, but available upon request from the authors. 

 

Table 8 presents our final set of robustness checks in which we explore robustness of our 

results to possible endogenous fertility decisions. A possible correlation between our measure 

of endowments and birth order could exist when fertility decisions are based on the genetic 

endowments of the children, known in the literature as the “child stopping rule” (Black et al., 

2005; Pavan, 2016). Whereas Section 4.3 shows that such a correlation does not exist, here we 
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explicitly control for a possible child stopping-rule by including a dummy variable for being 

lastborn, which is set to one if an individual’s birth order is equal to the total number of children 

in his/her family. Column 1 in Table 8 replicates the results from Table 5 for comparison. As 

seen in Column 2, the lastborn dummy is not statistically significant, and does not meaningfully 

affect our results, suggesting that potential endogenous fertility decisions do not change any 

of our conclusions. In column 3 we employ the correction for missing confounders suggested 

by (Keller, 2014) for gene-environment interaction analysis. Specifically, we interact both the 

dummy for being firstborn and the polygenic score for education with year of birth, month of 

birth, gender, and first 40 principal components and include all these as covariates in the 

analysis. The direct effect sizes of being firstborn and the polygenic score for years of education 

are now relative to the reference categories of the control variables (Born in 1937, born in 

January, being female). Although the standard error of the interaction term increases due to 

the much larger number of regressors, the magnitude of the interaction effect is robust to this 

specification.  
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5. Discussion 
A large literature shows consistently higher educational attainments for firstborn children. 

Using within-family data we move beyond the existing literature by showing that children 

benefit disproportionally from being firstborn when they have an above-average educational 

attainment polygenic score. More specifically, firstborns with an average polygenic score enjoy 

0.37 years (≈ 4.5 months) of additional schooling compared to their laterborn siblings, on 

average. However, firstborns with a polygenic score that is one standard deviation above the 

mean enjoy an additional 0.16 years of education, compared to their laterborn siblings with 

the same genetic endowment. In contrast, for individuals with below-average polygenic scores, 

being firstborn does not provide an advantage in terms of educational attainment. Since we 

provide evidence that genetic endowments are orthogonal to birth order, and previous 

literature suggests that birth order effects on children’s education are mainly driven by 

parental investments, we interpret the positive and significant interaction term as providing 

support for the existence of the dynamic complementarity in skill formation. 

An alternative interpretation of our finding that birth order effects are concentrated among 

those with higher polygenic scores could be that the additional investments associated with 

being firstborn are higher for those with higher polygenic scores. That is, if parents would 

Table 8. Results of the regressions of years of education on the gene-
environment interaction; Robustness to fertility choices and missing 
confounders. 
 Within-family analysis  

(1) (2) (3) 
Firstborn  0.368*** 0.295** -7.767* 
 (0.110) (0.129) (4.401) 
PGS for years of education 0.574*** 0.577*** -5.981*** 
 (0.078) (0.078) (1.832) 
Firstborn × PGS for years of 
education 

0.162** 0.162** 0.166* 
(0.081) (0.081) (0.096) 

Lastborn  -0.154  
  (0.136)  
Constant 14.282*** 14.170*** 25.412*** 
 (2.449) (2.451) (3.711) 
R2  0.040 0.040 0.059 
N 15,019 15,019 15,019 
Notes: Robust standard errors in parentheses, clustered by family; * p<0.10, ** 
p<0.05, *** p<0.01; Coefficients for the control variables (year and month of birth, 
gender and the first 40 principal components) are not displayed, but available upon 
request from the authors. 
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invest more in the firstborn, or alter fertility decisions, when the child has a higher polygenic 

score, this could also explain the positive interaction effect. While we cannot fully rule out this 

explanation, we believe this explanation is less plausible for two reasons. First, Breinholt & 

Conley (2019) and Houmark et al. (2020) show that parenting during infancy is not driven by 

genetic make-up because these endowments are not clearly expressed yet, and parental 

investment responses to polygenic scores do not arise before age 6. This is long after the typical 

arrival of subsequent children, and so the most precious time of undivided attention for the 

firstborn is unlikely to be influenced by – at that time unobserved – differences in polygenic 

scores. Second, for the few early-life parental investments we observe in our data, we do not 

find evidence of any response to the polygenic score. Appendix D shows that maternal smoking 

around pregnancy and whether the child was breastfed are all unrelated to the firstborn’s 

polygenic score. If anything, the age gap between first- and secondborns is slightly lower if the 

firstborn has a higher polygenic score. These findings suggest that the additional investments 

associated with being firstborn are driven by less restrictive time and budget constraints and 

are independent of the child’s genetic endowment. The appearance of a positive interaction 

between endowments and being firstborn therefore provides support for the existence of 

dynamic complementarity. 

Finding support for dynamic complementarity is important for understanding the nature of the 

skill production function. The production function of the child’s skills is – next to a parental 

budget and time constraint – an important input into the broader optimization problem where 

parents decide between own consumption and investments in their children. By informing the 

shape and properties of the production function, our analysis is an important precursor to a 

structural model of parental investment decisions, estimation of which is beyond the scope of 

this paper (see Houmark et al. 2020 for a recent application that incorporates polygenic scores 

into a dynamic latent factor model of skill formation). Evidence in support of dynamic 

complementarity also speaks to whether later-life investments can reduce or eliminate 

damage originating early in life (Almond et al., 2018), and emphasizes the importance of early-

life investments being followed-up by later-life investments to reap the full benefits in terms 

of human capital outcomes (e.g., Cunha & Heckman, 2007).  

More generally, this paper shows how economic theory can inform empirical G×E analyses, 

and our findings provide one of the first pieces of evidence of how genetic variation (here 
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measured by the polygenic score for years of education) and environment (here measured by 

one’s birth order) jointly shape and dynamically interact in producing important life outcomes 

such as years of education. While this finding was long anticipated by numerous scholars (e.g., 

Heckman, 2007; Rutter et al., 2006), finding credible and independent sources of variation in 

genes and environments is rare given how tightly genetic and environmental influences are 

entangled (e.g., Koellinger & Harden, 2018). Showing evidence of an interaction between 

genetic variation and environments is not just a leap forward in our fundamental 

understanding of how nature and nurture jointly shape human capital, but also a promising 

antidote against arguments of genetic (or environmental) determinism. 

A number of limitations should be acknowledged. First, our specification may not be the 

perfect empirical translation of the skill production function. In particular, we do not measure 

skills directly. Instead, we follow Cunha & Heckman (2008) and Cunha et al. (2010) who specify 

adult human capital as a combination of skills accumulated by the end of childhood, and 

employ a commonly used and convenient proxy: years of education. Moreover, we do not 

measure parental investments directly, and use an environmental variable closely related to 

parental investments: birth order. The upside of using birth order rather than a direct measure 

of parental investments is that birth order is randomly assigned within families, whereas 

parental investments are known to be endogenous to offspring endowments. Moreover, 

whereas birth order cannot distinguish between early-life and later-life investments, it 

captures a persistent difference across siblings rather than a one-time shock in investments 

that many other papers rely on (see Almond et al. (2018), and Appendix B). The downside of 

using birth order is that it is unlikely to capture only parental investments. Other mechanisms 

through which birth order effects may arise (e.g., interactions with younger siblings) could 

possibly also interact with genetic endowments. We cannot test this alternative explanation 

directly because the UK Biobank is very limited in measures of parental and sibling interactions. 

Still, if we accept that birth order partially captures investment – a premise that should not be 

controversial given the overwhelming evidence in the literature – then unless these other 

channels exhibit completely opposite interaction effects, a necessary condition for dynamic 

complementarity would be a positive interaction between birth order and genetic 

endowments. This is exactly what we find. 

A second limitation is that our measure of genetic endowments is imperfect. In particular, a 
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polygenic score captures only common genetic variations in the human genome, and even 

within the realm of common variations the measure is subject to measurement error. While 

the use of ORIV reduces concerns about classical measurement error, our family fixed effects 

estimates of the polygenic score are still subject to attenuation bias due to genetic nurture. 

However, since the sign of the bias arising from genetic nurture is known to be negative, our 

effect size represents in fact a conservative estimate. 

The polygenic score should also not be interpreted narrowly as a measure of immutable 

biological endowments. While within-family analyses ensure that we can interpret the effect 

of a polygenic score as a direct (or causal) effect of genetic variation, it is well-established that 

the environment mediates this effect (e.g., Breinholt & Conley, 2019; Houmark, Ronda, & 

Rosholm, 2020). Hence, a polygenic score measures education-enhancing endowments, and 

will reflect how on average in the discovery sample environments (including parental 

investments) respond to differences in genetic endowments. Importantly though, since the 

measure is fixed at conception and orthogonal to birth order, the measure does not reflect 

parental investments of the child’s own parents. As a result, the inclusion of environmental 

responses to genetic variation into the construction of the polygenic score is not a source of 

concern for our identification strategy but may affect the interpretation. The definition of 

dynamic complementarity encompasses both complementarity between investments and 

initial endowments, as well as complementarity between investments at different ages (e.g., 

Cunha & Heckman, 2007, 2008). Since a polygenic score reflects both endowments as well as 

average environmental responses to endowments, we cannot distinguish between these 

channels. However, given the independence of birth-order (and associated investments) from 

our measure of genetic endowments, we believe our setting does provide a compelling context 

to test for dynamic complementarity as a putative property of the skill production function. 

A final limitation regards the external validity of the empirical findings. As mentioned in the 

data section, there is sample selection into the UK Biobank, with a bias towards healthier and 

higher-educated individuals (Fry et al., 2017). On top of this, we focus on European-ancestry 

individuals and the coincidental sampling of siblings even though these were not specifically 

targeted, further reducing the representativeness of the sample. Finally, we construct our 

polygenic score on basis of a tailor-made GWAS, again on basis of the same UK Biobank 

excluding the siblings and their relatives. While the latter choice helps to maintain the same 
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environments across discovery and prediction sample, it may further increase the likelihood 

that our results are specific to the UK Biobank. Future research should replicate our findings, 

but in light of dynamic complementarity theory undergirding our results, we have good reasons 

to be positive about the replicability in comparable contexts.  
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7. Appendix 

A. Genetic data, GWAS, and Polygenic scores 
Genetic Data. A complete human genome consists of 23 pairs of chromosomes, from which 

the 23rd pair determines the biological sex of a person. One of each pair of chromosomes is 

inherited from the father, and the other is inherited from the mother. A chromosome is 

composed of two intertwined strands of deoxyribonucleic acid (DNA), each made up of a 

sequence of four possible nucleotide molecules: adenine, cytosine, thymine, and guanine. 

Adenine (A) on one strand is always paired with thymine (T) on the other strand, and cytosine 

(C) is always paired with guanine (G). These pairs are called base pairs. Every human genome 

consists of approximately 3 billion base pairs and stretches of base pairs coding for proteins 

are called genes. There are approximately 20,000 genes in the human genome, with varying 

lengths in terms of base pairs (Ezkurdia et al., 2014). 

Two unrelated human beings share approximately 99.6% of their DNA, and most genetic 

differences across humans can be attributed to single nucleotide polymorphisms (SNP) (Auton 

et al., 2015). A SNP is a locus in the DNA at which two different nucleotides can be observed in 

the population. Each of the two possible nucleotides is called an allele for that SNP. An 

individual’s genotype is coded as 0, 1, or 2, depending on the number of “effect” alleles 

present. In the human genome, there are at least 85 million SNPs with a “minor” allele 

prevalence of at least 1% (Auton et al., 2015). 

Genome-Wide Association Studies (GWASs) aim to identify genetic variants that are associated 

with a particular trait of interest by relating each variant to the trait in a hypothesis-free 

approach. Stringent significance thresholds are used to identify variants that are robustly 

associated with the trait, with other independent samples used for replication. Using the GWAS 

approach, thousands of genetic discoveries have been made (Visscher et al., 2017). 

Individual SNPs typically explain less than 0.02% of the variance in a behavioural outcome 

(Chabris, Lee, Cesarini, Benjamin, & Laibson, 2015; Visscher et al., 2017). It is therefore 

common to combine multiple SNPs into a polygenic score (Dudbridge, 2013), constructed as a 

weighted sum of SNPs.  

Through increases in GWAS sample sizes, the predictive power of the polygenic score for 

education has increased from 2-3% (Rietveld et al., 2013), to 6-8% (Okbay et al., 2016), to 

currently 11-13% (Lee et al., 2018). In terms of biological pathways, there is evidence that many 
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of the identified genes associate with health, cognitive, and central nervous system traits 

(Rietveld et al., 2013). Likewise, the majority of the significant SNPs in Okbay et al. (2016) and 

Lee et al. (2018) relate to genomic regions responsible for gene expression in a child’s brain 

during the prenatal period. 

Methods. Relatedness. As a first step, we identify siblings and their relatives using the kinship 

matrix provided by the UK Biobank. The kinship matrix is based on genetically identified 

relatedness and contains relatives of third degree and closer identified using the KING software 

(Manichaikul et al., 2010). The UK Biobank does not have information about self-reported 

relatedness (Bycroft et al., 2017). The degree of relatedness between the pairs of individuals 

is based on the combination of the kinship coefficient and genetic similarity in terms of the 

identity by state (IBS0) coefficient. IBS0 measures the fraction of markers for which the related 

individuals do not share alleles. We follow the KING manual regarding the thresholds for how 

to determine family relationship (see Table A.1). The identified number of pairs per relationship 

type differs slightly from that of Bycroft et al. (2017), because some UK Biobank participants 

withdrew their consent to analyse their data since then. 

Table A.1: Thresholds used to determine relatedness between individuals in the UK Biobank. 

 
 Duplicate / 

Monozygotic 
twins 

1st degree / 
Parent-

child 

1st degree 
siblings 

2nd -3rd 
degree 

relatives / 
cousins 

Total 

Kinship coefficient >0.3540 0.1770–
0.3540 

0.1770–
0.3540 

0.0442–
0.1770 

 

IBS0  <0.0012 >0.0012   
N (pairs) 179 6,271 22,659 78,038 107,147 

 

For our analyses, we go one step further by separating those who are related to the siblings up 

to the 3rd degree (kinship coefficient ≥ 0.025), i.e., siblings, parents of siblings, cousins of 

siblings (See Table A.2). In this way, our holdout sample for polygenic score construction and 

prediction (i.e., the sibling subsample) is unrelated to the GWAS discovery sample which is used 

to calibrate the SNP weights that are used to construct the polygenic score. 
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Table A.2: Relatedness to the individuals in the siblings’ subsample of UK Biobank. 

 

  

Relationship to 
siblings 

Unrelated to 
siblings 

Full siblings 2nd-3rd 
relative of 

siblings 

Parent or 
child of 
siblings 

Total 

N (individuals) 91,055 41,498 10,207 4,740 147,500 
Notes: Relatedness to siblings is computed based on the relatedness classification as 
reported in Table A.1.  

 

GWAS. Our tailor-made GWAS is performed using the fastGWA tool for Genome-wide Complex 

Trait Analysis (GCTA) developed by Jiang et al. (2019). fastGWA applies mixed linear modelling 

(MLM) to the genetic data of the UK Biobank.  fastGWA requires the following steps. First, we 

generate a sparse genetic relatedness matrix (GRM) using the family relatedness file from the 

UK Biobank based on the KING software output. Next, we perform an MLM-based GWAS using 

the SNP data, the sparse GRM, the phenotype file and the minor allele frequency (MAF) filter 

of 0.001. The phenotype file provides the data on individual years of education residualised 

with respect to birth year, gender, interaction of birth year and gender, batch, and the first 40 

principal components (PCs). We also perform quality control.15 The eventual GWAS discovery 

sample includes 392,771 individuals: 181,459 males and 211,312 females.  

We further quality control the resulting GWAS summary statistics using EasyQC tool (Winkler 

et al., 2014) and meta-analyse our tailor-made GWAS weights with the summary statistics from 

Okbay et al. (2016). We use these for constructing an alternative polygenic score that is used 

in the robustness analysis (see footnote 13). Meta-analysis is conducted using the software 

package METAL (Willer, Li, & Abecasis, 2010).  

Polygenic scores. The polygenic scores are constructed while accounting for linkage 

disequilibrium between SNPs using LDpred (Vilhjálmsson et al., 2015), version 1.06, and 

Python, version 3.6.6. Linkage disequilibrium pertains to the non-random correlations between 

SNPs at various loci of a single chromosome. LDpred is a software package based on Python 

that adjusts the GWAS weights for LD using a Bayesian approach. We follow the steps as 

outlined in Mills, Barban, & Tropf (2020), including the coordination of the base and target 

files, computing the LD adjusted weights, and then applying them for polygenic score 

 
15 More specifically, we exclude individuals who withdrew consent, have missing gender or whose self-reported 
gender does not match the genetically identified, are of other than European ancestry, have bad genotyping 
quality, putative sex chromosome aneuploidy, whose second chromosome karyotypes are different from XX or 
XY, with outliers in heterozygosity, or have missing information on any of the former criteria. 
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construction using PLINK (Purcell et al., 2007). We re-weight the SNP effects on the basis of LD 

and the supposed fraction of causal SNPs, which we set to 1, as is standard practice for 

behavioural traits (Cesarini & Visscher, 2017). Our hold-out sample for constructing polygenic 

scores consists of 49,866 siblings and their relatives, where the final analysis sample with 

observations for all variables available is 15,019 individual siblings. The polygenic scores 

include all SNPs, that is 1,065,078 SNPs after filtering for HapMap3 SNPs at the coordination 

step. For the split sample GWAS, we split the clean discovery sample (N=392,771) randomly 

into two samples of ~196,380 individuals each and use the same FastGWA procedure as for 

the full UKB GWAS to obtain SNP weights. We proceed by using LDpred to construct two 

polygenic scores based on the two sets of summary statistics. Likewise, we include all SNPs 

(1,065,146 after filtering for HapMap SNPs at the coordination step). 
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B. Dynamic complementarity 

Testing the concept of dynamic complementarity is challenging, since it requires independent 

variation in initial endowments and later-life investments, or alternatively exogenous variation 

in multiple investments over time  (Almond & Mazumder, 2013; Johnson & Jackson, 2019) 

Cunha & Heckman (2007) and Cunha et al. (2010) adopt a structural approach, modelling both 

skills as well as parental investments as low-dimensional latent variables, and find evidence 

consistent with dynamic complementarity. A number of studies have examined whether the 

effect of specific interventions or investments varies by initial skills. Aizer & Cunha (2012) 

correct early life health measures for certain prenatal investments, and find that pre-school 

enrolment is more productive for children with higher levels of this residualised measure of 

endowments. Lubotsky & Kaestner (2016) use entrance-age in kindergarten as plausibly 

exogenous variation in initial cognitive skills, and find some evidence for dynamic 

complementarity, although the effect dies out after the first grade.  

A recent set of papers have examined rare cases where there exists exogenous variation in 

both initial endowments as well as later-life investments. For example, Malamud et al. (2016) 

study the interaction between exogenous variation in access to better schools and variation in 

family backgrounds induced by access to abortion in Romania. Their findings do not suggest a 

meaningful interaction between initial endowments and later-life investments. Rossin-Slater & 

Wüst (2020) exploit a nurse home visiting program as an exogenous shock to endowments, 

and staggered access to high quality preschool childcare in Denmark as an exogenous shock to 

investment, and find that these interventions are substitutes rather than complements. 

Gunnsteinsson et al. (2014) exploit a unique combination where a tornado struck an area of 

Bangladesh that was coincidentally involved in a randomized experiment on vitamin A 

supplementation. Their findings are consistent with dynamic complementarity since children 

treated with Vitamin A supplements were better protected from the consequences of the 

earthquake. Adhvaryu et al. (2019) exploit local rainfall in the year of birth as exogenous 

variation in endowments, and randomized cash incentives from Progresa as an exogenous 

shock to investment. Their main finding is that children from families who received cash 

transfers were protected better against adverse endowments, consistent with dynamic 

complementarity. Similarly, Duque et al. (2018) also use a combination of adverse weather 

shocks and conditional cash transfers in Colombia to show that children born under normal 

weather conditions benefit more from the cash transfers. Finally, Johnson & Jackson (2019) 
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exploit the rollout of Head Start and the implementation of court-ordered school finance 

reforms (SFRs) that increased spending at public K-12 schools as two exogenous shocks to 

human capital investment, again finding evidence in favour of dynamic complementarity.  

The papers above therefore suggest that an increasing number of papers explore variation in 

both initial endowments and later-life investments to investigate dynamic complementarity. 

However, the evidence from this literature is mixed, with some studies supporting the 

existence of dynamic complementarity, and others finding weaker evidence or even 

substitutability between endowments and investments. 
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C. Obviously-Related Instrumental Variable (ORIV) regression 

In this section, we explain the technique of Obviously-Related Instrumental Variable  (ORIV; 

Gillen et al., 2019) regression. Suppose we would like to predict an outcome variable of 

interest, Y, using a polygenic score, i.e., estimate the following model:  

𝑌𝑌 = 𝛼𝛼 + 𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆∗ +  𝜀𝜀,                                                      (C.1) 

where α is a constant, 𝛽𝛽 is the effect of a true polygenic score 𝑃𝑃𝑃𝑃𝑆𝑆∗ and 𝜀𝜀 is the error term. 

We have two estimates of the true polygenic score: 𝑃𝑃𝑃𝑃𝑃𝑃1 = 𝑃𝑃𝑃𝑃𝑃𝑃∗ + 𝜗𝜗1 and 𝑃𝑃𝑃𝑃𝑃𝑃2 = 𝑃𝑃𝑃𝑃𝑃𝑃∗ +

𝜗𝜗2. The covariance between the two is zero, 𝐶𝐶𝐶𝐶𝐶𝐶(𝜗𝜗1,𝜗𝜗2) = 0 and they have the same relative 

variance of the measurement errors 𝜗𝜗1,𝜗𝜗2. That is: 

𝜎𝜎𝜗𝜗1
2

𝜎𝜎𝑃𝑃𝑃𝑃𝑆𝑆1
2 =

𝜎𝜎𝜗𝜗2
2

𝜎𝜎𝑃𝑃𝑃𝑃𝑆𝑆2
2 = 𝜎𝜎𝜗𝜗

2

𝜎𝜎𝑃𝑃𝑃𝑃𝑃𝑃
2 ,                                                           (C.2) 

where 𝜎𝜎𝜗𝜗1
2 and 𝜎𝜎𝜗𝜗2

2  are the variances of the measurement errors 𝜗𝜗1,𝜗𝜗2  respectively, and 

𝜎𝜎𝑃𝑃𝑃𝑃𝑆𝑆1
2 and 𝜎𝜎𝑃𝑃𝑃𝑃𝑆𝑆2

2  are the variances of respective polygenic scores. If we use 𝑃𝑃𝑃𝑃𝑃𝑃2  as an 

instrumental variable for 𝑃𝑃𝑃𝑃𝑃𝑃1, the following applies: 

𝛽̂𝛽𝐼𝐼𝐼𝐼= 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝑃𝑃𝑃𝑃𝑆𝑆2)/𝑉𝑉(𝑃𝑃𝑃𝑃𝑆𝑆2)
𝐶𝐶𝐶𝐶𝑣𝑣(𝑃𝑃𝐺𝐺𝑆𝑆1,𝑃𝑃𝑃𝑃𝑆𝑆2)/𝑉𝑉(𝑃𝑃𝑃𝑃𝑆𝑆2)

 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝛼𝛼+𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆∗+𝜀𝜀,𝑃𝑃𝑃𝑃𝑆𝑆∗+𝜗𝜗2)
𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃𝑃𝑃𝑆𝑆∗+𝜗𝜗1,𝑃𝑃𝑃𝑃𝑆𝑆∗+𝜗𝜗2)

= 𝛽𝛽
𝜎𝜎𝑃𝑃𝑃𝑃𝑆𝑆∗
2

𝜎𝜎𝑃𝑃𝑃𝑃𝑆𝑆∗
2 = 𝛽𝛽.    (C.3) 

ORIV regression as developed by Gillen et al. (2019) estimates a ‘stacked’ model: 

�𝑌𝑌𝑌𝑌� = �𝛼𝛼1𝛼𝛼2� + 𝛽𝛽 �𝑃𝑃𝑃𝑃𝑆𝑆1+𝑃𝑃𝑃𝑃𝑆𝑆2+
� + 𝜀𝜀,                                             (C.4) 

where one instruments the stack of estimated polygenic scores �𝑃𝑃𝑃𝑃𝑆𝑆1+𝑃𝑃𝑃𝑃𝑆𝑆2+
� with �𝑃𝑃𝑃𝑃𝑆𝑆2+       0𝑁𝑁

0𝑁𝑁        𝑃𝑃𝑃𝑃𝑆𝑆1+
�, 

where N is the sample size and 0𝑁𝑁 is a Nx1 vector with zero’s. We include a family-stack fixed 

effect to conduct the within-family comparisons within a stack of the data. Standard errors are 

clustered at both the family and individual level following Correia (2017, 2019). 
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D. Early-life parental investments 

The only early-life parental investments that are observed in the UK Biobank are whether the 

child was breastfed and whether the mother smoked around birth. We also observe the age 

gap between subsequent siblings. Table D.1 reports the results of regressions explaining the 

few early-life parental investment as a function of being firstborn, the polygenic score for 

education, and their interaction. This shows whether mothers change their behaviour 

depending on whether it is their first- or laterborn child and the polygenic score of their 

children. The results show that the probability of being breastfed (Column 1) and the likelihood 

of maternal smoking around pregnancy (Column 2) are similar between first- and laterborns. 

Furthermore, the polygenic score for (the child’s) education is insignificantly different from 

zero, and we find no evidence of any differences in maternal investments around pregnancy 

by the firstborn’s polygenic score. Finally, Column 3 presents the estimates from a regression 

of the age gap between the first two siblings on the polygenic score of the first sibling, 

suggesting that the age gap is slightly lower (0.08 years) if the firstborn has a higher polygenic 

score for education. Note, however, that this latter column compares families with different 

age gaps and is therefore a between- rather than within-family analysis. Overall, however, we 

do not find evidence for any meaningful investment responses to the polygenic score of the 

firstborn, and if anything the time of undivided attention for firstborns is marginally smaller if 

the child has a higher polygenic score. 

 

 

 

 

 

 

 

 

 



46 
 

Table D.1. Results of regressions of early life parental investments on the gene-environment 
interaction. 
 Within-family analyses Between-family 

analysis 
  Breastfed Mother smoked 

around birth 
Age gap 

  (1) (2) (4) 
Firstborn  0.007 0.006  
 

(0.010) (0.006)  

PGS for years of education -0.004 0.001 -0.082** 
(0.007) (0.004) (0.037) 

Firstborn × PGS for years of 
education 

-0.010 0.003  

(0.007) (0.005)  

Constant 0.695*** 0.266*** 3.509***  
(0.067) (0.040) (0.906) 

R2  0.040 0.019 0.096 
N 11,929 13,303 4,003 
Notes: Robust standard errors in parentheses, clustered by family in the within-family analysis of 
columns 1-3; * p<0.10, ** p<0.05, *** p<0.01; Coefficients for the control variables (year and month 
of birth, gender and the first 40 principal components) are not displayed, but available upon request 
from the authors. Sample sizes vary depending on the availability of early life parental investments.  
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