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Abstract

The paper studies the interaction between traders’ acquisition of private information
and the aggregation of information in financial markets. We consider a canonical mar-
ket microstructure in which partially-informed traders compete in schedules and prices
partially aggregate the traders’ private information. Before submitting their demand
schedules, traders acquire information about the long-term profitability of the traded
asset. We show that, when the errors in the traders’ signals are correlated, policies that
induce the traders to submit the efficient schedules when the traders’ private information
is exogenous do not necessarily induce them to collect the efficient amount of private
information. In particular, we identify conditions under which such policies induce
over-investment (alternatively, under-investment) in information acquisition, relative to
what is efficient. We find that, as information technology reduces the cost of acquiring
information, the economy eventually moves to a regime with excessive information ac-
quisition. Finally, we show that, generically, there exist no policies based on the price of
the financial asset and the volume of individual trades that implement efficiency in both
information acquisition and trading. Such an impossibility result, however, turns into
a possibility result if taxes/subsidies can condition directly on the information acquired
by the traders.
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1 Introduction

Improvements in information technology are reducing the cost of acquiring and processing

information. This cost reduction naturally raises the question of whether such improvements

are likely to contribute to higher welfare or benefit a few at the expenses of society at large.

Such concerns are at the heart of various policy proposals to “put sand in the wheels” of

financial markets as a way of limiting speculative trading facilitated by asymmetric information

(the Tobin tax being a prominent example).

In this paper, we present a tractable framework to study both the positive and normative

issues of interest. In particular, we characterize the sources of inefficiency in the collection

of private information prior to trading and relate them to possible inefficiencies in the limit

orders that traders submit in financial markets, given available information. We first show

that, when traders’ private information is exogenous, the equilibrium usage of information is

inefficient. That is, the limit orders that traders submit in equilibrium fail to maximize welfare,

given the dispersion of private information. However, the inefficiency can be corrected with

appropriate (non-linear) taxes/subsides on the trades. We then show that, when the traders’

private information is endogenous, policies that induce efficiency in the usage of information

(equivalently, that induce the traders to submit the efficient limit orders) need not induce the

traders to collect information efficiently. We identify conditions under which traders over-

invest in information acquisition as well as conditions under which they under-invest. Finally,

we show that, generically, there exists no tax/subsidy scheme, measurable in the price of

the financial asset and in the volume of individual trades, that induces efficiency in both

information acquisition and trading.

Our model is a canonical linear-quadratic-Gaussian financial microstructure à la Grossman

and Stiglitz 1980 in which a unit-mass continuum of traders compete by submitting a collection

of generalized limit orders (equivalently, a demand schedule). The traders face uncertainty

about the asset’s fundamental value, as well as the value that other investors in the market

(noisy traders, high-frequency traders, hedge-fund managers and the like) assign to the asset.

Before submitting their generalized limit orders, each trader receives a private signal about

the asset’s fundamental value whose noise is endogenous and correlated across traders. Such

a correlation may originate, for example, in the traders paying attention to common sources

of information, which have source-specific noise. This generalization, which is more in line

with what seems relevant in practice, has important implications for the (in)efficiency of the

equilibrium acquisition and usage of information, as we discuss further on.1

Our first main result is that, except in very special cases, and absent policy interventions,

1Typically, the literature assumes that the noise in the agents’ signals is iid across agents.
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the market does not use the information it collects efficiently. As in Vives 2017, the inefficiency

originates in the interaction between two externalities. First, traders do not account for how

their orders affect the co-movement between the equilibrium market-clearing price (and hence

the equilibrium asset allocations) and the various fundamental shocks that are responsible for

different agents’ payoffs (a pecuniary externality). Second, traders do not account for the fact

that a collective change in limit orders may induce a change in the information contained in

the equilibrium price, which in turn affects other agents’ ability to align their trades with the

asset’s fundamental value (a learning externality).

The pecuniary externality makes the traders overreact to their private information, whereas

the learning externality makes them under-react to it. The knife-edge case in which the two

externalities cancel each other out obtains when the equilibrium demand schedules are per-

fectly inelastic (such as in a Cournot game in which traders are restricted to submitting

market orders). When the equilibrium schedules are downward sloping, the pecuniary ex-

ternality dominates and the equilibrium trades feature excessive sensitivity to the traders’

private information. When, instead, the equilibrium schedules are upward sloping, the learn-

ing externality dominates and the sensitivity of the equilibrium limit orders to the traders’

private information is inefficiently low. Interestingly, as the precision of the traders’ private

information grows (for example, due to a reduction in the cost of information facilitated by

technological progress), the pecuniary externality gains weight in relation to the learning ex-

ternality.2 We show that, no matter whether traders over- or under-respond to their private

information, the aforementioned inefficiencies in the equilibrium usage of information can al-

ways be corrected using a (non-linear) tax-subsidy scheme contingent on both the equilibrium

price of the asset and the volume of individual trades.

Our second main result is that inducing the traders to trade efficiently does not guarantee

that they acquire private information efficiently prior to trading. In particular, suppose that

the planner could enforce the efficient usage of information by constraining the traders to

submit the efficient demand schedules. The traders would then over-invest in information

acquisition when the efficient schedules are downward sloping and under-invest in information

acquisition when they are upward sloping. In other words, when the pecuniary externality

prevails in the usage of information, so that the traders over-respond to their private infor-

mation, inducing the traders to trade efficiently induces them to over-invest in the acquisition

of information. When, instead, the learning externality prevails, in the absence of any policy

2Provided that the noise in the traders’ information is not too large, when the precision of the traders’
information is relatively low, the learning externality dominates and the demand schedules are upward sloping,
whereas the opposite is true (i.e., the pecuniary externality dominates and the demand schedules are downward
sloping) for high levels of precision.
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intervention, traders under-respond to private information. In this case, forcing them to trade

efficiently would induce them to under-invest in the acquisition of private information. The

inefficiencies in the collection of information thus parallel those in the usage of information.

Importantly, these results hinge on the noise in the agents’ information being correlated among

traders. If such noise were uncorrelated, holding fixed the efficient demand schedules, the only

effect of an increase in the precision of the traders’ private information on welfare would be

through the reduction in the dispersion of individual trades around the average trade. How-

ever, when the traders submit the efficient limit orders, the private and the social value of

reducing such a dispersion coincide, in which case efficiency in the usage of information implies

efficiency in the acquisition of information.

We also show that, if traders could be trusted to submit the efficient demand schedules,

then an appropriate tax-subsidy scheme, linear in individual expenditures on asset purchases,

would induce the efficient collection of private information.

Next, we show that, absent any policy intervention, as information technology makes

the collection of information cheaper, the economy eventually enters into a regime of over-

investment in information acquisition and excessive sensitivity of the equilibrium trades to

private information. In other words, the secular trend of improvement in information tech-

nology3 may have the undesirable effect of enticing over-investment in information acquisition

and over-reaction to it in the trading of financial assets. Hence, putting “sand in the wheels”

of financial markets can be particularly valuable precisely when the cost of information acqui-

sition is low.

Finally, we show that, generically, there do not exist (differentiable) tax-subsidy schemes

contingent on the price of the traded asset and on the volume of individual trades that in-

duce efficiency in both the collection and the usage of information. This impossibility result,

however, turns into a possibility result if the tax-subsidy scheme can condition directly on the

quality of information acquired by the traders. In other words, when individual investments in

information acquisition are verifiable (as when the traders purchase information from known

sources), efficiency in both information acquisition and trading can be induced with policies

with familiar contingencies. When, instead, such investments are not verifiable, the policy

maker may either have to compromise between inducing efficiency in information acquisition

and in trading, or resort to non-standard policy interventions.4

3See, for example, Nordhaus 2015 on the sharp decline in the cost of computation (and therefore of in-
formation processing). See also Gao and Huang 2020 and Goldstein, Yang, and Zuo 2020 for the effects of
the dissemination of corporate disclosures over the internet on the production of information by corporate
outsiders.

4The latter may include making the tax on individual trades depend on other traders’ limit orders and/or
conditioning on the fundamental value of the asset, beyond what can be learned through the asset’s price,
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Related Literature

The paper is related to several strands of the literature. The first strand is the literature

investigating the sources of inefficiency in the equilibrium usage of private information when

information is exogenous. See, among others, Vives 1988, Angeletos and Pavan 2007, Amador

and Weill 2012, Myatt and Wallace 2012, and Vives 2017. Among these works, the closest to

ours is Vives 2017 who also studies inefficiency in information aggregation through prices when

traders submit demand schedules, but in a setting in which the traders’ private information

is exogenous.

The second strand is the literature on information acquisition in financial markets. See

Diamond and Verrecchia 1981 and Verrecchia 1982 for earlier contributions. More recently,

Peress 2010 examines the trade off between risk sharing and information production, whereas

Manzano and Vives 2011 studies information acquisition in markets with correlated noise,

while Kacperczyk, Van Nieuwerburgh, and Veldkamp 2016 studies information acquisition in

markets with multiple risky assets. Dávila and Parlatore 2019 study the effect of trading

costs on information aggregation and acquisition. None of these papers, however, studies

inefficiencies in information acquisition and how the latter relate to inefficiencies in trading.5

In particular, Vives 1988 shows that, in a Cournot economy in which a continuum of

privately-informed traders with conditionally independent signals submit market orders, both

the decentralized acquisition of information and the equilibrium trades are efficient. In the

present paper, we show that the same result extends to economies in which the information

collected in equilibrium is subject to correlated noise, provided that the traders are restricted

to submitting market orders instead of richer supply/demand functions. When traders submit

market orders neither the pecuniary externality nor the learning externality of conditioning

on prices is present and efficiency obtains.

Colombo, Femminis, and Pavan 2014 show that efficiency in actions does not imply effi-

ciency in information acquisition when payoffs depend on the dispersion of individual actions

around the average action. In the present paper, we consider a richer setting in which agents

compete in schedules and where information is partially aggregated in the equilibrium price.

We show that, even in the absence of externalities from the dispersion of individual actions

which often appears unfeasible as it requires to wait till such value is publicly revealed.
5See also the literature on the Grossman-Stiglitz paradox, namely on the (lack of) incentives to acquire

information when prices are fully revealing (see Grossman and Stiglitz 1980, and Vives 2014 for a potential
resolution of the paradox). Related is also the literature on strategic complementarity/substitutability in
information acquisition (see, among others, Ganguli and Yang 2009, Hellwig and Veldkamp 2009, Manzano
and Vives 2011, Myatt and Wallace 2012, and Pavan and Tirole 2021).

5



around the mean action, efficiency in information usage does not imply efficiency in infor-

mation acquisition when the noise in the agents’ signals is correlated. As anticipated above,

that noise is correlated is important. As shown in Vives 2017, when the noise in the agents’

signals is independent across agents, policies that correct inefficiencies in the usage of infor-

mation induce efficiency in the acquisition of information, despite the (imperfect) aggregation

of information made possible by the limit orders. Efficiency in the usage of information also

implies efficiency in information acquisition in the macro business-cycle economies considered

in Angeletos, Iovino, and La’O (2020). In these economies, prices imperfectly aggregate in-

formation, as in our paper, but agents have access to complete markets that fully insure them

against any idiosyncratic consumption risk. In contrast, in our economy, traders consume

the returns to their own investments and policies that correct inefficiencies in the usage of

information need not induce efficiency in the collection of information.6

The third strand is the recent literature analyzing the impact of technological progress

on the collection of information and its usage in financial markets. Farboodi, Matray, and

Veldkamp 2018 show that the growth of big data, combined with the size distribution of

firms, can lead to a decline in price informativeness for smaller firms. Peress 2005 shows that

a declining cost of information collection is outweighed by a parallel decline in the cost of

entry to financial markets and the interaction between the two can explain several empirical

anomalies. Malikov 2019 shows that falling information costs can actually contribute to a

rise in passive investment by reducing the cost of, and therefore the returns to, stock picking.

Several papers (see, among others, Azarmsa 2019, Mihet 2018, and Kacperczyk, Nosal, and

Stevens 2019) show that technological progress that facilitates the collection of information

can lead to increasing levels of inequality. Unlike most of the work in this literature, we focus

on the normative implications of technological improvements in the collection of information.

Finally, in this paper, we assume that higher investments in information acquisition can

reduce the agents’ exposure to correlated noise in information. Recent work by Woodford

2012a, Woodford 2012b, and Nimark and Sundaresan 2019 shows that rational inattention can

also explain the agents’ exposure to correlated noise and that the equilibrium of a rationally-

inattentive economy shares several features with those of an economy in which the agents’

use of information is “biased” in the sense of prospect theory. Particularly related in this

respect is Frydman and Jin 2020. That paper demonstrates how rational inattention can

6A similar conclusion holds in Colombo, Femminis, and Pavan 2021. That paper considers an economy in
which agents can perfectly insure against any idiosyncratic consumption risk, but where production is affected
by investment spillovers. They show, among other things, that familiar taxes-subsidies linear in revenues that
correct for market power induce efficiency in production but not in the acquisition of information. Instead,
more sophisticated Pigouvian taxes where the marginal rates depend on aggregate output can induce efficiency
in both the usage and the acquisition of information.
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lead to endogenous bias in valuation, and that the noise in perception is closely linked to the

bias in perception. Our paper shares with this literature the property that investments in

information acquisition also affect the agents’ exposure to correlated noise, something that,

from the perspective of an outside observer, may look like a bias in decision making.

Organization. The rest of the paper is organized as follows. Section 2 describes the

model. Section 3 compares the equilibrium to the efficient usage of information, identifies the

sources of the inefficiency, and shows how certain tax-subsidy schemes may restore efficiency

in trade. Section 4 identifies inefficiencies in information acquisition and discusses possible

policy corrections. Section 5 concludes. All proofs are in the Appendix at the end of the

document.

2 Model

In this section, we lay out the model and describe the traders’ choice of demand schedule and

information-acquisition problems.

2.1 Trading environment

The market is populated by a continuum of traders, indexed by i ∈ [0, 1], and a representative

investor, who can be interpreted as representing a sector of competitive liquidity suppliers,

trading a homogenous and perfectly divisible asset. Let xi denote the demand for the asset

by trader i and x̃ =
∫ 1

0
xidi the aggregate demand for the asset by all the traders. The

representative investor’s payoff from supplying x̃ units of the asset at price p is given by

Π = (p− α + u) x̃− β x̃
2

2
,

where α and β are positive scalars, and where u ∼ N(0, σ2
u). The term α − u proxies for the

investor’s opportunity cost from unloading the asset. The term βx̃2/2, instead, is a quadratic

trading cost that proxies for the investor’s risk aversion, or, more generally, for all sort of

possible limits to arbitrage opportunities.

Each trader i’s payoff from purchasing xi units of the asset at price p is given by

πi = (θ − p)xi − λ
x2
i

2
,

where λ is a positive scalar, and where θ ∼ N(0, σ2
θ). The term θ proxies for the traders’ gross

common value from purchasing the asset, whereas the term λ
x2i
2

is a quadratic trading cost
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whose role parallels the corresponding term in the representative investor’s payoff.

To simplify the derivation of the equilibrium formulas, we assume that the variables θ and

u are independently distributed. The results, however, extend to the case where they are

imperfectly correlated. For notational purposes, given any Gaussian random variable h with

variance σ2
h, hereafter we denote by τh ≡ 1/σ2

h the variable’s precision.

2.2 Information

For simplicity, we assume that the representative investor knows u (alternatively, we interpret

α−u as the investor’s expected opportunity cost from selling the asset). The traders, instead,

do not know θ. They privately collect information about θ prior to submitting their generalized

demand schedules, but also condition the latter on the information that the market-clearing

price contains about θ (that is, account for the fact that the equilibrium price imperfectly

aggregates the traders’ dispersed information about θ).

Formally, we assume that each trader observes a (possibly large) collection of Gaussian

signals about θ differing in their noises and in the extent to which such noises are correlated

among traders. Such signals are summarized in a uni-dimensional statistic

si = θ + εi

where

εi = f(yi)(η + ei)

is a combination of idiosyncratic and correlated noise. Precisely, the noise variable η ∼
N(0, σ2

η) is perfectly correlated among the traders and can be thought of as originating in

the imperfect information contained in the common sources the traders attain to (as, e.g.,

in Myatt and Wallace 2012). The variables ei ∼ N(0, σ2
e), instead, are i.i.d. among the

traders and can be interpreted as idiosyncratic disturbances. The variables (θ, u, η, (ei)i∈[0,1])

are jointly independent. The total noise in trader i’s information εi depends on (η, ei) but also

on the agent’s information acquisition activity yi ∈ R+. Depending on the context, the latter

can be interpreted as the amount of information acquired by the individual on a market or

by the attention allocated to exogenous sources of information. The cost of yi is given by a

differentiable function C(yi), with C ′(yi), C ′′(yi) > 0 for all yi > 0.

The idea behind the above information structure is that traders learn from a variety

of (Gaussian) signals of different precision whose noise is imperfectly correlated among the

traders. It is well known that, in Gaussian environments, each trader’s belief about θ is

summarized by a sufficient statistic whose noise is a combination of a perfectly correlated
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term and a perfectly idiosyncratic one. That is, any symmetric cross-sectional distribution of

Gaussian posteriors can be generated by giving each agent a perfectly private and a perfectly

public signal. Because, in this environment, the traders condition on the price, they do

not need to form expectations about the aggregate action in the market. As a result, any

such pair of signals can in turn be summarized in a one-dimensional statistic of the form

si = θ+kηη+keei, for some scalars kη, ke. For our purposes, we assume that these coefficients

are functions of the traders’ information acquisition policy. More acquisition reduces the

trader’s exposure to both types of noise. For tractability, we assume that the marginal effect

of more acquisition on the reduction of the influence of both noises is the same, with the

function f taking the form f(y) = y−1/2. Such an assumption allows us to express the

precision of the combined noise term ε as

τε(y) =
yτeτη
τe + τη

.

2.3 Timing

At t = 0, traders simultaneously make their information acquisition decisions yi. A t = 1,

traders privately observe their signals si. At t = 2, both the traders and the representative

investor simultaneously submit their schedules. At t = 3, the market clears, the equilibrium

price is formed, the equilibrium trades are implemented, and payoffs are realized.

2.4 Equilibrium schedules

The representative investor’s (inverse) supply of the asset is given by p = α− u+ βx̃. Equiv-

alently, his supply schedule is given by

x̃ =
1

β
(p+ u− α) .

Given her private information Ii = (yi, si), trader i’s demand schedule maximizes, for each

price p, the trader’s expected payoff

E
[
(θ − p)xi − λ

x2
i

2
|Ii, p

]
taking into account how the price p = P (θ, u, η) co-moves with the traders’ fundamental

value θ, the representative investor’s supply shock u, and the common noise η in the traders’
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information. The solution to this problem is the demand schedule given by

X(p; Ii) =
1

λ
(E[θ|Ii, p]− p) (1)

where E[θ|Ii, p] denotes the trader’s expectation of θ given the quality of the trader’s infor-

mation, as proxied by yi, the realization si of the trader’s signal, and the price p.

2.5 Information acquisition

At t = 0, each trader selects yi to maximize his expected profit

E
[(
θ − p− λ

2
X(p; Ii)

)
X(p; Ii)|yi

]
− C(yi)

where the expectation is over (si, θ, p), given yi. Following the pertinent literature, we focus

on equilibria and on team-efficient allocations (defined below) in which the market-clearing

price p = P (θ, u, η) is an affine function of all aggregate variables (θ, u, η), and where all agents

acquire information of the same quality (equivalently, pay the same attention to all relevant

sources), and follow the same rule to map their information into the demand schedules.

3 Inefficiency in the Usage of Information

Fixing the precision of the traders’ private information τε (equivalently, their information

acquisition activity yi = y all i), we start by solving for the equilibrium schedules (equivalently,

for the decentralized equilibrium usage of information). We then compare the equilibrium

schedules to their efficient counterparts (equivalently, to the decentralized efficient use of

information), and discuss the nature of the inefficiency in the usage of information, and possible

policies alleviating the inefficiency.
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3.1 Equilibrium usage of information

In any symmetric equilibrium in which the price is an affine function of (θ, u, η), each trader’s

demand schedule is an affine function of her private signal si and the price p. That is,7

xi = X(p; Ii) = a∗si + b̂∗ − ĉ∗p

for some scalars (a∗, b̂∗, ĉ∗) that depend on the exogenous parameters of the model, as well

as on the quality of the agents’ information yi = y. Aggregating across traders, we then have

that the cumulative aggregate demand is equal to

x̃ =

∫
xidi = a∗(θ + f(y)η) + b̂∗ − ĉ∗p.

Notice that, given the general informational structure assumed above, although idiosyncratic

errors in signals wash out in the aggregate demand,8 the quality of the agents’ information

(parametrized by y) impacts the aggregate demand through its effect on the traders’ exposure

to common correlated noise η. Combining the above expression with the inverse aggregate

supply function p = α − u + βx̃ from the representative investor, we then have that the

equilibrium price must satisfy

p =
1

1 + βĉ∗

(
α− u+ βb̂∗ + βa∗(θ + f(y)η)

)
=
α + βb̂∗

1 + βĉ∗
+

βa∗

1 + βĉ∗
z, (2)

where

z ≡ θ + f(y)η − u

βa∗
. (3)

The information about θ contained in the price is thus the same as the one contained in the

endogenous public signal

z = θ + ω,

where

ω ≡ f(y)η − u

βa∗
.

7The reason why we are denoting the sensitivity ĉ∗ of the demand schedules to the price and the constant
b̂∗ in the demand schedules with the ∧ is that, in the Appendix, we use the notation (a, b, c) to denote the
sensitivity of the induced trades (the volume of the asset purchased/sold) to the traders’ private information
and the endogenous signal generated by the price. We do not use ∧ for the sensitivity a∗ of the demand
schedules to the traders’ private information si because that sensitivity is the same no matter whether one
looks at the submitted demand schedules or the at the induced trades.

8This is so since we make the convention that the analog of the SLLN holds for a continuum of independent
random variables with uniformly bounded variances. The last property holds as long as the yi’s have a common
lower bound strictly larger than 0.
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Note that, fixing y, the precision

τω(a∗) ≡ β2a∗2yτuτη
(β2a∗2τu + yτη)

of the noise ω in the endogenous signal z depends on the traders’ demand schedules only

through the sensitivity a∗ of the latter to their private information si.
9

When the price takes the form in (2), the conditional expectation of θ given si and p is given

by

E[θ|si, p] = E[θ|si, z] = γ1(τω(a∗))si + γ2(τω(a∗))z (4)

where, for ant τω, the function γ1 and γ2 are given by10

γ1(τω) ≡ τεyτη (yτη − τω)

y2τ 2
η (τω + τε + τθ)− τωτε (τθ + 2yτη)

(5)

and

γ2(τω) ≡ τωyτη (yτη − τε)
y2τ 2

η (τω + τε + τθ)− τωτε (τθ + 2yτη)
. (6)

That is, each trader’s expectation of θ is a weighted average of her private signal, si, and

the endogenous public signal contained in the price, z. Note that, in the expressions above

and throughout the rest of the section, we dropped the dependence of τε(y) on y to ease the

exposition. Using (4) and (1), we then have that the coefficients (a∗, b̂∗, ĉ) in the affine strategy

describing the equilibrium demand schedules satisfy

a∗ =
1

λ

τεyτη (yτη − τω(a∗))

y2τ 2
η (τω(a∗) + τε + τθ)− τω(a∗)τε (τθ + 2yτη)

, (7)

ĉ∗ = Ĉ(a∗), and b̂∗ = B̂(a∗) where, for any a,

Ĉ(a) ≡ −

(
1− λa τθ+yτη

yτη

)
τω(a)

τω(a)+τθ
− βa

β(β + λ)a+ β
[(

1− λa τθ+yτη
yτη

)
τω(a)

τω(a)+τθ
− βa

] , (8)

and

B̂(a) ≡ α

β + λ

(
λĈ(a)− 1

)
. (9)

The equilibrium sensitivity to private information, a∗, is thus given by the unique positive

9Because y is held fixed, to alleviate the notation, we are dropping the dependence of τω(a∗; y) on y.
10Again, we are dropping the dependence of γ1(τω(a∗; y); y) and γ2(τω(a∗; y); y) on y to ease the notation.
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root to the cubic equation

0 = λβ2τua
3
[
y3τ 3

η + y2τ 2
η (τε + τθ)− yτητε (τθ + 2yτη)

]
+ λay3τ 3

η (τε + τθ)− τεy3τ 3
η (10)

whereas ĉ∗ and b̂∗ are given by the functions (8) and (9). In the Appendix, we verify that

the unique positive root to the above cubic expression is such that a∗ < 1
λ
. We then have the

following result:

Proposition 1. Suppose yi = y for all i, with y fixed exogenously. There exits a unique

symmetric equilibrium. The sensitivity of the traders’ equilibrium demand schedules to their

private information, a∗, is given by the unique positive root to equation 10 and is such that

0 < a∗ < 1
λ

.

3.2 Efficient Use of Information

We now characterize the inefficiencies in the equilibrium usage of information that arise when

the precision of the traders’ private information is exogeneous.

3.2.1 Welfare losses

Ex-post total welfare is given by

W ≡
∫ 1

0

(
θxi −

λ

2
x2
i

)
di+

(
u− α− β x̃

2

)
x̃.

The integral term is the total benefit that the traders derive from purchasing the asset, net of

the transaction costs. The remaining term is the gross payoff that the representative investor

derives from selling the asset, once again, net of the transaction cost. It is easy to see that,

under complete information, the allocation (equivalently, the trades) that maximizes total

surplus are given by xi = xo for all i, with11

xo ≡ θ + u− α
β + λ

. (11)

Under the first-best allocation, (ex-post) total welfare is then given by

W o ≡
(
θ − λ

2
xo
)
xo +

(
u− α− βx

o

2

)
xo =

(
θ + u− α− β + λ

2
xo
)
xo.

11See the Appendix for the derivation.
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Next, let

WL ≡ E[W o]− E[W ]

denote the (ex-ante) expected welfare losses that arise when the traders purchase the asset in

quantities different from the first-best level, due to imperfect information. Under any strategy

profile for the agents in which X(p; Ii) is affine in si and p, the welfare losses can be expressed

as follows (the derivations are in the Appendix):

WL =
(β + λ)E[(x̃− xo)2] + λE[(xi − x̃)2]

2
. (12)

The term E[(x̃−xo)2] captures the losses due to the aggregate trades being different from the

first-best level. The term E[(xi− x̃)2], instead, captures the losses due to the dispersion of the

individual trades around the average level.

3.2.2 Team Problem

Let the efficient use of information be the traders’ strategy (that is, the collection of demand

schedules) that minimizes the ex-ante welfare losses subject to the constraint that the traders’

demand schedules (equivalently, the trades) be affine in their private signal and the price. We

do not include the representative investor in the team’s definition for two reasons: (a) we are

interested in isolating the inefficiencies that pertain to the traders’ usage of information, and

(b) we have in mind markets where policy interventions can manipulate the behavior of certain

investors (the traders in our model) but not others (e.g., noisy traders, liquidity suppliers,

or foreign investors). Accordingly, (aT , b̂T , ĉT ) identifies the efficient use of information if,

whenever all traders submit demand schedules xi = aT si + b̂T − ĉTp, the welfare loses are as

small as under any other affine strategy xi = a′si + b̂′ − ĉ′p.12 Paralleling the analysis of the

equilibrium use of information presented above, we have that, when all traders submit the

above demand schedules, the information contained in the market-clearing price is the same

as the one in the endogenous signal

z = θ + ω(a)

where

ω = f(y)η − u

βa

has the same structure as in the equilibrium usage of information.

Lemma 1. For any sensitivity a of the demand schedules to the traders’ private information,

12Again, we use ˆ to distinguish the efficient demand schedules from the efficient trades.
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the values of ĉ and b̂ in the demand schedules that minimize the welfare losses are given by

the same functions (8) and (9) that define the equilibrium usage of information.

Using Lemma 1, the welfare losses can then be expressed as a function of a and τω(a) as

follows (see the Appendix for the formal proof):13

WL(a, τω(a)) =

[(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

]2

2 (β + λ) τω(a)
+

λ2a2

2 (β + λ) yτη
+
λa
(

1− λa− λa τθ
yτη

)
τω(a)

τω(a)+τθ

(β + λ) yτη

(13)

+

[
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

]2

2 (β + λ) τθ
+
λa2

2yτe
.

The last term λa2/yτe in WL(a, τω(a)) represents the welfare losses due to the dispersion

of individual trades around the average trade. The other terms represent the losses due to the

volatility of the aggregate volume of trade around its first-best level. Both losses are computed

under the optimal choice of ĉ and b̂, using the result in Lemma 1.

The efficient level of a, which we denote by aT , is thus the value of a that minimizes

WL(a, τω(a)). Now let

∆(a) ≡ −
τεβ

2y4τ 4
η τu

(
1− λa− λa τθ

yτη

)2

λ2 (β2a2τu + yτη)
2 (τω(a) + τθ)

,

Ξ(a) ≡
yτετ

2
ηβ (τω(a) + τθ)

λτe
,

τω(a) ≡ β2a2yτητu
β2a2τu + yτη

.

We then have the following result:

Proposition 2. Suppose that yi = y for all i, with y fixed exogenously. The team problem

has a unique solution. The efficient sensitivity aT of the traders’ demand schedules to their

private information is given by the unique solution to

a=
1

λ

τεyτη(yτη − τω(a))

y2τ 2
η (τω(a) + τε + τθ)− τω(a)τε (τθ + 2yτη) + Ξ(a) + ∆(a)

(14)

and is such that 0 < aT < 1
λ

. Given aT , the other two parameters that define the efficient

13Note that, given (a, τθ, τη, y, τe), τu affects WL only through its effect on τω(a). Hence, holding
(a, τθ, τη, y, τe) fixed, changes in τω(a) can be thought of as originating in changes in τu.
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demand schedules, ĉT and b̂T , are then given by the same functions in (8) and (9) that describe

the corresponding coefficients of the demand schedules under the decentralized equilibrium

usage of information.

When, for any a, b and c are set optimally, the welfare losses WL(a, τω(a)) are a convex

function of a reaching a minimum at a = aT , with 0 < aT < 1
λ
. Note that the equation

that determines the value of aT differs from the one that yields the equilibrium value of a∗

only by the two terms Ξ(a) and ∆(a) in the denominator of the right-hand side of (14). The

first term, Ξ(a), is a pecuniary externality that arises because the traders do not internalize

that their demand schedules impact the co-movement between the market-clearing price and

the aggregate shocks (u, θ, η), which, in turn, impacts the way the equilibrium trades co-

move with these variables, the volatility of the aggregate volume of trade, and ultimately

the representative investor’s payoff. The term Ξ(a) is always positive, thus contributing to

an over-reaction of the equilibrium trades to private information. The second term, ∆(a), is

essentially a scaling of
∂WL(a, τω(a)))

∂τω(a)

∂τω(a)

∂a
.

Therefore, this term can be thought of as a proxy for the information externality that arises

because traders do not account for the fact that their demand schedules impact the informa-

tiveness of the equilibrium price and therefore the possibility for other traders and for the

representative investor to respond to the various shocks. This term is always negative thus

contributing to under-reaction of the equilibrium demand schedules to private information.

To shed more light on the role of these externalities, it is useful to consider a fictitious

environment in which traders are naive in that they do not recognize the information contained

in the market-clearing price. Such a benchmark is similar in spirit to the (fully) cursed

equilibrium of Eyster and Rabin (2005). To facilitate the comparison to the true economy,

further assume that, in this fictitious environment, each trader, in addition to receiving the

private signal si = θ + f(y)η + f(y)ei︸ ︷︷ ︸
≡εi

, as in the baseline model, also observes an exogenous

public signal z = θ + f(y)η + χ︸ ︷︷ ︸
≡ζ

whose structure is the same as the one of the endogenous

public signal generated by the market-clearing price, but with the endogenous noise −u/βa
replaced by the exogenous noise χ, with the latter drawn from a Normal distribution with

mean zero and variance τ−1
χ independently of all other variables (this shock is the same for all

traders).

As we show in the Appendix, in this fictitious environment, the (cursed) equilibrium

sensitivity of the traders’ demand schedules to their private information si is given by
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a∗exo =
1

λ

τεyτη (yτη − τζ)
y2τ 2

η (τζ + τε + τθ)− τζτε(τθ + 2yτη)
. (15)

Note that the formula in (15) is similar to the one in the baseline economy, except for the

fact that the precision τω(a) of the endogenous public signal contained in the market-clearing

price is replaced by the precision τζ of the exogenous public signal about θ.

Now suppose that the planner can select a but, given the latter, is constrained to choose

(b, c, d) so as to maintain the same relationship between a and (b, c, d) as in the cursed equi-

librium.14 The level of a that maximizes ex-ante welfare is then equal to

aTexo =
1

λ

τεyτη(yτη − τζ)

y2τ 2
η (τζ + τε + τθ)− τζτε (τθ + 2yτη) +

yτετ2ηβ(τζ+τθ)
λτe

. (16)

Again, the formula for aTexo is similar to the one for aT in the baseline model, except for the

fact that τω(a) is replaced by τζ and the term ∆(a) in the denominator of the expression

giving the socially-optimal level of a in the baseline model is equal to zero, reflecting the fact

that the agents do lot learn from the price. Note that yτετ
2
ηβ (τζ + τθ) /λτe has exactly the

same form as the pecuniary externality Ξ(a) in the baseline model. Hence, in this fictitious

economy, the (cursed) equilibrium demand schedules unambiguously feature an excessively

high sensitivity to private information relative to the solution to the planner’s problem: aTexo >

a∗exo. Furthermore, when the precision of the exogenous public signal in the cursed economy is

the same as the precision of the endogenous public signal under the solution to the planner’s

problem in our baseline model (that is, when τζ = τω(aT )), the values of aT and aTexo are

easily comparable and aTexo coincides with the solution to the equation ∂WL(a, τω(a))/∂a =

0. Relative to the solution to the planner’s problem in the (cursed) equilibrium economy,

the planner in our model does recognize the value of increasing the precision of information

contained in the price and thus demands that traders increase the sensitivity of their limit

orders to their private information (aT > aTexo).

In our baseline model, both the traders and the planner account for the information con-

tained in the price. Whether the sensitivity of the equilibrium demand schedules to the traders’

14Whereas, in the baseline economy, choosing b and c to satisfy the same relationship between a and (b, c)
as in equilibrium is without loss of optimality for the planner, this need not be true in the fictitious economy.
However, imposing the restriction permits us to isolate the relevant effects. It is also possible to show that,
given a, a planner who expects p to be orthogonal to (θ, η), as do the traders, optimally chooses (b, c, d)
to satisfy the same relationship between these coefficients and a as in the cursed equilibrium (the proof is
available upon request).
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private information is excessively high or excessively low (compared to the efficient level aT )

then depends on which of the above two externalities prevails. Comparing (7) and (14), we

see that the sign of (a∗−aT ) equals the sign of Ξ(aT ) + ∆(aT ). When Ξ(aT ) + ∆(aT ) = 0, the

two externalities described above cancel each other out, the submitted schedules are inelastic

(i.e., ĉT = 0) and a∗ = aT (see Lemma 2 in the Appendix). When Ξ(aT ) + ∆(aT ) > 0, the

pecuniary externality dominates, ĉT > 0 (the efficient demands are downward sloping) and

the equilibrium features an excessive response to private information. When, instead, Ξ(aT ) +

∆(aT ) < 0, the learning externality dominates, ĉT < 0 (the efficient demands slope upwards)

and the equilibrium response to private information is insufficiently low. It is worth noting

that if the traders were restricted to submitting market orders (like in a Cournot model), then

the usage of information would be efficient since the two externalities would not be present

(See Subsection 6.2 for a formal proof of this result).
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Figure 1: The blue solid line corresponds to aT while the orange dashed line represents the
sum of the two externalities ∆(aT ) + Ξ(aT ). The parameter values used for this simulation
are: λ = β = τe = τη = τθ = 1, τu = 30, and 1 ≤ y ≤ 5.

Using simulations (see Figure 1), it is possible to show that Ξ(aT ) + ∆(aT ) is U-shaped

with respect to y. As y increases, information is more precise and the efficient response aT

to the private signal increases. Such an increase in aT increases Ξ(aT ) + ∆(aT ) (both Ξ and

∆ increase with a). However, the increase in y has also a direct negative effect on Ξ(a) +

∆(a) for given a because better information makes the learning externality less salient and
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increases the pecuniary externality (that is, it makes ∆ more negative). This second, direct,

effect dominates when y is small, whereas the first, indirect, effect dominates when y is large.
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Figure 2: The blue solid line corresponds to ĉT while the orange dashed line represents the
sum of the two externalities ∆(aT ) + Ξ(aT ). The two curves switch signs for the same value
of y. The parameter values used for this simulation are: λ = β = τe = τη = τθ = 1, τu = 30,
and 1 ≤ y ≤ 5.

What is more, for sufficiently large τu, ĉ
T goes from negative to positive exactly when

Ξ(aT ) + ∆(aT ) does, as it can be seen from Figure 2. For small values of y, i.e., when private

information is imprecise, the learning externality dominates, i.e., Ξ(aT ) + ∆(aT ) < 0, and the

efficient demand schedules are upward sloping, i.e., ĉT < 0. For large values of y, instead, the

pecuniary externality dominates, i.e., Ξ(aT ) + ∆(aT ) > 0, and the efficient demand schedules

are downward sloping, i.e., ĉT > 0. The two externalities cancel each other out, i.e., Ξ(aT )

+ ∆(aT ) = 0, when, and only when, the efficient demand schedules, which coincide with the

equilibrium ones in this case, are perfectly inelastic, i.e., ĉT = 0.

Next, we discuss policies that correct the inefficiency in the usage of information.

Proposition 3. Suppose yi = y for all i, with y fixed exogenously. The efficient use of

information can be implemented with a policy that charges the traders a total tax bill equal to

T (xi, p) = δ
2
x2
i + (ptp − t0)xi, where

δ =
λ
(
Ξ(aT ) + ∆(aT )

)
y2τ 2

η (τω(aT ) + τε + τθ)− τω(aT )τε (τθ + 2yτη)
,
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tp =
γ2(τω(aT ))− λ+δ+β

β+λ

[(
1− λaT − λaT τθ

yτη

)
τω(aT )

τω(aT )+τθ
− βaT

]
− βaT

β
β+λ

[(
1− λaT − λaT τθ

yτη

)
τω(aT )

τω(aT )+τθ
− βaT

]
+ βaT

,

and

t0 = (1 + tp)α−
α (λ+ δ + (1 + tp)β)

β + λ
.

The efficient use of information can thus be induced through a combination of a linear-

quadratic tax on the volume of trade δ
2
x2
i − t0xi along with a proportional subsidy/tax on

the price paid. The role of δ is to manipulate the traders’ adjustment cost (from λ to λ+ δ).

This manipulation suffices to induce the traders to submit demand schedules whose sensitiv-

ity to their exogenous private information is equal to the efficient level aT . The role of the

proportional subsidy/tax on the price is to guarantee that, once the sensitivity a coincides

with the efficient level aT , the sensitivity of the equilibrium demand schedules to the price

coincides with the efficient level ĉT . Finally, the role of the linear tax t0xi on the individual

volume of trade is to guarantee that the fixed part of the affine demand schedule also coincides

with the efficient level b̂T .

4 Inefficiency in Information Acquisition

We now investigate whether efficiency in information usage implies efficiency in the collection

of private information. We start by considering the case where efficiency in usage is induced

by the planner controlling directly the agents’ usage of information, that is, by imposing that

the traders submit demand schedules of the form xi = aT si + b̂T − ĉTp. We then consider the

case where efficiency in usage is induced through the policy in Proposition 3. In both cases,

we find that agents do not acquire information efficiently.

Let yT denote the socially optimal precision of private information and (aT , b̂T , ĉT ) the

coefficients describing the efficient demand schedules when the precision of private information

is yT . Next, let E[W T ; ȳ] denote ex-ante gross welfare when all traders acquire information of

quality ȳ but then submit the efficient demand schedules for information of quality yT (that

is, the schedules corresponding to the coefficients (aT , b̂T , ĉT )).15 Finally, let E[πTi ; yi, ȳ] be

the ex-ante gross profit of a trader acquiring information of quality yi when all other traders

acquire information of quality ȳ, and all traders (including i) submit the efficient demand

schedules for information of quality yT (that is, the schedules corresponding to the coefficients

(aT , b̂T , ĉT )). We then have the following result:

15The welfare function is gross of the cost of information acquisition.
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Proposition 4. Let yT denote the socially optimal quality of private information and suppose

that all traders are constrained to submit the efficient demand schedules for information of

quality yT . When ĉT > 0 (i.e., when the pecuniary externality dominates and the efficient

demand schedules are downward sloping),

∂E[πTi ; yi, ȳ]

∂yi

∣∣∣∣
yi=ȳ=yT

>
∂E[W T ; ȳ]

∂ȳ

∣∣∣∣
ȳ=yT

whereas the opposite inequality holds when ĉT < 0 (i.e., when the information externality

dominates and the efficient demand schedules are upward sloping).

By the envelope theorem, yT solves the optimality condition

∂E[W T ; ȳ]

∂ȳ

∣∣∣∣
ȳ=yT

= C ′(yT ). (17)

Because E[πTi ; yi, ȳ] is strictly concave in yi, the result in the proposition implies that, when

ĉT > 0 (i.e., when the pecuniary externality dominates and the efficient demand schedules are

downward sloping), a trader who expects all other traders to acquire information of quality yT

has incentives to acquire information of quality higher than yT . When, instead, ĉT < 0 (i.e.,

when the information externality dominates and the efficient demand schedules are upward

sloping), the individual has incentives to acquire information of quality lower than yT . In the

special case in which ĉT = 0 (that is, the efficient demand schedules are invariant to price), the

optimal choice for the individual is to acquire information of efficient quality, that is, yi = yT .

The next result shows that the properties of individual best responses identified in Propo-

sition 4 are inherited in equilibrium (i.e., at the fixed point).

Proposition 5. Let yT denote the socially optimal quality of private information and suppose

that all traders are constrained to submit the efficient demand schedules for information of

quality yT . When ĉT > 0 (downward-sloping efficient demand schedules), the quality of private

information acquired in equilibrium is higher than yT , whereas the opposite is true when ĉT < 0

(upward-sloping efficient demand schedules).

Note that the last two results hinge on τη ∈ (0,+∞). When τη = 0, the noise in the agents’

private signals is infinite, making the signals worthless both for the individual traders and for

the planner. When, instead, τη → +∞, the correlated noise in the agents’ private signals

disappears, in which case the aggregate volume of trade becomes invariant to the quality of

the traders’ private information. In this case, holding the demand schedules fixed, the only

effect of an increase in the quality of the traders’ private information on welfare is through the
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reduction in the dispersion of individual trades around the average trade. Because this effect

is weighted equally by the planner and by the individual traders, the private and the social

value of information coincide in this case, which guarantees that traders acquire information

of efficient quality.

The above results thus establish that, when the planner forces the traders to submit the

efficient limit orders, the traders respond by over-investing (alternatively, under-investing) in

information acquisition when the efficient demand schedules are downward sloping (alterna-

tively, upward sloping). This happens because of two reasons. First, agents do not internalize

that the quality of information they acquire affects the dispersion of individual trades around

the average trade, which contributes to a welfare loss. Second, when the noise in the agents’

information is correlated, the agents fail to internalize that a variation in the quality of their

private information changes the covariance of the aggregate volume of trade with all the

aggregate shocks and hence affects the impact that non-fundamental volatility has on welfare.

Another way to see things is that, when ĉT > 0 (downward-sloping demand schedules),

agents would like to over-respond to private information (relative to what is efficient) but

cannot because the planner is forcing them to submit the efficient limit orders. They then

react by over-investing in information acquisition. When, instead, ĉT < 0 (upward-sloping

demand schedules) traders would like to under-respond to private information and hence

under-invest in information acquisition when forced to submit the efficient schedules.

Recall that, for small y, the learning externality dominates and demand schedules are up-

ward sloping whereas, for large y, the pecuniary externality dominates and demand schedules

are downward sloping. The above results thus also imply that, as technological progress makes

information cheaper (that is, as the cost of information acquisition decreases), y increases and

eventually the economy enters into a regime where too much information is acquired in equi-

librium.

We then conjecture that the following result is also true but did not establish it formally:

Conjecture: When ĉT > 0 (downward-sloping efficient demand schedules), the equilib-

rium in the laissez-faire economy features excessive acquisition and excessive usage of private

information, i.e., y∗ > yT and a∗ > aT , whereas the opposite is true when ĉT < 0 (upward-

sloping efficient demand schedules). When ĉT = 0, both the acquisition and usage of private

information in the laissez-faire equilibrium are socially efficient, as it is the case when traders

are restricted to submitting market orders.

We now address the question of whether efficiency in information acquisition can be in-

duced through an appropriate design of fiscal policy, in a world where the traders can be

forced to submit the efficient demand schedules (we address the more relevant case in which
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efficiency in trade must also be induced through an appropriate fiscal policy at the end of the

section).

Proposition 6. Let yT denote the socially optimal quality of private information and (aT , b̂T , ĉT )

the coefficients describing the efficient demand schedules when the quality of information is

yT . Suppose all traders are constrained to submit the demand schedules corresponding to

(aT , b̂T , ĉT ) but can choose the quality of private information. The traders can be induced to

acquire information of quality yT by charging them a tax bill T (p, xi) = t̂ppxi with

t̂p =
γ2

(
τω(aT )

)
− βaT

βaT
,

where γ2 is the function defined in (6).

That is, efficiency in information acquisition can always be induced through a simple

tax/subsidy proportional to the traders’ total expenditure pxi (equivalently, with a familiar

proportional tax/subsidy on the price of the asset, similar to those often discussed in the

policy debate). The result, however, hinges on the possibility for the planner to force the

traders to submit the efficient demand schedules (for quality of information yT ).

We now address the more relevant question of whether efficiency in both information

acquisition and information usage can be induced through an appropriate design of the fiscal

policy. In the previous section, we showed that, when the quality of information is exogenous,

efficiency in information usage can be induced through a linear-quadratic tax on trades paired

with a tax/subsidy on the price (both rebated in a lump-sum manner, if desired). Based on

other results in the literature, one may conjecture that the same policy also induces efficiency

in information acquisition. The next result shows that the conjecture is wrong.

Proposition 7. Generically (i.e., with the exception of a set of parameters of zero Lebesgue

measure), there exists no (differentiable) policy T (xi, p) that implements efficiency in both

information acquisition and information usage.

The result is established in the Appendix by showing that any smooth policy that induces

the traders to submit the efficient demand schedules once they collect the efficient amount of

private information yT must coincide with the one in Proposition 3 (applied to ȳ = yT ), except

for terms that play no role for incentives. However, any such policy necessarily induces the

traders to misperceive the marginal value of their private information (around the efficient level

yT ) and hence to collect an inefficient amount of private information. To induce efficiency in

both information acquisition and trading, the planner may thus need to resort to unorthodox

policies where the tax bill is non-smooth in (xi, p) and/or is contingent on information other

23



than the individual volume of trade xi and the price of the financial asset p (e.g., T may

depend on the distribution of trades in the market and/or on the ex-post profitability θ of the

asset).

The following result is also an immediate implication of the above observations:

Corollary 1. Let yT denote the socially optimal quality of private information and T the

fiscal policy in Proposition 3 (applied to ȳ = yT ) that induces the traders to submit the efficient

demand schedules when yi is exogenously fixed at yi = yT for all i. When the quality of private

information is endogenous, under the same policy, traders acquire information of quality other

than yT and then submit demand schedules other than the efficient ones.

Our final result shows that, when the acquisition of information is verifiable (e.g., when traders

acquire information of verifiable quality from known sources), then the above impossibility

result turns into a possibility one: efficiency in both information acquisition and information

usage can be obtained by pairing the policy in Proposition 3 with a tax on the expenditure

on information acquisition.

Proposition 8. Let yT denote the socially optimal quality of private information and (aT , b̂T , ĉT )

the coefficients describing the efficient demand schedules when the quality of information is

yT . Let T tot denote the fiscal policy defined by

T tot(xi, p, yi) =
δ

2
x2
i + (ptp − t0)xi − Ayi

where (δ, tp, t0) are as in Proposition 3 and

A =

(
aT + cT

)
2τη (yT )2

[
(β + λ)cT − (βtp + δ)aT

]
−

δ
(
aT
)2

2τe (yT )2 .

The above policy induces efficiency in both information acquisition and information usage.

Simulations establish that A > 0 if ĉT > 0 and A < 0 if ĉT < 0. That is, information

should be taxed when the efficient demand schedules are downward sloping and subsidized

when they are upward sloping, reflecting the fact that, in the absence of policy interventions,

agents over-invest in information acquisition in the former case and underinvest in the latter.
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Figure 3: The parameter values used for this simulation are: λ = β = τe = τη = τθ = 1,
τu = 30, and 1 ≤ y ≤ 5. The blue solid line corresponds to ĉT whereas the orange dashed line
represents the tax A on information acquisition. The two curves switch signs for the same
value of y.

5 Conclusions

We investigate the sources of inefficiency in the usage and collection of information in financial

markets. We show that, when the private information the traders possess prior to submitting

their limit orders is exogenous, inefficiency in trading can be corrected with a an appropriate

design of fiscal policies. When information is endogenous, however, no (smooth) policy exists

in which the total tax bill is a function of the price of the financial asset and on the volume of

individual trades that induces efficiency in both information usage and information acquisition.

A key driver for the identified inefficiencies is the correlation in the noise in the agents’

private information. In future work it would be interesting to extend the analysis to a broader

class of economies in which financial decisions interact with real decisions and in which agents

trade multiple assets over multiple periods.
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6 Appendix

6.1 Omitted Proofs and Extended Derivations

Proof of Proposition 1.

As explained in the main text, when the traders submit affine demand schedules with param-

eters (a, b̂, ĉ), the equilibrium price is equal to

p =
α + βb̂

1 + βĉ
+

βa

1 + βĉ

(
θ + f(y)η − u

βa

)
.

The information about θ contained in the equilibrium price is thus the same as the one

contained in a public signal

z = θ + ω,

with noise

ω ≡ f(y)η − u

βa

of precision16

τω(a) ≡ β2a2yτuτη
(β2a2τu + yτη)

.

In turn, this implies that the equilibrium trades xi = asi + b̂ − ĉp are affine functions of the

traders’ exogenous private information si and the endogenous public information z contained

in the price. That is, when the endogenous public information contained in the price is

equivalent to z, a trader with private signal si purchases an amount of the asset equal to

xi = asi + b+ cz

where

b = b̂− ĉα + βb̂

1 + βĉ
(18)

and

c = − βaĉ

1 + βĉ
. (19)

For each vector (a, b̂, ĉ) describing the traders’ demand schedules, there thus exists a unique

vector (a, b, c) describing the traders’ equilibrium trades as a function of their (exogenous)

private information, si, and (endogenous) public information, z, and vice versa. Hereafter,

we find it more convenient to characterize the equilibrium use of information in terms of the

vector (a, b, c) describing the equilibrium trades. When the individual trades are given by

xi = asi + b+ cz, the aggregate trade is equal to

x̃ =

∫
xidi = a(θ + f(y)η) + b+ cz.

16To derive τω(a) we use the fact that f(y) = 1/
√
y.
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Using the fact that z ≡ θ + f(y)η − u
βa

, we thus have that

x̃ = a(z +
u

βa
) + b+ cz = (a+ c)z +

u

β
+ b.

Using the expression for the inverse aggregate supply function p = α − u + βx̃ from the

representative investor, we then have that the equilibrium price can be expressed as a function

of a and the endogenous public signal z as follows:

p = α + βb+ β(a+ c)z. (20)

Next, observe that

E[θ|Ii, p] = E[θ|si, z] =
[
Cov(θ, si) Cov(θ, z)

] [ V ar(si) Cov(si, z)

Cov(si, z) V ar(z)

]−1 [
si − E[si]

z − E[z]

]

=
[
σ2
θ σ2

θ

] [ σ2
θ + σ2

ε σ2
θ + f(y)2σ2

η

σ2
θ + f(y)2σ2

η σ2
θ + σ2

ω(a)

]−1 [
si − E[si]

z − E[z]

]
,

where σ2
θ ≡ τ−1

θ , σ2
ω(a) ≡ τω(a)−1, σ2

η ≡ τ−1
η , and σ2

ε ≡ τ−1
ε . Substituting for the inverse of the

variance-covariance matrix, we have that

E[θ|si, z] =
1

(σ2
θ + σ2

ε )(σ
2
θ + σ2

ω(a))− (σ2
θ + f(y)2σ2

η)
2
×

[
σ2
θ σ2

θ

] [ σ2
θ + σ2

ω(a) −(σ2
θ + f(y)2σ2

η)

−(σ2
θ + f(y)2σ2

η) σ2
θ + σ2

ε

][
si − E[si]

z − E[z]

]
.

Expanding the quadratic form, we have that

E[θ|si, z] =
σ2
θ

(
σ2
ω(a)− f(y)2σ2

η

)
(σ2

θ + σ2
ε )(σ

2
θ + σ2

ω(a))− (σ2
θ + f(y)2σ2

η)
2
(si − E[si])

+
σ2
θ

(
σ2
ε − f(y)2σ2

η

)
(σ2

θ + σ2
ε )(σ

2
θ + σ2

ω(a))− (σ2
θ + f(y)2σ2

η)
2
(z − E[z]).

Simplifying, and using the fact that σ2
θ ≡ τ−1

θ , σ2
ω(a) ≡ τω(a)−1, σ2

η ≡ τ−1
η , σ2

ε ≡ τ−1
ε , and

f(y) = 1/
√
y, we have that

E[θ|si, z] =

1
τθ

(
1

τω(a)
− 1

yτη

)
( 1
τθ

+ 1
τε

)( 1
τθ

+ 1
τω(a)

)− ( 1
τθ

+ 1
yτη

)2
(si − E[si])

+

1
τθ

(
1
τε
− 1

yτη

)
( 1
τθ

+ 1
τε

)( 1
τθ

+ 1
τω(a)

)− ( 1
τθ

+ 1
yτη

)2
(z − E[z]),
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from which we obtain that

E[θ|si, z] =
y2τ 2

η τε

(
1− τω(a)

yτη

)
y2τ 2

η (τε + τω(a) + τθ)− τετω(a)(τθ + 2yτη)
(si − E[si])

+
y2τ 2

η τω(a)
(

1− τε
yτη

)
y2τ 2

η (τε + τω(a) + τθ)− τετω(a)(τθ + 2yτη)
(z − E[z]).

Finally, using the fact that E[si] = E[z] = 0, we have that

E[θ|si, z] = γ1(τω(a))si + γ2(τω(a))z

where17

γ1(τω(a)) ≡ τεyτη (yτη − τω(a))

y2τ 2
η (τω(a) + τε + τθ)− τω(a)τε (τθ + 2yτη)

and

γ2(τω(a)) ≡
τω(a)

(
y2τ 2

η − τεyτη
)

y2τ 2
η (τω(a) + τε + τθ)− τω(a)τε (τθ + 2yτη)

=

(
1− γ1(τω(a))

τθ + yτη
yτη

)
τω(a)

τω(a) + τθ
.

Now recall that the equilibrium trades must satisfy

xi =
1

λ
(E[θ|si, z]− p) .

Using the fact that p = α+ βb+ β(a+ c)z, and the characterization of E[θ|si, z] from above,

we thus have that

xi =
1

λ
[γ1(τω(a))si − (α + βb) + (γ2(τω(a))− β(a+ c)) z] .

We conclude that (1) the sensitivity of the equilibrium trades to private information must

satisfy

a =
γ1(τω(a))

λ
, (21)

(2) the sensitivity of the equilibrium trades to the endogenous public information must satisfy

c =
1

λ
(γ2(τω(a))− β(a+ c)) ,

and (3) the constant b in the equilibrium trades must satisfy

b = −α + βb

λ
. (22)

Replacing

τω(a) ≡ β2a2yτητu
β2a2τu + yτη

into the expression for γ1(τω(a)) and using (21), we thus have that the equilibrium sensitivity

17Consistently with the rest of the analysis above, because y is held constant, we drop it from the arguments
of γ1 and γ2 to ease the notation.

30



to private information must coincide with the solution to the following equation

a =
1

λ

τεy
2τ 2
η (β2a2τu + yτη)− β2a2yτuτητεyτη

y2τ 2
η (β2a2yτuτη + (τε + τθ) (β2a2τu + yτη))− β2a2yτuτητε (τθ + 2yτη)

(23)

Using the fact that

γ2(τω(a)) =

(
1− γ1(τω(a))

τθ + yτη
yτη

)
τω(a)

τω(a) + τθ
along with the fact that γ1(τω(a)) = λa, in turn we have that

c =
1

λ

[(
1− λaτθ + yτη

yτη

)
τω(a)

τω(a) + τθ
− β(a+ c)

]
from which we obtain that the sensitivity of the equilibrium trades to the endogenous public

signal must satisfy

c =
1

β + λ

[(
1− λaτθ + yτη

yτη

)
τω(a)

τω(a) + τθ
− βa

]
. (24)

Finally, rearranging (22), we have that the constant b in the equilibrium trades is given by

b = − α

β + λ
. (25)

Now using (23), along with the fact that the sensitivity a of the equilibrium trades to private

information coincides with the sensitivity of the equilibrium demand schedules to private

information, we thus have that a∗ is given by the unique positive root to the cubic equation

0 = λβ2τua
3
[
y3τ 3

η + y2τ 2
η (τε + τθ)− yτητε (τθ + 2yτη)

]
+ λay3τ 3

η (τε + τθ)− τεy3τ 3
η ,

as claimed in the proposition. Finally, inverting the relationship between c and ĉ and b and b̂

in (19) and (18), we obtain that the other two parameters defining the equilibrium demand

schedules are given by

ĉ∗ = − c

β (a∗ + c)
= −

1
β+λ

(γ2(τω(a∗))− βa∗)
βa∗ + β 1

β+λ
(γ2(τω(a∗))− βa∗)

and

b̂∗ = (1 + βĉ∗) b+ αĉ∗ = − (1 + βĉ∗)
α

β + λ
+ αĉ∗ =

α

β + λ
(λĉ∗ − 1) .

Replacing

γ2(τω(a∗)) =

(
1− γ1(τω(a∗))

τθ + yτη
yτη

)
τω(a∗)

τω(a∗) + τθ
=

(
1− λa∗ τθ + yτη

yτη

)
τω(a∗)

τω(a∗) + τθ
into the above expressions, we obtain the result in the proposition. Q.E.D.

Analysis of Equation 10.

In a cubic equation of the form Ax3 +Bx2 + Cx+D = 0, if

∆ ≡ 18ABCD − 4B3D +B2C2 − 4AC − 27A2D2 < 0
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then the equation has a unique real root. In our case, B = 0 and C > 0 and, as a result,

∆ = −4AC − 27A2D2. Furthermore (using the fact that τε ≡ yτeτη
τe+τη

), we have that

A = λβ2τu
(
y3τ 3

η + y2τ 2
η (τε + τθ)− yτητε (τθ + 2yτη)

)
∝ yτη

(
y2τ 2

η + yτητθ − τετθ − τεyτη
)

∝ (τθ + yτη)(yτη − τε) ∝ yτη −
yτeτη
τe + τη

∝ τη
τe + τη

> 0.

Therefore ∆ < 0, and hence the cubic equation has a unique real root. Furthermore, because

D is negative, the unique real root is positive. Replacing a = 1
λ

into the cubic equation, we

have that

β2τu
1

λ2

(
y3τ 3

η + y2τ 2
η (τε + τθ)− yτητε (τθ + 2yτη)

)
+ y3τ 3

η (τε + τθ)− τεy3τ 3
η

=β2τu
yτη
λ2

(
y2τ 2

η + yτητθ − τετθ − τεyτη
)

+ y3τ 3
η τθ > 0.

This implies that 0 < a∗ < 1
λ
. Q.E.D.

Derivation of Condition 11.

Recall that W =
∫ 1

0

(
θxi − λ

2
x2
i

)
di −

(
α− u+ β x̃

2

)
x̃. Because

∫ 1

0
(x2

i ) di >
(∫ 1

0
xidi

)2

, we

have that W is maximal when xi = xo for all i, with

xo ≡ θ − α + u

β + λ
.

Q.E.D.

Derivation of Condition 12.

Recall that WL = E[W o]− E[W ]. Using the fact that

W o = θxo − λ

2
(xo)2 −

(
α− u+ β

xo

2

)
xo

along with the fact that xo = θ−α+u
β+λ

, we then have that

W o = θxo − λ

2
(xo)2 −

(
α− u+ β

xo

2

)
xo =

β + λ

2
(xo)2.

It follows that

WL =
β + λ

2
E
[
(xo)2

]
− E

[∫ 1

0

(
θxi −

λ

2
x2
i

)
di−

(
α− u+ β

x̃

2

)
x̃

]
=

β + λ

2
E
[
(xo)2

]
− E

[
(θ − α + u) x̃− β x̃

2

2
− λ

2

∫ 1

0

x2
i di

]
.

Using again the characterization of the FB allocation, xo = θ−α+u
β+λ

, and the fact that

E
[∫ 1

0

x2
i di

]
= E

[
E[x2

i |x̃]
]
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we have that

WL =
β + λ

2
E
[
(xo)2

]
− 1

2
E
[
2 (β + λ) x̃xo − βx̃2 − λ

∫ 1

0

x2
i di

]
=

β + λ

2
E
[
(xo)2

]
+

1

2
E
[
(β + λ)x̃2 − 2xox̃(β + λ)− λx̃2 + λE[x2

i |x̃]
]

=
(β + λ)E[(x̃− xo)2] + λE[(xi − x̃)2]

2
.

Q.E.D.

Proof of Lemma 1.

The same arguments as in the proof of Proposition 1 imply that, when the traders submit

demand schedules of the form xi = asi+ b̂− ĉp, for some (a, b̂, ĉ), the trades induced by market

clearing can be expressed as a function of the endogenous public information z generated by

the market-clearing price by letting xi = asi + b+ cz where

z ≡ θ + f(y)η − u

βa
is the endogenous information about θ contained in the equilibrium price, and where the noise

in the endogenous signal has precision

τω(a) ≡ β2a2yτuτη
β2a2τu + yτη

.

Furthermore, the values of b and c are given by (18) and (19). Using the above representation,

we have that the aggregate volume of trade when the demand schedules are given by (a, b̂, ĉ)

is given by x̃ = a(θ + f(y)η) + b+ cz and hence ex-ante welfare is given by

E[W ] = E
[
(θ − α + u) (a(θ + f(y)η) + b+ cz)− β (a(θ+f(y)η)+b+cz)2

2
−
∫ 1

0
λ
2

(asi + b+ cz)2 di
]
.

Note that
∂E[W ]

∂b
= E [(θ − α + u)− β (a(θ + f(y)η) + b+ cz)− λ (as+ b+ cz)] = −α− (β + λ)b,

∂2E[W ]

∂b2
= −(β + λ) < 0,

∂E[W ]

∂c
= E [z (θ − α + u)− β (a(θ + f(y)η) + b+ cz) z − λz (as+ b+ cz)] ,

∂2E[W ]

∂c2
= E

[
−βz2 − λz2

]
< 0,

and ∂2E[W ]/∂c∂b = 0. Hence E[W ] is concave in b and c . For any a, the optimal values of b

and c are thus given by the FOCs ∂E[W ]/∂b = 0 and ∂E[W ]/∂c = 0 from which we obtain

that

b = − α

β + λ
and

E
[
z (θ + u)− β (a(θ + f(y)η)) z − βcz2 − λazs− λcz2

]
= 0.
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The last condition can be rewritten as

Cov [(θ + u− βa(θ + f(y)η)) , z]− (β + λ) cV ar(z)− λaCov(z, s) = 0

from which we obtain that

c =
Cov [(θ + u− βa(θ + f(y)η)) , z]

(β + λ)V ar(z)
− λaCov(z, s)

(β + λ)V ar(z)
.

Using the fact that z ≡ θ + f(y)η − u
βa

and s = θ + 1√
y
(η + e), we have that

V ar(z) =
1

τθ
+

1

τω(a)
= σ2

θ + σ2
ω(a),

where σ2
θ = 1/τθ and σ2

ω(a) = 1/τω(a). Furthermore,

Cov [(θ + u− βa(θ + f(y)η)) , z] = Cov

[
(θ + u− βa(θ + f(y)η)) , θ + f(y)η − u

βa

]
= Cov [θ(1− βa), θ] + Cov

[
u,− u

βa

]
− Cov [βaf(y)η, f(y)η]

= (1− βa)σ2
θ −

σ2
u

βa
− βaf(y)2σ2

η,

and

Cov [z, s] = σ2
θ + f(y)2σ2

η.

Hence,

c =
(1− βa)σ2

θ −
σ2
u

βa
− βaf(y)2σ2

η

(β + λ) (σ2
θ + σ2

ω(a))
−

λa(σ2
θ + f(y)2σ2

η)

(β + λ) (σ2
θ + σ2

ω(a))

=
1

β + λ

[(
1− λa− λa τθ

yτη

)
τω(a)

τω(a) + τθ
− βa

]
.

We conclude that, given a, the optimal values for c and b are given by the same functions in

(24) and (25) that characterize the parameters c and b as a function of a under the equilibrium

usage of information. To go from the optimal trades to the demand schedules that implement

them, it then suffices to use the functions defined by (18) and (19). We thus conclude that,

for any choice of aT , the optimal values of ĉT and b̂T are given by the functions (8) and (9),

as claimed. Q.E.D.

Derivation of Condition 13.

As shown above, the welfare losses can be expressed as

WL =
β + λ

2
E[(x̃− xo)2] +

λ

2
E[(xi − x̃)2],

where x0 is given by (11). We have also shown above that, for any vector (a, b̂, ĉ) describing

the demand schedules, there exists a unique vector (a, b, c) describing the induced trades

xi = asi + b+ cz at the market-clearing price, and vice versa, where z ≡ θ+ f(y)η− u
βa

is the

endogenous signal contained in the market-clearing price. This also means, when the traders
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submit the demand schedules corresponding to the vector (a, b̂, ĉ), the aggregate volume of

trade at the market-clearing price can be expressed as a function of (θ, η, z) as follows: x̃ =

a(θ + f(y)η) + b + cz. Therefore, the dispersion of individual trades around the aggregate

trade can be expressed as

E[(xi − x̃)2] = E[a2f(y)2e2
i ] =

a2

yτe
.

Next, use the fact that, for any a, the optimal values of c and b are given by (24) and (25),

along with the fact that z ≡ θ + f(y)η − u
βa

, and the fact that f(y) = 1/
√
y, to obtain that

x̃ = a(θ + f(y)η) + b+ cz

=
λa(θ + f(y)η) + u− α +

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ
z

β + λ
.

Combining the expression for x̃ derived above with the expression for x0 in (11), we have that

E[(x̃− xo)2] = E


λa(θ + f(y)η) + u− α +

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ
z

β + λ
− θ − α + u

β + λ

2
 .

Simplifying, we have that

E[(x̃− xo)2] = E

[(
λaf(y)η
β+λ

+

(
1−λa−λa τθ

yτη

)
τω(a)

τω(a)+τθ
(z−θ)

β+λ
−
[
1−λa−

(
1−λa−λa τθ

yτη

)
τω(a)

τω(a)+τθ

]
θ

β+λ

)2
]
.

Using the fact that f(y) = 1/
√
y, and that E[ωθ] = E[ηθ] = 0, we then have that

E[(x̃− xo)2] =

((
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

)2

(β + λ)2 τω(a)
+
λ2a2 + 2λa

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

(β + λ)2 yτη

+

(
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

)2

(β + λ)2 τθ
.

Replacing the expressions for E[(xi− x̃)2] and E[(x̃− xo)2] derived above into the formula for

the welfare losses, we then have that, for any a, when b̂ and ĉ are set optimally, the welfare

losses can be expressed as

WL(a, τω(a)) =

[(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

]2

2 (β + λ) τω(a)
+
λ2a2 + 2λa

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

2 (β + λ) yτη

+

[
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

]2

2 (β + λ) τθ
+
λa2

2yτe
.

as claimed in the main text. Q.E.D.
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Proof of Proposition 2.

As shown above, once b and c are set optimally as a function of a to minimize the welfare losses,

the latter can be expressed as a function of a and τω(a), with the formula for WL(a, τω(a))

given by (13), with τω(a)= β2a2τuτηy

β2a2τu+yτη
. The socially optimal level of a is thus the one that

minimizes WL(a, τω(a)) and is given by the FOC

dWL(a, τω(a))

da
=

∂WL(a, τω(a))

∂a
+
∂WL(a, τω(a)))

∂τω(a)

∂τω(a)

∂a
= 0.

Note that

∂WL(a, τω(a))

∂a
= −

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

(
λyτη+τθ

yτη

τω(a)
τω(a)+τθ

)
(β + λ) τω(a)

+
λ2a+ λ

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ
− λ2ayτη+τθ

yτη

τω(a)
τω(a)+τθ

(β + λ) yτη

+

[
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

] (
−λ+ λ

(
yτη+τθ
yτη

)
τω(a)

τω(a)+τθ

)
(β + λ) τθ

+
λa

yτe
.

Next note that

∂WL(a, τω(a))

∂τω(a)
=

(
1− λa− λa τθ

yτη

)2

2 (β + λ)

τθ − τω(a)

(τω(a) + τθ)
3 +

λa
(

1− λa− λa τθ
yτη

)
(β + λ) yτη

τθ

(τω(a) + τθ)
2

−

[
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

]
(β + λ) τθ

(
1− λa− λa τθ

yτη

)
τθ

(τω(a) + τθ)
2 .

Finally note that

∂τω(a)

∂a
=

2β2ay2τ 2
η τu

(β2a2τu + yτη)2
.

Using the above expressions we obtain that

dWL(a, τω(a))

da
= −

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

(
λyτη+τθ

yτη

τω(a)
τω(a)+τθ

)
(β + λ) τω(a)

+
λa

yτe
+ L(a)

+
λ2a+ λ

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ
− λ2ayτη+τθ

yτη

τω(a)
τω(a)+τθ

(β + λ) yτη

+

[
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

] (
−λ+ λ

(
yτη+τθ
yτη

)
τω(a)

τω(a)+τθ

)
(β + λ) τθ

where
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L(a) ≡
β2ay2τ 2

η τu

(β2a2τu + yτη)2


(

1− λa− λa τθ
yτη

)2

(β + λ)

τθ − τω(a)

(τω(a) + τθ)
3 +

2λa
(

1− λa− λa τθ
yτη

)
(β + λ) yτη

τθ

(τω(a) + τθ)
2

−
2
[
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

]
(β + λ) τθ

(
1− λa− λa τθ

yτη

)
τθ

(τω(a) + τθ)
2

 .

Hence, the first-order-condition dWL(a, τω(a))/da = 0 is equivalent to

0 = λaτε

(
(yτη + τθ)

2 τω(a)

τω(a) + τθ

)
+ λayτητε (τω(a) + τθ)− 2λaτε (yτη + τθ) τω(a)

+λaτε
(τω(a) + τθ)

τθ

(
yτη − (yτη + τθ)

τω(a)

τω(a) + τθ

)2

+ λayτητε
yτη (τω(a) + τθ) (β + λ)

λyτe

+yτητε
(β + λ) (τω(a) + τθ) yτηL(a)

λ
− yτητε (yτη − τω(a))

from which we obtain that

yτητε (yτη − τω(a)) = λa
{
y2τ 2

η τε − τω(a)τε (τθ + 2yτη) + (τω(a) + τθ) y
2τ 2
η

+yτητε
yτη (τω(a) + τθ) β

λyτe
+ yτητε

(β + λ) (τω(a) + τθ) yτηL(a)

λ2a

}
.

Letting

∆(a) ≡ −τε
y2τ 2

η

λ2a

β2ay2τ 2
η τu

(β2a2τu + yτη)2

(
1− λa− λa τθ

yτη

)2

(τω(a) + τθ)
< 0

Ξ(a) ≡
τεyτ

2
η (τω(a) + τθ) β

λτe
> 0,

we conclude that aT must solve

a =
1

λ

τεyτη(yτη − τω(a))

y2τ 2
η (τε + τθ + τω(a))− τω(a)τε (τθ + 2yτη) + Ξ(a) + ∆(a)

.

It is straightforward to verify that

dWL(a, τω(a))

da

∣∣∣∣
a= 1

λ

=
λτθ

(β + λ) yτη(τω(a) + τθ)

yτη
β2a2τu + yτη(

1− β2a2τu
(β2a2τu + yτη)

× τθ
(τω(a) + τθ)

)
+
λa

yτe
> 0
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and that

dWL(a, τω(a))

da

∣∣∣∣
a=0

=

τω(a)
τω(a)+τθ

(
−λyτη+τθ

yτη

τω(a)
τω(a)+τθ

)
(β + λ) τω(a)

+
λ
(

τω(a)
τω(a)+τθ

)
(β + λ) yτη

+

(
1− τω(a)

τω(a)+τθ

)(
−λ+ λ

(
yτη+τθ
yτη

)
τω(a)

τω(a)+τθ

)
(β + λ) τθ

∝ τω(a)

yτη
−1 = − yτη

β2a2τu + yτη
< 0,

which implies that 0 < aT < 1
λ
, as claimed in the proposition. Q.E.D.

Derivation of (15) and (16).

In the cursed economy, each trader receives a private signal si = θ + f(y)η + f(y)ei︸ ︷︷ ︸
≡εi

and a

public signal z = θ + f(y)η + χ︸ ︷︷ ︸
≡ζ

, and believes p to be orthogonal to (θ, η).

Following steps similar to those leading to Proposition 1, we have that

E[θ|si, z] = γ1si + γ2z,

where

γ1 ≡
τεyτη (yτη − τζ)

y2τ 2
η (τζ + τε + τθ)− τζτε(τθ + 2yτη)

and

γ2 ≡
yτητζ (yτη − τε)

y2τ 2
η (τζ + τε + τθ)− τετζ(τθ + 2yτη)

=

(
1− γ1

τθ + yτη
yτη

)
τζ

τζ + τθ
.

Now observe that the cursed equilibrium demand schedules must satisfy

xi =
1

λ
(E[θ|si, z]− p) . (26)

We thus have that

a∗exo =
γ1

λ
,

which, using the formula for γ1, is equivalent to the expression in (15).

Now suppose that the planner can select a but, given the latter, is constrained to choose

(b, c, d) to maintain the same relationship between a and (b, c, d) as in the cursed equilibrium.

Use (26) to observe that, in the cursed equilibrium,

b∗exo = 0,

c∗exo =
γ2

λ
,
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and

d∗exo =
1

λ
.

Furthermore, because

γ2 =

(
1− γ1

τθ + yτη
yτη

)
τζ

τζ + τθ
,

and because γ1 = a∗exoλ, we have that, in the cursed equilibrium, the relationship between a

and (b, c, d) is given by

b∗exo = 0,

c∗exo =
1

λ

(
1− λa∗exo

τθ + yτη
yτη

)
τζ

τζ + τθ
,

and

d∗exo =
1

λ
.

The above properties imply that, in the cursed economy, for any choice of a, the planner is

constrained to select demand schedules of the form

xi =
1

λ

(
λasi +

(
1− λa (yτη + τθ)

yτη

)
τζ

τζ + τθ
z − p

)
. (27)

The planner then chooses a to minimize the welfare losses

WL =
(β + λ)E[(x̃− xo)2] + λE[(xi − x̃)2]

2
taking into account the market-clearing condition.

Following steps similar to those in the baseline economy and using the market-clearing

condition, we have that, when the traders’ demand schedules are given by (27),

(β + λ)

2
E[(x̃− xo)2] =

((
1− λa(yτη+τθ)

yτη

)
τζ

τζ+τθ

)2

(β + λ)2 τζ
+
λ2a2 + 2λa

(
1− λa(yτη+τθ)

yτη

)
τζ

τζ+τθ

(β + λ)2 yτη

+

(
1− λa−

(
1− λa(yτη+τθ)

yτη

)
τζ

τζ+τθ

)2

(β + λ)2 τθ
and

λE[(xi − x̃)2]

2
=

λa2

2yτe
.

This means that, for any a, the welfare losses are equal to
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WL =

[(
1− λa(yτη+τθ)

yτη

)
τζ

τζ+τθ

]2

2 (β + λ) τζ
+
λ2a2 + 2λa

(
1− λa(yτη+τθ)

yτη

)
τζ

τζ+τθ

2 (β + λ) yτη

+

[
1− λa−

(
1− λa(yτη+τθ)

yτη

)
τζ

τζ+τθ

]2

2 (β + λ) τθ
+
λa2

2yτe
.

Following steps similar to those in the proof of Proposition 2, we then have that the value

of a that minimizes the above welfare losses is equal to

aTexo =
1

λ

τεyτη(yτη − τζ)

y2τ 2
η (τε + τθ + τζ)− τζτε (τθ + 2yτη) +

τεyτ2η(τζ+τθ)β
λτe

as claimed in (16). Q.E.D.

Lemma 2. c∗ = 0 if and only if Ξ(a∗) + ∆(a∗) = 0.

Proof of Lemma 2. Recall that c∗ is given by

c∗ =
1

β + λ

((
1− λa∗ − λa∗ τθ

yτη

)
τω(a∗)

τθ + τω(a∗)
− βa∗

)
=

1

β + λ
(γ2(a∗)− βa∗) ,

whereas the externalities are given by

∆(a) ≡ −
τεβ

2ay4τ 4
η τu

(
1− λa− λa τθ

yτη

)2

λ2a(β2a2τu + yτη)2 (τω(a) + τθ)
,

Ξ(a) ≡
τεyτ

2
η (τω(a) + τθ) β

λτe
.

We prove the lemma in two steps. First we show that, if c∗ = 0, then Ξ(a∗) + ∆(a∗) = 0. To

see this, use the formula for c∗ from above to verify that, when c∗ = 0, then βa∗ = γ2(a∗).

Using the fact that

a∗ =
1

λ

τεyτη (yτη − τω(a∗))

y2τ 2
η (τω(a∗) + τε + τθ)− τω(a∗)τε (τθ + 2yτη)

,

γ2(a∗) =
τω(a∗)

(
y2τ 2

η − τεyτη
)

y2τ 2
η (τω(a∗) + τε + τθ)− τω(a∗)τε (τθ + 2yτη)

,

τε =
yτeτη
τe + τη

,

τω(a∗) =
β2a∗2yτητu
β2a∗2τu + yτη

,
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we then have that, when c∗ = 0, then

β =
γ2(a∗)

a∗
= λ

τω(a∗)
(
y2τ 2

η − τεyτη
)

τεyτη (yτη − τω(a∗))
= λ

τω(a∗)
(
yτη − yτeτη

τe+τη

)
yτeτη
τe+τη

(yτη − τω(a∗))
.

Using the formula for τω(a∗) we then have that

β = λ

β2a∗2yτητu
β2a∗2τu+yτη

(
yτ2η
τe+τη

)
yτeτη
τe+τη

(
yτη − β2a∗2yτητu

β2a∗2τu+yτη

) = λ
β2a∗2yτητuτη

τe
(
y2τ 2

η

) = λ
β2a∗2τu
τey

from which we obtain that

β =
yτe

λa∗2τu
.

Furthermore, using the expression for c∗ above, we have that, when c∗ = 0 ,(
1− λa∗ − λa∗ τθ

yτη

)
τω(a∗)

τθ + τω(a∗)
= βa∗.

Replacing the above expression into the formula for the two externalities, we thus have that

∆(a∗) + Ξ(a∗) =
τεyτ

2
η (τω(a∗) + τθ) β

λτe
− τε

y2τ 2
η

λ2a∗
(τθ + τω(a∗))

a∗τu
.

Using the expression for β above, we then have that

∆(a∗) + Ξ(a∗) =
τεyτ

2
η (τω(a∗) + τθ)

yτe
λa2τu

λτe
−
τεy

2τ 2
η

λ2a∗
(τθ + τω(a∗))

a∗τu

=
τεy

2τ 2
η

λ2a∗

(
(τω(a∗) + τθ)

a∗τu
− (τθ + τω(a∗))

a∗τu

)
= 0.

Next, we prove the converse. We show that, if ∆(a∗) + Ξ(a∗) = 0, then c∗ = 0. To see this

note that, when the sum of the two externalities is zero, then

∆(a∗) + Ξ(a∗) =
τεyτ

2
η (τω(a∗) + τθ) β

λτe
−
τεy

4τ 4
ηβ

2a∗τu

(
1− λa∗ − λa∗ τθ

yτη

)2

λ2a∗(β2a∗2τu + yτη)2 (τω(a∗) + τθ)
= 0.

Using the various expressions above we then have that

0 =
(τω(a∗) + τθ) β

yτe
− 1

λa∗
τω(a∗)2

β2a∗3τu

(
1− λa∗ − λa∗ τθ

yτη

)2

τω(a∗) + τθ
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0 =
βa∗

yτe
− 1

γ1(a∗)

γ2(a∗)2

β2a∗2τu

βa∗ =
τω(a∗) (yτη − τε)
τε (yτη − τω(a∗))

yτe
β2a∗2τu

γ2(a∗)

=
β2a∗2τu
τey

yτe
β2a∗2τu

γ2(a∗)

= γ2(a∗).

Hence βa∗ = γ2(a∗). But this means that c∗ = 0. Q.E.D.

Proof of Proposition 3.

Under the proposed policy, each trader’s demand schedule must satisfy the optimality condi-

tion

Xi(p; Ii) =
1

λ+ δ
(E[θ|Ii, p]− (1 + tp)p+ t0) .

For any vector (a, b̂, ĉ), when all traders submit affine demand schedules xi = asi + b̂− ĉp, the

equilibrium price then continues to satisfy the same representation as in (2) but with (a∗, b̂∗, ĉ∗)

replaced by (a, b̂, ĉ). This also means that the equilibrium trades can be expressed as a function

of the endogenous public signal z, as in the laissez-faire equilibrium with no policy. Letting

xi = asi + b + cz denote the trades generated by the demand schedules xi = asi + b̂ − ĉp

(with z representing the endogenous public signal contained in the market-clearing price), we

then have that the functions that map the coefficients ĉ and b̂ in the demand schedules into

the coefficients c and b in the induced trades continue to be given by (8) and (9). Using the

fact that E[θ|si, z] = γ1(τω(a))si + γ2(τω(a))z, with the functions γ1 and γ2 as defined in (5)

and (6), along with the fact that the market-clearing price satisfies p = α+ βb+ β(a+ c)z as

shown in (20), we then have that the equilibrium trades must satisfy

xi =
1

λ+ δ
[γ1(τω(a))si + γ2(τω(a))z − (1 + tp)α− (1 + tp)βb− (1 + tp)β(a+ c)z + t0]

=
1

λ+ δ
{γ1(τω(a))si − (1 + tp) (α + βb) + [γ2(τω(a))− (1 + tp)β(a+ c)] z + t0} .

The sensitivity of the equilibrium trades to private information si under the proposed policy

thus satisfies a = γ1(τω(a))/(λ + γ). Using the formula for γ1 in (5), we then have that the

equilibrium a under the proposed policy is the unique solution to the following equation:

a =
1

λ+ δ

τεy
2τ 2
η − τω(a)τεyτη

y2τ 2
η (τω(a) + τε + τθ)− τω(a)τε (τθ + 2yτη)

.

The equilibrium c, instead, is given by the unique solution to

c =
1

λ+ δ
[γ2(τω(a))− (1 + tp)β(a+ c)]
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which is equal to

c =
γ2(τω(a))− (1 + tp)βa

λ+ δ + (1 + tp)β
.

Finally, the equilibrium b is given by the unique solution to

b =
−(1 + tp) (α + βb) + t0

λ+ δ
which is equal to

b =
t0 − (1 + tp)α

λ+ δ + (1 + tp)β
.

Now recall that the sensitivity aT of the efficient trades to private information is given by the

unique solution to

a =
1

λ

τεyτη(yτη − τω(a))

y2τ 2
η (τε + τθ + τω(a))− τω(a)τε (τθ + 2yτη) + Ξ(a) + ∆(a)

.

Therefore, the equilibrium value a under the proposed policy coincides with the efficient level

aT if and only if δ satisfies

(λ+ δ)
[
y2τ 2

η

(
τω(aT ) + τε + τθ

)
− τω(aT )τε (τθ + 2yτη)

]
= λ

[
y2τ 2

η

(
τε + τθ + τω(aT )

)
− τω(aT )τε (τθ + 2yτη) + Ξ(aT ) + ∆(aT )

]
,

from which we obtain that

δ =
λ
(
Ξ(aT ) + ∆(aT )

)
y2τ 2

η (τω(aT ) + τε + τθ)− τω(aT )τε (τθ + 2yτη)
.

Now recall that, given aT , the other two coefficients cT and bT describing the efficient trades

are given by the functions in (24) and (25), implying that

cT =
1

β + λ

((
1− λaT − λaT τθ

yτη

)
τω(aT )

τω(aT ) + τθ
− βaT

)
and

bT = − α

β + λ
.

Hence, for the equilibrium levels of c and b under the proposed policy to coincide with the

efficient levels it must be that
γ2(τω(aT ))− (1 + tp)βa

T

λ+ δ + (1 + tp)β
=

1

β + λ

((
1− λaT − λaT τθ

yτη

)
τω(aT )

τω(aT ) + τθ
− βaT

)
and

t0 − (1 + tp)α

λ+ δ + (1 + tp)β
= − α

β + λ

It is easy to see that the above two equations are satisfied when

tp =
γ2(τω(aT ))− λ+δ+β

β+λ

[(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ
− βa

]
− βaT

β
{

1
β+λ

[(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ
− βa

]
+ aT

}
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and

t0 = (1 + tp)α−
α [λ+ δ + (1 + tp)β]

β + λ
.

Q.E.D.

Proof of Proposition 4.

When all traders other than i acquire information of quality ȳ and then submit the demand

schedules corresponding to (aT , b̂T , ĉT ), irrespectively of the information acquired by trader i

and of the demand schedule submitted by the latter, the equilibrium price is given by

p(θ, u, η; ȳ) = α + βbT + β(aT + cT )z(θ, u, η; ȳ)

where bT and cT are the coefficients obtained from (aT , b̂T , ĉT ) using the functions (18) and

(19), and where18

z(θ, u, η; ȳ) ≡ θ + f(ȳ)η − u/βaT .

Furthermore, the aggregate level of trade is equal

X̃(θ, u, η; ȳ) = aT [θ + f(ȳ)η] + bT + cT z(θ, u, η; ȳ)

whereas the equilibrium trade for agent i when he acquires information of quality yi and then

submits the demand schedule corresponding to the coefficients (aT , b̂T , ĉT ) is equal to

Xi(θ, u, η, ei; ȳ, yi) = aT [θ + f(yi)ei + f(yi)η]︸ ︷︷ ︸
si

+bT + cT z(θ, u, η; ȳ).

It follows that, when all traders other than i acquire information of quality ȳ, trader i acquires

information of quality yi and all traders, including trader i, submit the demand schedules

corresponding to (aT , b̂T , ĉT ), trader i’s ex-ante gross payoff is equal to

E[πTi ; ȳ, yi] = E
[
(θ − p(θ, u, η; ȳ))Xi(θ, u, η, ei; ȳ, yi)−

λ

2
X2
i (θ, u, η, ei; ȳ, yi)

]
.

Using the fact that the market clearing price must also satisfy

p = α− u+ βX̃(θ, u, η; ȳ),

we have that

E[πTi ; ȳ, yi] = Eθ,u,η
[(
θ − α + u− βX̃(θ, u, η; ȳ)

)
E[xi|θ, u, η; ȳ, yi]−

λ

2
E
[
x2
i |θ, u, η; ȳ, yi

]]
or, equivalently,

E[πTi ; ȳ, yi] = Eθ,u,η
[(
θ − α + u− βX̃(θ, u, η; ȳ)

)
E[xi|θ, u, η; ȳ, yi]− λ

2
V ar[xi|θ, η, u; ȳ, yi]

−λ
2

(E[xi|θ, η, u; ȳ, yi])
2] ,

18Observe that the functions (18) and (19) do not depend on y and hence cT and bT do not depend on y.
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where

E[xi|θ, u, η; ȳ, yi] ≡ E[Xi(θ, u, η, ei; ȳ, yi)|θ, u, η; ȳ, yi]

and

E[x2
i |θ, u, η; ȳ, yi] ≡ E

[
(Xi(θ, u, η, ei; ȳ, yi))

2 |θ, u, η; ȳ, yi
]

and

V ar[xi|θ, η, u; ȳ, yi] ≡ E
[
(Xi(θ, u, η, ei; ȳ, yi)− E[xi|θ, u, η; ȳ, yi])

2 |θ, u, η; ȳ, yi
]
.

Using the fact that

E[xi|θ, u, η; ȳ, yi] = aT [θ + f(yi)η] + bT + cT z(θ, u, η; ȳ)

and

V ar[xi|θ, η, u; ȳ, yi] =

(
aTf(yi)

)2

τe
,

we have that

∂E[πTi ; ȳ, yi]

∂yi
= Eθ,η,u

[(
θ − α + u− βX̃(θ, u, η; ȳ)

)
aTf ′(yi)η

]
− λ

(
aT
)2

τe
f(yi)f

′(yi)

−λEθ,η,u
[(
aT [θ + f(yi)η] + bT + cT z(θ, u, η; ȳ)

)
aTf ′(yi)η

]
= −aTβEθ,η,u

[
X̃(θ, u, η; ȳ)η

]
f ′(yi)− λ

(
aT
)2

τe
f(yi)f

′(yi)

−λ
(
aT
)2
f(yi)f

′(yi)
1

τη
− λaT cTEθ,η,u [z(θ, u, η; ȳ)η] f ′(yi).

Using the fact that

Eθ,η,u
[
X̃(θ, u, η; ȳ)η

]
= aTf(ȳ)

1

τn
+ cTEθ,η,u [z(θ, u, η; ȳ)η]

and

Eθ,η,u [z(θ, u, η; ȳ)η] = f(ȳ)
1

τn
,

we then have that

∂E[πTi ; ȳ, yi]

∂yi
= −aTβ

[
aTf(ȳ)

1

τn
+ cTf(ȳ)

1

τn

]
f ′(yi)− λ

(
aT
)2

τe
f(yi)f

′(yi)

−λ
(
aT
)2
f(yi)f

′(yi)
1

τη
− λaT cTf(ȳ)

1

τn
f ′(yi), (28)

from which we obtain that

∂E[πTi ; ȳ, yi]

∂yi

∣∣∣∣
yi=ȳ

= −aTβ
[
aTf(ȳ)

1

τn
+ cTf(ȳ)

1

τn

]
f ′(ȳ)− λ

(
aT
)2

τe
f(ȳ)f ′(ȳ)

−λ
(
aT
)2
f(ȳ)f ′(ȳ)

1

τη
− λaT cTf(ȳ)

1

τn
f ′(ȳ)

= −f(ȳ)f ′(ȳ)aT
{
λ
aT

τe
+ (β + λ)(aT + cT )

1

τη

}
. (29)

Next, observe that, when trader i also acquires information of quality ȳ and all traders submit
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the demand schedules corresponding to (aT , b̂T , ĉT ), then

E[πTi ; ȳ, ȳ] = Eθ,u,η

[(
θ − α + u− βX̃(θ, u, η; ȳ)

)
X̃(θ, u, η; ȳ)− λ

2

(
aTf(ȳ)

)2

τe
− λ

2

(
X̃(θ, u, η; ȳ)

)2
]
.

The ex-ante payoff of the representative investor when all traders acquire information of quality

ȳ and submit the demand schedules corresponding to (aT , b̂T , ĉT ) is equal to

E[Π; ȳ] = Eθ,u,η
[
(p(θ, u, η; ȳ)− α + u) X̃(θ, u, η; ȳ)− β

2

(
X̃(θ, u, η; ȳ)

)2
]

=
β

2
Eθ,u,η

[(
X̃(θ, u, η; ȳ)

)2
]
,

where we used the fact that p(θ, u, η; ȳ) = α− u+ βX̃(θ, u, η; ȳ). We thus have that, when all

traders acquire information of quality ȳ and submit the demand schedules corresponding to

(aT , b̂T , ĉT ), ex-ante welfare is given by

E[W T ; ȳ] = E[πTi ; ȳ, ȳ] + E[Π; ȳ]

= Eθ,u,η

[
(θ − α + u) X̃(θ, u, η; ȳ)− λ

2

(
aTf(ȳ)

)2

τe
− λ+ β

2

(
X̃(θ, u, η; ȳ)

)2
]
.

Hence,

dE[W T ; ȳ]

dȳ
= Eθ,η,u

[
(θ − α + u)

∂X̃(θ, u, η; ȳ)

∂ȳ
−
λ
(
aT
)2
f(ȳ)f ′(ȳ)

τe
− (λ+ β)X̃(θ, u, η; ȳ)

∂X̃(θ, u, η; ȳ)

∂ȳ

]
,

where
∂X̃(θ, u, η; ȳ)

∂ȳ
= (aT + cT )f ′(ȳ)η.

It follows that

dE[W T ; ȳ]

dȳ
= −

λ
(
aT
)2
f(ȳ)f ′(ȳ)

τe
− (λ+ β)(aT + cT )f ′(ȳ)Eθ,η,u

[
X̃(θ, u, η; ȳ)η

]
.

Using the fact that

Eθ,η,u
[
X̃(θ, u, η; ȳ)η

]
= (aT + cT )f(ȳ)

1

τn
,

we thus have that

dE[W T ; ȳ]

dȳ
= −

λ
(
aT
)2
f(ȳ)f ′(ȳ)

τe
− (λ+ β)

(
aT + cT

)2
f ′(ȳ)f(ȳ)

1

τn
. (30)

Comparing (29) with (30), we thus have that, when cT < 0,

∂E[πTi ; ȳ, yi]

∂yi

∣∣∣∣
yi=ȳ

>
dE[W T ; ȳ]

dȳ
,

whereas the opposite inequality holds when cT > 0. Finally, use Condition (19) to observe

that ĉT = − cT

β(aT+cT )
and Condition (24), along with the formula for τω(a), to observe that

aT + cT > 0. Jointly, the last two conditions imply that sgn(ĉT ) = −sgn(cT ) thus completing

the proof. Q.E.D.
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Proof of Proposition 5.

We start by establishing the (global) concavity of E[πTi ; ȳ, yi] and E[W T ; ȳ] in yi and ȳ, re-

spectively (Recall that the coefficients defining the traders’ demand are kept constant in both

of these functions at (aT , bT , cT ), where (aT , bT , cT ) is the vector defining the efficient trades

when the quality of private information is yT ). Using (28), we have that

∂2E[πTi ; ȳ, yi]

∂y2
i

= −aTβf(ȳ)
1

τη

(
aT + cT

)
f ′′(yi)− λ

(
aT
)2
[

1

τe
+

1

τη

]
∂

∂yi
(f(yi)f

′(yi))

−λaT cTf(ȳ)
1

τη
f ′′(yi)

= −aTf(ȳ)
1

τη

[
β
(
aT + cT

)
+ λcT

]
f ′′(yi)− λ

(
aT
)2
[

1

τe
+

1

τη

]
∂

∂yi
(f(yi)f

′(yi)) .

Now observe that f ′′(yi) = 3
√
yi/4y

3
i > 0 and ∂

∂yi
(f(yi)f

′(yi)) = 1/y3
i > 0. Hence,

∂2E[πTi ; ȳ, yi]

∂y2
i

= − aT

y3
i τη

[
3
√
yi

4
√
ȳ

(
βaT + (β + λ) cT

)
+ λaT

τη + τe
τe

]
.

Now recall that, irrespective of the sign of cT , aT > 0 and aT + cT > 0, where the last

inequality is established in the proof of Proposition 4. Hence, when cT ≥ 0, for any (ȳ, yi),

∂2E[πTi ; ȳ, yi]/∂y
2
i < 0. To see that the same inequality holds when cT < 0, recall that

cT =
1

β + λ

[(
1− λaT − λaT τθ

yT τη

)
τω(aT )

τω(aT ) + τθ
− βaT

]
.

Hence,

βaT + (β + λ) cT =

(
1− λaT − λaT τθ

yT τη

)
τω(aT )

τω(aT ) + τθ
,

which, using

τω(aT ) =
β2
(
aT
)2
yT τητu

β2 (aT )2 τu + yT τη
,

we can rewrite as

βaT + (β + λ) cT =
[(

1− λaT
)
yT τη − λaT τθ

] β2
(
aT
)2
τu

β2 (aT )2 τu (yT τη + τθ) + yT τητθ
.

Hence,

sgn
(
βaT + (β + λ) cT

)
= sgn

((
1− λaT

)
yT τη − λaT τθ

)
.

Now recall that

aT =
1

λ

τεy
T τη(y

T τη − τω(aT ))

(yT )2 τ 2
η (τε + τθ + τω(aT ))− τω(aT )τε (τθ + 2yT τη) + Ξ(aT ) + ∆(aT )

(31)

with τε =
(
yT τeτη

)
/ (τe + τη) and observe that the numerator in (31) is positive. Because

aT > 0, as shown above, this means that the denominator in (31) is also positive. Using the
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fact that(
1− λaT

)
yT τη−λaT τθ =

yT τηQ

(yT )2 τ 2
η (τε + τθ + τω(aT ))− τω(aT )τε (τθ + 2yT τη) + Ξ(aT ) + ∆(aT )

where

Q = yT τη
(
yT τη − τε

) (
τθ + τω(aT )

)
+ Ξ(aT ) + ∆(aT ),

we thus have that

sgn
((

1− λaT
)
yT τη − λaT τθ

)
= sgn (Q) .

Now, using the fact that τε = (yτeτη) / (τe + τη), we have that Q can be rewritten as

Q =
(
yT τη

)2 τη
τe + τη

(
τθ + τω(aT )

)
+ Ξ(aT ) + ∆(aT )

and hence sgn (Q) > 0 if Ξ(aT ) + ∆(aT ) > 0. The latter property holds because, as explained

in the main text, when cT < 0, then ĉT > 0 in which case Ξ(aT ) + ∆(aT ) > 0. We conclude

that, no matter the sign of cT , for any ȳ, E[πTi ; ȳ, yi] is strictly concave in yi.

Next, consider the concavity of E[W T ; ȳ] in ȳ. Using (30), we have that

d2E[W T ; ȳ]

dȳ2
= −

[
λ
(
aT
)2

τe
+ (λ+ β)

(
aT + cT

)2 1

τn

]
∂

∂ȳ
(f(ȳ)f ′(ȳ))

< 0,

where again the inequality follows from the fact that ∂
∂ȳ

(f(ȳ)f ′(ȳ)) > 0. Hence E[W T ; ȳ] is

strictly concave in ȳ.

Because E[πTi ; ȳ, yi] is strictly concave in yi, in equilibrium, all traders acquire information of

quality y∗ such that

∂E[πTi ; ȳ, yi]

∂yi

∣∣∣∣
yi=ȳ=y∗

= C ′(y∗).

Now recall that the socially optimal quality of information satisfies

dE[W T ; ȳ]

dȳ

∣∣∣∣
ȳ=yT

= C ′(yT ).

Because E[W T ; ȳ] is strictly concave in ȳ, the result in Proposition 4, then imply that, when

ĉT < 0, yT > y∗, whereas, when ĉT > 0, yT < y∗. Q.E.D.

Proof of Proposition 6.

Under the proposed policy, each trader i’s ex-ante gross expected payoff when all traders

other than i collect information of quality ȳ, trader i collects information of quality yi, and
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all traders (including i) submit the efficient demand schedules (aT , b̂T , ĉT ) is equal to

E[πTi (ȳ, yi); t̂p] = E
[
θxi − (1 + t̂p)pxi −

λ

2
x2
i

]
= E

[
θxi − (1 + t̂p) (α− u+ βx̃)xi −

λ

2
x2
i

]
with

xi = Xi(θ, u, η, ei; ȳ, yi) = aT [θ + f(yi)ei + f(yi)η]︸ ︷︷ ︸
si

+bT + cT
(
θ + f(ȳ)η − u

βaT

)
,

p = P (θ, u, η; ȳ) = α− u+ βX(θ, u, η; ȳ),

and

x̃ = X(θ, u, η; ȳ) = aT (θ + f(ȳ)η) + bT + cT
(
θ + f(ȳ)η − u

βaT

)
,

and where bT and cT are the coefficients describing the equilibrium trades obtained from b̂T

and ĉT using (18) and (19). Hence,

E[πTi (ȳ, yi); t̂p] = N − β(aT + cT )aT
1 + t̂p√
ȳ
√
yiτη
− λcTaT√

ȳ
√
yiτη
− λ

2

(
aT
)2

yiτη
− λ

2

(
aT
)2

yiτe
where N is a function of all variables that do not interact with yi. It follows that

∂E[πTi (ȳ, yi); t̂p]

∂yi
=

β(1 + t̂p)(a
T + cT )aT

2τηyi
√
ȳyi

+
λaT

2τηyi
√
yi

(
aT
√
yi

+
cT√
ȳ

)
+
λ
(
aT
)2

2y2
i τe

.

Because E[πTi (ȳ, yi); t̂p]−C(yi) is concave in yi, for yi = ȳ = yT to be sustained in equilibrium

it is both necessary and sufficient that

∂E[πTi (yT , yT ); t̂p]

∂yi
= C ′(yT )

which is equivalent to[
β(1 + t̂p) + λ

]
(aT + cT )aT

2τη
+
λ
(
aT
)2

2τe
= C ′(yT )

(
yT
)2
.

Using the fact that yT satisfies

(β + λ)(aT + cT )2

2τη
+
λ
(
aT
)2

2τe
= C ′(yT )

(
yT
)2
,

we have that the proposed policy implements the efficient acquisition of private information

when

t̂p =
(β + λ)cT

βaT
.

Using the fact that

cT =
1

β + λ

(
γ2

(
τω(aT )

)
− βaT

)
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we then have that the optimal t̂p can be rewritten as

t̂p =
γ2

(
τω(aT )

)
− βaT

βaT

as claimed in the proposition. Q.E.D.

Proof of Proposition 7.

Assume that all traders other than i acquire information of quality yT and then submit

the efficient demand schedules (that is, those corresponding to the coefficients (aT , b̂T , ĉT )).

Given any policy T (xi, p), the expected net payoff for trader i when he chooses information

of quality yi and then selects his demand schedule optimally is equal to

V (yT , yi) ≡ supg(·)
{
E[π̃i(y

T , yi); g(·)]− C(yi)
}

where g : R2 → R is a generic function specifying the amount of shares xi = g(si, z) that the

trader purchases as a function of si and z, and where

E[π̃i(y
T , yi); g(·)] ≡ E

[
θg(si, z)− (α− u+ βx̃)g(si, z)− λ

2
(g(si, z))

2]− E [T (g(si, z), α− u+ βx̃)] .

Note that the definition of E[π̃i(y
T , yi); g(·)] uses the fact that the market-clearing price is

given by p = α− u+ βx̃ with

x̃ = aT (θ + f(yT )η) + bT + cT z

where bT and cT are the coefficients describing the equilibrium trades obtained from b̂T and

ĉT using (18) and (19), and where

z ≡ θ + f(yT )η − u

βaT
.

It also uses the fact that, when all other traders submit the efficient demand schedules, any

demand schedule for trader i (that is, any mapping from (si, p) into xi) can be expressed as

a function g(si, z) of (si, z).
19

For the policy T (xi, p) to implement the efficient acquisition and usage of information, it

must be that, when yi = yT , the function g(si, z) that maximizes the trader’s payoff is equal

to g(si, z) = aT si + bT + cT z. Using the fact that the equilibrium price can be expressed as

p = α + βbT + β(aT + cT )z, and the fact that

E [θ|si, z] = γ1(τω(aT ))si + γ2(τω(aT ))z,

we thus have that, for a differentiable policy T to implement the efficient trades, it must

satisfy

γ1(τω(aT ))si + γ2(τω(aT ))z −
[
α + βbT + β(aT + cT )z

]
− λ

(
aT si + bT + cT z

)
−∂T(aT si+bT+cT z,α+βbT+β(aT+cT )z)

∂x
= 0

19It suffices to use (20) to observe that p = α+ βbT + β(aT + cT )z.
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for all (si, z). Next, observe that

γ1(τω(aT ))si + γ2(τω(aT ))z

=
[
γ1(τω(aT ))x−b

T−cT z
aT

+ γ2(τω(aT ))
[
p−α−βbT
β(aT+cT )

]]∣∣∣
x=aT si+bT+cT z,p=α+βbT+β(aT+cT )z

=
[
γ1(τω(aT ))x−b

T

aT
− γ1(τω(aT ))cT

aT

[
p−α−βbT
β(aT+cT )

]
+ γ2(τω(aT ))

[
p−α−βbT
β(aT+cT )

]]∣∣∣
x=aT si+bT+cT z,p=α+βbT+β(aT+cT )z

But this means that T (x, p) must be a polynomial of second order of the form

T (xi, p) =
δ

2
x2
i + (ptp − t0)xi +K, (32)

for some (δ, tp, t0, K), where K is a constant which plays no role for incentives. In the proof of

Proposition 3, we showed that there exists a unique vector (δ, tp, t0) that induces the traders

to submit the efficient demand schedules when the precision of their private information is yT

(the vector in Proposition 3 applied to y = yT ). Thus if a policy T induces efficiency in both

information acquisition and information usage, it must be of the form in (32), with (δ, tp, t0)

as in Proposition 3 applied to y = yT . When the policy takes this form, for any yi, the optimal

choice of g(·) is affine and hence can be written as g(si, z) = asi + b + cz, for some (a, b, c),

implying that

E[π̃i(y
T , yi); g(·)] = E

[
(θ + t0) (asi + b+ cz)− (1 + tp)

(
α− u+ β

[
aT (θ + f(yT )η) + bT + cT z

])
×

× (asi + b+ cz)− λ+ δ

2
(asi + b+ cz)2

]
.

Letting M be a function of all variables that do not interact with yi, we then have that, when

g(si, z) = asi + b+ cz, for some (a, b, c),

E[π̃i(y
T , yi); g(·)] = M − β(1 + tp)(a

T + cT )a
1√

yT
√
yiτη
− (λ+ δ)ca√

yT
√
yiτη
− λ+ δ

2

a2

yiτη
− λ+ δ

2

a2

yiτe
.

Using the envelope theorem, we then have that

∂V (yT , yT )

∂yi
=

[β(1 + tp) + λ+ δ] (aT + cT )aT

2τη (yT )2 +
(λ+ δ)

(
aT
)2

2τe (yT )2 − C ′(yT ).

Note that in writing the above derivative, we used the fact that, when yi = yT , the optimal

demand schedule for trader i induces trades equal to the efficient trades aT si+b
T +cT z. Recall

that the efficient yT is given by the solution to the following equation
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(β + λ)(aT + cT )2

2τη (yT )2 +
λ
(
aT
)2

2τe (yT )2 = C ′(yT ).

Hence, for the policy of Proposition 3 (applied to ȳ = yT ) to implement the efficient acquisition

of private information, it must be that

(β + λ)(aT + cT )2

τη
+
λ
(
aT
)2

τe
=

[β(1 + tp) + λ+ δ] (aT + cT )aT

τη
+

(λ+ δ)
(
aT
)2

τe
or, equivalently,

(aT + cT )τe
[
(β + λ)cT − (βtp + δ)aT

]
= δ

(
aT
)2
τη.

One can verify that the values of δ and tp from Proposition 3 do not solve the above equation

except for a non-generic set of parameters. Q.E.D.

Proof of Proposition 8.

Paralleling the derivations in the proof of Proposition 7, when the policy takes the proposed

form and all traders other than i acquire information of quality yT and then submit the efficient

demand schedules (that is, the affine orders corresponding to the coefficients (aT , b̂T , ĉT ) for

quality of information yT ), the expected net payoff for trader i when he chooses information

of quality yi is maximized by submitting an affine demand schedule xi = asi + b̂ − ĉp which

induces trades xi = asi + b+ cz that are affine in (si, z), where z = θ+ f(yT )η− u/βaT is the

endogenous signal contained in the market-clearing price.

Using this result, let

V̂ (yT , yi) ≡ sup
a,b,c

{
E[π̃i(y

T , yi); a, b, c]− C(yi) + Ayi
}

denote the maximal payoff that trader i can obtain by acquiring information of precision

yi when all other traders acquire information of precision yT and then submit the efficient

demand schedules for information of quality yT . As shown in the proof of Proposition 7, the

expected gross payoff that trader i obtains by inducing the affine trades xi = asi+b+cz when

he chooses information of quality yi is equal to

E[π̃i(y
T , yi); a, b, c] = M − β(1 + tp)(a+ c)a

1√
yT
√
yiτη
− (λ+ δ)ca√

yT
√
yiτη
− λ+ δ

2

a2

yiτη
− λ+ δ

2

a2

yiτe
,

where M is a term collecting all variables that do not interact with yi. Using the envelope

theorem, we have that

∂V̂ (yT , yT )

∂yi
=

[β(1 + tp) + λ+ δ] (aT + cT )aT

2τη (yT )2 +
(λ+ δ)

(
aT
)2

2τe (yT )2 − C ′(yT ) + A.
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Again, in writing the above derivative we used the fact that, when yi = yT , the optimal

demand schedule for trader i induces trades equal to aT si + bT + cT z. Using the fact that yT

satisfies

(β + λ)(aT + cT )2

2τη (yT )2 +
λ
(
aT
)2

2τe (yT )2 = C ′(yT ),

we thus have that the proposed policy induces the efficient acquisition of private information

only if the following condition holds

(β + λ)(aT + cT )2

2τη
+
λ
(
aT
)2

2τe
=

(β(1 + tp) + λ+ δ) (aT + cT )aT

2τη
+

(λ+ δ)
(
aT
)2

2τe
+ A

(
yT
)2

from which we obtain that

A =
aT + cT

2τη (yT )2

[
(β + λ)cT − (βtp + δ)aT

]
−

δ
(
aT
)2

2τe (yT )2 .

Finally, one can verify numerically that the function V̂ (yT , yi) is globally quasi-concave in yi.

We thus conclude that the proposed policy implements the efficient acquisition and usage of

information. Q.E.D.

6.2 Extension: Cournot Case (traders submitting market orders)

In this subsection we show that, in a Cournot equilibrium, there is no inefficiency in either the

collection or usage of information. The environment is the same as in the baseline model except

for the fact that traders are restricted to submitting market orders instead of a collection of

limit orders (equivalently, a demand schedule).

6.2.1 Efficiency in Usage

Suppose that yi = y for all i. In any symmetric equilibrium in which the price is affine in

(θ, u, η), each trader’s market order is an affine function of her private signal. That is,

xi = asi + b

for some scalars (a, b) that depend on the exogenous parameters of the model. Aggregate

demand is then equal to

x̃ =

∫
xidi = a(θ + f(y)η) + b.
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Combining the above expression with the inverse aggregate supply function

p = α− u+ βx̃

from the representative investor, we then have that the equilibrium price must satisfy

p = α− u+ βb+ βa(θ + f(y)η). (33)

For each si, the equilibrium market order xi = asi + b must maximize trader i’s expected

profits

Πi = E
[
(θ − p)xi − λ

x2
i

2
|si
]
− C(yi),

where xi = aisi + b.

Following steps similar to those in the baseline model, we have that, for any si, the derivative

of Πi with respect to xi, evaluated at xi = aisi + b, must be equal to zero, which yields20

E [θ|si]− α− βb− βaE [θ + f(y)η|si] = λ(asi + b).

We conclude that the equilibrium value of b, which we denote by b∗, is equal to b∗ = − α
β+λ

.

To obtain the equilibrium value of a, which we denote by a∗, we replace E [θ|si] = τε
τε+τθ

si and

E [η|si]
f(y) 1

τη
τθτε

τε+τθ
si into the above FOC from which we obtain that

a∗ =
τε

λ (τε + τθ) + βτε + β τθτε
yτη

.

Next, we can derive the expression for the welfare losses when agents do not condition on the

price. When the market orders are affine with coefficients a and b,

xi − x̃ = a(si − θ − f(y)η)

from which we obtain that

E[(xi − x̃)2] = E[a2f(y)2e2
i ] =

a2

yτe
.

as in the baseline model. Recall that the first-best action is xo = θ−α+u
β+λ

. One can then show

that, for any (a, b), the welfare losses are equal to

WL = (β+λ)E[(x̃−xo)2]+λE[(xi−x̃)2]
2

=

1
2(β+λ)2

(
(βa+λa−1)2

τθ
+ (β+λ)2a2

yτη
+ 1

τu
+ b2(β + λ)2 + α2 + 2αb(β + λ)

)
.

For any a, the value of b that minimizes the welfare losses is thus given by the FOC
∂WL

∂b
= b+

α

β + λ
= 0.

We conclude that the optimal value of b is the equilibrium one: bT = b∗ = − α
β+λ

. Replacing

20Note that E [u|si] = 0.
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the above into the expression for the welfare losses, we have that the latter can be expressed

as a function of a as follows

WL(a; y) =
1

2

(
(βa+ λa− 1)2

(β + λ)τθ
+

(β + λ)a2

yτη
+

1

(β + λ)τu
+
λa2

yτe

)
.

Differentiating WL(a; y) with respect to a and setting the derivative equal to zero gives us

the socially-optimal value of a, which we denote by aT :

∂WL(aT ; y)

∂a
=

(βaT + λaA − 1)

τθ
+

(β + λ)aT

yτη
+
λaT

yτe
= 0

from which we obtain that

aT =
τε

λτε + βτε + λτθ + βτετθ
yτη

= a∗.

We thus conclude that there is no inefficiency in the usage of information in the Cournot

game.

6.2.2 Efficiency in Acquisition

We first characterize the equilibrium acquisition of private information. When each trader

j 6= i chooses yj = y and then submits the equilibrium affine market order xj = asj + b for

quality of information y, and trader i instead acquires information of quality yi and then, after

observing si, submits the market order xi, his expected payoff is equal to

Πi = E
[
(θ − p)xi − λ

x2
i

2
|si, yi

]
− C(yi)

where p = α− u+ βx̃, with x̃ = a(y)(θ + f(y)η) + b, with

a = a(y) =
τε

λ (τε + τθ) + βτε + β τθτε
yτη

and b = − α
β+λ

, as shown above. For any (si, yi), the optimal market order for trader i is given

by the FOC with respect to xi which yields xi = aisi + b with

ai = ai(y, yi) =
yiτeτη(1− βa(y))− βa(y)

√
yi√
y
τθτe

λ (yiτeτη + τθ(τe + τη))

and b = − α
β+λ

. That is, for any (y, yi), trader i’s expected profits when all other traders

acquire information of quality y and then submit the equilibrium market orders for quality of

information y, and trader i instead acquires information of quality yi and then submits the

market order that maximizes his payoff (the one described above) is given by

55



Πi(y, yi) = E

[
(θ − α + u− β (aθ + af(y)η + b)) (aisi + b)− λ(aisi + b)2

2
; y, yi

]
− C(yi)

=
ai − βaai

τθ
− βaai√

y
√
yiτη
− λa2

i

2

(
1

τθ
+

1

yiτη
+

1

yiτe

)
− C(yi)− αb+ (1− β)b2

where we used the shortcuts a = a(y) and ai = ai(y, yi) and the fact that si = θ+f(yi)(η+ei).

Replacing ai with ai(y, yi) and a with a(y), and using the Envelope Theorem, we then

have that

∂Πi(y, yi)

∂yi
=

1

2

βa(y)ai(y, yi)

yi
√
y
√
yiτη

− λ (ai(y, yi))
2

2

(
− 1

y2
i τη
− 1

y2
i τe

)
− C ′(yi).

When y is equal to the equilibrium level, which we denote by y∗, it must be that
∂Πi(y

∗, y∗)

∂yi
= 0

which, using the fact ai(y
∗, y∗) = a(y∗) yields

C ′(y∗) =
1

2

(
(β + λ) (a(y∗))2

(y∗)2τη
+
λ (a(y∗))2

(y∗)2τe

)
.

Next, we characterize the socially-optimal value of y. Because for any y, the socially-

optimal usage of information coincides with the equilibrium, as shown above, using the En-

velope Theorem, we have that the optimal value of y, which we denote by yT is given by the

condition

∂WL(a(yT ); yT )

∂y
=

1

2

(
−

(β + λ)
(
a(yT )

)2

(yT )2 τη
−
λ
(
a(yT )

)2

(yT )2 τe

)
+ C ′(yT ) = 0.

We conclude that the the optimal value of y, which we denote by yT , is given by the solution

to the following condition

C ′(yT ) =
1

2

(
(β + λ)

(
a(yT )

)2

(yT )2 τη
+
λ
(
a(yT )

)2

(yT )2 τe

)
.

It is immediate to see that yT = y∗, implying that the equilibrium acquisition of information

is also efficient. Q.E.D.
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