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2 Rue de la Charité
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Abstract

In many, if not most, econometric applications, it is impossible to estimate consistently
the elements of the white-noise process or processes that underlie the DGP. A common
example is a regression model with heteroskedastic and/or autocorrelated disturbances,
where the heteroskedasticity and autocorrelation are of unknown form.

A particular version of the wild bootstrap can be shown to work very well with many
models, both univariate and multivariate, in the presence of heteroskedasticity. Noth-
ing comparable appears to exist for handling serial correlation. Recently, there has
been proposed something called the dependent wild bootstrap. Here, we extend this
new method, and link it to the well-known HAC covariance estimator, in much the
same way as one can link the wild bootstrap to the HCCME. It works very well even
with sample sizes smaller than 50, and merits considerable further study.
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1. Introduction

In this paper, we look at methods that have been proposed for bootstrap inference with
time-series models, in which the main concerns are potential heteroskedasticity and
autocorrelation. For a bootstrap based on conventional resampling to work well, it is
necessary to be able to resample from a set of objects that are, at least approximately,
IID realisations from some unknown univariate or multivariate distribution. A para-
metric bootstrap, if available, commonly delivers very reliable inference, but, in the
presence of either heteroskedasticity or autocorrelation of unknown form, appropriate
parametric models are not available.

We will see that the so-called wild bootstrap succeeds in overcoming all problems
due to heteroskedasticity alone, provided only that it is used with care. Errors in
inference with the wild bootstrap are very comparable in magnitude to those incurred
by parametric or resampling bootstraps applied in suitable circumstances.

Matters are different with autocorrelation. So far, no bootstrap has been proposed
that, in the presence of autocorrelation of unknown form, can deliver performance
comparable to what can be obtained in its absence. Perhaps in consequence, a con-
siderable number of bootstrap methods have been proposed, some a good deal better
than others. By far the most popular of these are the various versions of the block
bootstrap, although it has been seen that the block bootstrap often works poorly. In
some circumstances, other schemes can sometimes work better.

The properties of the dependent wild bootstrap suggest that, in some cases, infer-
ence can benefit greatly from the Fast Double Bootstrap (FDB) of Davidson and
MacKinnon (2007). In addition, in Section 9, a method is proposed for diagnosing
bootstrap success or failure, and the extent to which inference can be improved by the
FDB. A few concluding comments are made in Section 10.

2. The Wild Bootstrap

The so-called wild bootstrap was introduced as an alternative to the pairs bootstrap
originally proposed by Freedman (1981). Early references to the wild bootstrap include
Wu (1986), Liu (1988), and Mammen (1993).

Suppose, for simplicity, that we wish to undertake bootstrap inference for a hypothesis
about the parameter vector β of the linear regression model

y = Xβ + u, (1)

If the assumption of no serial correlation is maintained but not that of homoskedas-
ticity, then we have E(u2

t ) = σ2
t , t = 1, . . . , n. The σ2

t must be considered to be
unknown parameters. With possible heteroskedasticity, as with the pairs bootstrap,
test statistics themselves must be modified so as to use an Eicker-White HCCME
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(heteroskedasticity-consistent covariance matrix estimator); see Eicker (1963) and
White (1980). The form of this HCCME is

(X>X)−1X>Ω̂X(X>X)−1, (2)

where Ω̂ can take various forms, according to which version of the HCCME is desired.
The easiest, but not necessarily the most desirable, is

Ω̂ = diag{ũ2
t}, (3)

a diagonal matrix with diagonal elements the squared residuals obtained by estimating
the model under the null hypothesis. Clearly, Ω̂ cannot be consistent, since it is
impossible to estimate the n variances with only n observations. But it is well-known
that n−1X>Ω̂X has a probability limit as n→∞ equal to that of n−1X>ΩX, where
Ω = diag{σ2

t } is the true disturbance covariance matrix.

When there is heteroskedasticity, meaning that the σ2
t are not all equal, resampling

residuals of any sort ignores this fact. The wild bootstrap takes account of possible
heteroskedasticity by using as bootstrap disturbances the residuals from estimation of
the model under the null hypothesis, each multiplied by one of a set of mutually inde-
pendent random variables of expectation zero and variance one. Thus the bootstrap
disturbance terms can be written as

u∗t = ũtε
∗
t , (4)

where the ε∗t are independent random variables, denoted with a star to indicate that
they are generated by the investigator’s random number generator.

In the literature, the further condition that E
(
(ε∗t )

3
)

= 1 is often added. Liu (1988)
shows that, with the extra condition, the first three moments of the bootstrap distri-
bution of an HCCME-based statistic are in accord with those of the true distribution
of the statistic up to order n−1. Mammen (1993) suggested what is probably the
most popular choice for the distribution of the ε∗t , namely the following two-point
distribution:

ε∗t =

{
− (
√

5− 1)/2 with probability p = (
√

5 + 1)/(2
√

5)
(
√

5 + 1)/2 with probability 1− p,

which satisfies the condition on the third moment. Liu also mentions the possibility
of Rademacher variables, defined as

ε∗t =

{
1 with probability 1/2
−1 with probability 1/2.

(5)

This amounts to giving each residual a random sign in the bootstrap DGP.
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The wild bootstrap with GARCH disturbances

The wild bootstrap is probably most commonly used when it is suspected that there
is unconditional heteroskedasticity. But it is equally useful with conditional het-
eroskedasticity. When it is used along with the Rademacher distribution, the co-
variance structure of the squared bootstrap disturbances is the same as that of the
squared residuals from the original sample. This is because the squared bootstrap
disturbances are always just the squared residuals, so that any relationship among the
squared residuals, like that given by any GARCH model, is preserved unchanged by
the Rademacher wild bootstrap.

In order to see whether this theoretical conclusion is borne out in simulation ex-
periments, it is necessary to be able to generate GARCH disturbances for the DGP
that generates the original data in a simulation experiment. If we limit attention to
GARCH(1,1), then it is described by the two equations

σ2
t = α+ γu2

t−1 + δσ2
t−1, (6)

ut = σtεt,

where the series εt is white noise. For simulation, it is convenient to rewrite (6) as

σ2
t = α+ (δ + γε2

t−1)σ2
t−1. (7)

This recurrence relation has to be initialised before it can generate the variances of
the GARCH process. If the process is stationary, then the expectation of σ2

t does not
depend on t, and so it is

E(σ2
t ) =

α

1− γ − δ .
The right-hand side of this equation is a suitable value for what we may denote by σ2

0 .

It is easy to check that the recurrence (7) gives the explicit solution

σ2
t = α

(
1 +

t−1∑
s=1

s∏

i=1

(δ + γε2
t−i)

)
+ σ2

0

t−1∏

j=1

(δ + γε2
j ).

If we make the definition

Vt =

t−1∏

j=1

(δ + γε2
j ),

then
t−1∑
s=1

s∏

i=1

(δ + γε2
t−i) = Vt

t−1∑
r=1

(1/Vr),

and

σ2
t = α

(
1 + Vt

t−1∑
r=1

(1/Vr)
)

+ σ2
0Vt. (8)

The final step in generating disturbances which follow the GARCH(1,1) process is to
generate

ut = σtεt. (9)

The above procedure is easy to implement, and is fast.
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The model used in the simulation experiment is:

yt = a+ ρyt−1 + ut, (10)

where ut is generated using (8) and (9). For the moment, we limit our attention to the
DGPs with a = 1.5, y0 = 0, with sample sizes n = 10, 30, 50, and ρ = 0.3, 0.5, 0.7 and
0.9. For the GARCH disturbances, the parameter values are α = 1, γ = 0.4, δ = 0.45.
In order to test the hypothesis that ρ = ρ0, the test statistic used is

τ =
ρ̂− ρ0

σ̂ρ
,

where ρ̂ is the OLS estimate from (10), run over observations 2 to n. The standard
error σ̂ρ is obtained by use of the HC2 variant of the Eicker-White HCCME.

The bootstrap DGP is determined by first running the constrained regression

yt − ρ0yt−1 = a+ ut, t = 2, . . . , n,

in order to obtain the estimate ã, and the constrained residuals ũt, t = 2, . . . n. A
bootstrap sample is defined by

y∗1 = y1 and y∗t = ã+ ρ0y
∗
t−1 + εtũt, t = 2, . . . , n,

where the εt are IID realisations from the Rademacher distribution. The bootstrap
statistics are

τ∗j =
ρ̂∗ − ρ0

σ̂∗ρ
, j = 1, . . . , B

with ρ̂∗ and σ̂∗ρ defined as the bootstrap counterparts of ρ̂ and σ̂ρ respectively.

The bootstrap P value is the proportion of the τ∗j that are more extreme than τ . We
used a two-tailed test. Results for N = 9999 replications with B = 199 bootstrap
samples each are as follows. The bootstrap discrepancy is the difference between the
nominal level of 5% and the rejection rate in the simulations, that is, the proportion
of the replications yielding a bootstrap P value less than 0.05.

n ρ bootstrap discrepancy

10 0.9 −0.006

30 0.9 +0.003

50 0.9 +0.002

10 0.7 −0.006

30 0.7 +0.002

50 0.7 +0.000

10 0.5 −0.008

30 0.5 +0.002

50 0.5 +0.001

10 0.3 −0.005

30 0.3 +0.003

50 0.3 +0.001
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The acid test of a bootstrap procedure is to look at the P value discrepancy plot,
which plots the (simulated) error in rejection probability (ERP) as a function of the
nominal level α, for all values of α from 0 to 1. If the bootstrap works perfectly, the
plot should be indistinguishable from the horizontal axis. Alternatively, the P value
plot plots the rejection probability (RP) itself as a function of α, and should be close
to the 45◦ line. The figures below, given for illustrative purposes, are for the case with
n = 10 and ρ = 0.3. The curves in red are for a two-tailed test; those in green for a
one-tailed test that rejects to the right. It can be seen that the small discrepancy for
α = 0.05 is not a coincidence, and that use of a two-tailed test confers no significant
advantage.

We seem to be able to conclude that the wild bootstrap with the Rademacher distribu-
tion provides a very reliable procedure in the presence of heteroskedasticity, whether
conditional or unconditional.

3. The Dependent Wild Bootstrap Based on the HAC Estimator

The procedure called the Dependent Wild Bootstrap (DWB) was introduced by
Shao (2010) as an alternative to other methods, like the various versions of the block
bootstrap, suggested to take account of autocorrelation. It is seen to provide rather
good estimates of the distributions of quantities computed from autocorrelated time
series if these satisfy the assumptions of the “smooth-function model” of Hall (1992)
and Lahiri (2003); of course these quantities include the sample mean and variance.

Given a time series {xt}, t = 1, . . . , n, with mean x̄, a DWB sample is defined by

x∗t = x̄+ (xt − x̄)η∗t , t = 1, . . . , n,

where the η∗t are independent of the sample, have expectation 0 and variance 1,
but, unlike the ε∗t of the plain wild bootstrap, are autocorrelated, with covariances
cov(ηt, ηs) = K(t − s), for some symmetric positive semi-definite kernel function K.
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Appropriate choices for K, up to a choice of bandwidth, include the Bartlett, quadratic
spectral, and Parzen kernels. Rather than discuss the DWB in detail following Shao’s
exposition, we move on directly to an extension of it more closely related to econo-
metrics.

Here, we follow the same line of reasoning as that which leads from the HCCME to
the wild bootstrap, but starting from a HAC (heteroskedasticity-and-autocorrelation
consistent) covariance matrix estimator. For the linear regression (1), the covariance
matrix of the OLS estimates of the parameter vector β is

(X>X)−1X>ΩX(X>X)−1, (11)

where Ω is the covariance matrix of the disturbance vector u. Estimators of this
covariance matrix that are robust to heteroskedasticity or to both heteroskedasticity
and autocorrelation all take the form (2), for various different choices of the inconsistent

estimator Ω̂. Any version of the HCCME has non-zero elements only on the principal
diagonal, and these are functions of the squared residuals. With all forms of HAC
estimator, the off-diagonal elements are estimated using cross-products of residuals.
For instance, with the well-known Newey-West HAC covariance matrix, proposed in
Newey and West (1987), the diagonal elements are estimated, as in the HCCME, by
the squared residuals. But the (t, s) element, t 6= s is

ω̂ts =
(

1− |t− s|
p+ 1

)
ũtũs for |t− s| < p+ 1,

and zero for |t− s| ≥ p+ 1, where p is the lag truncation parameter.

More generally, if k(·) is a positive definite kernel, we have

ω̂ts = k(|t− s|)ũtũs.

The Newey-West estimator is based on the Bartlett kernel. The QS estimator of
Andrews and Monahan (1992) uses the quadratic spectral kernel.

The variances of the bootstrap disturbances (4), conditional on the original data, are

the ũ2
t , the diagonal elements of the HCCME Ω̂. With autocorrelation, it is natural to

look for bootstrap disturbances of which the conditional covariance matrix is a HAC Ω̂.
If we denote by U the n×n diagonal matrix with typical diagonal element ũt, a HAC
Ω̂ can be written as UKU , where K is a symmetric matrix wih typical element

kts = k(|t− s|),

where k(·) is the chosen kernel function. By a Cholesky decomposition, define the
lower-triangular matrix L to be such that LL>= K. If, as with the wild bootstrap,
the vector ε∗ has IID elements of expectation zero and unit variance, then we may
form bootstrap disturbances as

u∗ ≡ ULε∗,
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since, conditional on U, E(u∗) = 0, and E(u∗(u∗)>) = ULL>U = UKU , as desired.

We consider first the statistic

τ ≡ y>X(X>Ω̂X)−1X>y. (12)

with a HAC Ω̂, as appropriate to test the hypothesis that β = 0 in the model (1).
The bootstrap version of the statistic is then

τ∗ = (u∗)>X(X>Ω̂∗X)−1X>u∗, (13)

where Ω̂∗ = U∗KU∗ and U∗ is the diagonal matrix with typical element u∗t . Let the
vector η∗ = Lε∗, and let H∗ be the diagonal matrix with elements those of η∗. Then,
since u∗ = Uη∗, we also have U∗ = UH∗ = H∗U , because the two diagonal matrices
commute. Similarly, X>u∗ = X>Uη∗ = X>H∗u. These relations show that

Ω̂∗ = H∗UKUH∗ = H∗Ω̂H∗ and X>Ω̂∗X = X>H∗Ω̂H∗X,

and so
τ∗ = u>H∗X(X>H∗Ω̂H∗X)−1X>H∗u.

There are a couple of other useful ways to express τ∗. Define the matrix Z to have
row t equal to Xtut. Then X>u∗ = X>Uη∗ = Z>η∗, and

X>Ω̂∗X = X>H∗UKUH∗X = X>UH∗KH∗UX = Z>H∗KH∗Z, (14)

which gives

τ∗ = η∗>Z(Z>H∗KH∗Z)−1Z>η∗ = ι>H∗Z(Z>H∗KH∗Z)−1Z>H∗ι, (15)

where ι is a vector each element of which is one.

The bootstrap procedure outlined above is an extension of the wild bootstrap consid-
ered in Section 3. To see this, note that the wild bootstrap version of the statistic (12)
appropriate for testing β = 0 is

u∗>X(X>Ω̂∗X)>X>u∗, (16)

where Ω̂∗ = (U∗)2, the diagonal matrix with elements the ũ∗t
2. Since for the wild

bootstrap u∗ = Uε∗, we can write U∗ = UE∗, where E∗ is a diagonal matrix with
elements those of ε∗. Because UX = Z, we see that the wild bootstrap statistic is

ε∗>Z(Z>(E∗)2Z)−1Z>ε∗. (17)

Now replace the kernel K of the bootstrap statistic of this section by an identity
matrix, which means that L is also an identity matrix. Then also η∗ = ε∗, and
H∗ = E∗. From the middle expression in (15), the bootstrap statistic is

ε∗>Z(Z>(E∗)2Z)−1Z>ε∗,

which is identical to (17).
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The statistic τ of (12) is one possible realisation of the wild bootstrap statistic (16),
obtained by setting ε∗ equal to ι. With a kernel K different from the identity matrix,
this property no longer holds. A way that may improve this situation is to modify the
statistic τ itself, so that it takes the same form as τ∗. If we define η = Lι, and let
H be the diagonal matrix with elements those of η, we may construct a statistic with
the same form as the rightmost expression in (15), so as to get

ι>HZ(Z>HKHZ)−1Z>Hι.

Now
Z>Hι = X>UHι = X>HUι = X>Hu,

and
Z>HKHZ = X>HUKUHX = X>HΩ̂HX.

Thus the new statistic can be written as

u>HX(X>HΩ̂HX)−1X>Hu. (18)

This differs from the original statistic (12) by replacing X by HX.

The procedure that is suggested by the above is not a standard bootstrap. It is purely
a question of potential power loss whether the new statistic (18) can reasonably replace
the original statistic (12). But the bootstrap statistic (15) is not the bootstrap version
of (18), at least in the conventional sense, according to which τ∗ would be obtained

from the τ of (18) by replacing u by u∗, H by H∗, and Ω̂ by Ω̂∗. But it is the case
that the statistic (18) is one realisation of (15), with ε∗ = ι.

Asymptotic validity

There is nothing particular involved in showing that either of the bootstrap procedures
introduced here is asymptotically valid. Since, under regularity conditions that it is
unnecessary to make explicit here, the statistics (12) and (18) both tend in distribution
to χ2

k as n → ∞, it is enough to show that the bootstrap statistics also do so in
probability.

The main property necessary for a HAC covariance estimator to be valid asymptotically
is that, for the asymptotic construction considered,

plim
n→∞

n−1X>Ω̂X = lim
n→∞

n−1X>ΩX. (19)

We assume therefore that (19) holds. Next, we need to be able to use a central-limit
theorem to show that

n−1/2X>u→d N
(
0, lim
n→∞

n−1X>ΩX
)
. (20)

Assumptions (19) and (20) together imply that the τ of (12) tends in distribution to χ2
k.

A conventional asymptotic construction supposes that the matrix n−1X>X converges,

– 8 –



either deterministically or in probability, to a nonrandom finite positive definite matrix.
In order to obtain the same limiting distribution for the statistic (18), we must assume
that the kernel K is chosen so that HX is also such that n−1X>(H)2X tends to a
nonrandom finite positive definite matrix. This requirement has consequences for the
choice of the lag truncation parameter of the Bartlett kernel, or for the bandwidth of
the quadratic spectral kernel, but we do not look too closely at this matter.

For the bootstrap statistic, we start by working conditionally on the original data,
which for present purposes means conditionally on u and U . Note that X>u∗ =
X>Uη∗ = Z>η∗. Provided that Z = UX satisfies the usual condition that n−1Z>Z
tends to a finite positive definite matrix that is random only through U (if at all),
then

n−1/2Z>η∗ →d∗ N
(
0, lim
n→∞

n−1Z>KZ
)
,

where the notation →d∗ means convergence in distribution conditional on the original
data (as one might say, in the bootstrap world); since E(η∗η∗>) = LL> = K. But

Z>KZ = X>UKUX = X>Ω̂X, and so, under the assumption (19), the limiting
covariance is limn→∞ n−1X>ΩX, independently ofU . By (20), this is also the limiting
covariance of n−1/2X>u.

It remains to consider the limit of n−1X>Ω̂∗X, the covariance matrix in the bootstrap
statistic (13). From (14), we have

X>Ω̂∗X = Z>H∗KH∗Z =

n∑
t=1

n∑
s=1

Ztη
∗
tKtsη

∗
sZs.

(Kts is element (t, s) of K, η∗t is element t of η∗.) The conditional expectation of the
term in the double sum above is ZtK

2
tsZs. Let K2 be the matrix of which element

(t, s) is K2
ts. Then we see that

E∗(X>Ω̂∗X) = Z>K2Z = X>UK2UX,

where E∗ stands for the conditional expectation. Except for the presence ofK2 instead
of K, this is the same as X>UKUX = X>Ω̂X. The question is whether, as n→∞,
the unconditional limit of n−1X>UK2UX is the same as the limit of n−1X>ΩX. It
is if K2 is a suitable kernel for a HAC estimator.

A suitable kernel must have all of its diagonal elements equal to 1, and be positive
definite. Since all the diagonal elements of K are one, the former condition is satisfied
trivially. For the latter, let the original kernel K have the spectral decomposition

K =

n∑

i=1

λivivi
>,

where the eigenvalues λi are all positive because K is positive definite. The (t, s)
element of K is thus

Kts =

n∑

i=1

λivtivsi,
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so that

K2 =

n∑

i=1

n∑

j=1

λiλj(vi � vj)(vi � vj)>, (21)

where � denotes the element-wise product. But (21) expresses K2 as the sum of
positive semi-definite rank-one matrices, which demonstrates that K2 is itself positive
definite. Thus the asymptotic validity of our bootstrap procedures is confirmed.

4. An Interesting Failure: the Maximum-Entropy Bootstrap

The principle of maximum entropy was propounded by Jaynes (1957) as an interpreta-
tion of statistical mechanics that treated the problems of thermodynamics as problems
of statistical inference on the basis of extremely limited information. One application
of the principle was proposed by Theil and Laitinen (1980), for the estimation from a
random IID sample of the density of the underlying distribution, under the assumption
that the distribution is continuous and is almost everywhere differentiable. For a brief
discussion of the method, see the more accessible Theil and Fiebig Denzil (1982). For
a sample of size n, with order statistics x(i), i = 1, . . . , n, the estimated distribution
has, except in the tails, a continuous piecewise linear CDF that assigns probability
mass 1/n to each interval Ii ≡ [(x(i−1) + x(i)/2, (x(i) + x(i+1))/2], for i = 2, . . . , n− 1.
The distribution is exponential in the tails, defined as the intervals I1 from −∞ to
(x(1) + x(2))/2, and In from (x(n−1) + xn))/2 to +∞. Each of the infinite intervals
receives a probability mass of 1/n, and the lower interval is constructed to have an
expectation of 0.75x(1) + 0.25x(2), the upper an expectation of 0.25x(n−1) + 0.75x(n).

This way of estimating a distribution was picked by Vinod (2006), who bases a tech-
nique for bootstrapping time series on it. He modifies the procedure described above
so as to allow for the possibility of a bounded rather than an infinite support, but
I cannot follow the details (I think they are wrong). Aside from this, his method
proceeds as follows:

1. Define an n × 2 sorting matrix S1 and place the index set T0 = {1, 2, . . . , n} in
the first column and the observed time series xt in the second column.

2. Sort the matrix S1 with respect to the numbers in its second column while
carrying along the numbers in the first column. This yields the order statistics
x(i) in the second column and a vector Irev of sorted T0 in the first column. From
the x(i) construct the intervals Ii defined above.

3. Denote by F̂ the CDF of the maximum-entropy distribution defined above. Gen-
erate n random numbers pi, i = 1, . . . , n distributed uniformly on [0, 1]. Obtain
a resample x∗i as the pi quantiles of F̂ , i = 1, . . . , n.

5. Define another n×2 sorting matrix S2. Sort the x∗i in increasing order and place
the result in column 1 of S2. Place the vector Irev in column 2.

6. Sort the S2 matrix with respect to the second column to restore the order
{1, 2, . . . , n} there. Redefine the x∗i as the elements of the jointly sorted col-
umn 1 of S2.

– 10 –



The idea is clearly to preserve as much of the correlation structure of the original series
as possible. It is a pity that Vinod went on directly to apply his method to real data,
as it turns out that altogether too many of the specific properties of the original series
are retained in each bootstrap sample, so that there is not enough variability in the
bootstrap DGP.

I have documented this method in full because, although it does not work, it shows
up a number of interesting things. First, resampling from the continuous distribu-
tion F̂ can very well be employed instead of resampling from the discrete empirical
distribution. Rescaling, and other operations that specify higher moments, can easily
be incorporated into the maximum entropy algorithm. Although in most cases one
may expect there to be little difference relative to conventional resampling, there are
situations in which it may be necessary to impose the continuity of the bootstrap
distribution.

The other reason for my dwelling on this method is that it allows me to demonstrate
a technique for analysing bootstrap success or failure. Consider the following model,
which I will use as a test case for this and the other bootstrapping methods considered
here:

y = Xβ + u, ut = ρut−1 + vt. (22)

The regressor matrix X includes a constant and three other variables, constructed so
that they are serially correlated with autocorrelation coefficient ρ1. The disturbances
follow an AR(1) process. The null hypothesis is that the full coefficient vector β = 0.
The test statistic is the asymptotic chi-squared statistic, with four degrees of freedom:

τ = y>X(X>Ω̂X)−1X>y,

where Ω̂ is the Newey-West HAC covariance matrix estimator.

Below are the P value discrepancy and P value plots for n = 50, ρ = 0.9, ρ1 = 0.8,
and a lag-truncation parameter p = 20 for Ω̂. There are 9, 999 replications with
399 bootstrap repetitions each.
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It is quite clear that something is badly wrong! There is severe underrejection for
small α, and equally severe overrejection for large α. There are at least two possible
reasons for this. The first is that, if the distribution of the bootstrap statistic is on
average more dispersed than that of the statistic itself, then the mass in the bootstrap
distribution to the right of τ is too great for large values of τ , so that the P value
is also too great, and it is too small when τ is small, so that the the P value is also
too small. A second possible explanation is that, for each replication, the bootstrap
statistics are strongly positively correlated with τ . In that event, when τ is large, the
bootstrap distribution is shifted right, and conversely.

In order to diagnose the bootstrap failure we see in the graphs above, I plotted the
density of the actual statistic using a kernel estimate based on the 9, 999 realisations
of τ , and the density of 9, 999 bootstrap statistics, one from each replication. The
result can be seen in the next figure, the density of τ in red, that of the bootstrap
statistics in green. Clearly, the distributions are almost identical, which rules out the
first possible explanation.

Next, for each replication, I saved the realisation of τ and the last of the 399 bootstrap
statistics, and regressed the latter on a constant and the former. If the bootstrap
statistic is denoted τ∗, the result of the regression was

τ∗ = 0.51 + 0.81τ, centred R2 = 0.659.

Both coefficients are highly significant. Thus this is clear evidence of the second
possible explanation: τ∗ is indeed strongly positively correlated with τ . What this
shows is that the attempt to make the bootstrapped time series mimic the real series
is too successful, and so there is too little variation in the bootstrap distribution.

This analysis is closely related to the rationale behind the fast double bootstrap; see
later. It can be applied to the other techniques used here, with quite different results.
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5. The Fast Double Bootstrap

The fast double bootstrap (FDB) of Davidson and MacKinnon (2007) is based on
two approximations. The first is to assume that, for any DGP in the null hypothesis,
the statistic τ and the bootstrap DGP are independent. The assumption is of course
false except in special circumstances, but it holds asymptotically in many commonly
encountered situations. Combined with this assumption, the second assumption leads
to an approximate expression for the CDF of the bootstrap P value, as follows. Let p1

denote the bootstrap P value considered as a random variable defined on [0, 1]. Then
the approximation can be written as

Pr(p1 ≤ α) = R0

(
Q1(α)

)
, (23)

where R0(α) is the probability that τ is in the α-rejection region according to some,
perhaps asymptotic, nominal distribution, and R1(α) is the same probability but for
the bootstrap statistic τ∗. Q1 is the quantile function that is inverse to R1.

It can be seen that the idea behind the FDB is behind the diagnostic analysis applied
to the maximum-entropy bootstrap in Section 5. Clearly the regression of the realisa-
tions of τ∗ on those of τ allows one to see to what extent the first approximation is
reasonable. The applicability of both assumptions jointly can be tested by comparing
the approximation (23) with the actual distribution of the bootstrap P value, as es-
timated by simulation. For the case of the maximum-entropy bootstrap, (23) gives a
distribution not far removed from the uniform, a conclusion to be expected given the
near coincidence of the distributions of τ and τ∗. The true distribution of the boot-
strap P value is very different from the uniform, as shown graphically in the figure in
Section 5.

Here, the same analysis is applied to some of the other bootstraps we have considered.
For the wild bootstrap in the presence of heteroskedasticity alone, since we considered
a one-degree-of-freedom test, it was possible to look separately at a one-tailed test
that rejects to the right and the two-tailed test. Below are plotted the kernel density
estimates of the distributions of the statistic and the bootstrap statistic for both cases.
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For the one-tailed test, the regression of the bootstrap statistic τ∗ on a constant and τ
gives a barely marginally significant coefficient for τ , with a t ratio of 2.03 and a
centred R2 of 0.004. For the two-tailed test, the t ratio for the coefficient of τ is 3.18,
and the centred R2 is 0.010.

The figure above illustrates the comparison of (23) with the simulated distribution of
the bootstrap P value, as measured by discrepancies from uniform to the left, and by
actual probabilities to the right. The curves for (23) are in red, those for the P value
distribution in green. Although the discrepancies from uniform are very small, one
cannot reject the hypothesis that (23) captures those that exist rather well.

Next I look at the extended DWB, again for the standard setup.
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The regression of τ∗ on τ gives a coefficient of 0.25 and t ratio of 25 and centred R2

of 0.06.

A number of regularities appear in the simulations with the extended DWB. When
the bandwidth is small, that is, p is small relative to the sample size n, the correlation
between τ∗ and τ is smaller than for larger p, and the agreement between (23) and
the actual distribution of the P value better. On the other hand, the brute bootstrap
discrepancy at nominal 5% is minimised for some larger p.

6. Simulation Evidence

Since the main focus of this paper is the HAC wild bootstrap, in this section we give
more detailed simulation results for it. We also consider how to apply the FDB to
it, in order to see whether the performance enhancement suggested by the results in
the previous section are realised. The table below gives the bootstrap discrepancies,
estimated by simulation, for a variety of choices of the parameters of the standard
setup.
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n p ρ ρ1 bootstrap discrepancy

original modified

20 2 0.9 0.0 0.263 0.250

20 6 0.9 0.0 0.016 -0.029

20 6 0.9 0.8 -0.008 -0.024

20 8 0.9 0.0 -0.016 -0.040

20 8 0.9 0.8 -0.037 -0.042

50 10 0.9 0.0 0.084 -0.024

50 10 0.9 0.8 0.098 0.051

50 20 0.9 0.0 0.009 -0.027

50 20 0.9 0.8 -0.007 -0.012

50 30 0.9 0.0 -0.043 -0.049

50 30 0.9 0.8 -0.038 -0.023

100 10 0.9 0.0 0.098 0.083

100 10 0.9 0.8 0.107 0.099

100 25 0.9 0.0 0.038 -0.012

100 25 0.9 0.8 0.030 -0.011

100 40 0.9 0.0 -0.007 -0.045

100 40 0.9 0.8 -0.016 -0.041

100 60 0.9 0.0 -0.046 -0.050

100 60 0.9 0.8 -0.046 -0.047

7. Conclusions

Bootstrapping in the presence of heteroskedasticity and autocorrelation of unknown
form has revealed that the wild bootstrap is able to handle any problems associated
with heteroskedasticity by itself, but that autocorrelation presents a more severe chal-
lenge. The dependent wild bootstrap, extended here to what we have called the HAC
wild bootstrap, is capable of giving performance as good as, and often better than,
other methods that take autocorrelation into account. It seems to hold a good deal
of promise, although its reliability depends sensitively on the choice of lag-truncation
parameter. In combination with the fast double bootstrap, it can yield quite satisfac-
tory inference. We also developed an interesting diagnostic technique related to the
fast double bootstrap, for analysing bootstrap success or failure.

– 16 –



References

Andrews, D. W. K. and J. C. Monahan (1992). “An improved heteroskedasticity and
autocorrelation consistent covariance matrix estimator”, Econometrica 60, 953–66.

Davidson, R. and E. Flachaire (2008). “The wild bootstrap, tamed at last”, Journal
of Econometrics, 146, 162–9.

Davidson, R. and J. G. MacKinnon (2007). “Improving the Reliability of Bootstrap
Tests with the Fast Double Bootstrap”, Computational Statistics and Data Analysis,
51, 3259–3281.

Davidson, R. and J. G. MacKinnon (2010). “Wild bootstrap tests for IV regession”,
Journal of Business and Economic Statistics, 28, 128–44.

Eicker, F. (1963). “Asymptotic normality and consistency of the least squares estima-
tors for families of linear regressions,” The Annals of Mathematical Statistics, 34,
447–456.

Fiebig Denzil, G. and H. Theil (1982). Comment, Econometric Reviews 1:2, 263–269

Freedman, D. A., (1981). “Bootstrapping regression models”, Annals of Statistics 9,
1218–1228.

Hall, P. (1992). The Bootstrap and Edgeworth Expansion, New York: Springer.

Jaynes. E. T. (1957). “Information Theory and Statistical Mechanics”, Physical Re-
view 106, 620–630.

Lahiri, S. N. (2003). Resampling Methods for Dependent Data, New York: Springer.

Liu, R. Y. (1988). “Bootstrap procedures under some non-I.I.D. models”, Annals of
Statistics 16, 1696–1708.

Mammen, E. (1993). “Bootstrap and wild bootstrap for high dimensional linear mod-
els”, Annals of Statistics 21, 255–285.

Newey, W. K. and K. D. West (1987). “A simple, positive semi-definite, heteroskedas-
ticity and autocorrelation consistent covariance matrix”, Econometrica 55, 703–8.

Shao, X. (2010). “The Dependent Wild Bootstrap”, Journal of the American Statistical
Association 105, 218–235.

Theil, H. and K. Laitinen (1980). “Singular moment matrices in applied econometrics”,
in Mu1tivariate Analysis - V (P.R. Krishnaiah, Ed. ). Amsterdam: North-Holland
Pub1ishing Co., 629–649.

Vinod, H.D. (2006). “Maximum entropy ensembles for time series inference in eco-
nomics”, Journal of Asian Economics 17, 955–978.

– 17 –



White, H. (1980). “A heteroskedasticity-consistent covariance matrix estimator and a
direct test for heteroskedasticity,” Econometrica, 48, 817–838.

Wu, C. F. J. (1986). “Jackknife, bootstrap and other resampling methods in regression
analysis”, Annals of Statistics 14, 1261–1295.

– 18 –



 

 

 

Working Paper del Dipartimento di Economia e Finanza 
 

 
 

1. L. Colombo, H. Dawid, Strategic Location Choice under Dynamic Oligopolistic 

Competition and Spillovers, Novembre 2013. 

2. M. Bordignon, M. Gamalerio, G. Turati, Decentralization, Vertical Fiscal Imbalance, and 

Political Selection, Novembre 2013. 

3. M. Guerini, Is the Friedman Rule Stabilizing? Some Unpleasant Results in a Heterogeneous 

Expectations Framework, Novembre 2013. 

4. E. Brenna, C. Di Novi, Is caring for elderly parents detrimental to women’s mental health? 

The influence of the European North-South gradient, Novembre 2013. 

5. F. Sobbrio, Citizen-Editors' Endogenous Information Acquisition and News Accuracy, 

Novembre 2013. 

6. P. Bingley, L. Cappellari, Correlation of Brothers Earnings and Intergenerational 

Transmission, Novembre 2013. 

7. T. Assenza, W. A. Brock, C. H. Hommes, Animal Spirits, Heterogeneous Expectations and 

the Emergence of Booms and Busts, Dicembre 2013. 

8. D. Parisi, Is There Room for ‘Fear’ as a Human Passion in the Work by Adam Smith?, 

Gennaio 2014. 

9. E. Brenna, F. Spandonaro, Does federalism induce patients’ mobility across regions? 

Evidence from the Italian experience, Febbraio 2014. 

10. A. Monticini, F. Ravazzolo, Forecasting the intraday market price of money, Febbraio 2014. 

11. Tiziana Assenza, Jakob Grazzini, Cars Hommes, Domenico Massaro, PQ Strategies in 

Monopolistic Competition: Some Insights from the Lab, Marzo 2014. 

12.  R. Davidson, A. Monticini, Heteroskedasticity-and-Autocorrelation-Consistent 

Bootstrapping,  Marzo 2014. 

 

 

  
 

 

 


	Title Page
	Abstract
	Introduction
	The Wild Bootstrap
	The wild bootstrap with GARCH disturbances

	The Dependent Wild Bootstrap Based on the HAC Estimator
	Asymptotic validity

	An Interesting Failure: the Maximum-Entropy Bootstrap
	The Fast Double Bootstrap
	Simulation Evidence
	Conclusions
	References

