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Abstract

Central banks’ operations and efficiency arguments would suggest that the intraday interest

rate should be set to zero. However, a liquidity crisis introduces frictions related to news, which

can cause an upward jump of the intraday rate. This paper documents that these dynamics

can be partially predicted during turbulent times. Long memory approaches or a combination

of them to account for model uncertainty outperform random walk, autoregressive and moving

average benchmarks in terms of point and density forecasting. The relative accuracy is higher

when the full distribution is predicted. We also document that such statistical accuracy can

provide economic gains in investment strategies based on lending in the intraday market.
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1 Introduction

An explicit market for intraday loans does not exist. However, we can observe an intraday interest

rate by the spread between the interest rates on two overnight loans delivered at different times

within the same day (provided they are repaid at the same time next day). Furfine (2001), Baglioni

and Monticini (2008), Baglioni and Monticini (2010) and Jurgilas and Zikes (2011) find empirical

evidence for the existence of such a market in the US, in EU and in the UK. That market is

partially unexplored and rich in aspects worth to analyzing: efficiency, the microstructure, arbitrage

opportunities and so on. A zero level for the intraday interest spread, and therefore a flat intraday

pattern for the rate, should be set for at least two reasons, as discussed in Baglioni and Monticini

(2010). The first one is related to the role of the policymakers. A positive intraday spread might

induce individual banks to delay payments, imposing a negative externality on the banking system,

see Angelini (1998), Bech and Garratt (2003), Mills and Nesmith (2008), Martin and McAndrews

(2008), and consequently increasing the operational risk in the payment systems, see e.g. FED

(2006) and FED (2007). The second one refers to the role of money as a medium of exchange.

The intraday rate is just a transaction cost to settle debt which should be minimized, see Zhou

(2000). Moreover, a zero level for the intraday spread provides an insurance for consumers against

liquidity shocks (see e.g. Martin (2004) and Bhattacharya et al. (2007)). Central banks’ daily

market operations seem to support these arguments and indeed central banks often provide free

daylight credit to the banking system. For example, the Eurosystem does not charge any fee on

daylight overdrafts, and cash settlements must be cleared late in the afternoon and not early.

Baglioni and Monticini (2008) show that thanks to central bank interventions the intraday

markets function fairly well in normal times with interest rates close to zero. However, liquidity

crises change the functioning of the markets enormously. Baglioni and Monticini (2010) find that

the ability of central banks to reduce the market price of intraday liquidity partially vanishes during

crises. Baglioni and Monticini (2012) build up a simple model to explain why in normal times the

only friction in action is related to settlement procedures and to the cost of central bank intraday

credit (see the above references and VanHoose (1991)), while a liquidity crisis introduces a second

component related to the chance of an upward jump of the intraday rate within the day due to some

news (e.g., liquidity problems for some players in the market). Furthermore, Brunetti et al. (2011)

find that central bank interventions during the recent crisis introduced uncertainty and pushed

up the intraday money market rate further than (negative) economic news. Durré and Nardelli

(2008) show that money market rates have been more sensitive to fine-tuning operations in recent
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years and Brunetti et al. (2011) claim that central banks either did not fully grasp the crowding

effect, meaning commercial banks replace money market liquidity with central bank liquidity so

that market conditions did not improve, see Heider et al. (2009), or consistently underestimated

funding liquidity demand.

Using a database from the e-Mid market similar to Baglioni and Monticini (2012), we document

that positive intraday spreads are often observed in the euro area market from January 2007 to

April 2009, when our database stops. Moreover, we show that the dynamics of the series over

our sample period are not random, but both in-sample and out-of-sample predictability seems to

exist, suggesting positive rates are not just due to measurement errors. In particular, our results

find that long memory approaches, represented by ARFIMA(p,d,q) models where d is the order

of integration, provide superior fit-measures and statistically outperforms, in terms of point and

density forecasting, random walk, autoregressive and moving average models during periods of high

volatilities. Brunetti et al. (2011) do not find mean reversion, but their linear specifications might

not capture high persistence and nonstationarity modelled by our ARFIMA model. Moreover, our

more recent sample where the intraday interest rates reduce in the final part of the sample and

lower frequency data could explain the difference. Our results also indicate that intraday interest

rates behave somewhat differently than longer maturity interest rates for which predictability is

often not found and a random walk model is very difficult to beat, see Ang and Piazzesi (2003),

Diebold and Li (2006) and de Pooter et al. (2010). Hamilton (2009) finds similar evidence of

predictability for the daily changes in the Fed Funds. Finally, adding exogenous variables which

could proxy funding liquidity and counterparty risks in financial markets as the spread between the

three-month Euribor and the three-month Eonia swap rates does not improve forecast accuracy,

suggesting that predictability might derive from the econometric properties of the series more than

from economic news available in real-time to market participants, see, for example, Robertson and

Wright (2012).

We believe that our findings are very important for at least two players in the intraday market.

Firstly, central banks could plan supplementary interventions to keep intraday spreads close to

zero when forecasts indicate severe deviations from the zero level. The policy implication for

interventions may be found in the following arguments. Intuitively, a bank short of liquidity say

at 9 a.m. has two alternatives: (i) borrow in the interbank ON market, (ii) obtain intraday credit

from the central bank and borrow later (say at 3 p.m.) in the ON market. If these two alternatives

were substitutes, such bank would not be willing to pay an implicit intraday interest charge larger

3



than the cost of a six hour loan from the central bank. This is the reason why the cost of daylight

liquidity provided by the central bank may be seen as an upper bound for the implicit intraday

interest rate. The ECB does not charge any fee on intraday credit. The implicit cost comes from the

collateral requirement: if a bank has to borrow eligible securities, she incurs in an explicit cost; to

the contrary, if a bank holds eligible securities in her portfolio, she bears only an opportunity cost,

as she is not free to trade such securities. A positive spread may be an indication that the central

bank should provide (unlimited) free daylight overdrafts on a uncollateralized basis. Secondly, an

investor who has collateral or liquidity to invest can implement active strategies based on lending

in the intraday market and using information given by predictive densities. We document that the

investor can receive economic gains by lending at the intraday rate when the forecast predicts a

positive rate. She can also use the full distribution and derive some rules to exit the strategy when

predicted quantiles are too high because, for example, they are associated to high counterparty risk

or market dysfunctional.

The paper is organized as follow. Section 2 describes the data set, while section 3 introduces long

memory models for the intraday rate and compares them with the short memory ARMA processes,

our benchmarks. A forecast combination based on linear pooling is also presented. Section 3.3

describes forecasting results and implement active investment strategies based on the forecasts.

Section 5 concludes.

2 Data

Our data set includes all overnight (ON) trades taking place on the e-MID interbank market over

the period January 2nd 2007 to April 30th 2009 for a total of 593 working days (see Figure 1).

The e-MID represents the only readily available source of micro data on interbank transactions

in the euro area, as most of the other transactions in this category are conducted in the over-the-

counter (OTC) market. The e-MID is located in Italy, but we believe it can be considered as a

proxy for the euro area money market (more than 200 counterparties from all over Europe have

access to the system). As banks can arbitrage between the e-MID and the OTC market, the ON

interest rate in the e-MID market is closely related to the Eonia rate, which is the euro ON index

computed daily by the European Central Bank and published by the European Banking Federation.

Furthermore, e-MID interest rates reflect actual transactions, and therefore they do not suffer from

the potential distortions affecting offered rates, such as Euribor rates.
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Figure 1: Data
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Note: The figure shows in the left panel the intraday interest rate in % and in the right its histogram. Timeline

legend for left panel: a - 8/9/2007, BNP Paribas redemptions on three investment funds; b - 9/14/2007, liquidity

support for Northern Rock; c - 12/6/2007, bank writedowns (UBS, Lehman); d - 3/17/2008, collapse of Bear

Stearns; e - 9/15/2008, Lehman banckruptcy; f - 9/16/2008, loan to AIG; g - 9/17/2008, money market funds

trouble; h - 10/14/2008, US TARP announced; 10/15/2008, ECB extraordinary measures.

We use our data to build up a daily time series of the intraday interest rate as in Baglioni and

Monticini (2012). For each business day in our sample, we compute the average interest rate for

the ON trades taking place between 9 a.m. and 1 p.m.: this is the morning rate (R1). In the

same fashion, we compute the average rate of the ON trades taking place between 2 p.m. and 6

p.m.: this is the afternoon rate (R2). The difference between R1 and R2 is the intraday interest

spread. The average value of the series is around 6.4 basis point, with a standard deviation of

0.112, it is positively skewed (the skewness is equal to 3.43) and not surprisingly, due to spikes

most of them related to reserve requirements, see discussion in the next section, and to the money

market financial turmoil, leptokurtic, see descriptive statistics in Table 1.1 Figure 1 shows its

erratic pattern distinguished by fat tails, and an increase in the mean and volatility after Lehman

banckruptcy in September 2008 when money markets all around the World experienced liquidity

issues.

As theoretically explained in Baglioni and Monticini (2012), the difference between R1 and R2 is

due to both funding liquidity (hereafter we refer to funding liquidity as ‘liquidity’) and counterparty

1We have also computed the ON series using different hours, such as the difference between the average rate of the
opening value computed over the first hour of trading and the average closing value over the last hour, and differences
are marginal.
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Table 1: Summary Statistics for the variable intraday interest rate

Mean Median Minimum Maximum

0.063 0.022 −0.215 0.851

Std. Dev. C.V. Skewness Ex. kurtosis

0.112 1.762 3.432 16.3199

risk. Forecasting the intraday spread requires the use of a proxy to take into account these risks. An

obvious candidate is the spread between the three-month Euribor and the three-month Eonia swap

rate (thereafter referred to Eonia-Euribor spread). This is a well known indicator, often used in the

analysis of the liquidity crisis. It reflects both the liquidity and the counterparty risks perceived

by the participants in the money market; at the same time, it is not affected by changes in interest

rate expectations. Both the Euribor and the Eonia swap rate are calculated at 11 a.m., using the

information provided by a panel of primary European banks2. To explain why this spread is a

good risk indicator, suppose this morning the spread is larger than yesterday: this may be taken

as an indication that the liquidity risk and the counterparty risk perceived by market participants

have gone up, presumably reflecting the release of some negative news. For this reason, we take

the daily change of the spread (‘ω1’) as an indicator of movements of the ON rate within the day.3

3 Model

As a preliminary check, we test the intraday interbank market spread (yt) time-series for a unit

root. The unit root hypothesis is rejected (GLS-ADF (Elliott et al. (1996))) in favour of stationary

ARMA models, although with autoregressive coefficients close to unity. Then we test for long

memory, and the Lo’s RS test (Lo (1991)) (3.062 with p-value < 0.005) provides evidence in favour

of long memory. Therefore we focus on ARMA and ARFIMA models.

2They are provided by the European Banking Federation. See http://www.euribor.org/ for detailed information
and for daily data.

3We also considered a generic Credit Default Swap Index, but predictive results are inferior to the results using
the Eonia-Euribor spread. Results are available upon request.
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3.1 Individual models

ARMA The first model is a traditional time series approach to modelling interest rates, the au-

toregressive moving average (ARMA) model (see, for example, Hamilton (1994)). The ARMA(p, q)

model implies that the current value of the investigated process (say, the intraday interbank market

spread yt) is expressed linearly in terms of its past p values (autoregressive part) and in terms of

the q previous values of the process εt (moving average part) and a possible set of k deterministic

terms and l stochastic variables as predictors. We specify the ARMA(p, q) as:

φ(L)yt = θ0 +
k∑

i=1

ψixi,t +
l∑

j=1

ϕjwj,t + θ(L)εt, (1)

where θ0 is a constant term, φ(L) and θ(L) are the autoregressive and moving average polynomials

in the lag operator L respectively, defined as:

φ(L) = 1− φ1L− φ2L
2 − ...− φpLp, (2)

θ(L) = 1− θ1L− θ2L
2 − ...− θqLq, (3)

and εt is an independent and identically distributed (iid) noise process with zero mean and finite

variance σ2;4 xt = (x1,t, x2,t, ..., xk,t)
′

is the (k×1) vector of deterministic terms (dummies) at time

t and ψ = (ψ1, ψ2, ..., ψk)
′

is a (k × 1) vector of coefficients; wt = (w1,t, w2,t, ..., wl,t)
′

is the (l × 1)

vector of stochastic predictors for time t, and ϕ = (ϕ1, ϕ2, ..., ϕl)
′

is a (l× 1) vector of coefficients.5

Depository institutions in the Eurosystem ought to meet some reserve requirements. The reserve

requirements are the amount of funds that a depository institution ought to hold in reserve against

specified deposit liabilities. The requirement has to be satisfied on average over a maintenance

period. See Durré and Nardelli (2008) for a description of the current Eurosystem monetary

policy operational framework. There is empirical evidence, as in Angelini (2000) for the previous

Eurosystem monetary policy operational framework and Durré and Nardelli (2008) for the current

one, that on last day of the reserve requirement maintenance period, the intraday volatility of

the interbank rate is substantially higher than during the rest of the month. For this reason, we

4We also investigate time-varying volatility residuals, modelled with a Garch(1,1) specification, for the ARMA and
other models. Forecast accuracy, on average, decreases and we do not report results. A (continuous) time-varying
volatility model would imply ECB does not pursue any daily market operation to smooth intraday rates.

5An ARMA model collapses to a random walk (RW), model for absence of predictability, by assuming φ1 = 1,
φ2 = ... = φp = 0 and θ1 = θ2 = ... = θq = 0. We use it as benchmark in our analysis.
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introduce a 0, 1 dummy variable. The dummy variable takes 1 on settlement days and 0 otherwise.

Moreover, we include a 0, 1 dummy variable for the end of month and end of quarter effects like

in (Ángel León et al., 2006). We apply two ARMA(p, q) specifications: in the first model k = 2

(l = 0), which corresponds to the two dummy variables. In the second specification k = 2 and l = 1,

referring to the use of the liquidity and counterparty risk variable defined by the Eonia-Euribor

spread as stochastic predictors. The value of the spread at time t is used to predict the intraday

rate at time t + 1. The second class of models is denoted with suffix X in the remainder of the

text.6

ARFIMA Long memory behaviors found in section 3 can be modelled in a more rigorous way

than by using p lags in ARMA models. We propose the following ARFIMA(p, d, q) model:

φ(L)(1− L)dyt = θ0 +
k∑

i=1

ψixi,t +
l∑

j=1

ϕjwj,t + θ(L)εt, (4)

where we recall φ(L) = 1− φ1L− φ2L
2− ...− φpLp, θ(L) = 1− θ1L− θ2L

2− ...− θqLq and εt is an

independent and identically distributed (iid) noise process with zero mean and finite variance σ2.

The parameter d specifies the order of integration. We require 0 < d < 1,
∑p

i=1 |φi| < 1,
∑q

i=1 |θi| <

1. We implemented two different estimation methods for d over the full sample, a variant of the

log-periodogram regression proposed by Geweke and Porter-Hudak (1983) (d̂ = 0.326 (0.044)),

and the maximum likelihood (ML) estimator implemented by Sowell (1992) (d̂ = 0.279 (0.028)).

Similar results were obtained in each case. We apply two ARFIMA(p, d, q)s depending on whether

the explanatory stochastic variable is used (referred as ARFIMAX(p, d, q)) or not (referred as

ARFIMA(p, d, q)).

Bhardwaj and Swanson (2006) discuss how ARFIMA(p, d, q) processes perform better in (point)

forecasting exercises when the data sample is small. Moreover, spurious long memory behaviors

arise in many contexts, such as when there are (stochastic) structural breaks in linear and non-

linear models, regime switching models, and when forming models using variables that are non-

linear transformations of underlying “short memory” variables, see for example Byers et al. (1997),

Diebold and Inoue (2001), Engle and Smith (1999) and Bhardwaj and Swanson (2006).

6We have also tested ARIMA models, but results are substantially inferior to those for the ARMA models and
not reported.
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Estimation We estimate models using an expanding window approach, implying that every day

a new observation is available we expand the in-sample period with one observation and produce a

new forecasts.7 We estimate our models using maximum likelihood estimators in Ox, see Doornik

and Ooms (2006). For computing 1-step ahead density forecasts, we use a conditional normal

approximation as in Huurman et al. (2010). Assuming that the past errors and coefficients are

known, the conditional expectation corresponds to the point forecast of each individual model.

The forecast variance is computed by approximating the forecast error variance with the in-sample

estimate of the error variance σ2. The predictive density given by any of the models in the suite is

then

ft+1,i(yt+1) ∼ N(µt+1,i, σ
2
t+1,i), (5)

where µt+1,i is the point forecast and σ2
t+1,i is the variance forecast for model i made at time t for

t+ 1.

3.2 Linear opinion pooling

Our model set contains two classes of models, ARMA(p, q) and ARFIMA(p, d, q); in each of them

the exogenous Eonia-Euribor spread (labeled with a ’X’ suffice) can be added; and number of p

AR and q MA lags have also to be estimated. When restricting p and q to assume as maximum

value 1, we result in 16 individual models: RW, AR, MA, ARMA, RWX, ARX, MAX, ARMAX,

ARFIMA(0,d,0), ARFIMA(1,d,0), ARFIMA(0,d,1), ARFIMA(1,d,1), ARFIMAX(0,d,0), ARFI-

MAX(1,d,0), ARFIMAX(0,d,1), ARFIMAX(1,d,1). Ex ante selection of the best model can be

difficult, see, for example, discussion in Robertson and Wright (2012) on how in the ARMA class,

reduced models that exclude exogenous variables can encompass larger models with exogenous

variables even if the exogenous variables contain useful information and might represent the true

model. Forecast combination is a possible alternative which account for model uncertainty. We

follow, among others, Mitchell and Hall (2005), Jore et al. (2010), Geweke and Amisano (2010),

Kascha and Ravazzolo (2010) and Ravazzolo and Vahey (2013), and produce predictive densities

7We have also investigated several moving window approaches, and in particular a 65-days window to account
for the possibility of frequent breaks, see, for example, Pesaran and Timmermann (2007) for a discussion on the
selection of the estimation window in the presence of structural instability. Forecast accuracy decreases with such
rolling windows.
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by combining the individual predictions using a linear opinion pooling (LOP):

ft+1,LOP (yt+1) =
N∑
i=1

wi,t+1ft+1,i(yt+1), , wi,t+1 > 0,
N∑
i=1

wi,t+1 = 1 (6)

where ft+1,i(yt+1) is the predictive density for model i described in the above sections; and wi,t+1 is

the model i specific weight computed using information up to time t. LOP has several advantages,

including that time-varying weights allow different relative contributions from individual models

over time; weights can be based on past performance; and if individual predictive densities are nor-

mally distributed, LOP results in a mixture of normals, therefore fitting more general distributions;

see discussion in Kascha and Ravazzolo (2010).

The choice on how to derive weights is an important element for LOP. The simple and easier

solution is applying equal weights, wi,t+1 = 1/N . Equal weights have been shown to perform well in

several financial and macroeconomic applications, see Timmermann (2006) for a review on forecast

combinations. However, Jore et al. (2010) and Kascha and Ravazzolo (2010) find that equal weights

are not necessarily the best strategy when the focus of the exercise is on density forecasting and,

in general, on higher moments. They propose to use weights based on the evaluation criterion and

the associated loss function applied in the (density) evaluation. We devote next section to the

description of our evaluation methodology, but let assume that l(It,i) is the function to maximize,

such as the inverse mean square error or Kullback Leiber Information Criterion, using information

set It available at time t and model i, LOP weights can be computed as:

wi,t+1 = exp(l(It,i))/
N∑
i=1

exp(l(It,i)) (7)

Following, again, Jore et al. (2010) and Kascha and Ravazzolo (2010), we apply the log score

described in equation 11 in the next section as value for l(It) to derive combination weights.

3.3 In-sample and out-of-sample Evaluation

In-sample evidence can be interpreted as an ex-post analysis of the relevance of long memory

properties and predictability in the data. Inoue and Kilian (2004) suggest that in-sample tests are

likely to have greater power than out-of-sample tests. They examine the question of in-sample versus

out-of-sample testing of predictability, motivated by the finding that positive in-sample evidence of

predictability is often not associated with out-of-sample predictability. They argue that the claim
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made by Ashley et al. (1980), i.e. that in-sample inference without out-of-sample verification is

likely to be spurious, with an out-of-sample approach inherently involving less overfitting, is not

compelling since there is ample opportunity for the researcher to data mine in a simulated out-of-

sample study, and because data snooping adjustments can be made to both tests. However, the

evidence presented by Inoue and Kilian (2004) refers to point forecasting, and as the models under

consideration are chosen by data-drive model selection procedures, the “impossibility” theorem in

Leeb and Potscher (2005) might imply that the true distribution of the test statistics might be

unknowable even by standard simulation methods. Therefore, we view the results we obtain as a

natural complement to the set of mixed and conflicting results reported by leading scholars in the

literature and refer to the argument of Welch and Goyal (2008) that out-of-sample tests provide

“useful diagnostic” information about the underlying dynamic relationship.

Figure 2 presents in-sample evidence via Akaike Information Criterion (AIC) on the predictabil-

ity of alternative models with respect to the RW benchmark. We have also computed the Bayesian

Information Criterion and results are similar. The models provide similar AIC in the first part of

the sample; but alternative models provide lower values of the criteria around unstable periods. The

increases is marginally in August 2007, the beginning of turbulent period; and for Bearn Stearns

crisis in March 2008; but much larger around the collapse of Lehman Brothers in September 2008

and afterwards. ARMA, ARMAX and most of ARFIMA models seem to provide the best fitting.

To shed light on the predictive power of individual models, we use a number of evaluation

statistics for point and density forecasts previously proposed in literature. Our ARFIMA models,

of order (0,d,0), are not nested in the ARMA benchmark, of order (1,0). We compare point

forecasts in terms of mean absolute prediction error (MAPE) and root mean square prediction

errors (RMSPE). Following evidence and discussion in Clark and McCracken (2012) [section 3.2],

we test whether mean square prediction errors are statistically different using an encompassing

t-type of test (hereafter ECN-t) and compare all the models to the benchmark ARMA model.

Moreover, following Welch and Goyal (2008), we graphically analyze what we call the Cumulative

Squared Prediction Error Difference (CSPED):

CSPEDt+1,i =

t∑
s=t

d̂s+1,i, t = t, ..., T − 1, (8)

where d̂t+1,i = et+1,RW−et+1,i, i =AR, MA, ARMA, RWX, ARX, MAX, ARMAX, ARFIMA(0,d,0),

ARFIMA(1,d,0), ARFIMA(0,d,1), ARFIMA(1,d,1), ARFIMAX(0,d,0), ARFIMAX(1,d,0), ARFI-
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MAX(0,d,1), ARFIMAX(1,d,1), LOP; and et+1,i is the MSPE for model i. Increases in CSPEDt+1,i

indicate that the alternative to the benchmark (RW model) predicts better the out-of-sample obser-

vation t. Such graph allows to split the analysis on forecast performance over different subsamples.

We evaluate the predictive densities using tests of absolute forecast accuracy. Like Diebold

et al. (1998), we utilize the probability integral transforms, PITS, of the realization of the variable

with respect to the forecast densities. A forecast density is preferred if the density is correctly

calibrated, regardless of the forecasters’ loss function.

The PITS are:

zyt+1 =

∫ yt+1

−∞
ft+1(u)du.

The PITS should be both uniformly distributed, independently and identically distributed if the

forecast densities are correctly calibrated. Hence, calibration evaluation requires the application

of tests for goodness-of-fit and independence. We apply the Likelihood Ratio test proposed by

Berkowitz (2001): the LR3 Berkowitz test is a three degrees of freedom variant, with a test for

independence and uniformity, where under the alternative zyt+1 , t = t, ..., T − 1, follows an AR(1)

process. A well calibrated density should give high probability values for the test—implying the

null hypothesis of no calibration failure cannot be rejected.

Turning to our analysis of relative predictive accuracy, we consider a Kullback Leibler Informa-

tion Criterion (KLIC)-based test, utilizing the expected difference in the Logarithmic Scores of the

candidate forecast densities; see for example Kitamura (2002), Mitchell and Hall (2005), Amisano

and Giacomini (2007), Huurman et al. (2010) and Caporin and Pres (2010). Geweke and Amisano

(2010) and Mitchell and Wallis (2010) discuss the value of information-based methods for evaluat-

ing forecast densities that are well calibrated on the basis of PITS tests. The KLIC chooses the

model which on average gives higher probability to events that have actually occurred. Specifically,

the KLIC distance between the true density ft+1 of a random variable yt+1 and some candidate

density ft+1,i obtained from model i (or LOP) is defined as

KLICt+1 =

∫
ft+1(yt+1) ln

ft+1(yt+1)

ft+1,i(yt+1)
dyt+1,

= E[ln ft+1(yt+1)− ln ft+1,i(yt+1)]. (9)

Under some regularity conditions, a consistent estimate can obtained from the average of the sample
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information, yt+1, . . . , yT , on ft+1 and ft+1,i:

KLIC =
1

n

T−1∑
t=t

[ln ft+1(yt+1)− ln ft+1,i(yt+1)] (10)

where n = T − t. Even though we do not know the true density, we can still compare multiple

densities, ft+1,i. For the comparison of two competing models, it is sufficient to consider only the

latter term in the above sum,

LSt+1,i = − 1

n

T−1∑
t=t

ln ft+1,i(yt+1), (11)

for all i and to choose the model for which the expression in (11) is minimal, or as we report in our

tables, the opposite of the expression in (11) is maximal. Differences in KLIC can be statistically

tested. We apply a test of finite-sample predictive ability of two density forecasts as defined in

Clark and McCracken (2012) similar to Mitchell and Hall (2005) and Amisano and Giacomini

(2007), based on Giacomini and White (2006) formulation. Suppose there are two 1-step ahead

density forecasts, ft+1,1(yt+1) and ft+1,2(yt+1), and consider the loss differential

dt+1 = ln ft+1,1(yt+1)− ln ft+1,2(yt+1).

We apply the following WALD test:

GW = n(n−1
T−1∑
t=t

htdt+1)
′
Σ̂t+1(n−1

T−1∑
t=t

htdt+1), (12)

where ht = (1, dt)
′
, and Σ̂t+1 is the HAC estimator for the variance of (htdt+1). Under the null of

equal predictability, GW ∼ χ2
2.

Analogous to our use of the CSPED for graphically examining relative MSPEs over time, and

following Kascha and Ravazzolo (2010), we define the Cumulative Log Score Difference (CLSD):

CLSDt+1,i = −
t∑

s=t

dt+1,i, (13)

where dt+1 = ln ft+1,i(yt+1) − ln ft+1,RW (yt+1). If CLSDt+1,i increases at observation t + 1, this

indicates that the alternative to the benchmark has a higher log score.
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4 Results

4.1 Forecast results

We construct 1-step ahead point and density forecasts for the intraday interbank spread over the

sample period from April 2, 2007 to April 30, 2009, for a total of 529 observations.

Table 2 reports point forecast results. We think there are two clear conclusions. First, the

ARFIMA models have the higher predictability: several of them produce both the smallest MAPE

and RMSPE and the differences with respect to the benchmark RW model are statistically sig-

nificant in terms of the ECN-t test. Therefore, adding the fractionally integrated parameter has

a substantial predictive power, improving the accuracy of forecasts. The ARMA and ARMAX

models also provide accurate point forecasts, but not AR and MA models improve forecast accu-

racy. Baglioni and Monticini (2012) discuss how the intraday rate is affected by the likelihood of

a liquidity dry-up in financial markets. The spread at time t + 1 is, however, not available when

forecasts are made at time t and the variable seems to introduce forecasting errors. A (better)

model to forecast the Eonia-Euribor spread might improve results. Furthermore, Robertson and

Wright (2012) discuss how in the ARMA class, reduce models excluding exogenous variables can

encompass larger models with exogenous variables even if the exogenous variables contain useful

information.

Thirdly, LOP is superior to the benchmark model and provides MAPE and RMSPE similar to

the best individual models, even if not smaller than them. Our analysis confirms that LOP offers

an “insurance” against selecting ex-ante the worst model(s) by also providing accurate results.

The CSPED graph in Figure 3 for a selection of models can give further intuitions on the

results. The benchmark model does better at beginning of the turbolent time in August 2007; but

alternatives recover from September 2007 and perform marginally better. The shock in August

is unexpected and the RW model seems the most adequate; but after some weeks the alternative

models learn that there is a new regime and provide more accurate forecasts. During and after the

Lehman Brothers collapse on September 15th 2008; the ARMA model, several ARFIMA models

and LOP statistically dominate the benchmark. Again, the shock is unexpected, at least the

magnitude, but models in the ARMA and ARFIMA class have learnt during the previous year that

such shocks imply a period of high volatility.

Complete probability distributions over outcomes provide information which is helpful for mak-

ing economic decisions. Therefore, we turn our analysis to density forecasting. Table 3 reports
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full sample results. We first focus on absolute accuracy. The null hypotheses of correct calibration

is not rejected at 5% significance level for the ARMAX, almost all ARFIMA models, and LOP;

and a 1% significance level for the ARMA. PITS for ARMA, two ARFIMA models, and LOP in

Figure 4 span the [0,1] interval quite well, even if they are more concentrated on 0.4-0.6 percentiles,

suggesting forecasts are on average a bit too narrow. PITS for the AR model, on contrary, span less

equally the 10 deciles. Following the discussion in Mitchell and Wallis (2010), we apply log score

measures and test on them to discriminate between models. Similar to point forecast evidence,

several ARFIMAs give high scores and outperform the benchmark in terms of the log score test;

but differently than for the previous forecast metrics not all ARFIMA models, see statistics for

the ARFIMA(0,d,1) and ARFIMA(1,d,1). The ARFIMA(0,d,0) and ARFIMA(1,d,0) provide the

highest scores. The ARMA model also outperforms the benchmark, such the ARX model but its

score is almost 10% lower than the score for the ARFIMA(1,d,0). LOP also in this case provides

very accurate forecasts and scores very close to the best two models. LOP weights in Figure 5 show

that there is some uncertainty at the beginning of the sample, but after September 2007 and, in

particular, September 2008, weights converge to the ARFIMA(0,d,0) and ARFIMA(1,d,0) models,

with the latter one dominant. Our ex-post analysis shows that these two models give the more ac-

curate predictive densities and LOP exploits in real-time this information. More generally, looking

to the full sample series we could identify two types of shocks: transitory shocks such as in August

and September 2007 and September 2008 with very high volatility, and a permanent shock such as

after 15 October 2008, when ECB switched from the variable rate tender format to a fixed rate full

allotment policy, see Abbassi and Linzert (2011), where the mean of the series shifts upward and

volatility is high but less than for the previous period. We find as in Bhardwaj and Swanson (2006)

that ARFIMA models produce accurate forecasts when there are several stochastic and unknown

structural breaks. Which ARFIMA model to use is however unclear ex-ante; LOP can cope with

such uncertainty and mixing predictive density can also approximate different regimes over time

caused by different types of shocks.

The fan chart in Figure 6 shows that there is an increase in uncertainty after August 2007, and

an upward level shift and larger volatility after Lehman Brothers collapse. The initial months of

the financial crisis in August and September 2007 and days after Bear Stearns acquisitions are char-

acterized by a different pattern: mean forecasts move largely, but variances relative less compared

to September 2008. The level shift in Septmber 2008 is absorbed in the following months, but the

large volatility does not reduce over the sample. The predictive density is also less symmetric after
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Lehmann Brothers collapse. Evidence is similar for the best ARFIMA models. The ARMA model,

several ARFIMA models, and LOP cannot anticipate unexpected shocks, but they cope relatively

better with volatile observations just after them, giving higher log scores than the benchmark RW,

the AR and MA models, as the right panel in Figure 3 shows.

4.2 Investment strategies

An investor with excess collateral or liquidity could take advantage by having a long position in

the intraday market. This could be done by, for example, lending at the morning rate R1 in the

morning and borrowing at the rate R2 in the afternoon. If the intraday rate, difference between

R1 and R2, is positive the investor has a gain. The strategy requires that the investor forecasts the

intraday rate and it has enough collateral or liquidity to close the position. Therefore, using µt+1,i

from the individual models and the LOP to forecast of the intraday rate t+ 1, the realized return

at day t+ 1 for the portfolio based on model i is:

Rt+1,i = Wt(1 + I(µt+1,i > 0)yt+1) (14)

where Wt is the wealth invested at time t; I(·) is an indicator function which takes value 1 if it is

satisfied; and yt+1 is the realized intraday rate. We assume the investor has initial wealth equal to

1$, Wt = 1; she repeats the exercise every day; and she reinvests all the return, Wt+1 = Rt+1, up to

the end of our sample. The exercise is similar to the strategy presented in Pesaran and Timmermann

(1995) to evaluate stock return predictability. Panel 1 in Table 4 report mean portfolio returns,

standard deviation and Sharpe Ratio for the different models applied to forecast the intraday rate.

The strategy produces sizeable gains; ARFIMA(0,d,0), ARFIMA(1,d,0), and LOP gives the highest

returns and Sharpe Ratios.

The previous exercise ignores counterparty risks. A first justification for this is that we use the

average intraday rate which depends on transactions with high and low counterparty risk; therefore

avering such risk. However, we also implement a different strategy which takes full advantage of the

density forecasts for the intraday rate and allows the investor not to trade when the distribution

of the predicted rate is too high, assuming this is related to high counterparty risk. Precisely, the

investor trades if the predicted mean return is positive and the 95% quantile is below 30 basis

points. We choose 30 basis points arbitrarily; findings are qualitatively similar for 20 and 25 basis

points. If at least one of the two restrictions is not satisfied at day t, the investor exits the market.
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When the investor predicts wrongly, and she invests and realization is above 30 basis points we

penalize the investment by a loss equal to the realization. The realized return at day t+ 1 for the

portfolio based on model i is

Rt+1,i = Wt[1 + (1− I(yt+1 > 0.3))(I(µt+1,i > 0)I(Q95t+1,i < 0.3)yt+1

−I(yt+1 > 0.3)(I(µt+1,i > 0)I(Q95t+1,i < 0.3)yt+1]
(15)

where Q95t+1,i is the predicted 95th quantile for the intraday rate at day t + 1 given by model i.

The strategies still produce positive returns, but density forecast accuracy play a more relevant role

than in the previous exercise. The ARMA model, several ARFIMA models and LOP give sizeable

gains with respect to other strategies.

5 Conclusion

The findings presented in this paper point to the conclusion that the dynamic of the intraday

interest rate during high volatility periods such as financial crises has a remarkable characteristic:

a highly persistent, nonstationary process that nonetheless reverts to the mean. More precisely, we

can say that the dependence is typically explained by long memory time series ARFIMA models.

We provide evidence in favour of the ARFIMA models compared to random walk, AR and MA

models both in terms of in-sample predictability and out-of-sample point and density predictability.

Statistical gains are substantially higher when focusing on the full distribution. We also document

that predictive densities give substantial economic gains in investment strategies based on lending

on the intraday market. Finally, there is, however, potentially large uncertainty on the number of

lags, and the use of exogenous variables and we propose to apply a linear opinion pooling to account

for it. The method provides insurance against selecting poor models and also gives statistical and

economic gains.

Our analysis is unfortunately agnostic on the source of the problems in the intraday money

market. The predictability could derive from frictions in the market associated with market par-

ticipant behaviors (such as unwillingness to borrow, stigma issues, central bank interventions as a

source of news), which are difficult to model and above all to forecast.
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Table 2: Point forecasting

MAPE RMSPE ECN-t

RW 0.059 0.113 1.000
AR 0.054 0.104
MA 0.056 0.108 0.999
ARMA 0.051 0.097 0.004
RWX 0.061 0.112 0.999
ARX 0.055 0.104 0.627
MAX 0.058 0.108 0.988
ARMAX 0.052 0.097 0.009
ARFIMA(0,d,0) 0.051 0.098 0.000
ARFIMA(1,d,0) 0.051 0.097 0.001
ARFIMA(0,d,1) 0.051 0.097 0.001
ARFIMA(1,d,1) 0.051 0.097 0.002
ARFIMAX(0,d,0) 0.051 0.098 0.003
ARFIMAX(1,d,0) 0.051 0.097 0.005
ARFIMAX(0,d,1) 0.051 0.097 0.006
ARFIMAX(1,d,1) 0.052 0.097 0.007
LOP 0.051 0.097 0.001

Note: Table reports results for point forecast accuracy in
predicting the 1-day ahead European intraday interbank
rate over the period from 2 January 2008 to 30 April 2009.
The column MAPE reports the mean absolute prediction
error. The column RMSPE gives the root mean square
prediction errors. The column ECN-t reports p−values for
the test for equal forecast accuracy. Bold numbers indicate
that the null of equal density predictive accuracy relative
to the ARMA benchmark is rejected at 5% significance
level. See section 3 for model description.
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Table 3: Density forecasting

LR3 LS LS test

RW 0.000 0.803 0.000
AR 0.000 0.878
MA 0.000 -0.432 0.000
ARMA 0.026 0.915 0.007
RWX 0.000 0.784 0.001
ARX 0.000 0.858 0.017
MAX 0.000 -0.473 0.000
ARMAX 0.071 0.909 0.093
ARFIMA(0,d,0) 0.050 0.932 0.012
ARFIMA(1,d,0) 0.024 0.937 0.024
ARFIMA(0,d,1) 0.240 0.870 0.000
ARFIMA(1,d,1) 0.160 0.836 0.000
ARFIMAX(0,d,0) 0.061 0.917 0.003
ARFIMAX(1,d,0) 0.073 0.922 0.005
ARFIMAX(0,d,1) 0.094 0.918 0.015
ARFIMAX(1,d,1) 0.104 0.891 0.004
LOP 0.053 0.915 0.009

Note: The column LR2 is the Likelihood Ratio p-value
of the test of zero mean, unit variance and independence
of the inverse normal cumulative distribution function
transformed PITS, with a maintained assumption of
normality for transformed PITS proposed by Berkowitz
(2001). A bold number indicates that the null hypoth-
esis of a correctly specified model cannot be rejected
at 5% significance level. LS is the average Logarith-
mic Score over the evaluation period. The number
with highest mean LS is reported in bold. The column
LS test is the p-value for the test of equal predictive
density accuracy. Bold numbers indicate that the null
of the test of equal density predictive accuracy relative
to the ARMA benchmark is rejected at 5% significance
level.
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Table 4: Investment startegy

Exercise 1 Exercise 2
Mean Ret St Dev SR Mean Ret St Dev SR

RW 6.966 11.28 0.616 3.210 11.15 0.29
AR 6.943 11.29 0.615 3.301 10.41 0.32
MA 6.975 11.28 0.618 3.280 11.04 0.30
ARMA 6.964 11.29 0.617 3.356 8.54 0.39
RWX 6.490 11.05 0.587 3.162 9.56 0.33
ARX 6.767 11.24 0.602 3.260 9.05 0.36
MAX 6.777 11.26 0.602 3.128 9.85 0.32
ARMAX 6.862 11.25 0.610 3.337 8.25 0.40
ARFIMA(0,d,0) 6.971 11.28 0.618 3.386 8.57 0.40
ARFIMA(1,d,0) 6.971 11.28 0.618 3.322 8.53 0.39
ARFIMA(0,d,1) 6.970 11.29 0.618 3.326 8.53 0.39
ARFIMA(1,d,1) 6.928 11.30 0.613 3.278 8.52 0.38
ARFIMAX(0,d,0) 6.926 11.20 0.618 3.459 8.21 0.42
ARFIMAX(1,d,0) 6.927 11.20 0.618 3.373 8.18 0.41
ARFIMAX(0,d,1) 6.926 11.20 0.618 3.343 8.17 0.41
ARFIMAX(1,d,1) 6.910 11.21 0.617 3.327 8.17 0.41
LOP 6.971 11.28 0.618 3.344 8.53 0.39

Note: The columns Mean Ret, St Dev and SR report respectively the mean portfolio returns
in basis points, the portfolio standard deviations and the Sharpe ratio of portfolios long on the
intraday rate when the portfolio models predict it to be positive.
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Figure 2: AIC comparisons
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Figure 4: PITS histograms
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Note: The histograms show the decile counts of the PITS transforms for different models.
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Figure 5: LOP weights
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Figure 6: Fan charts

Note: The figure shows the fan chart given by the LOP with 5th, 25th, 50th, 75th and 95th percentiles and the

European overnight interbank rate (red dashed line).
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