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Abstract

In this paper we derive the Phillips curve as the image of a chaotic
attractor of the state variables of a non-linear dynamical system describing
the evolution of an economy. This has two important consequences: the
Phillips curve in our model is a true long-run phenomenon and it cannot be
used for policy purposes. The model is based on an overlapping-generations
non-tâtonnement approach involving temporary equilibria with stochastic
rationing in each period and price adjustment between successive periods.
In this way we are able to obtain complex sequences of consistent allocations
allowing for recurrent unemployment and in‡ation.
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1. Introduction

After the presentation of the Phillips curve as an empirical regularity (Phillips
[1958]) economists and policy makers alike have tried to exploit it for policy
purposes. Even before the oil shocks in the seventies and early eighties this has had
mixed success only. With the advent of ”stag‡ation” the Phillips curve seemed
to be de…nitely dead but over the decades thereafter a more di¤erentiated view
has emerged. A majority of economists nowadays seems to agree that an inverse
relationship between in‡ation and unemployment holds as long as changes in
output and prices are demand-driven. Stag‡ation occurs only when supply-side
shocks occur. As the latter happens much less frequently than shifts in aggregate
demand, a revival of the interest in the Phillips curve has taken place. New
explanations have been advanced both to investigate theoretically and estimate
empirically the Phillips curve and to assess its potential for economic policy1.
In this paper we aim to contribute to this discussion by highlighting a further

aspect that so far seems not to have been taken into consideration. That is, we
show that the Phillips curve can be derived as a dynamic phenomenon in the sense
that it may be obtained as the image of a chaotic attractor of the state variables
of a non-linear dynamical system describing the evolution of our economy. This
has two important consequences: on the one hand the Phillips curve in our model
is a true long-run phenomenon and, on the other, it cannot be used for policy
purposes. The …rst aspect is compatible with Phillips’ original …nding whereas
the second may contribute to explain why the attempts to take advantage of the
apparent in‡ation-unemployment trade-o¤ for economic policy have not been very
successful.
The dynamic economy we consider is composed of overlapping-generations

consumers, producers and a government who interact in a labor and a consump-
tion goods market. Trades take place in each period even when prices are not at
their Walrasian level. Therefore agents’ e¤ective transactions can di¤er from the
desired ones which means that they are rationed. Prices may not be at their Wal-
rasian levels because their adjustment to market imbalances is not instantaneous
but proceeds with …nite speed only; thus their functioning as an allocation device
is imperfect, though not nil. As a consequence, quantity adjustments complement
prices in their task of making trades feasible. In particular, we build on the fact
that, in many markets, quantities adjust faster than prices, as emphasized for
instance by Greenwald and Stiglitz [1989]. To account formally for this asymme-

1Recent examples of work that tries to account for and estimate the Phillips curve are T.F.
Cooley and V. Quadrini [1999] and J. Gali and M. Gertler [1999], whose contributions have been
collected, among others, in a special issue of the Journal of Monetary Economics (Vol. 44, N.2,
1999) on ”The Return of the Phillips Curve”.
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try, and be able to work out its consequences most clearly, we assume that, while
quantities adjust within any period so as to produce a feasible allocation, prices
are …xed during each period but are adjusted when the economy moves from one
period to the next.
This approach makes it possible to investigate disequilibrium phenomena like

recurrent and permanent underemployment and in‡ation and, moreover, appears
to re‡ect well the e¤ective functioning of many markets. Labor markets, at least
in Europe, are the foremost example, but also product markets often show a high
degree of price inertia and stickiness (for empirical accounts see Carlton [1986]
and Bean [1994])2.
The adjustment of prices and wages follows the standard paradigm relating

it to the sign of excess demand. Moreover, the size of price adjustment is based
on the intensity of agents’ rationing a measure for which is obtained through a
mechanism of stochastic rationing3. This allows us to encompass a large variety
of degrees of price and wage inertia/‡exibility which turn out to be decisive for
the type of dynamics that emerges.
More precisely, by deviating in the initial conditions from the values of the

state variables corresponding to a stationary Walrasian equilibrium and simulat-
ing the model, we observe the possibility of the emergence of complex dynam-
ics. This complexity of the dynamics is driven by the non-linearities present in

2On theoretical grounds, price stickiness has been explained by (menu) costs of adjustments
of prices (Akerlof and Yellen [1985]), strategic interactions among oligopolists and coordination
failure among monopolistic competitors (Ball and Romer [1991]), by certain characteristics of the
production function and of the demand function, by imperfect and asymmetric information and
by risk aversion of order one (Weinrich [1997]). Regarding wage rigidity, it has been derived for
instance from insider-outsider arguments (Shaked and Sutton [1984]); fairness (Hahn and Solow
[1995, ch. 5]), e¢ciency wages (Salop [1979], Solow [1979], Shapiro and Stiglitz [1984], Weiss
[1991]) and uncertainty combined with imperfectly competitive markets (Holmes and Hutton
[1996]). See also the recent contribution by Bewley [2000] who found by means of interviews
of a large number of businessmen that for …rms it is preferable to lay o¤ workers in recessions
rather than to lower wages.

3Although the idea just outlined is neither new nor complicated, it gives rise to two problems:
how to …nd a consistent allocation when prices are not at their market clearing levels and how to
de…ne a sensible mechanism for the adjustment of prices. The …rst of these problems has been
solved by introducing the concept of temporary equilibrium with quantity rationing, developed
in the seventies for the case of deterministic rationing mainly by Drèze [1975] and Bénassy
[1975].
As far as the second problem is concerned, a natural idea is to relate the adjustment of

prices to the size of the dissatisfaction of agents with their (foregone) trades. As it has been
argued by Green [1980], Svensson [1980], Douglas Gale [1979, 1981] and Weinrich [1984, 1988],
a reliable measure of such dissatisfaction requires stochastic rationing, since - as opposed to
deterministic rationing - it is compatible with manipulability of the rationing mechanism and
therefore provides an incentive for rationed agents to express demands that exceed their expected
trades. For a de…nition of manipulability see for example Böhm [1989] or Weinrich [1988].
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the model and by the possibility of switching between di¤erent (dis)equilibrium
regimes along the trajectory. An important parameter here is the speed of down-
ward wage adjustment. When that speed is small, i.e. when wages are relatively
sluggish downwards, the system converges to the stationary state. For higher
speeds, instead, irregular behaviour and chaos result.
By looking at pairs of the rates of wage in‡ation and unemployment, the

dynamic behavior of our economy displays, for a non pathological set of parameter
values, a Phillips curve as the image of an attractor of the system. However,
there is no perceived systematic relationship between the values obtained in one
iteration and the ones obtained in the next one; the system typically jumps from
one point of the curve to another moving from one period to the next. This
implies that there is no way of pushing the economy toward a desired in‡ation-
unemployment pair by a¤ecting the values of parameters, thus eliminating, or
at least reducing substantially, the relevance of the Phillips curve for economic
policy.
The remainder of the paper is organized as follows. In section two we present

the model and derive the behavior of consumers, producers and government. Sec-
tion three studies temporary equilibria with rationing and proves the existence
and uniqueness of equilibrium allocations. In section four we set up the dynamical
system and in section …ve we present numerical simulations. Section six draws
together the results of the previous sections to derive Phillips curves and discuss
their validity and relevance. Section seven presents concluding remarks and an
appendix contains the proofs of some technical results.

2. The Model

We consider an economy in which there are n OLG-consumers, n0 …rms and a
government. Consumers o¤er labor inelastically when young and consume a com-
posite consumption good in both periods. That good is produced by …rms using an
atemporal production function whose only input is labor. The government levies
a proportional tax on …rms’ pro…ts to …nance its expenditure for goods. Never-
theless, budget de…cits and surpluses may arise and are made possible through
money creation or destruction.

2.1. Timing of the Model

The time structure of the model is depicted in Figure 2.1. In period t¡1 producers
obtain an aggregate pro…t of ¦t¡1 which is distributed at the beginning of period
t in part as tax to the government (tax¦t¡1) and in part to young consumers
((1¡ tax) ¦t¡1), where 0 · tax · 1. Also at the beginning of period t old
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consumers hold a total quantity of money Mt, consisting of savings generated in
period t ¡ 1: Thus households use money as a means of transfer of purchasing
power between periods.
Let Xt denote the aggregate quantity of the good purchased by young con-

sumers in period t, pt its price, wt the nominal wage and Lt the aggregate quantity
of labor. Then

Mt+1 = (1¡ tax)¦t¡1 + wtLt ¡ ptXt:
Denoting with G the quantity of goods purchased by the government and tak-
ing into account that old households want to consume all their money holdings
in period t, the aggregate consumption of young and old households and the
government is Yt = Xt +

Mt

pt
+ G: Using that ¦t = ptYt ¡ wtLt, considering

¦t ¡ ¦t¡1 = ¢MP
t as the variation in the money stock held by producers before

they distribute pro…ts and denoting with ¢MC
t =Mt+1¡Mt the one referring to

consumers, the following accounting identity obtains:

¢MC
t +¢M

P
t = ptG¡ tax¦t¡1 = budget de…cit

2.2. The Consumption Sector

In his …rst period of life each consumer born at t is endowed with labor `s and an
amount of money (1¡ tax) ¦t¡1=n while his preferences are described by a utility
function u (xt; xt+1) : In taking any decision the young consumer has to meet the
constraints

0 · xt · !it; 0 · xt+1 ·
¡
!it ¡ xt

¢ pt
pt+1

; i = 0; 1 (2.1)

where

!1t =
1¡ tax
pt

¦t¡1
n

+
wt
pt
`s

denotes his real wealth when he is employed and

!0t =
1¡ tax
pt

¦t¡1
n

when he is unemployed. Implicit in this is the assumption that rationing on the
labor market is of type all-or-nothing and, moreover, that the labor market is
visited before the goods market.
Regarding the goods market the young household may be rationed according

to the stochastic rule

xt =

½
xdt with prob. ½°dt
ctx

d
t with prob. 1¡ ½°dt
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where xdt is the quantity demanded, ½ 2 [0; 1] a …xed structural parameter of
the rationing mechanism, °dt 2 [0; 1] a rationing coe¢cient which the household
perceives as given but which will be determined in equilibrium and

ct =
°dt ¡ ½°dt
1¡ ½°dt

:

These settings are chosen such that the expected value of xt is °dtx
d
t , that is,

expected rationing is proportional and hence manipulable.4

Denoting with µet = pet+1=pt the expected relative price for period t, the ef-
fective demand xdit ; i = 0; 1; is obtained by solving the agent’s expected utility
maximization problem

max
xt

½°dtu

µ
xt;
!it ¡ xt
µet

¶
+
¡
1¡ ½°dt

¢
u

µ
ctxt;

!it ¡ ctxt
µet

¶
subject to the constraints (2.1). The resulting …rst-order condition is

½°dtu1

µ
xt;
!it ¡ xt
µet

¶
+
¡
1¡ ½°dt

¢
u1

µ
ctxt;

!it ¡ ctxt
µet

¶
ct ¡ ½°

d
t

µet
u2

µ
xt;
!it ¡ xt
µet

¶
+

+
¡
1¡ ½°dt

¢
u2

µ
ctxt;

!it ¡ ctxt
µet

¶µ
¡ ct
µet

¶
= 0

which yields

½u1

³
xt;

!it¡xt
µet

´
+ (1¡ ½) u1

³
ctxt;

!it¡ctxt
µet

´
½u2

³
xt;

!it¡xt
µet

´
+ (1¡ ½) u2

³
ctxt;

!it¡ctxt
µet

´ = 1

µet
: (2.2)

For a generic utility function it is hard to solve this equation for xt but in
the case that u (xt; xt+1) = xht x

1¡h
t+1 and ½ = 1 (i.e. 0/1-rationing), which we shall

henceforth assume, we can prove that xdit = h!
i
t; i = 0; 1 (Lemma 1 in Appendix

1). In particular the young consumer’s e¤ective demand is independent of both
°dt and p

e
t+1.

The aggregate supply of labor is Ls = n`s: Denoting with Ldt the aggregate

demand of labor and with ¸st = min
n
Ldt
Ls
; 1
o
the fraction of young consumers that

will be employed, the aggregate demand of goods of young consumers is

Xd
t = ¸

s
tnx

d1
t + (1¡ ¸st)nxd0t ´ Xd

µ
¸st ;
wt
pt
;
(1¡ tax) ¦t¡1

pt

¶
:

4As has been shown by Green [1980] and Weinrich [1982], in case of rationing where the
quantity signals are given by means of the aggregate values of demand and supply, the only
mechanisms compatible with equilibrium are those for which the expected realization is propor-
tional to the transaction o¤er.
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The total aggregate demand of the consumption sector is then obtained by
adding old consumers’ aggregate demand Mt=pt and government demand G:

Y dt = X
d (¸st ;®t; (1¡ tax)¼t) +mt +Gt

where ®t = wt=pt; ¼t = ¦t¡1=pt and mt =Mt=pt:

2.3. The Production Sector

Each of the n0 identical …rms uses an atemporal production function yt = f (`t) :
As with consumers, …rms too may be rationed, by means of a rationing mechanism
analogue to that assumed for the consumption sector.
Denoting the single …rm’s e¤ective demand of labor by `dt ; the quantity of labor

e¤ectively transacted is

`t =

½
`dt ; with prob. ¸

d
t

0; with prob. 1¡ ¸dt
where ¸dt 2 [0; 1] : On the goods market the rationing rule is

yt =

½
yst ; with prob. ¾°

s
t

dtyst ; with prob. 1¡ ¾°st
;

where ¾ 2 (0; 1) ; °st 2 [0; 1] and dt = (°st ¡ ¾°st) = (1¡ ¾°st) : ¾ is a …xed parameter
of the mechanism whereas ¸dt and °

s
t are perceived rationing coe¢cients taken as

given by the …rm the e¤ective value of which will be determined in equilibrium.
The de…nition of dt ensures that Eyt = °sty

s
t : It is obvious that E`t = ¸

d
t `
d
t :

The …rm’s e¤ective demand `dt = `d (°st ;®t) is obtained from the expected
pro…t maximization problem

max
`dt

°stf
¡
`dt
¢¡ ®t`dt

subject to

0 · `dt ·
dt
®t
f
¡
`dt
¢

while its e¤ective supply is yst = f
¡
`dt
¢
. The upper bound on labor demand

re‡ects the fact that the …rm must be prepared to …nance labor service purchases
even if rationed on the goods market (since the labor market is visited …rst it will
know whether it is rationed on the goods market only after it has hired labor). In
general the solution depends on this constraint but if we assume that f (`) = a`b,
a > 0, 0 · b · (1¡ ¾) ; then it is not binding (Appendix 1, Lemma 2).
The aggregate labor demand is Ldt = n0`dt (°

s
t ;®t) ´ Ld (°st ;®t) and, because

only a fraction ¸dt of …rms can hire workers, the aggregate supply of goods is
Y st = ¸

d
tn
0f
¡
`d (°st ;®t)

¢ ´ Y s ¡¸dt ; °st ;®t¢ :
8



3. Temporary Equilibrium Allocations

For any given period t we can now describe a feasible allocation as a temporary
equilibrium with rationing as follows.

De…nition 3.1. : Given a real wage ®t; a real pro…t level ¼t, real money balances
mt, a level of public expenditure G and a tax rate tax, a list of rationing coe¢-
cients

¡
°dt ; °

s
t ; ¸

d
t ; ¸

s
t ; ±t; "t

¢ 2 [0; 1]6and an aggregate allocation ¡Lt; Y t¢ constitute
a temporary equilibrium with rationing if the following conditions are ful…lled:
(1) Lt = ¸

s
tL

s = ¸dtL
d (°st ;®t) ;

(2) Y t = °stY
s
¡
¸dt ; °

s
t ;®t

¢
= °dtX

d (¸st ;®t; (1¡ tax) ¼t) + ±tmt + "tG;

(3) (1¡ ¸st)
¡
1¡ ¸dt

¢
= 0; (1¡ °st)

¡
1¡ °dt

¢
= 0;

(4) °dt (1¡ ±t) = 0; ±t (1¡ "t) = 0:

Conditions (1) and (2) require that expected aggregate transactions balance.
This means that all agents have correct perceptions of the rationing coe¢cients.
Equations (3) formalize the short-side rule according to which at most one side
on each market is rationed. The meaning of the coe¢cients ±t and "t is that also
old households and/or the government can be rationed. However, according to
condition (4) this may occur only after young households have been rationed (to
zero).
As shown in the table below it is possible to distinguish di¤erent types of

equilibrium according to which market sides are rationed: excess supply on both
markets is called Keynesian Unemployment [K], excess demand on both markets
Repressed In‡ation [I], excess supply on the labor market and excess demand on
the goods market Classical Unemployment [C] and excess demand on the labor
market with excess supply on the goods market Underconsumption [U ].

K I C U
¸st < 1 = 1 < 1 = 1

¸dt = 1 < 1 = 1 < 1
°st < 1 = 1 = 1 < 1
°dt = 1 < 1 < 1 = 1

Of course there are further intermediate cases which, however, can be considered
as limiting cases of the above ones. In particular, when all the rationing coe¢cients
are equal to one, we are in a Walrasian Equilibrium. Notice that in all equilibrium
types di¤erent from the Walrasian equilibrium there is at least one rationing
coe¢cient smaller than one, and therefore there are agents which are e¤ectively
rationed. Nevertheless these rationed agents express e¤ective demands that exceed
their expected transactions. To do this is rational for them because from an
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individual point of view rationing is manipulable and stochastic. This feature of
equilibrium could not have been obtained with deterministic rationing since then
rationing would have had to be nonmanipulable, and hence agents would not have
had an incentive to exceed their rationing constraints.
Moreover, we can use the rationing coe¢cients ¸st ; ¸

d
t ; °

s
t and °

d
t associated

to any equilibrium allocation as a measure for the strength of rationing on the
various market sides: To see this, consider aK-equilibrium. Since there is zero-one
rationing on the labor market, 1 ¡ ¸st = (Ls ¡ Lt)=Ls is the ratio of the number
of unemployed workers and the total number of young households. Regarding the
goods market, in a K-equilibrium Y t = °

s
tY

s (1; °st), and therefore

d (1¡ °st)
dY t

= ¡ 1

Y st + °
s
t
@Y st
@°st

< 0

since @Y st
@°st

(1; °st) = n
0f 0
¡
`d (°st)

¢ d`dt
d°st
> 0: So a decrease in Y t (for example due to

a reduction of government spending), and thus an aggravation of the shortage of
aggregate demand for …rms’ goods, is unambiguously related to a decrease in °st
which can therefore be interpreted as a measure of the strength of rationing on
the goods market. A similar reasoning justi…es the use as rationing measures of
the terms ¸dt and °

d
t in the other equilibrium regimes.

To address the question of existence and uniqueness of temporary equilibrium
we have to introduce some further concepts. In the remainder of this section we
hold the variables ®t; mt and ¼t and the parameters G and tax …xed; therefore
we omit them whenever possible as arguments in the subsequent functions.
De…ne the set

H =
©¡
¸sLs; °dXd (¸s)

¢ j ¡¸s; °d¢ 2 [0; 1]2ª
and its subsets H

K
= H j°d=1;¸s<1, HI

= H j°d<1;¸s=1, HC
= H j°d<1;¸s<1 and

H
U
= H j°d=1;¸s=1 : From these we derive the consumption sector’s trade curves

H
K

0 = H
K
+ f(0;mt +G)g =

©¡
¸sLs; Xd (¸s) +mt +G

¢ j ¸s 2 [0; 1)ª ;
H
I

0 =
©¡
Ls; °dXd (1) +mt +G

¢ j °d 2 (0; 1)ª [ f(Ls; ±mt +G) j ± 2 (0; 1]g
[ f(Ls; "G) j " 2 [0; 1]g

and
H
C

0 =
©¡
¸sLs; °dXd (¸s) +mt +G

¢ j ¡¸s; °d¢ 2 [0; 1)£ (0; 1)ª
[f(¸sLs; ±mt +G) j (¸s; ±) 2 [0; 1)£ (0; 1]g[f(¸sLs; "G) j (¸s; ") 2 [0; 1)£ [0; 1]g :
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Similarly, starting from

F =
©¡
¸dLd (°s) ; °sY s

¡
¸d; °s

¢¢ j ¡¸d; °s¢ 2 [0; 1]2ª
we de…ne the production sector’s trade curves as F

K
= F j¸d=1;°s<1, F

I
=

F j¸d<1;°s=1; F
C
= F j¸d=1;°s=1and F

U
= F j¸d<1;°s<1 : In the appendix (Lemma

3) we show that these curves are given by

F
K
= F

I
= F

U
=
n³
L;
®t
b
L
´
j 0 · L < Ld (1;®t)

o
(3.1)

and
F
C
=
n³
Ld (1;®t) ;

®t
b
Ld (1;®t)

´o
:

Using the consumption sector’s and the production sector’s trade curves and
indicating with Sc the closure of the set S, we now note that a pair

¡
L; Y

¢ 2 R2+
is a temporary equilibrium allocation if and only if it is an element of the set

Z =
³³
H
K

0

´c
\
³
F
K
´c´

[
³³
H
I

0

´c
\
³
F
I
´c´

[
³³
H
C

0

´c
\
³
F
C
´c´

Here equilibria of type U do not appear as they can be seen as limiting cases ofK-
as well as of I-type equilibria. To show existence of an equilibrium is equivalent
to showing that Z is not empty. To this end consider …rst the locus³

H
K

0

´c
=
©¡
¸stL

s; Xd (¸st) +mt +G
¢ j ¸st 2 [0; 1]ª

and recall that

Xd (¸st) = nh
¡
¸st!

1
t + (1¡ ¸st)!0t

¢
= h (1¡ tax) ¼t + h®t¸stLs:

De…ning the function

¡t (L) = h (1¡ tax)¼t + h®tL+mt +G; L ¸ 0;

we see that
³
H
K

0

´c
is the part of the graph of ¡t for which L · Ls.

Next consider again the production sector’s trade curves. From (3.1) we con-

clude that the locus
³
F
K
´c
is the part of the graph of the function

¢t (L) =
®t
b
L; L ¸ 0;

for which L · Ld(1): Notice that the graphs of the functions ¡t and ¢t always
intersect. Indeed, ¡t (L) = ¢t (L) if and only if

L =
b

®t (1¡ hb) [h (1¡ tax) ¼t +mt +G] = eL (®t; ¼t;mt; G; tax)
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which is well de…ned and positive since hb < 1: Therefore the equilibrium level of
employment is

Lt = min
neL (®t; ¼t;mt; G; tax) ; L

d (1; ®t) ; L
s
o
= L (®t; ¼t;mt; G; tax)

and the equilibrium level on the goods market is

Y t = ¢t
¡
Lt
¢
= Y (®t; ¼t;mt; G; tax) :

This shows that the equilibrium allocation¡
Lt; Y t

¢
= (L (®t; ¼t;mt; G; tax) ;Y (®t; ¼t;mt; G; tax))

exists and is uniquely de…ned. More precisely, if min f¢g = eL (:) ; then ¡Lt; Y t¢ 2³
H
K

0

´c
\
³
F
K
´c
and the resulting equilibrium is of type K or a limiting case of

it. If min f¢g = Ld (1; ®t) ; then
¡
Lt; Y t

¢ 2 ³
H
C

0

´c
\
³
F
C
´c
and type C or a

limiting case of it occurs. Finally, if min f¢g = Ls, an equilibrium of type I or a

limiting case results because then
¡
Lt; Y t

¢ 2 ³HI

0

´c
\
³
F
I
´c
: An equilibrium of

type Keynesian unemployment is shown in Figure 3.1

4. Dynamics

So far our analysis has been essentially static. For any given vector (®t; ¼t;mt; G;
tax) we have described a feasible allocation in terms of a temporary equilibrium
with rationing. To extend now our analysis to a dynamic one we must link succes-
sive periods one to another. This link will of course be given by the adjustment
of prices but also by the changes in the stock of money and in pro…ts. Regarding
the latter, this is automatic since by de…nition of these variables

¦t = ptY (®t; ¼t;mt; G; tax)¡ wtL (®t; ¼t;mt; G; tax) ;

Mt+1 = (1¡ tax) ¦t¡1 + wtLt ¡ ptXt

= (1¡ tax) ¦t¡1 + wtLt ¡ ptY t + ±tMt + "tptG

= (1¡ tax) ¦t¡1 ¡¦t + ±tMt + "tptG

Regarding the adjustment of prices we follow the standard hypothesis that,
whenever an excess of demand (supply) is observed, the price rises (falls). In
terms of the rationing coe¢cients observed in period t, this amounts to

pt+1 < pt , °st < 1; pt+1 > pt , °dt < 1;

12
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Figure 3.1: Keynesian Unemployment Equilibrium

wt+1 < wt , ¸st < 1; wt+1 > wt , ¸dt < 1:

More precisely, in our simulation model we have speci…ed these adjustments
in two alternative ways. The …rst is a nonlinear mechanism, namely

pt+1 = (°
s
t)
¹1 pt; if °st < 1; pt+1 =

µ
°dt + ±t + "t

3

¶¡¹2
pt; if °dt < 1;

wt+1 = (¸
s
t)
º1 wt, if ¸

s
t < 1; wt+1 =

¡
¸dt
¢¡º2

wt, if ¸
d
t < 1:

where ¹1; ¹2; º1 and º2 are nonnegative parameters for the speeds of adjustment.
This formalizes that the size of price adjustment depends on the strength of ra-
tioning and allows us to encompass a wide variety of circumstances. For example,
wage ‡exibility upwards greater than downwards is obtained whenever º2 > º1
and wage rigidity downwards corresponds to º1 = 0:
From the adjustment of nominal prices we obtain the one for the real wage as

®t+1 =
(¸st)

º1

(°st)
¹1
®t if

¡
Lt; Y t

¢ 2 K [ U;
®t+1 =

¡
¸dt
¢¡º2³

°dt+±t+"t
3

´¡¹2®t if ¡Lt; Y t¢ 2 I;
13



®t+1 =
(¸st)

º1³
°dt+±t+"t

3

´¡¹2®t if ¡Lt; Y t¢ 2 C:
Then for the growth factor of the price level µt = pt+1=pt there results

µt = (°
s
t)
¹1 if

¡
Lt; Y t

¢ 2 K [ U;
µt =

µ
°dt + ±t + "t

3

¶¡¹2
if
¡
Lt; Y t

¢ 2 I [ C:
The second adjustment mechanism is linear and in fact a linearization of the

nonlinear rule. More precisely,

pt+1 = [1¡ ¹1 (1¡ °st)] pt; if °st < 1; (4.1)

pt+1 =

·
1 + ¹2

µ
1¡ °

d
t + ±t + "t

3

¶¸
pt; if °dt < 1; (4.2)

wt+1 = [1¡ º1 (1¡ ¸st)]wt, if ¸st < 1; wt+1 =
£
1 + º2

¡
1¡ ¸dt

¢¤
wt, if ¸

d
t < 1:

(4.3)
Then the adjustment equations for the real wage are

®t+1 =
1¡ º1 (1¡ ¸st)
1¡ ¹1 (1¡ °st)

®t if
¡
Lt; Y t

¢ 2 K [ U; (4.4)

®t+1 =
1 + º2

¡
1¡ ¸dt

¢
1 + ¹2

³
1¡ °dt+±t+"t

3

´®t if ¡Lt; Y t¢ 2 I; (4.5)

®t+1 =
1¡ º1 (1¡ ¸st)

1 + ¹2

³
1¡ °dt+±t+"t

3

´®t if ¡Lt; Y t¢ 2 C (4.6)

whereas µt is given by

µt = 1¡ ¹1 (1¡ °st) if
¡
Lt; Y t

¢ 2 K [ U; (4.7)

µt = 1 + ¹2

µ
1¡ °

d
t + ±t + "t

3

¶
if
¡
Lt; Y t

¢ 2 I [ C: (4.8)

In both the linear and the nonlinear case the dynamics of the model in real
terms is given by the sequence f(®t;mt; ¼t)g1t=1, where ®t+1 is as above and

¼t+1 =
[Y (:)¡ ®tL (:)]

µt

and

mt+1 =
1

µt
[±tmt + "tG+ (1¡ tax)¼t]¡ ¼t+1:

14



5. Numerical Analysis

The economic model introduced in the previous sections represents a non-linear
three-dimensional dynamical system with state variables ®t;mt and ¼t that cannot
be studied with analytical tools only. Moreover, since there are three nondegen-
erate equilibrium regimes, the overall dynamic system can be viewed as being
composed of three subsystems each of which may become e¤ective through en-
dogenous regime switching. (The complete equations of these systems are given
in Appendix 2.)
In order to get some insights in these dynamics we report numerical simulations

using computer programs based on the program packages GAUSS and MACRO-
DYN5. The basic parameter set speci…es values for the technological coe¢cients
(a and b), the exponent of the utility function (h), the labor supply (Ls) and the
total number of producers in the economy (n0), for the price adjustment speeds
downward and upward (respectively ¹1 and ¹2) and the corresponding wage ad-
justment speeds (º1 and º2). We also have to specify initial values for the real
wage, real money stock and real pro…t level (®0;m0 and ¼0) and values for the
government policy parameters (G and tax):
Starting from the following parameter values corresponding to a stationary

Walrasian equilibrium

a = 1 b = 0:85 h = 0:5 Ls = 100 n0 = 100
®0 = 0:85 m0 = 46:25 ¼0 = 15 G = 7:5 tax = 0:5

we address the question of the impact of changes in the downward speed of adjust-
ment of the wage rate. To this end we consider a reduction in the initial money
stock to m0 = 40: Employing the linear price and wage adjustment de…ned in
the previous section, we allow for an adjustment of the price in both directions
(¹1 = ¹2 = 1) but impose downward wage rigidity (º1 = 0; º2 = 1). As can be seen
from Figure 5.1, the restrictive money shock gives rise to a transitional phase of
unemployment before the system returns to a Walrasian equilibrium with full em-
ployment. The unemployment phase can be shortened by allowing for downward
wage ‡exibility (as was to be expected from textbook theory). This is shown in
Figure 5.2 where º1 has been changed to 0:5. However, Figure 5.3, where º1 = 1;
suggests that further increasing this downward ‡exibility results in irregular be-
havior with frequently high unemployment rates.
To see which downward wage ‡exibility is ”too much” we can consider the

bifurcation diagram in Figure 5.4. It reveals that the system is stable with con-
vergence to full employment for º1 smaller than about 0.7 whereas from approx-

5See Böhm,V., Lohmann, M. and U. Middelberg [1999], MACRODYN– a dynamical system’s
tool kit, version x99, University of Bielefeld, and Böhm and Schenk-Hoppe’ [1998].
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Figure 5.1: The time series in the …gure show the emergence of transitional unem-
ployment when the real stock of money is reduced from the Walrasian equilibrium
level of 46,25 to 40 and the coe¢cients for the adjustment of prices and wage are
¹1 = ¹2 = º2 = 1 and º1 = 0.
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Figure 5.2: The unemployment phase is shortened when downward wage ‡exibility
is allowed. The parameter set is the same as in the previous …gure, except that
º1 = 0:5:
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Figure 5.3: The behavior of the system becomes highly irregular when the down-
ward ‡exibility increases. In the simulation represented here º1 is 1:
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Figure 5.4: The bifurcation diagram shows that for values of º1 smaller than 0:7
the system converges, but for values larger than 0:9 it displays chaotic behavior.

imately 0.9 on its behavior is chaotic. The latter can also be seen by looking at
chaotic attractors as the one shown in Figure 5.5. It depicts points (®t;mt) ob-
tained from the same parameter set as the one used in Figure 5.3, i.e. with º1 = 1.
More precisely the diagram represents the projection into the (®;m)¡plane of a
part of the sequence f(®t;mt; ¼t)g1t=0. The total set of t1 iterations is divided
in two subsets, one (0 · t < t0) including the transient phase generating points
not plotted and one subsequent (t0 · t · t1) producing points that are shown.6
In case of convergence, as with the parameter sets of Figures 5.1 and 5.2, all
the points generated during the transient phase fall into the …rst subinterval and
then the diagram shows one point only, namely the limit of the sequence. In-
stead in the case of chaos, during the simulation that produces an attractor, the
latter’s persistence is re‡ected on the computer screen also by the fact that the
second subinterval is in turn partitioned into six sub-subintervals such that points
belonging to iterations stemming from a speci…c sub-subinterval are shown in a
corresponding speci…c colour. If these colours cover each other, it means that the
geometric object produced does not move any more which supports the fact that
it is an attractor.

6In our simulations we have worked with t0 = 10 million and t1 = 100 million.
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Figure 5.5: A chaotic attractor in the (®;m) - space.

6. The Phillips Curve

By de…nition the Phillips curve plots the rate of wage in‡ation against the un-
employment rate. Any sequence f(®t;mt; ¼t)g1t=0 gives rise, for given º1, to a
sequence f(ut; vt)g1t=0 = fF (®t;mt; ¼t)g1t=0 where ut =

¡
Ls ¡ Lt

¢
=Ls is the un-

employment rate and vt = (wt+1 ¡ wt) =wt the rate of wage in‡ation. Before we
look at numerically generated sequences f(ut; vt)gt we establish the theoretical
relationship between ut and vt.
Given any ut 2 [0; 1], the associated employment level is Lt = Ls (1¡ ut)

and therefore ¸st = Lt=L
s = 1 ¡ ut: If wage adjustment is linear then vt =

¡º1 (1¡ ¸st) = ¡º1ut. Solving for ut and taking account of the fact that it
cannot be negative, we obtain

ut =

½ ¡ 1
º1
vt, vt · 0

0 , vt ¸ 0 : (6.1)

On the other hand, if wage adjustment is nonlinear, vt = (¸
s
t)
º1¡1 = (1¡ ut)º1¡1:

Therefore in this case

ut =

½
1¡ (1 + vt)1=º1 , vt · 0
0 , vt ¸ 0 : (6.2)

Both (6.1) and (6.2) are functional relationships between the rate of wage in‡ation
and the unemployment rate the graphs of which are potential Phillips curves. In
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Figure 6.1: A long run Phillips-curve as an attractor, generated with the param-
eter values of Figures 5.3 and 5.5.

fact, for any given value of the speed of downward wage adjustment º1, any
trajectory of f(ut; vt)g1t=0 must lie on the corresponding curve, independently of
all other parameter values.
Figure 6:1 shows a Phillips curve as a plot from t0 to t1 of a sequence f(ut; vt)g1t=0

resulting from the sequence f(®t;mt; ¼t)g1t=0 generating Figure 5.5.
Note that this Phillips curve emerges by very construction as a true long-run

phenomenon as it is the image fF (®t;mt; ¼t)gt1t=t0 of an attractor. Notice also the
remarkable fact that the trajectory f(ut; vt)gt1t=t0 lies on a curve in spite of the fact
that the corresponding trajectory f(®t;mt)gt1t=t0 does not lie on a one-dimensional
geometric object. The proof of this is given by (6.1) resp.(6.2).
From these considerations follows that it would be wrong to interprete our

Phillips curve as a policy instrument in terms of a trade-o¤ between unemploy-
ment and in‡ation. Any point on the curve is but one element on the trajectory
f(ut; vt)gt and successive points of this trajectory may lie far away one from the
other. Thus, even if the government could choose a speci…c point on the curve in
one period, in the next period already the system may go to a very di¤erent point
on the curve.
To understand still better how the curve comes about, we can look at the

diagrams in the second row of charts of Figure 5.3. The left-hand chart plots the
price for periods 1 to 100. Until about period 50 the price does not change very
much but then it starts to alternatingly increase and decrease quite substantially.
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The right-hand chart depicts the trajectory of price and wage couples. It starts
out in the lower left angle and then has a tendency to move upwards and to the
right. If, in a given period, the economy …nds itself in a state of Keynesian unem-
ployment, both the price and the wage are increased, whereas the opposite is true
in a state of repressed in‡ation. Furthermore, in a state of classical unemployment
the price increases but the wage diminishes. Therefore the chart displaying price
and wage couples shows that the economy visits all three types of equilibria along
its trajectory. From the chart displaying employment, on the other hand, it is
obvious that unemployment rates may vary substantially and therefore the points
on the Phillips curve may jump consirably from one period to the next.
How robust is the emergence of a Phillips curve? It is clear that, when the

economy converges, the Phillips curve reduces to one point. This is due to the
fact that in the attractor plotting the transient phase is excluded. Therefore,
when the picture produced is a full curve, this can only be an attractor. To see
how sensitive to the parameter values is this phenomenon, we can use a technical
device called cyclogram and developed by Lohmann and Wenzelburger [1996]. It
permits to establish a relationship between the values of the relevant parameters
and the structure of the resulting dynamics (although it is not able to distinguish
between regular quasi-periodic behavior and ”true” chaotic motion).
More precisely, the …rst chart in Figure 6.2 displays a cyclogram where the

color attached to each point (m0; º1) in the rectangle [36:25; 56:25] £ [0; 1] re‡ects
either convergence (red) or irregular behaviour (yellow). From this it is evident
that all velocities of wage reduction beyond 0.9 give rise to irregular behaviour
and thus the Phillips curve shown in Figure 5.3 can be obtained for all values
of º1 between 0:9 and 1. Analogous cyclograms can be obtained by varying on
the horizontal axis the initial real wage ®0 or the initial pro…t ¼0 around their
Walrasian values.7

The Phillips curve shown in Figure 6.1 has its downward sloping part for
negative values of wage in‡ation only. This is due to our strict application of the
rule that prices are increased only if there is excess demand. A more ‡exible -
and probably more realistic - formulation allows for a ”natural rate of in‡ation”
vn ¸ 0 which is the rate at which prices and wages are increased when markets
clear. Then equations (4.1) - (4.3) become

pt+1 = (1¡ ¹1 (1¡ °st)) (1 + vn) pt; if °st < 1;

pt+1 =

µ
1 + ¹2

µ
1¡ °

d
t + ±t + "t

3

¶¶
(1 + vn) pt; if °dt < 1;

7The cyclograms in Figure 6.2 have been obtained for speeds of adjustment ¹1 = ¹2 = º2 = 1
and 0 · º1 · 1. Qualitatively similar results can be obtained also for values ¹1 = ¹2 = º2 =
s 2 [0:4; 1] and 0 · º1 · s:
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Figure 6.2: These cyclograms show the dynamic behavior of the economy when
the initial values of the state variablesm0, ®0 and ¼0 vary respectively in the range
(36:25; 56:25) ; (0:5; 1:2) and (10; 15) : Notice that downward wage ‡exibility favors
irregular behavior.
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Figure 6.3: Phillips curves for vn = 0; vn = 0:1 and vn = 0:2:

wt+1 = (1¡ º1 (1¡ ¸st)) (1 + vn)wt, if ¸st < 1;
wt+1 =

¡
1 + º2

¡
1¡ ¸dt

¢¢
(1 + vn)wt, if ¸

d
t < 1:

Equations (4.4) - (4.6) do not vary whereas (4.7) and (4.8) now are

µt = (1¡ ¹1 (1¡ °st)) (1 + vn) if
¡
Lt; Y t

¢ 2 K [ U;
µt =

µ
1 + ¹2

µ
1¡ °

d
t + ±t + "t

3

¶¶
(1 + vn) if

¡
Lt; Y t

¢ 2 I [ C:
This means that the dynamics of real variables is unchanged relative to the case
vn = 0 whereas nominal variables do change. The Phillips curve (6.1) then be-
comes

ut =

½ vn¡vt
º1(1+vn)

, vt · vn
0 , vt ¸ vn :

Two curves for vn = 0:1 and vn = 0:2; together with the previous case vn = 0,
are shown in Figure 6.3.
The fact that for di¤erent values of vn we obtain di¤erent Phillips curves does

not impair the validity of this paper’s main messages. To recall them, they are
that a Phillips curve can be generated as a long-run result of the working of a
dynamical system describing the evolution of an economy and that it cannot be
exploited for policy uses. In our model this is true for any …xed value of vn. On
the other hand, the model is not rich enough to be able to directly account for
supply-side shocks. Empirically, it is these shocks that are typically giving rise to
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stag‡ation and to an increase in the expected in‡ation rate, thereby shifting the
Phillips curve to the right. The latter is what happens in our model when vn is
augmented. Thus that parameter can be seen as a shortcut to account for the role
of shifts in in‡ation expectations. Therefore the model can indirectly accomodate
supply shocks, in spite of the fact that its formulation of the production sector is
too simple to do this in a direct way.

7. Concluding Remarks

In this paper we have presented a dynamic macroeconomic model capable of gen-
erating long-run Phillips curves. The speci…c property of the model is that it
allows for trade also when prices are not market clearing. This renders possible
to have recurrent unemployment and in‡ation. Although prices are adjusted from
period to period when there are market imbalances, convergence to the Walrasian
equilibrium may fail and, to the contrary, complex dynamics may occur. More
precisely, we have adopted a non-tâtonnement approach involving temporary equi-
libria with stochastic quantity rationing and price adjustment between successive
equilibria. In this way we have obtained a process which allows us to describe
consistent allocations involving disequilibrium features in every period but which
at the same time displays a well-de…ned dynamics.
While the dynamics of the resulting three-dimensional system is too complex

to be completely understood by means of analytical tools only, we have been able
to shed some light on it using simulations in the form of time series, bifurcation
diagrams, attractors and cyclograms. From these simulations it is apparent that
the economy may produce sequences of pairs of unemployment rates and in‡ation
rates which constitute a Phillips curve. The speci…c feature of these so generated
curves is that they are a true long-run phenomenon since they are images of
strange attractors. However, these curves cannot be exploited for policy purposes
as any point on them represents but one realization of a whole trajectory and
successive points of the trajectory may lie far away one from the other. Therefore
those economists who have criticized as a misunderstanding of the workings of
an economy the use of the Phillips curve as policy tool can be con…rmed by our
results. On the other hand, our results are compatible with empirical …ndings
such as the original one by Phillips [1958].
The occurence of a Phillips curve as an attractor in our model requires that

wages are su¢ciently ‡exible. Indeed, when wages are rigid downwards, the econ-
omy typically converges to the market-clearing equilibrium. It is true that that
convergence is speeded up when wages become ‡exible downwards but, when
that ‡exibility is large enough, convergence is destroyed and irregular behaviour
emerges. To summarize this in a accentuated way is to say that, contrary to the
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standard paradigm, wage rigidity favors the stability of the economy and its re-
turn after a shock to the Walrasian equilibrium whereas wage ‡exibility may be
destabilizing.

Appendix 1: Lemma 1 - 3

Lemma 1.The solution of the young consumer’s maximization problem is in-
dependent both of °dt and p

e
t+1 when his utility function is u (xt; xt+1) = x

h
t x
1¡h
t+1

and ½ = 1. More speci…cally, in that case xdit = h!
i
t; i = 0; 1:

Proof. For notational simplicity let x = xdt ; ! = !
i
t; c = ct; µ = µ

e
t and de…ne

f (x) = u1

µ
x;
! ¡ x
µ

¶
= h

µ
! ¡ x
µx

¶1¡h
;

g (x) = u2

µ
x;
! ¡ x
µ

¶
= (1¡ h)

µ
µx

! ¡ x
¶h
;

Then

f (cx) = u1

µ
cx;

! ¡ cx
µ

¶
= h

µ
! ¡ cx
µcx

¶1¡h
;

g (cx) = u2

µ
x;
! ¡ cx
µ

¶
= (1¡ h)

µ
cµx

! ¡ cx
¶h
:

Observe that g (x) and g (cx) can be written as functions of f (x) and f (cx)
respectively:

g (x) =
1¡ h
h

µx

! ¡ xf (x) ;

g (cx) =
1¡ h
h

cµx

! ¡ cxf (cx) :
By substituting these functions in equation (2.2) we get

½f (x) + (1¡ ½) f (cx)
½1¡h

h
µx
!¡xf (x) + (1¡ ½) 1¡hh cµx

!¡cxf (cx)
=
1

µ

and, remembering the de…nition of f (x) and f (cx) ; after some algebraic manip-
ulations follows

½ (! ¡ cx)h (h! ¡ x) + (1¡ ½)
µ
1

c

¶1¡h
(! ¡ x)h (h! ¡ cx) = 0 (a1)
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Recall that by assumption ½ = 1 which implies c = 0:Hence the term (1¡ ½) ¡1
c

¢1¡h
is undetermined and therefore we need to consider the limit

lim
½!1

(1¡ ½)
µ
1

c

¶1¡h
=lim
½!1

(1¡ ½)
·
(1¡ ½) °
1¡ ½°

¸h¡1
= 0:

By substituting this into equation (a1) the result follows; in fact,

h! ¡ x = 0) xdit = h!
i
t; i = 0; 1 ¥

Lemma 2.When the production function is f (`) = a`b; with a > 0 and
0 < b · 1¡ ¾; the solution to the …rm’s maximization problem is independent of
the constraint `dt · dt

®t
f
¡
`dt
¢
:

Proof. The …rst order condition for an interior solution of the …rm’s problem
is

°sf 0 (`) = ®, °s
bf (`)

`
= ®, ` = °s

bf (`)

®
:

Moreover the inequalities 1
b
¸ 1

1¡¾ ¸ 1¡°s¾
1¡¾ yield 1 · 1¡¾

b(1¡°s¾) : From this follows

` · °s (1¡ ¾)
1¡ °s¾

1

°s
1

b
` = d

1

°s
1

b
` = d

1

°s
1

b
°s
bf (`)

®
=
d

®
f (`) ;

which proves our claim. ¥

Lemma 3.When the production function is f (`) = a`b; with a > 0 and
0 < b · 1¡ ¾; the producers’ trade curves are given by

F
K
= F

I
= F

U
=
n³
L;
®t
b
L
´
j 0 · L < Ld (1;®t)

o
and F

C
=
©¡
Ld (1;®t) ;

®t
b
Ld (1;®t)

¢ª
:

Proof. From f (`) = a`b follows f 0 (`) = bf(`)
`
; which implies f (`) = 1

b
f 0 (`) `

and

Y = °sY s
¡
¸d; °s

¢
= °s¸dn0f

¡
`d (°s;®t)

¢
= °s¸dn0

1

b
f 0
¡
`d (°s;®t)

¢
`d (°s;®t)

But °sf 0
¡
`d (°s;®t)

¢
= ®t from any producer’s optimizing behavior, and thus

Y =
®t
b
¸dLd (°s;®t) =

®t
b
L ¥
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Appendix 2: The complete dynamic system

The dynamic system is given by three di¤erent subsystems, one for each of
the equilibrium types K; I and C; and endogenous regime switching. For given
(G; tax) ; any list (®t; ¼t;mt) gives rise to a uniquely determined equilibrium al-
location

¡
Lt; Y t

¢
being of one of the above types (or of an intermediate one):

This type is determined according to the procedure described in section 3. More
precisely,

Lt = min
neL (®t; ¼t;mt; G; tax) ; L

d (1; ®t) ; L
s
o

with eL (®t; ¼t;mt; G; tax) =
b

®t (1¡ hb) [h (1¡ tax) ¼t +mt +G] ;

Ld (1; ®t) = n
0
³®t
ab

´ 1
b¡1
:

When Lt = eL (¢) ; the K-subsystem applies whereas when Lt = Ld (¢) or Ls; the
systems associated to the types C or I; respectively, are the ones to be used.
Regime switching may occur because

¡
Lt; Y t

¢
may be of type T 2 fK; I; Cg and¡

Lt+1; Y t+1
¢
of type T 0 6= T: Regarding the subsystems, they are the following.

(We present the case of linear price and wage adjustment only; the nonlinear case
is analogous.)

Keynesian unemployment system

Employment level: Lt = eL (®t; ¼t;mt; G; tax) ; output level: Y t = ®t
b
Lt; ra-

tioning coe¢cients: ¸st =
Lt
Ls
; ¸dt = 1; °st =

h
Y t
n0a

¡
®t
ab

¢ b
1¡b
i1¡b

; °dt = 1; ±t = "t = 1;

price in‡ation: µt = 1 ¡ ¹1 (1¡ °st) ; real wage adjustment: ®t+1 = 1¡º1(1¡¸st )
1¡¹1(1¡°st )®t;

real pro…t: ¼t+1 = 1
µt

¡
Y t ¡ ®tLt

¢
;

real money stock: mt+1 =
1
µt
[mt +G+ (1¡ tax) ¼t]¡ ¼t+1:

Repressed inflation system

Lt = L
s;Y t =

®t
b
Lt;¸

s
t = 1; ¸

d
t =

Ls

Ld(1;®t)
; °st = 1;

if Y t ¸ G+mt; then °dt =
Y t¡mt¡G

h(1¡tax)¼t+h®tLt ; ±t = "t = 1;

if G+mt > Y t ¸ G; then °dt = 0; ±t = Y t¡G
mt

; "t = 1;

if Y t < G; then °dt = ±t = 0; "t =
Y t
G
;
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µt = 1 + ¹2

³
1¡ °dt+±t+"t

3

´
;®t+1 =

1+º2(1¡¸dt )
1+¹2

µ
1¡°dt+±t+"t

3

¶®t; ¼t+1 = 1
µt

¡
Y t ¡ ®tLt

¢
;

mt+1 =
1
µt
[±tmt + "tG+ (1¡ tax) ¼t]¡ ¼t+1:

Classical Unemployment System

Lt = L
d (1; ®t) ;Y t =

®t
b
Lt;¸

s
t =

Lt
Ls
; ¸dt = 1; °

s
t = 1;

if Y t ¸ G+mt; then °dt =
Y t¡mt¡G

h(1¡tax)¼t+h®tLt ; ±t = "t = 1;

if G+mt > Y t ¸ G; then °dt = 0; ±t = Y t¡G
mt

; "t = 1;

if Y t < G; then °dt = ±t = 0; "t =
Y t
G
;

µt = 1 + ¹2

³
1¡ °dt+±t+"t

3

´
;®t+1 =

1¡º1(1¡¸st )
1+¹2

µ
1¡°dt+±t+"t

3

¶®t; ¼t+1 = 1
µt

¡
Y t ¡ ®tLt

¢
;

mt+1 =
1
µt
[±tmt + "tG+ (1¡ tax) ¼t]¡ ¼t+1:

The underconsumption case is not represented with an own dynamical system
because choosing °st = °

s
t¸
d
t and ¸

d
t = 1 it can be treated as a special case of the

Keynesian case.
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