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FROM SIMPLE GROWTH TO NUMERICAL

SIMULATIONS: A PRIMER IN DYNAMIC

PROGRAMMING

GIANLUCA FEMMINIS

A�������. These notes provide an intuitive introduction to dynamic
programming. The first two Sections, which can be skipped, present the
standard deterministic Ramsey model using the Lagrangian approach.
Section 3 reformulates the Ramsey problem by means of a Bellman equa-
tion, while Section 4 shows how to “guess” the maximum value function
solving the problem (when this is possible). Section 5 is devoted to
applications of the envelope theorem. Section 6 provides a “paper and
pencil” introduction to the numerical techniques used in dynamic pro-
gramming, and can be skipped by the uninterested reader. Sections 7
to 9 are devoted to stochastic modelling, and to the use of stochastic
Bellman equations. Section 10 extends the discussion of numerical tech-
niques. Two Appendixes provide details about the Matlab routines used
to deal with the examples, and the solutions of the exercises proposed
in the main text.
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One of the ingredients that can be found in almost any growth model

is the analysis of the agents’ consumption behavior. In fact consumption,

through savings, determines capital accumulation, which, in turn, is one of

the key “engines of growth”. In this Section, we consider the problem of the

optimal determination of consumption in the easiest possible framework,

namely the one in which the lifetime of a single consumer is of a finite and

known length. We solve this intertemporal problem using the Lagrangian

approach: once the problem is well understood, it will be easy to consider

its infinite horizon counterpart and then to solve it by means of dynamic

programming. This shall be done in Sections 2 and 3, respectively.

1.1. The problem. In our settings, a single consumer aims at maximiz-

ing her utility over her finite lifetime. Time is “discrete”, i.e. it is divided

into periods of fixed length (say, a year or a quarter), and our consumer is

allowed to decide her consumption level only once per period. The consump-

tion goods she enjoys are produced by means of a “neoclassical” production

function.1

We suppose that our consumer optimizes from time 0 onwards, and that

her preferences are summarized by the following intertemporal utility func-

tion:

(1.1) W0 =
T∑

t=0

βtU(ct),

where β ∈ (0, 1) is the subjective discount parameter, ct is consumption at

time t, and T + 1 is the length (in periods) of our consumer’s lifetime. As

for the single period utility function, U(ct), we accept the standard “neo-

classical” assumptions, requiring that, in every period, the marginal utility

is positive but decreasing, i.e. that U ′(ct) > 0, and U
′′

(ct) < 0. Moreover,

we assume that: limct→0 U
′(ct) =∞.

1An analysis concerning a single consumer may seem very limited. In particular, as it
will become clear in a while, a single agent—being alone—optimizes under the constraint
of the production function. This appears to be in sharp contrast with what happens in
the real world. In fact, in a market economy, agents do not directly manage a production
function. Rather, they work, obtaining a wage income, and receive interests (or dividends)
thanks to their past savings. In other words, optimizing agents take into account prices,
wages, interest rates... However, it can be shown that if markets are competitive and
agents are all alike, the resources allocation in our exercises is equivalent to the allocation
of resources that is achieved by a competitive decentralized economy (which means by an
economy where decisions are taken by a large number of economic agents, and based upon
prices, wages....). Hence, while our if is a rather big one, our analysis is less limited than
what it might seem at first sight.
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Output (yt) is obtained by means of a production function, the argument

of which is capital (kt):
2

(1.2) yt = f(kt).

As any well-behaved “neoclassical” production function, Eq. (1.2) satis-

fies some conditions. When capital depreciates at a constant rate δ ∈ [0, 1],

these are:

a: f ′(kt) > 0,

b: f ′′(kt) < 0,

(in words, the marginal productivity of capital is positive, but decreasing),

c: f(0) = 0,

(this means that capital is essential for production).

d: f ′(0) > δ + 1/β − 1,

e: lim
kt→∞

f ′(kt) = 0,

(as it will become clear in what follows, hypothesis (d) implies that capital

− at least at its lowest level − is productive enough to provide the incentive

for building a capital stock, while assumptions (e) rules out the possibility

that capital accumulation goes on forever.)3

At this point, it is commonly assumed that output, in our one-good econ-

omy, can be either consumed or invested, i.e. it is assumed that yt = ct + it

(which implies that we are abstracting from the presence of government

expenditure). The stock of capital owned by our agent in period 1 is:

k1 = i0+(1−δ)k0.Accordingly, Eq. (1.2) and the output identity, yt = ct+it,

imply that k1 can be written as:

k1 = f(k0) + (1− δ)k0 − c0.

Hence, in general, we have that

(1.3) kt+1 = f(kt) + (1− δ)kt − ct,

2If you feel disturbed by the fact that capital is the unique production input, consider
that we can easily encompass a fixed supply of labour in our framework. We might have
specified our production function as yt = g(kt, l̄), where l̄ is the labour fixed supply; in this
case we could have normalized l̄ to unity and then we could have written f(kt) ≡ g(kt, 1).
An alternative, and more sophisticated, way of justifying Eq. (1.2) is to assume that
output is obtained by means of a production function which is homogeneous of degree one
in capital and labour, so that there are constant returns to scale. Then, one interprets kt
as the capital/labour ratio.
3What is really necessary is to accept that limkt→∞ f ′(kt) < δ, an hypothesis that can
hardly be considered restrictive. The assumption in the main text allows for a slightly
easier exposition.



4 GIANLUCA FEMMINIS

for t = 0, 1, ... , T. In addition to the above set of dynamic constraints, we

require that

(1.4) kT+1 ≥ 0.

In words, this obliges our consumer to finish her life with a non-negative

stock of wealth. This condition must obviously be fulfilled by a consumer

which lives “in insulation” (a negative level of capital stock does not make

any sense in this case); if our agent were settled in an economy where fi-

nancial markets are operational, so that borrowing and lending are allowed,

what a condition like (1.4) rules out is the possibility that our consumer dies

in debt.

Summing up, we wish to solve the problem:

max
{ct}Tt=0

W0 = max
{ct}Tt=0

T∑

t=0

βtU(ct),

under the T constraints of the (1.3)-type, under the constraint (1.4), and

given the initial amount of resources, k0. Notice that the solution of the

problem requires the determination of T+1 consumption levels (c0, c1, ...., cT ),

and of T + 1 values for the capital stock (k1, k2, ...., kT+1).

We can approach the consumer’s intertemporal problem by forming a

Lagrangian:

L0 = U(c0) + βU(c1) + β2U(c2) + ...+ βTU(cT )

−λ0[k1 − f(k0)− (1− δ)k0 + c0]

−βλ1[k2 − f(k1)− (1− δ)k1 + c1]

−...(1.5)

−βT−1λT−1[kT − f(kT−1)− (1− δ)kT−1 + cT−1]

−βTλT [kT+1 − f(kT )− (1− δ)kT + cT ]

+βTµkT+1,

in which λt, for t = 0, 1, ..., T, and µ are the Lagrange multiplier.4 Notice

that λt, that pertains to the period t constraint, is multiplied by β
t.

To solve the problem, we must differentiate (1.5) with respect to ct, kt+1,

λt (for t = 0, 1, ..., T ), and with respect to µ.5

4A neat interpretation of the role of Lagrange multiplier can be found in Dixit [1990].
5The conditions we imposed on the single period utility function and on the production
function guarantee that we obtain a global maximum. See, e.g., Beavis and Dobbs [1990],
or de la Fluente [2000].
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By taking derivatives of (1.5) with respect to the T+1 consumption levels,

we obtain the first order conditions

U ′(c0) = λ0

U ′(c1) = λ1

... = ...(1.6)

U ′(ct) = λt

... = ...

U ′(cT ) = λT .

Notice that each Lagrange multiplier λt expresses the consumer’s mar-

ginal utility of period t consumption; had we not multiplied λt by β
t, the

multipliers would have expressed the marginal utilities from the perspective

of period 0.

When our agent optimizes with respect to the T + 1 capital levels (from

k1 to kT+1), she obtains:

λ0 = βλ1[f
′(k1) + (1− δ)]

βλ1 = β2λ2[f
′(k2) + (1− δ)]

......

βtλt = βt+1λt+1[f
′(kt+1) + (1− δ)](1.7)

......

βT−1λT−1 = βTλT [f ′(kT ) + (1− δ)]

βTµ = βTλT .

Of course, derivation of (1.5) with respect to the Lagrange multipliers

λt, t = 0, 1, 2, ..., T yields the set of constraints (1.3). Moreover, derivation

of (1.5) with respect to µ gives the constraint (1.4); in addition, being (1.4)

an inequality constraint, one must consider the “complementary slackness”

condition:

(1.8) βTµkT+1 = 0 and µ ≥ 0,

which shall be commented upon in a while.
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1.2. The Euler equation. Consider now any first order condition belong-

ing to group (1.7): one immediately sees that those equations can be ma-

nipulated using the appropriate first order conditions of group (1.6). The

typical result of this practice is:

(1.9) U ′(ct) = βU ′(ct+1)[f
′(kt+1) + (1− δ)]

This condition is known as the Euler equation, which is of remarkable

importance not only to understand many growth models but also in con-

sumption theory.

The Euler equation (1.9) tells us that an optimal consumption path must

be such that — in any period — the marginal utility for consumption is equal

to the following period marginal utility, discounted by β and capitalized by

means of the net marginal productivity of capital. To gain some intuition

about the economic meaning of Eq. (1.9), consider that it can be interpreted

as prescribing the equality between the marginal rate of substitution between

period t and period t + 1 consumptions (i.e. U ′(ct)/βU
′(ct+1)), and the

marginal rate of transformation, f ′(kt+1) + (1− δ).6

To improve your understanding of this point, pick a consumption level

for period t, say čt.
7 Then, choose a consumption level for the subsequent

period t+1, say čt+1, which does not satisfy the Euler equation: we require

only that it is feasible, i.e. that it can be produced given k̆t+1, which is the

capital stock implied by the initial capital level kt, and by čt (i.e., k̆t+1 =

f(kt) + (1 − δ)kt − čt). Notice that, for a given kt, čt and čt+1 involve a

specific level for kt+2, say k̆t+2. In deciding whether the choice to consume

čt in period t and čt+1 in period t + 1 is appropriate, our consumer must

consider what would happen to her overall utility if — for given k̆t+2 — she

decided to increase the time t consumption by a small amount ξ. In this case,

her time t utility would increase by (approximately) U ′(čt)ξ.
8 Moreover,

because her savings would decrease by ξ, her next period resources would

decrease by [f ′(kt+1)+(1− δ)]ξ, that is, by ξ multiplied by the productivity

6An alternative interpretation is based on the fact that our representative consumer —
forsaking one unit of consumption today — obtains f ′(kt+1) + (1− δ) unit of consumption
tomorrow. Accordingly, f ′(kt+1) + (1− δ) can also be interpreted as the price of current
consumption if the price of future consumption is conceived as the numeraire, and hence
fixed to unity. According to this interpretation, Eq. (1.9) can be seen as prescribing the
equalization of the marginal rate of substitution U ′(ct)/βU

′(ct+1) with the price ratio
[f ′(kt+1) + (1− δ)]/1.
7In these notes, we denote by an inverted hat an arbitrary level for a variable, with a star
an optimal level, and by a hat a steady state level for that variable. As we shall see, a
steady state is a situation such that all the variables do not change over time.
8If you do not “see” this, consider that the difference (in terms of period t utility) of the
two policies is U(čt + ξ) − U(čt). Applying Taylor’s theorem to U(čt + ξ) one obtains:
U(čt + ξ) ≃ U(čt) + U ′(čt)ξ.
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of the “marginal” savings. The reduction in period t+ 1 utility is given by

U ′(čt+1)[f
′(kt+1)+(1−δ)]ξ. From the perspective of time t, this variation in

utility must be discounted; hence, its period t value is βU ′(čt+1)[f ′(kt+1) +

(1− δ)]ξ.

If U ′(čt)ξ > βU ′(čt+1)[f ′(kt+1) + (1 − δ)]ξ, it is convenient to increase

period t consumption: the utility gain in that period is larger than the

utility loss suffered at time t+1 once the latter is discounted back to period

t.

Likewise, if U ′(čt)ξ < βU ′(čt+1)[f
′(kt+1) + (1 − δ)]ξ, it is convenient to

decrease period t consumption: the utility loss in that period is smaller

than the discounted utility gain. From this reasoning, we can convince

ourselves that Eq. (1.9) must hold true when the consumption sequence

is optimally chosen. Notice moreover that the Euler equation is useful to

relate the evolution of consumption over time to the existing capital stock.

Assume that ct+1 = ct, so that ∆ct = 0,9 and notice that ct+1 = ct implies

U ′(ct) = U ′(ct+1). From Eq. (1.9), a constant consumption can be optimal

if and only if kt+1 = k̂, where k̂ is such that:

(1.10) 1 = β[f ′(k̂) + (1− δ)].

In the steady state, i.e. when kt = k̂, and consumption is constant over

time, the impatience parameter β exactly offsets the positive effects on sav-

ings exerted by the fact that they are rewarded by the marginal productivity

of capital.10

Whenever kt+1 < k̂, the marginal productivity of capital is higher than

at k̂ (i.e. f ′(kt+1) > f ′(k̂));11 hence β[f ′(kt+1)+ (1− δ)] > 1. Therefore, the

Euler equation is satisfied only for consumption levels such that U ′(ct) >

U ′(ct+1). Hence, it must be true that ct < ct+1. In words, since the marginal

productivity of capital is high, saving is very rewarding. Therefore, it is

sensible to save a lot, by reducing consumption at the “early” date t. Because

the “early” consumption is low, consumption increases over time.

By a similar argument, when kt+1 > k̂, capital is “abundant” and its

marginal productivity gets low. Therefore β[f ′(kt+1)+(1−δ)] < 1. Eq. (1.9)

is satisfied if U ′(ct) < U ′(ct+1), which implies that ct > ct+1. Because the

marginal productivity of capital is low, saving is ill-compensated. Therefore,

it is sensible to choose a high consumption level at t, and decrease it over

time.

9Following an often used convention, we denote, for any variable yt, ∆yt ≡ yt+1 − yt.
10Notice that the uniqueness of k̂ is granted by assumptions (a), (b), and (d).
11This is granted by the assumptions of a positive but decreasing marginal productivity
of capital, (a) and (b).
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Finally, notice that Eq. (1.9)−relating the consumption level in period t

to the one in period t + 1−applies for t = 0, 1, ..., T − 1 (consumption at

time T + 1 does not make sense by our finite-live assumption). Hence, the

Euler equation provides us with T relations that we exploit when we wish

to solve analytically our maximization problem.

1.3. The solution. As already remarked, what we wish to determine are

the T + 1 consumption values (i.e. c0, c1, ..., cT ) and the T + 1 capital

stocks (i.e. k1, k2, ..., kT+1). As already remarked, the Euler equation (1.9)

provides us with T relations; the constraints like (1.3) are T+1. Accordingly,

to close the model we need a further equation.

This is obtained from the complementary slackness condition (1.8). This

tells us that, if the consumer uses up her entire capital stock in the final

period, so that kT+1 = 0, then µ is positive; alternatively, if µ = 0, the final

capital stock is positive. The last condition in (1.7) guarantees us that µ

must actually be positive, since it is equal to λT , and λT is the marginal

utility of consumption at time T, which can not be nought. Hence, the

final period capital must be zero, which is very sensible in economic terms:

because our agent will not consume anything in period T +1, it is pointless

for her to keep some capital: she can always improve her overall utility by

eating up this stock of resources. In sum, we can be sure that kT+1 =

0, a condition “closing” the model in accordance with the complementary

slackness condition (1.8).

The system composed by T equations like (1.9), of T + 1 equations like

(1.3), and by kT+1 = 0 can — in principle — be solved for the T +1 consump-

tion levels and for the T + 1 capital levels. In practice, the solution of our

problem is hardly achieved. In fact, in a few special cases only we can obtain

a solution of all the cts and of all the kts in terms of the known elements

(k0 and the parameters). This motivates the use of numerical techniques,

and, at least in part, the willingness to resort to the dynamic programming

approach.

For future reference, bear in mind that the complementary slackness con-

dition (1.8) can be reformulated, by means of the last conditions in (1.7)

and (1.6), as:

(1.11) βTU ′(cT )kT+1 = 0.

2. T�� 
��
�
��-���
��� �����
��
��-������ ������


Let us now imagine that our agent is living forever. At first sight, this

might seem crazy. However, we may conceive our agent as a person who

cares about her offsprings. In this case, she should consider that her sons
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and daughters will be concerned about their offsprings’ welfare and so on.

Hence, she should optimize over the entire future. If you wish, you can

think about our agent not as a person, but as a dynasty. An alternative

interpretation of the model we are about to present is that the optimizing

agent actually is a social planner who aims at maximizing a social welfare

function whose arguments are the discounted utilities of all the agents who

are alive now and in any possible future date. This alternative interpretation

requires the determination of the optimal saving rate for the society, and in

fact the British economist Frank P. Ramsey originally framed the question

in these terms, and solved it on the ground of intertemporal optimization.

The model presented here is essentially his.

Assuming that our agent optimizes from time 0 onwards, her preferences

are now given by the following intertemporal utility function:

(2.1) W0 =
∞∑

t=0

βtU(ct),

an expression which is analogous to (1.1), but for the fact that now the

agent’s horizon extends up to infinity.

Our problem is now to

max
{ct}∞t=0

W0 = max
{ct}∞t=0

∞∑

t=0

βtU(ct);

but notice that, while the constraints are given by equations such as (1.3),

the fact that the consumer’s planning horizon is infinite implies that we

cannot impose a “terminal constraint” like (1.4).

The consumer’s problem is tackled by means of the following “present

value” Lagrangian:

L0 = U(c0) + βU(c1) + ...+ βtU(ct) + ...(2.2)

−λ0[k1 − f(k0)− (1− δ)k0 + c0]

−...

−βtλt[kt+1 − f(kt)− (1− δ)kt + ct]

−....

Problem (2.2) differs from (1.5) because it involves an infinite number

of discounted utility terms, and an infinite number of dynamic constraints;

moreover — as already remarked — the constraint concerning the final level

for the stock variable is missing.
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We optimize (2.2) with respect to ct, kt+1, and λt for t = 0, 1, ..... ob-

taining:

(2.3) U ′(ct) = λt, ∀ t,

(2.4) βtλt = βt+1λt+1[f
′(kt+1) + (1− δ)], ∀ t,

and, of course:

(2.5) kt+1 = f(kt) + (1− δ)kt − ct, ∀ t.

These conditions are necessary, but they are not sufficient: the “final

condition” is missing. In our infinite horizon model, the role of this final

condition is played by the so-called transversality condition (henceforth tvc),

which−in this set up−is:

(2.6) lim
T→∞

βTU ′(cT )kT+1 = 0.

Comparing the above expression with (1.11), we immediately notice that

(2.6) is the limit, for T → ∞, of (1.11). This suggests us that the tvc

plays the role of the missing terminal condition. The tvc has an intuitive

economic interpretation: it rules out policies implying a “too fast” capital

accumulation in the long run. To understand this point, assume that our

consumer follows a policy implying a growing capital stock. Assume, in

particular, that — to allow for a fast capital accumulation — consumption

is reduced over time. This policy would imply a high marginal utility of

consumption, and an high and increasing value for the product U ′(cT )kT+1.

This, in itself, does not involve the violation of condition (2.6). In fact,

condition (2.6) allows U ′(cT )kT+1 to increase over time. Nevertheless, this

growth must be slow enough to be compensated by the convergence to 0 of

the term βT . This is why we say that the transversality condition rules out

policies implying a “too fast” long-run capital accumulation.

2.1. The qualitative dynamics. In our model, as it happens in many

infinite horizon frameworks, it is useful to draw a “phase diagram”. This

helps visualizing how consumption and capital evolve over time, which can

be very useful whenever (which means, almost always) an analytic solution

cannot be found.

To obtain the phase diagram, we first consider the stability loci for each

of the two variables (i.e. we compute the set of points such that ∆ct = 0
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0∆ =
t

ct
c

t
kk̂

F
���� 1.

and ∆kt = 0). This will help us to understand how consumption and capital

change over time whenever they do not lie on their stability loci. Finally, we

will jointly consider our knowledge for the dynamics of the two variables.

As for consumption, combining equation (2.4) with (2.3), we immediately

see that optimality requires that the Euler equation (1.9) is satisfied. We

already know that the Euler equation is useful to describe the evolution of

consumption over time. In particular, we know that when kt = k̂, then

ct+1 = ct and hence ∆ct = 0 (consider again how we obtained Eq. (1.10)).

Hence, in Figure 1, we plot the locus implying stationarity for consumption

as a the vertical line drawn at k̂.

Whenever kt < k̂, it is optimal for our consumer to increase her con-

sumption over time (hence, ct < ct+1). When instead kt > k̂, consumption

must be shrinking over time (ct+1 < ct). This behavior is summarized by

the arrows in Figure 1.

From Eq. (2.5), we see that ∆kt = f(kt) − δkt − ct, hence, capital is

stationary when

(2.7) ct = f(kt)− δkt.

This relation can be portrayed as a function starting at the origin (by

assumption (c)), with a maximum at k
¯
(defined as the capital level such that
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0∆ =
t

k

t
c

t
kkk

F
���� 2.

f ′(k
¯
) = δ), and intersecting again the ct = 0 axis at k̄ (which is the capital

level such that ct = 0, i.e. it is obtained solving the equation f(k̄)−δk̄ = 0).12

The behavior of the ∆kt = 0 locus is portrayed in Figure 2.

To see what happens when the economic system is not on the stability

locus (2.7), pick a capital level ǩ ∈ [0, k̄]; the corresponding consumption

level guaranteeing stationarity for capital obviously is

č = f(ǩ)− δǩ.

If the consumer chooses a consumption level ct > č, her capital stock must

decrease over time: the consumption is so high that our consumer lives using

up part of her capital. More precisely, consumption is higher than the level,

č, guaranteeing that the difference between gross production, f(ǩ), and con-

sumption is exactly equal to capital depreciation δǩ. Therefore the capital

stock must decrease. The converse happens when our consumer chooses a

consumption level ct that is lower than č: her capital increases over time

because a consumption lower than č implies that savings (f(ǩ)− č) exceeds

capital depreciation, and hence there is some net investment. This behavior

is summarized by the arrows in Figure 2.

Merging Figures 1 and 2, we obtain Figure 3, which summarizes the dy-

namics of the model.

12Existence and uniqueness of k̄ are granted by assumptions (b) and (e).
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0∆ =
t

ct
c

t
kk̂

0∆ =
t

k

0k

A

I

E

B

C

kk

F
���� 3.

Notice that there are three steady states (E, the origin, and I). It is

easy to see that E is a steady state: it is the crossing point for the two loci

∆kt = 0 and ∆ct = 0. From Eqs. (1.3) and (1.9) it is clear that at E both

consumption and capital do not change over time when

(2.8)

{
1 = β[f ′(k̂) + (1− δ)]

ĉ = f(k̂)− δk̂
.

Hence, the consumption and capital level characterizing this steady state

can be obtained solving the system above.

The origin is a resting point because of Assumption (c): if capital is 0,

there is no production and hence no possibility of further capital accumula-

tion. This resting point is usually considered uninteresting.

It is less obvious that also I is a steady state. To gain some intuition

about the reason why I is a steady state, consider that the marginal utility

of consumption increases very rapidly as consumption approaches 0 (this

is because we assumed that limct→0 U
′(ct) = ∞). Hence, the increase in

the marginal utility of consumption prescribed by Eq. (1.9) for kt > k̂

implies smaller and smaller reductions in consumption as ct approaches 0.

Hence, consumption does not become negative (which would of course have

no economic meaning) and I is a resting point.
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A less heuristic argument is presented in the next three paragraphs, that

can be skipped by the uninterested reader.

To see that I is a steady state, rewrite (1.9) as:

U ′(ct+1) = U ′(ct)

[
1

β[f ′(kt+1) + (1− δ)]

]
.

Pick a capital level, ǩ, belonging to the interval (k̂,∞): it is easy to

see that f ′(ǩ) + (1 − δ) ∈ (1 − δ, 1/β): this comes from (1.10) and from

the assumptions: f ′′(kt) < 0, and limkt→∞ f ′(kt) = 0. Therefore, when

ǩ ∈ (k̂,∞), the term in the big square brackets in the equation above must

be larger than one, since the largest value for the denominator is “slightly

smaller” than one. Therefore, the Euler equation not only tells us that the

marginal utility of consumption must increase (and hence that consumption

must decrease), but also that the rate of change of marginal utility is limited.

In fact, we have

U ′(ct+1)− U ′(ct)

U ′(ct)
=

1

β[f ′(ǩ) + (1− δ)]
− 1,

and the value of the right hand side of the expression above belongs to the

interval
(
0, 1

β(1−δ) − 1
)
. This has a relevant implication: because the rate

of change of the marginal utility is bounded, when we consider a sequence

of consumption levels that — starting from a non negative value — fulfills

the Euler equation, we see that this sequence cannot go to zero in finite

time. This is because the marginal utility of consumption cannot “reach

infinity” in finite time (bear in mind that limct→0 U
′(ct) = ∞). Because

consumption takes an “infinite time” to reach its limiting value (that is, 0),

“in the meantime” capital must reach k̄ (since consumption decreases, the

system must reach at some time the area below the ∆kt = 0 locus where

capital grows, approaching k̄). Hence I is a stationary state for our system.

Let us now consider that our consumer is constrained by the fact that

her initial stock of capital is given (at the level k0). Hence, in choosing her

optimal consumption path, she must take into account this constraint. In

Figure 3, we have depicted some of the possible paths that our agent may

decide to follow. These paths are intended to fulfill the Euler equation (1.9)

and the capital accumulation constraint (1.3).13

The fact that there are many (actually, infinitely many) trajectories that

are compatible with one initial condition cannot be surprising: while the

13While it is not possible to check that our paths in Figure 3 conform to what is pre-
scribed by our difference equation, notice that they have been drawn respecting the “ar-
rows”, which, in turn, summarize the “direction of movement” obtained from the difference
equations (1.9) and (1.3).
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capital stock k0 is given, our consumer is free to pick her initial consump-

tion level, which then determines the path for consumption and capital (via

equations (1.9) and (1.3)).

2.2. The optimal path. So far, we have seen that there are multiple paths

compatible with the same initial condition. What we need to do now, is to

select the optimal one(s).

First, notice that the trajectory starting at A in Figure 3 cannot be op-

timal: because consumption is ever-increasing, capital must go to zero in

finite time. Since by assumption capital is essential in production, at that

time consumption must collapse, becoming nought. This big jump in con-

sumption violates the Euler equation (which, to be fulfilled, would require

a further increase in consumption). Hence, the path starting at A — ad all

the paths akin to this one — cannot be optimal.

Second, consider the trajectory starting at B. In this case, our consumer

chooses exactly the consumption level that leads the system to the stationary
point E. This path not only fulfills the difference equations (1.9) and (1.3)

but also the transversality condition (2.6). In fact, as time goes to infinity

(i.e. as t→∞), capital and consumption approach their steady state levels,

k̂ and ĉ, which are given by System (2.8). The fact that the long run

levels for consumption and capital are positive and constant, tells us that,

in the steady state, the marginal utility of consumption is finite. Hence,

limt→∞ βtU ′(ct)kt+1 = limt→∞ βtU ′(ĉ)k̂ = 0 simply because β < 1, and this

second trajectory is optimal.

Third, consider the trajectory starting at C and leading to I. In this

case, consumption and capital first increase together, but then consump-

tion (as capital becomes larger than k̂) starts to shrink while the capital

accumulation process is still on. In the long run, our optimizing agent finds

herself around I, devoting all the productive effort to maintain an excessive

stock of capital, which is actually never used to produce consumption goods.

Hence, this trajectory cannot be optimal, and the transversality condition

is violated, because the marginal utility of consumption tends to be infinite.

In the next two paragraphs, that can be skipped, we give a less heuristic

idea of the reasons why a path like the one starting at C violates the tvc.

To check whether a path of this type fulfills the tvc, imagine to be “very

close” to I. Here, capital is (almost) k̄. Recall that for kt ∈ (k
¯
, k̄), f ′(kt) +

(1−δ) < 1 (at k
¯
, f ′(k

¯
) = δ, and f ′′(kt) < 0)), and consider that consumption

should evolve according to

U ′(ct+1) = U ′(ct)
1

β[f ′(kt) + (1− δ)]
.
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Hence, for a capital stock close to k̄, we have that

βU ′(ct+1) = U ′(ct)
1

f ′(kt) + (1− δ)
> U ′(ct).

Because “around” k̄, βU ′(ct+1) > U ′(ct), limt→∞ βtU ′(ct) > 0 (In fact,

suppose that at a given time T our system is already “very close” to I. In

this case, in the following periods, i.e. for t > T, βt−TU ′(ct) > U ′(cT ). Hence

limt→∞ βtU ′(ct) = limt→∞ βTβt−TU ′(ct) > βTU ′(cT )) Hence, the tvc (2.6)

is not fulfilled and any trajectory like the one starting at C is not optimal.

Summing up, the unique optimal path is the one leading to the steady
state E; this path prescribes a monotonic increasing relation between con-

sumption and capital. Our consumer (or our economy) “jumps” on this path

by adjusting the initial consumption to the level compatible with the existing

capital stock, and with the behavior prescribed by our optimal trajectory.

3. T�� D���

� P�����


�� ���
����
��

In this Section, we solve the infinite-horizon growth model exploiting the

dynamic programming approach, taking advantage of our previous under-

standing of the solution to provide an intuitive introduction for this new

technique.

Our representative agent aims at maximizing, as before, the intertemporal

utility function (2.1), so that her problem is to

max
{ct}∞t=0

W0 = max
{ct}∞t=0

∞∑

t=0

βtU(ct).

under the constraints given by kt+1 = f(kt) + (1− δ)kt− ct, for t = 0, 1, .....

Obviously, our optimizing agent’s preferences can be written as:

W0 = U(c0) +
∞∑

t=1

βtU(ct),

in which we have “separated” the utility obtained in the present, period 0,

from the ones that will be enjoyed in the future. However, there is no change

in the meaning for W0.

Notice that the expression above can be reformulated as:

(3.1) W0 = U(c0) + β

[
∞∑

t=1

βt−1U(ct)

]

.

Here, we have collected the factor β that is common to all the addenda

expressing future utilities. The reason for this manipulation is that the term
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in the big square brackets represents the consumer’s preferences from the

perspective of time 1.

Equation (3.1) allows us to write our problem as:

(3.2) max
{ct}∞t=0

W0 = max
{ct}∞t=0

{

U(c0) + β

[
∞∑

t=1

βt−1U(ct)

]}

.

under the constraints kt+1 = f(kt) + (1− δ)kt− ct, for t = 0, 1, ..... In other

words, we wish to determine the optimal consumption c∗t , and the implied

capital level k∗t+1, for t = 0, 1, ....

Now consider, in Figure 4, the optimal path starting from B and ap-

proaching E. This trajectory represents a function, say ϕ(.), relating the

optimal consumption to the same period capital stock. We mean that c∗1
can be expressed as c∗1 = ϕ(k1); that c

∗
2 can be viewed as c

∗
2 = ϕ(k2), and

so on. The function c∗t = ϕ(kt) is unknown, and it can be very complex; ac-

tually, what usually happens is that the function ϕ(.) cannot be expressed

in a closed−form analytical way. Nevertheless, the point that we under-

score here is that Figure 4 powerfully supports the idea that we have just

stated, i.e. that we can consider the optimal consumption as a function of

contemporaneous capital.

It is worth underscoring that our function c∗t = ϕ(kt) is “stationary”: it is

always the same function, irrespective of the time period we are considering.

Hence, the time dimension of the problem disappears. The intuition to

understand why ϕ(.) is independent of time is to consider our consumer’s

perception of the future: because she lives forever, at time 0 her horizon is

infinite, and so it is at time 1. Hence, she must not ground her decision on

time, but just on capital, which therefore is the unique state variable in our

model.

Notice that we have not proved that ϕ(.) is continuous and differentiable.

However, the evolution of capital and consumption on the optimal path

must fulfill equations (1.9) and (1.3), which are made up of continuous and

differentiable functions. Hence, we have “good reasons to believe” that ϕ(.)

actually is continuous and differentiable, and we skip the formal proof for

these statements.

Now consider that if we can write c∗1 = ϕ(k1), then we are also able to

express the capital stock at time 2 as a function of k1: in fact, from (1.3),

k∗2 = f(k1) + (1− δ)k1 − c∗1,

hence, on the optimal path:

k∗2 = f(k1) + (1− δ)k1 − ϕ(k1) = ζ(k1).
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The fact that k∗2 = ζ(k1), allows us to consider the time 2 consumption

as a function of k1: c∗2 = ϕ(k∗2) = ϕ(ζ(k1)).

The important point here is to realize that we can iterate this reasoning
to express the whole sequence of optimal consumptions as a function of the
time 1 capital stock. (In fact, in general, k∗t+1 = ζ(k∗t ), and c

∗
t+1 = ϕ(k∗t+1) =

ϕ(ζ(k∗t )), and we can iterate the substitutions until we reach k1).

Hence, when consumption is optimally chosen from period 1 onward, the

group of addenda in the big square brackets in (3.2) can be expressed as a

function of k1 alone:

∞∑

t=1

βt−1U(c∗t ) = V (k1).

V (k1) is a “maximum value function”: it represents the maximum overall

utility that can be obtained in period 1, when all the consumption levels

are optimally chosen given the available capital stock, and given the need

to fulfil the constraints of the (1.3)-type.

Because the value of all the future choices can be summarized in the func-

tion V (k1), we can think about the consumer’s intertemporal maximization

problem in a way that is different from the initial one. We can imagine that,

at time 0, she picks her optimal period 0 consumption, taking account of
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the fact that, given the available capital, an increase in current consump-

tion reduces the future capital stock (via Eq. (1.3)), and therefore negatively

affects the future overall utility V (k1).

Accordingly, the consumer’s intertemporal problem can be written as:

max
c0
{U(c0) + βV (k1)} ,

s.t. k1 = f(k0) + (1− δ)k0 − c0,

k0 given.

Now, imagine that our consumer solves her period 0 constrained optimiza-

tion problem, which means that she determines c∗0 as a function of k0. Our

representative consumer, obtaining c∗0, determines also her time 0 maximum

value function, V (k0), which means that

V (k0) = max
c0
{U(c0) + βV (k1)} ,

s.t. k1 = f(k0) + (1− δ)k0 − c0,(3.3)

k0 given.

The above problem is said to be expressed as a “in recursive form” or as

a “Bellman equation”.

While it is easy to understand that Problem (3.3) gets its name from

Richard Bellman, the Author of the well know [1957] book, it is not so

simple to explain in plain English the meaning of the word “recursive”.

Let us try. A procedure is recursive when one of the steps that makes

up the procedure requires a new running of the procedure itself. Hence,

a recursive procedure involves some degree of “circularity”. As a simple

example, consider the following recursive definition for the factorial of an

integer number:

«if n > 1, then the factorial for n is n! = n(n− 1)!;

when n = 1, then 1! = 1».

Clearly, the above procedure defines n! by means of (n−1)!, that is defined

exploiting (n− 2)! and so on. This procedure goes on until 1 in reached, at

this point the “termination clause”, 1! = 1, enters into stage.

The logic of problem (3.3) is quite similar: the maximum value V (k0)

is obtained choosing the current consumption to maximize the sum of the

current utility and of the next-period discounted maximum value, which,

in turn is obtained by choosing future consumption in order to maximize
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the sum of the future period utility and of the two periods ahead maximum

value ....

The difference between (3.3) and the factorial number example lies in the

fact that our Bellman equation does not have a termination clause. This

is due to the fact that the planning horizon for our representative agent is

infinite. If she were to optimize only between period 0 and a given period

T — for example, because she is doomed to die at T — it would have been

natural to introduce a terminal condition: in this case, the maximum value

at time T+1 of any stock of capital kT+1 would have been equal to nought.
14

Notice that the example we have just sketched implies that the maximum

value function depends not only on capital, but also on time. In fact, when

the agent’s time horizon is finite, the maximum value function typically

depends on the remaining optimization horizon: how long you are going

to live typically matters a lot for you, and it also affects how you evaluate

your stock of wealth. Accordingly, at time t the maximum value function is

characterized by some terms involving T − t.

In contrast — as already underscored — in Problem (3.3) the maximum

value function depends only on capital. This sometimes strikes sensitive

students: in fact, considering V (kt) as a function of capital alone, we im-
ply that V (kt) does not change over time despite the fact that — moving

backward from time 1 to time 0 — we discount the previous maximum value

function, and then we add to it the term U(c∗0). In other words, in problem

(3.3), we have the very same function V (kt) both on the left and on the

right hand side.

The intuition to understand why V (kt) is independent of time is to con-

sider again that our consumer’s perception of the future is the same at time
0 and at time 1. This occurs simply because she lives forever. Hence, she
bases her consumption decision only on capital, which therefore is the unique

state variable in our model. Because the function V (kt) summarizes the op-

timal consumption decisions from period t onward, this function depends

only on capital.

The independence on time of the maximum value function in infinite hori-

zon frameworks is one of the reasons why these frameworks are so popular:

their maximum value function — having a unique state variable — is less com-
plex to compute. Notice however that the absence of a termination clause
makes the problem of finding a solution conceptually more difficult. In fact,
when we have a terminal time, we know the maximum value function for

that period: this is just the final period utility function. Hence, we can

14Accordingly, the period T maximum value would have simply been V (kT ) = U(cT ) with
cT = f(kT ) + (1− δ)kT ).
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always solve the problem for the terminal time, and then work “backward”

toward the present. This simple approach is precluded in infinite horizon

models. Solving a finite horizon problem is similar to decide how to send

to the surface of the Moon a scientific pod, while the solution of an infi-

nite horizon model is analogous to finding an optimal lunar orbit for the

pod. In the first case, you can analyze all the possible locations to pick the

most convenient one, say the Tranquility sea. Then you realize that to send

your pod to the Tranquility sea, you need a lunar module; then−working

backward−you determine that a spaceship is needed to get close to the moon

and finally you understand that it takes a Saturn−V missile to move the

spaceship out of the Earth atmosphere. Notice that, in this case, you have

a clear hint on how to start to work out your sequence of optimal decisions,

and your sequence is composed of a finite number of steps. On the contrary,

if you need to have the scientific pod orbiting around the Moon, your time

horizon is (potentially) infinite, and you need to devise an infinite sequence

of decisions. Moreover, because you pod is continuously orbiting, you do not

have a clearly specified terminal condition from which to move backward.

The Bellman Equation (3.3) is useful also to introduce some the dy-

namic programming jargon. The single period payoff (utility) function is

often called the return function, the dynamic constraint is referred to as
the transition function, while a function relating in an optimal way the
control variable(s) to the state variable(s) is called the policy function. In
our example, the policy function is c∗t = ϕ(kt), the transition function is

kt+1 = f(kt) + (1− δ)kt − ct, while the return function is, of course, U(ct).

Before studying how an infinite horizon problem can be solved, we need

to understand under which conditions the solution for problem (3.3) exists

and is unique.

Stokey, Lucas, and Prescott [1989] assure us that

Theorem 1. If: i) β ∈ (0, 1), ii) the return function is continuous, bounded
and strictly concave, and iii) the transition function is concave, then the
maximum value function V (kt) not only exists and is unique, but it is also
strictly concave, and the policy function is continuous.

Assumption i) is usually referred to as the “discounting” hypothesis, As-

sumption ii) requires that the utility function U(ct) is continuous, bounded

and strictly concave, while Assumption iii) constrains the production func-

tion to be concave, so that the transition function kt+1 = f(kt)+(1−δ)kt−ct

is concave for any given ct.

The above result is neat, but it suffers from a relevant drawback: it does

not allow us to work with unbounded utility functions, and hence we cannot
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assume, for example, that U(ct) = ln(ct). In general, it does not seem easy

to justify an assumption that precludes utility to grow without bounds.15

Stokey, Lucas, and Prescott discuss the case of unbounded returns in some

details (see their Theorem 4.14); here we follow Thompson [2004] in stating

a more restrictive theorem that will however suffice for many applications.

Theorem 2. (A theorem for unbounded returns). Consider the dynamic
problem (3.3). Assume that β ∈ (0, 1), and that the term

∑∞
t=0 β

tU(ct)

exists and is finite for any feasible path {kt}
∞
t=0 , given k0. Then there is a

unique solution to the dynamic optimization problem.

Theorem 2 essentially restricts the admissible one-period payoffs to se-

quences that cannot grow too rapidly relatively to the discount factor.16 To

see how this theorem can be applied, consider for instance Figure 3. Clearly,

when k0 < k̄, capital cannot become larger than k̄. Hence, given k0 ∈ [0, k̄],

U(ct) is finite, and so is
∑∞

t=0 β
tU(ct), for any feasible path {kt}

∞
t=0 .

17

Before considering how to solve a Bellman problem, here you find a caveat
lector : bear in mind that we have been able to easily reformulate our in-
tertemporal maximization problem in the recursive form (3.3) because the

payoff function and the intertemporal constraint are time-separable.18

Let us now eventually tackle the problem of finding the solution for the

Bellman equation. This is a functional equation, because we must determine

the form of the unknown function V (.). Notice that from the way we have

formulated Problem (3.3) it is now “natural” to look for the function V (.),

while our discussion in the previous Sections may have induced to think that

what is really important is the policy function. It will soon become clear

that once we have obtained the maximum value function V (.) it is easy to

obtain the policy function.

15Unfortunately, the boundedness of the return function is an essential component of the
proof for the results stated in Theorem 1. In fact, to prove existence and uniqueness for
V (kt), one needs to use an appropriate fixed point theorem, because the function V (kt)
is the fixed point of Problem (3.3), and the proofs of fixed point theorems require the
boundedness of the functions involved.
16The idea behind the proof, that we skip, is that if the term

∑
∞

t=0 β
tU(ct) exists and

is finite, then the maximum value function is finite, and we can apply an appropriate
fixed-point theorem. Thompson (2004) is a very good introduction to the existence issues
of the maximum value function. He also provides several result useful to characterize
the maximum value function. The key reference in the literature is Stokey, Lucas, and
Prescott [1989], which is however much more difficult.
17The conditions stated in Theorem 1 or 2 imply the fulfilment of Blackwell’s sufficient
conditions for a contraction.
18Moreover, if our agent’s utility depended not only upon current but also upon future
(expected) consumption levels, we would need to tackle a time inconsistency problem. For
a simple introduction to this specific issue, see de la Fluente [2000, ch. 12].
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Problem (3.3) tells us that, to obtain V (k0), it is necessary to maximize,

with respect to c0, the expression U(c0) + βV (k1). Provided that V (k1) is

continuous and differentiable — a point that we are ready to accept — the

necessary condition for a maximum is obtained by differentiating U(c0) +

βV (k1) with respect to current consumption, which yields:

(3.4) U ′(c∗0) + βV ′(k1)
∂k1
∂c0

= 0,

where, of course, ∂k1/∂c0 = −1, from the capital accumulation equation.

The first order condition above relates the control variable (current con-

sumption) with the current and future values of the state variable (k0 and

k1). We can exploit the first order condition (3.4), the Bellman equation,

and the constraint (1.3) to form the system:

(3.5)






V (k0) = U(c∗0) + βV (k1),

k1 = f(k0) + (1− δ)k0 − c∗0,

U ′(c∗0) = βV ′(k1),

k0 given.

The above system determines the form of the maximum value function

V (.), and pins down k1, and c∗0, for a given k0. Notice that the “max”

operator in the Bellman equation has disappeared, simply because we have

already performed this operation, via Eq. (3.4). Now consider what we

often do when we deal with a functional equation: when we need to solve

a difference or a differential equation, we (try to) guess the solution. Here,

we can proceed in the same way. The next Section provides examples for

which this strategy is successful.

4. G���� ��� $��
��

4.1. Logarithmic preferences and Cobb-Douglas production. In this

Sub-section, we analyze a simplified version of the Brock and Mirman (1972)

optimal growth model. We shall propose a tentative solution, and then we

will verify that the guess provides the correct solution.

In this framework the consumer’s time horizon is infinite, and her prefer-

ences are logarithmic:

(4.1) W0 =
∞∑

t=0

βt ln(ct),

with β ∈ (0, 1). Using the jargon, we say that we are analyzing the case of

a logarithmic return function. The production function is a Cobb-Douglas
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characterized by a depreciation parameter as high as unity (i.e. δ = 1, hence

capital entirely fades away in one period). Accordingly, we have that

(4.2) kt+1 = Akαt − ct,

where the “total factor productivity” parameter A is constant and α ∈ (0, 1).

Our problem is to solve:

V (k0) = max
c0
{ln(c0) + βV (k1)} ,

s.t. k1 = Akα0 − c0,

k0 given.

The first order condition, corresponding to equation (3.4), is: 1/c∗0 =

βV ′(k1). This condition must be exploited in the problem above to substitute

out consumption. This yields:

(4.3)






V (k0) = ln([βV ′(k1)]
−1) + βV (k1)

k1 = Akα0 −
1

βV ′(k1)

k0 given.

This formulation makes it apparent once again that the Bellman equa-

tion is a functional equation: it involves the function V (.) and its derivative

V ′(.); the constraint incorporates the initial condition for the state variable.

Notice that, because k0 is given, once V
′(.) is known the constraint deter-

mines k1, and therefore the evolution for the capital stock. Notice also that

system (4.3) corresponds to (3.5), but for the fact that here we have directly

substituted out c∗0 thanks to the explicit formulation c
∗
0 = [βV ′(k1)]

−1.

Our weapon to seize the solution of the functional equation problem, the

tentative solution, in this case takes the form:

(4.4) V (kt) = e+ f ln(kt),

where e and f are two constants to be determined, i.e. two undetermined

coefficients.19 Spend a few seconds in considering the guess (4.4). It is a

linear transformation of the utility function, where the control variable has

been substituted by the state variable. When trying to devise a sensible

tentative solution, it is usually sensible to proceed as we did, i.e. to start

with a guess that is “similar” to the return function.

19Notice that we are bold: we think we know the correct functional form for the maximum
value function. However, we are not arrogant: we do not claim that we can imagine the
maximum value function complete with all its details.
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Taking the guess seriously, and exploiting it in (4.3), we obtain, for a

given k0:

(4.5)

{
e+ f ln(k0) = ln

(
k1
βf

)
+ β[e+ f ln(k1)]

k1 = Akα0 −
k1
βf

.

One immediately notices that the second equation may be solved for k1:

(4.6) k1 =
βf

1 + βf
Akα0 ,

so that

c1 =
1

1 + βf
Akα0 .

Substituting the above result in the first equation in (4.5) gives:

e+ f ln(k0) = ln

(
1

1 + βf
Akα0

)
+ β

[
e+ f ln

(
βf

1 + βf
Akα0

)]
.

Exploiting the usual properties enjoyed by logarithmic functions, we ob-

tain:

e+ f ln(k0) = − ln (1 + βf)+

+ lnA+ α ln k0 + βe+ βf ln(βf)− βf ln (1 + βf) + βf lnA+ αβf ln k0.

The above equation must be satisfied for any k0 and for any admissible
value of the parameters A,β, and α. Hence, it must be true that:

{
f = α+ αβf

e = − ln (1 + βf) + lnA+ βe+ βf ln(βf)− βf ln (1 + βf) + βf lnA
.

From the first equation in the system above we obtain:

f =
α

1− αβ
.

Notice that f > 0, because α, β ∈ (0, 1). This implies V ′(k) > 0, a

sensible result which tells us that a richer consumer enjoys a higher overall

utility. Substituting f in the second equation gives:

(4.7) e =
1

1− β

[
αβ

1− αβ
ln (αβ) + ln (1− αβ) +

1

1− αβ
lnA

]
.

The equation above provides us with some intuition concerning the reason

why we need the assumption β < 1: were this requirement not fulfilled (i.e.

were β = 1), the maximum value function would “explode” to infinity.
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Because f and e are independent from capital, our guess (4.4) is verified.

Substituting f into (4.6), we obtain: k1 = αβAkα0 , which is the specific

form of the function kt+1 = ζ(kt) introduced in Section 3.

From the first order condition, we know that c∗0 = 1/ [βV ′(k1)] , hence,

using our guess, the computed value for f, and the fact that k1 = αβAkα0 ,

we obtain: c∗0 = (1−αβ)Akα0 , which is the function ct = ϕ(kt) which applies

for this example.

The consumption function c∗0 = (1 − αβ)Akα0 is a neat but somewhat

economically uninteresting result: it prescribes that the representative agent

must consume, in each period, a constant share (1 − αβ) of her current

income, Akα0 . Notice however that this share decreases with both β and α,

which makes economic sense: an increase in β implies that the future is more

important, while an increase in α, involving an higher marginal productivity

for capital, increases the incentive to save.

Notice that our consumption function relates the control variable to the

state variable: hence, it is a policy function; finally notice also that, from

k1 = αβAkα0 , we can easily obtain the steady state level for capital, that is:

k̂ = (αβA)
1

1−α .

Having already obtained the maximum value function, it is certainly funny

to ask ourselves to prove that it exits and is unique. Nevertheless, this is

exactly what we are going to do in the next five paragraphs, in which we show

that Theorem 2 can be applied to the utility and production functions under

consideration. This effort is motivated by the fact that we wish to develop

a line of reasoning that may be helpful also when it is not possible to find

a closed-form solution for the maximum value function. The uninterested

reader may skip these paragraphs. In this case, however, Exercise 4 will

prove rather difficult.

Recall that U(ct) = ln ct, and that kt+1 = Akαt − ct. Notice that the path

for capital characterized by the fastest possible growth for capital itself is

obtained by choosing zero consumption in each period. This path is given

by ǩ1 = Akα0 , ǩ2 = Aǩα1 , ... Hence, in general, we have that

ln ǩt = lnA+ α ln ǩt−1 = lnA+ α lnA+ α2 ln ǩt−2 =

= ... =
1− αt

1− α
lnA+ αt ln k0.

Notice also that — in period t — the largest one-period utility is obtained

by consuming the entire output that the representative agent can produce

at that time, i.e.

U(čt) = ln(Aǩαt ) = lnA+ α ln ǩt.
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Therefore, if we follow the policy prescribing to save everything up to

period t− 1 and then to consume the entire output, we obtain:

U(čt) = lnA+ α ln ǩt =
1− αt+1

1− α
lnA+ αt+1 lnk0.

Imagine, counterfactually, that the above policy could be followed in every
period (may be thanks to the intervention of a powerful wizard). In this case,

the lifetime utility for the representative agent would be:

∞∑

t=0

βt ln čt =
∞∑

t=0

βt
(

1− αt+1

1− α
lnA+ αt+1 lnk0

)
=

=
1

(1− β) (1− βα)
lnA+

α

1− βα
ln k0.

It is obvious that the above expression is finite. Clearly, any feasible path
would yield a lower lifetime utility, therefore, any feasible sequence of payoffs

must be bounded (in present value). This implies that the maximum value

function must also be bounded. Because
∑∞

t=0 β
tU(ct) exists and is finite

for any feasible path, Theorem 2 applies and the maximum value function

is unique.

Exercise 1. Assume that i) the single period utility function is: ln(ct) +

γ ln(1 − lt), where lt ∈ [0, 1] is the share of time devoted to labour, and
γ > 0; ii) the dynamic constraint is kt+1 = Akαt l

1−α
t − ct, where A > 0 and

0 < α < 1. Find the value function, and the related policy functions.
(Hint: because we have two control variables, the first order conditions

....)

Exercise 2. (Habit persistence) Assume that i) the single period utility
function is: ln(ct) + γ ln(ct−1), where γ < 0; ii) the dynamic constraint
is kt+1 = Akαt − ct, where A > 0 and α ∈ (0, 1) . Find the value function,
and the related policy function.

(Hint: consider past consumption as a state of the system, hence the value
function has two arguments: kt and ct−1....)

Exercise 3. Assume that i) the single period utility function is: c1−γ
t /(1−γ),

where γ ∈ [0, 1)∪(1,∞); ii) the dynamic constraint is kt+1 = Akt−ct, where
A > 0. Find the value function, and the related policy function.

Exercise 4. Provide — for the return and the transition functions used in the
previous Exercise 3— a condition on γ such that the boundedness conditions
in Theorem 2 is satisfied.
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4.2. Quadratic preferences with a linear constraint. We now con-

sider a consumer, whose time horizon is again infinite, characterized by

“quadratic” preferences:

(4.8) W0 =
∞∑

t=0

βt
(
ε+ γct −

η

2
c2t

)
, with β ∈ (0, 1).

Because the parameters γ and η are assumed to be positive, the marginal

utility for our consumer is positive for ct < γ/η, while it is negative for

ct > γ/η. Hence, the single-period utility is at its maximum when ct = γ/η,

which is called the “bliss point” in consumption (the corresponding utility

is ε+γ2/(2η)).20 The intertemporal constraint is linear in the state variable

kt:

(4.9) kt+1 = (1 + r)kt − ct.

Notice that we may interpret kt as the consumer’s financial assets and r

as the interest rate. Notice also that, because the utility function is strictly

concave and bounded and the transition function is concave, we can be sure

that the value function is unique and strictly concave (Theorem 1).

Our problem is to solve:

V (k0) = max
c0

{
ε+ γc0 −

η

2
c20 + βV (k1)

}
,

s.t. k1 = (1 + r)k0 − c0,

k0 given.

As before, we find the first order condition, which is: γ − ηc∗0 = βV ′(k1).

From the dynamic constraint we obtain c0 = (1 + r)k0 − k1, which is used

to substitute consumption out of the Bellman equation and out of the first

order condition. This yields

(4.10)






V (k0) = ε+ γ[(1 + r)k0 − k1]−
η
2 [(1 + r)k0 − k1]

2 + βV (k1)

γ − η[(1 + r)k0 − k1] = βV ′(k1),

k0 given.

Notice that system (4.10) corresponds to (3.5), but for the fact that we

have substituted out c∗0 exploiting the linear constraint (4.9).

The logic of the solution method is the same we have experienced in

the previous example: accordingly, we now introduce the tentative solution,

20We do not take a position about ε: it can be positive, negative or nought. For example,
a negative ε implies that our consumer needs a minimal amount of consumption to start
enjoying life (and hence having a positive utility).
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which takes the same functional form of the return function:

(4.11) V (kt) = g + hkt +
m

2
k2t ,

where g, h, and m are the undetermined coefficients. The (small) difference

with the example in Sub-section 4.1 is that in the present case we shall set up

a three equations system, because we need to determine three coefficients.

As a preliminary, from the second equation in (4.10), we obtain exploiting

our guess (4.11):

k0 =
1

1 + r

[
γ − βh

η
+
η − βm

η
k1

]
.

The equation above grants us that — in the present example — the function

kt+1 = ζ(kt) is linear.

Substituting the guess (4.11) for V (k0), and V (k1) in the first equation

in (4.10), and exploiting the above expression for k0, we obtain a quadratic

equation in k1. Because this equation must be satisfied for any value of k1,

it must be true that:

(4.12)




g + h
1+r

(
γ−βh

η

)
+ m
2(1+r)2

(
γ−βh

η

)2
= ε+ γ

η (γ − βh)− (γ−βh)2

2η + βg

h
1+r

(
η−βm

η

)
+ m

(1+r)2

(
η−βm

η

)(
γ−βh

η

)
= −γβm

η + (γ−βh)βm
η + βh

m
2(1+r)2

(
η−βm

η

)2
= − (βm)2

2η + βm
2

.

Inspection of the above system reveals that it is convenient to solve first

the third equation: the unique unknown it involves ism. From this equation,

we immediately obtain:

(4.13) m =
η

β
[1− β(1 + r)2].

Inserting (4.13) into the second equation in (4.12) gives an equation which

can be solved for h, yielding:

(4.14) h =
γ

β

[
β(1 + r)2 − 1

]

r
.

Finally, we can use (4.14) and (4.13) into the first equation in (4.12), to

obtain g:

(4.15) g =
ǫ

1− β
+

γ2

2ηβ(1− β)

[
1− β(1 + r)

r

]2
.
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From (4.15) we see once again why the assumption β < 1 is crucial: it

prevents the maximum value function from exploding to infinity. Because

g, h and m are independent of the state variable, that is capital, our guess

(4.11) is correct.21

4.2.1. A particular case. This discussion requires a preamble. In a com-
petitive economy, the marginal productivity of capital (net of depreciation)

equals the interest rate. In fact, when the factor markets are competitive,

capital is paid its marginal productivity, and the interest rate is equalized to

the latter by competition on the financial market. When we accept the as-

sumption of competitive markets, we accordingly interpret the interest rate

rt as the net marginal productivity of capital, f
′(kt)− δ.

Coming back to our linear quadratic example, we notice that, for the dy-

namic constraint to be linear (as it is assumed by (4.9)), the interest rate,

and hence f ′(kt+1) must not change; this can happen with a potentially

varying capital stock only in two cases. Either f(kt) is linear, or f ′(kt+1)

stays constant because the capital stock actually does not change over time,

which means that the economy is in its steady state. Linearity of the produc-

tion function is a strong assumption precisely because it amounts to accept

that the marginal productivity of capital is constant. Hence, we assume

that capital is constant at its long run value, k̂. Notice, that, at this level

of the capital stock, it must be true that β
(
f ′(k̂) + 1− δ)

)
= 1 (Equation

(1.10)), and hence that β(1 + r) = 1. In the steady state, in fact, the impa-

tience parameter β exactly offsets the positive effects on saving exerted by

its reward.

For β(1 + r) = 1, which means “around” the steady state, the value

function parameters (4.13-4.15) simplify to:






m = − η
β r

h = γ
β

g = ǫ
1−β

.

In this particular−but sensible−case, it is easy to find the policy func-

tion. Exploiting the tentative solution (4.11), and the parameters computed

above, the second equation in (4.10) becomes: γ−η[(1+r)k0−k1] = γ−ηrk1,

which confirms k1 = k0. Hence, from the dynamic constraint (4.9), we get:

c∗0 = rk0. It is also immediate to check that the transversality condition

holds. In fact, in this model the tvc is:

limt→∞ βt(γ − ηc∗0)k0,

21Our example has required a good deal of calculations. When a linear-quadratic model
involves two (or more) state variables, it has to be solved by means of numerical techniques
involving matrix manipulations. Refer to Chow [1997] or to Sargent and Ljungqvist [2012].
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which converges to 0 simply because limt→∞ βt = 0.

Exercise 5. (a) Study the dynamics for ct and kt if β(1 + r) > 1. Dis-
cuss whether the transversality condition is always satisfied. (b) Study the
dynamics for ct and kt if β(1 + r) < 1. Discuss whether the transversality
condition is always satisfied.

4.2.2. An application to the growth model. Let us now consider again the

growth model with logarithmic preferences, so that the consumer’s over-

all utility is given by (4.1). Assume that the production function is Cobb-

Douglas; but now take into account the fact that capital depreciates slowly:

actually, apart maybe some fancy electronic devices, physical capital does

not depreciate in one period. Hence, our intertemporal constraint is:

(4.16) kt+1 = Akαt + (1− δ)kt − ct.

Because there is no way to obtain a closed form analytic solution, one

approach that we can use relies on a linear-quadratic approximation of our

model. This, of course, implies the need to choose a point around which

to approximate. The standard choice for this point is the steady state,

which is certainly sensible if our research project involves, for example, the

introduction of some sort of shock, and the study of its effects, in a “mature”

economic system.

Hence, we determine first the steady state. With the production function

(4.16), the steady state equations (2.8) become:

(4.17)

{
β
(
αAk̂α−1 + 1− δ

)
= 1

ĉ = Ak̂α − δk̂
.

The above system allows to determine the consumption and capital steady-

state levels.22 We now apply Taylor’s theorem to the logarithmic utility

function, obtaining:

(4.18) ln(ct) = ln(ĉ) +
1

ĉ
(ct − ĉ)−

1

2ĉ2
(ct − ĉ)2.

As for the capital accumulation constraint, we truncate the Taylor’s ap-

proximation to the first term, which yields:

kt+1 = Ak̂α + (1− δ)k̂ + αAk̂α−1(kt − k̂) + (1− δ) (kt − k̂)− ĉ− (ct − ĉ),

which immediately becomes:

22Which are: k̂ =
(

αβA
1−β(1−δ)

) 1

1−α

, and ĉ =
(
1−β[1−δ(1−α)]

αβ

)(
αβA

1−β(1−δ)

) 1

1−α

.
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kt+1 = Ak̂α + (1− δ)k̂ − ĉ+
(
αAk̂α−1 + 1− δ

)
(kt − k̂)− (ct − ĉ),

and hence, using (4.17):

(4.19) kt+1 − k̂ =
1

β
(kt − k̂)− (ct − ĉ).

Equations (4.18) and (4.19) lead to the very same structure that can be

found in (4.8) and (4.9), and hence we can solve the approximated problem

using the tentative solution postulated for the linear-quadratic case (the

relevant variables being the deviations of capital and consumption from the

steady state).

5. T�� ������ �������

The “guess and verify” technique is useful only when a closed form solu-

tion exists. Unfortunately, only a few functional forms for the payoff function

and for the dynamic constraint allow for a closed form maximum value func-

tion: the examples and the exercises in the previous Section almost work

out the list. Hence, it is often useful to “qualify” the solution, identifying

some of its characteristics or properties, without looking for the (actually

non-existent) analytic formulation for the maximum value function. In this

Section, we review two important results, that may be helpful in analyzing

the solution for a Bellman problem.

5.1. The Envelope Theorem. We now apply the envelope theorem to the

growth model formulated in Problem (3.3). In other words, we concentrate

— for simplicity — on a specific application of the envelope theorem. However,

the results that we obtain, besides being important, are of general relevance.

To save on notation, we now denote the dynamic constraint by k1 =

g(k0, c0), accordingly, the dynamic programming formulation for our utility-

maximization problem becomes:23

V (k0) = max
c0
{U(c0) + βV (k1)} ,

s.t. k1 = g(k0, c0), k0 given.

We already know that the first order condition with respect to the control

variable is Uc(c
∗
0) + βVk(k1)

∂k1
∂c0

= 0. Consider now the Bellman problem

23Partial derivatives will soon come into play. Hence, we start denoting derivatives by
a subscript. Accordingly, gk(k0, c0) is the partial derivative of g(k0, c0) with respect to
capital, and so on. This convention shall be maintained but when we deal with models or
exercises in which we only need to differentiate functions with a single argument.
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above, assuming to be on the optimal path. In this case, we have V (k0) =

U(c∗0) + βV (k1) (the max operator disappears exactly because we already

are on the path along which consumption is optimal). The total differential

for the last equation is: dV (k0) = dU(c∗0) + βdV (k1), or: Vk(k0)dk0 =

Uc(c∗0)dc0 + βVk(k1)dk1. The differential for k1 can be easily obtained from

the dynamic constraint: dk1 = gk(k0, c0)dk0 + gc(k0, c0)dc0.

Exploiting dk1, the total differential for the Bellman equation becomes:

Vk(k0)dk0 = Uc(c
∗
0)dc0 + βVk(k1) [gk(k0, c

∗
0)dk0 + gc(k0, c

∗
0)dc0] .

This expression, using the first order condition for c0, reduces to:

Vk(k0) = βVk(k1)gk(k0, c
∗
0).

This is an application of the Envelope theorem: we have simplified the

total differential precisely because we are on the optimal path, and hence

the first order condition must apply.

Notice that we could have expressed the above result as follows:

(5.1) Vk(k0) = βVk(k1)
∂k1
∂k0

,

where ∂k1/∂k0 is the partial derivative, gk(k0, c
∗
0).

Equation (5.1) can be useful in several contexts. In fact, it can be refor-

mulated in a very convenient way. Because the first order condition states

that: Uc(c
∗
0) = βVk(k1), it must also be true that Uc(c

∗
1) = βVk(k2). With

these facts in mind, we forward once equation (5.1), and we obtain:

(5.2) Uc(c
∗
0) = βUc(c

∗
1)gk(k1, c

∗
1),

which is the Euler equation (bear in mind that, in the growth example,

gk(k1, c1) = f ′(k1) + 1− δ, and refer to (1.9)). Not only it is often easier to

solve numerically equation (5.2) than the Bellman’s one — as we shall see in

Sub-section 6.2 — but equation (5.2) can be interpreted without referring to

the still unknown maximum value function.

That Equation (5.2) corresponds exactly to Equation (1.9) reassures us

about the fact that the Bellman’s approach and the Lagrange’s one lead to

the same result.

Exercise 6. Exploiting the envelope theorem, find as many details as pos-
sible of the maximum value function for the non-stochastic version of the
Brock and Mirman model discussed in Sub-section 4.1.

5.2. The Benveniste and Scheinkman formula. In this Sub-section —

that can be skipped during the first reading — we consider a more general
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framework, where the return function, now denoted byQ(.), does not depend

only on the control variables, but it also depends on the state. In this case

the dynamic programming formulation is:

V (k0) = max
c0
{Q(k0, c0) + βV (k1)} ,

s.t. k1 = g(k0, c0), k0 given.

The first order condition with respect to the control variable yields:

Qc(k0, c
∗
0) + βVk(k1)

∂k1
∂c0

= 0.

Assume, as in the previous Sub-section, to be on the optimal path, so that:

V (k0) = Q(k0, c
∗
0) + βV (k1). The total differential for the last equation is:

dV (k0) = dQ(k0, c
∗
0) + βdV (k1), or:

Vk(k0)dk0 = Qc(k0, c
∗
0)dc0 +Qk(k0, c

∗
0)dk0 + βVk(k1)dk1.

The differential for the period 1 capital is obtained from the dynamic con-

straint, and is dk1 = gk(k0, c0)dk0+gc(k0, c0)dc0. Hence, the total differential

for the Bellman’s equation becomes:

Vk(k0)dk0 =

= Qc(k0, c
∗
0)dc0 +Qk(k0, c

∗
0)dk0 + βVk(k1) [gk(k0, c

∗
0)dk0 + gc(k0, c

∗
0)dc0] .

Using the first order condition, the equation above reduces to:

(5.3) Vk(k0) = Qk(k0, c
∗
0) + βVk(k1)gk(k0, c

∗
0).

This is the Benveniste and Scheinkman formula, which has been obtained

as an application of the Envelope theorem.

The usefulness of the Benveniste and Scheinkman formula (5.3) can be

appreciated considering that, in many problems, there is not a unique way

to define states and controls. For example, in the growth model, one could

define as control variable not consumption, but gross savings (which means

that the control is st = f(kt) − ct). When depreciation is complete (i.e.

when δ = 1), this modification implies that the next-period state is equal to

the current control (kt+1 = st), and the Bellman problem (3.3) becomes:
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V (k0) = max
s0
{Q (f(k0)− s0) + βV (k1)} ,

s.t. k1 = s0,(5.4)

k0 given.

With this formulation, the first order condition is: Qc (f(k0)− s∗0) =

βVk(k1).
24

Differentiating the Bellman equation “on the optimal path”, we obtain:25

Vk(k0)dk0 = Qc (f(k0)− s∗0) (df(k0)− ds0) + βVk(k1)dk1.

Because dk1/ds0 = 1, using the first order condition, the differential can

be reduced to:

(5.5) Vk(k0) = Qc (f(k0)− s∗0) fk(k0),

which is how the Benveniste and Scheinkman formula applies to this prob-

lem.

Formula (5.5) is interesting because it shows that the Benveniste and

Scheinkman result can be used to highlight a relation between the maxi-

mum value function, the return function and the dynamic constraint. The

Benveniste and Scheinkman formula leads to such relation when the tran-
sition function is such that the period t+1 state variable does not depend
on the period t state (i.e. when the partial derivative of the dynamic con-
straint with respect to period t state variable is 0). For this to be true, it
is necessary that the initial period state variable (k0) is excluded from the

dynamic constraint, as it happens in problem (5.4). The example we have

just developed shows that this can be achieved by means of an appropriate

variable redefinition (see Sargent [1987] pp. 21-26 for a discussion and an

alternative example).

Exercise 7. Apply the Benveniste-Scheinkman formula to the traditional
(Ramsey) growth model, and show that the maximum value function is con-
cave.

Exercise 8. By means of an appropriate variable redefinition, find the equiv-
alent of formula (5.5) for the traditional growth model if δ < 1.

24Alternatively, defining Q (c0) (= Q (f(k0)− s0)) ≡ Z(k0, s0), yields
Zs (k0, s

∗

0) + βVk(k1) = 0.
25Notice that Zk (k0, s0) dk0 = Qc (f(k0)− s0) df(k0) and Zs (k0, s0) ds0 =
−Qc (f(k0)− s0) ds0.
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6. A “����� ��� ����
�” 
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As already underscored, the “guess and verify” approach is useful only in

the few cases in which a closed form solution for the maximum value function

exists. In this Section, we illustrate two alternative techniques that can be

used to approximate numerically the maximum value function: the value

function iteration method and the (more up-to-date) collocation technique.

We do this by means of simple examples, which rely on the elementary

version of the Brock and Mirman model solved in Sub-section 4.1.

6.1. Value function iteration based on the discretization of the

state space. Let us consider again the version of Brock and Mirman model

that we faced in Sub-section 4.1, assuming, however, that we are not able

to find the explicit solution for this problem, so that we need to compute a

numerical approximation for the solution. The reason why we solve a well-

understood problem by means of a numerical technique is to allow for the

comparison of the approximated solution, that we obtain, with the exact

one, that we already know.

Because we are moving in the direction of using numerical techniques,

the first thing we need to do is to pick the values we want to assign to our

parameters. This is readily done. A sensible value for α is 0.3. In fact, α

represents the capital income share of output, a value which is between 0.25

and 0.33 for most OECD countries. As for β we choose 0.97: we know from

equation (1.10) that — in the steady state — β is equal to the reciprocal of the

marginal productivity of capital, which represents also the interest factor.

Hence, if a period represents a year, β = 0.97 implies a long-run annual

(real) interest factor approximately equal to 1.03, a realistic value. As for

the total factor productivity parameter A, we choose a value such that the

long-run capital level, k̂ = (αβA)
1

1−α , is unity. Hence, A ≃ 3.43643. This is

a normalization: we have decided to measure output using a reference unit

such that the long-run value for capital is exactly equal to one.

Accordingly, our problem is to solve:

V (k0) = max
c0
{ln(c0) + 0.97V (k1)} ,

s.t. k1 = 3.43643k0.30 − c0,(6.1)

k0 given.

We assume to be interested in solving the problem for values for capital

that are around the steady state.26

The state variable is continuous, nevertheless we now consider it as if

it were discrete: it is this approximation that allows to use the numerical

26Once you have read the current Sub-section, justify this choice.
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technique we are describing. To fix the ideas, we consider only five possible

levels for capital, which are {0.98, 0.99, 1, 1.01, 1.02}.

Notice that, if we knew the function V (k1), it would be relatively easy

to solve problem (6.1): the solution would be the consumption level c∗0 that

allows to obtain the highest V (k0), provided that k0, k1 ∈ {0.98, 0.99, 1, 1.01,

1.02}. For example, assume that V (k1) = 20k1 (this choice is completely

arbitrary; actually we know that it is wrong: we just want to illustrate what

we mean when we say that — knowing V (k1) — it is easy to solve problem

(6.1)). When k0 = 0.98, the problem becomes:

V (k0 = 0.98) = max
c0
{ln(c0) + 0.97× 20k1} ,

s.t. k1 = 3.43643(0.98)0.3 − c0,(6.2)

k0 = 0.98.

To tackle the problem, we must leave our standard tool — the deriva-

tive — on the shelf, because our problem is not continuous, since we have

decided to compute V (k1) only in a few points. Hence, we need to per-

form all the required calculations. First, we express the constraint as:

c0 = 3.43643(0.98)0.3−k1 = 3.41566−k1, and we compute the consumption

levels that allow k1 to take one of the five feasible values. These are:

k1 0.98 0.99 1 1.01 1.02

c0 2.43566 2.42566 2.41566 2.40566 2.39566

Second, we consider the postulated maximum value function: for V (k1) =

20k1 the right hand side of problem (6.2) takes, in correspondence of the

five couples {k1, c0} computed above, the following values:

r.h.s.(6.2) 19.90222 20.09210 20.28197 20.47182 20.66166

According to the above calculations, the highest value is obtained for

the consumption choice c0 = 2.39566, hence V (k0 = 0.98) takes the value

20.66166.

This calculation should be repeated for every remaining k0 ∈ {0.99, 1,

1.01, 1.02}, this would give us the period 0 maximum value function for

each state.

However, there is no particular usefulness in performing all these calcu-

lations: in fact the few calculations we have presented above are already

enough to conclude that the postulated function V (k1) = 20k1, is incorrect.

From our analysis in Section 3, we know that — in infinite horizon mod-

els — the maximum value function is time independent. Accordingly, the

functional form we have assumed for period 1 must apply also to period 0.
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Hence, we should expect to find that V (k0 = 0.98) = 19.6, which is not the

case.

While the usefulness of the above example lies in the fact that we have

understood which kind of computations are required, we must now tackle

the real issue: we need to know how to obtain the unknown maximum value

function.

The strategy to get it prescribes to:

• (Step 1) specify a set of arbitrary values to V (k1). (Denote this initial

set of values by V0(k1));

• (Step 2) solve the problem (6.1) for each state k0, finding a new

(and hence different) maximum value function (which, of course,

substantiates in a new set of values, denoted by V1(k0));

• (Step 3) obtain V2(k0), using V1(k1) = V1(k0) as a new initial guess

for the value function;27

• (Step 4) iterate the step above until Vn(k0) and Vn+1(k0) are “suffi-

ciently close”.

The convergence of the above procedure to a set of values that represent

the true maximum value function is guaranteed whenever the hypothesis in

Theorem 1 or in Theorem 2 are satisfied. In these cases, successive iter-

ations of the value function converge to the true value function, and this

convergence takes place for any starting point, i.e. for any initial arbitrary

value function.

We now provide some further details on how to apply the above procedure

in our extremely simplified example.

We start by choosing a set of values for V (k1). A commonly chosen set of

initial values is V0(k1) = 0 for any k1. This choice corresponds to Step 1 in

our procedure.

As for Step 2, we start by noticing that the above choice implies that we

need to face problems of the following type:

V (k0) = max
c0
{ln(c0)} ,

s.t. k1 = 3.43643k0.30 − c0,

k0 given.

Notice that, as before, both k0 and k1 must take one of the possible values

for capital (i.e. {0.98, 0.99, 1, 1.01, 1.02}): this restrict the set of feasible

consumption levels. For example, if k0 = 0.98, for k1 = {0.98, 0.99, 1, 1.01,

27If you feel confused by this, just go on reading.
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1.02}, we compute, as before: c0 = {2.43566, 2.42566, 2.41566, 2.40566,

2.39566}; the corresponding utilities are {0.89022, 0.88610, 0.88197, 0.87782,

0.87366}. The highest utility level is reached for c0 = 2.43566, which is the

consumption level implying that the next period capital is k1 = 0.98.

Hence, the solution for this specific problem is V1(k0 = 0.98) = 0.89022.

Repeating this reasoning we obtain: V1(k0 = 0.99) = 0.89449, V1(k0 =

1) = 0.89871, V1(k0 = 1.01) = 0.90288, V1(k0 = 1.02) = 0.90701. In every

problem, the solution corresponds to the maximum feasible consumption

level, which is the one corresponding to k1 = 0.98. In other words, for

any k0 ∈ {0.98, 0.99, 1, 1.01, 1.02}, c0 is such that k1 = 0.98. This is

hardly surprising: since we have arbitrarily chosen V0(k1) = 0, capital bears

no future value, and hence it is sensible to choose to consume as much as

possible.28

The key point is that our maximization procedure has led to a set of

values for V1(k0). Accordingly, we have completed Step 2 in the procedure.

Hence — Step 3 — we use these values as a new guess for the maximum

value function. This bit of the procedure is inspired by the fact that the

true maximum value function is time independent: at different dates it must

take the same values for any capital stock. Accordingly, we now assume

V1(k1) = {0.89022, 0.89449, 0.89871, 0.90288, 0.90701}.

In this second iteration for the maximization problem, when k0 = 0.98,

consumption may again take the values c0 = {2.43566, 2.42566, 2.41566,

2.40566, 2.39566}. When c0 is 2.43566, (that is, when it takes the value

guaranteeing k1 = 0.98), the corresponding “overall utility” is ln(2.43566)

plus β times V1(k1 = 0.98) = 0.89022 (which gives V2(k0 = 0.98) = 1.75373).

In words, this is the “overall value” obtained by choosing the consumption

level that allows to maintain the current capital level in the next period.

Considering the whole set of choices, c0 = {2.43566, 2.42566, 2.41566,

2.40566, 2.39566}, we find that the values associated are {ln(2.43566) +

0.97 × 0.89022, ln(2.42566) + 0.97 × 0.89449, ln(2.41566) + 0.97 × 0.89871,

ln(2.40566)+0.97×0.90288, ln(2.39566)+0.97×0.90701},which are {1.75373,

1.75376, 1.75372, 1.75362, 1.75346}.

Notice that the second value in the row, 1.75376 is the highest one. Hence,

the optimal choice is now to opt for a consumption level such that the next

period capital is 0.99. In words, if the initial capital is 0.98 and if we take

account of the future period (discounted) utility, it is optimal to save 0.01

units of capital.

When we repeat this reasoning for the other capital values in our grid,

we obtain that: if k0 = 0.99, the consumption optimal choice is such that k1

28Here the logic is the same we used in Sub-section 1.3 to argue that kT+1 = 0.
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remains at 0.99; when k0 = 1, the consumption optimal choice is such that k1

is again 0.99; when k0 = 1.01 or 1.02, the consumption optimal choice is such

that k1 = 1. In correspondence to the optimal choices described above, the

value function is: V2(k1) = {1.75376, 1.75804, 1.76228, 1.76649, 1.77065}.

The obtaining of this set of values concludes Step 3 in our procedure.

Of course, a normal person is already fed up with all these calculations.

This is the point to let our computer do the calculations, hence performing

Step 4. It is easy to write a program using Matlab (or Python) that carries

out this task.29 The results of this program are reported in Table 1.

TABLE 1

iter.# V (k0=0.98) V (k0=0.99) V (k0=1.00) V (k0=1.01) V (k0=1.02)
0 0 0 0 0 0

1 0.890218 0.894487 0.898707 0.902881 0.907009

2 1.753757 1.758043 1.762281 1.766486 1.770648

3 2.591406 2.595692 2.599944 2.604152 2.608314

4 3.403926 3.408223 3.412478 3.416686 3.420850

5 4.192081 4.196381 4.200636 4.204844 4.209008

6 4.956594 4.960894 4.965149 4.969357 4.973521

7 5.698172 5.702472 5.706727 5.710935 5.715099

8 6.417502 6.421802 6.426058 6.430265 6.434430

9 7.115253 7.119553 7.123808 7.128016 7.132180

10 7.792071 7.796371 7.800626 7.804834 7.808998

20 13.538224 13.542524 13.546779 13.550987 13.555151

50 23.204550 23.208850 23.213105 23.217313 23.221477

100 28.264686 28.268986 28.273241 28.277449 28.281613

200 29.608749 29.613049 29.617304 29.621512 29.625676

300 29.672662 29.676962 29.681218 29.685425 29.689590

375 29.675528 29.679828 29.684084 29.688291 29.692456

376 29.675538 29.679838 29.684093 29.688301 29.692465

true 29.675860 29.680156 29.684409 29.688619 29.692788

In the simulation, the convergence criterion we have chosen is as follows:

we let the computer calculate−for each gridpoint−the difference between the

final and the initial value of V (k0) for each iteration (i.e. Vn+1(k0)−Vn(k0));

then we considered the absolute values of these differences and we let the

routine to pick the largest. When this is below 10(−5), we let the computer

to stop. On a i7-4600 CPU computer, this happens after about 30/100 of a

second, at the 376th iteration.

29In the Appendix, we spell out in details the routines used to solve our examples.
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Because the computed value function converges to the true maximum

value function, when the set of values representing Vn+1(k0) is “almost iden-

tical” to the one used to represent Vn(k0), they are also “almost identical”

to the true set of values, which is to the true V (k0).

Having chosen an exercise for which we know the exact solution, we have

been able to provide, as a reference point, the true values for V (k1).

Exercise 9. Check that the values for V (k) in the last line of Table 1 are
correct.

From Table 1, we can see that the values for V (k1) smoothly converge

toward their true value: we are in the position to “observe in action” the

(vector) fixed point nature of our problem.

In our case, the convergence is slow. This is due to the fact that β is

close to unity: what happens in the future matters a lot, hence the initial

arbitrary values for V (k1) do not lose rapidly their weight.

The nice feature of this approach consists in the fact that it is immediate

to change the interval for the state variable and the number of gridpoints,

therefore adapting a numerical routine to a new situation. For example, we

can use the program written for the problem above to study what happens

for k ∈ [0.7, 1.1] with 1600 gridpoints. Panel (a) in Figure 5 plots the

maximum value function, while Panel (b) shows the differences between the

true value function and the approximated one. Notice that the computing

time increases dramatically: it takes about three minutes and one half to

achieve convergence.30

This is probably the right time to became aware of one of the sad facts of

life, which is usually referred to as “the curse of dimensionality”. By these

words, one usually refers to the fact that the speed of a procedure such as

the one we have briefly outlined decreases more than proportionally with the

number of the state variables. To understand this fact, bear in mind that, to

find the value function by iteration, we have discretized the state space. In

our case, the state space is a line, because we have just one state variable,

that is physical capital. If we had two state variables, say physical and

human capital, we would have a 2-dimensional state space (which means, a

plane). In this case, it would have been necessary to divide the state space is

small “squares”, the number of which is of course the square of the number

of points we use to discretize each dimension. Accordingly, the number of

“evaluation points” increases with the power of the number of state variables.

Hence, the required computer time grows with the power of the number of

30This is exploiting again an Intel i7-4600 CPU @ 2.70 Ghz.
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state variables.31 For example, in a model where the representative agent

decides her consumption level and her schooling effort as functions of both

human and physical capital, we need to compute the value function for every

combination of human and physical capital in the two-dimensional grid.

In short: if our problem is large, we need to use a more efficient technique,

which is the topic of the next Sub-section. Nevertheless, the value function

31If one chooses a different number of grid points for the two state variables—therefore
dividing the plane in small rectangles—the argument in the main text must be properly
adapted.
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iteration method can be of some help when one or more dimensions of the

state space are naturally discrete. This happens when the researcher wishes

to study problems where the agent may be employed or unemployed, may

decide whether to get a degree or not, whether to retire or not, and so on.

This method can be of some help also if the transition function is subject to a

constraint. Suppose, to mention the most famous example, that investment

is irreversible, so that k1 ≥ k0(1− δ). This problem can be easily dealt with

in our framework: it is sufficient not to consider the consumption level that

implies an infringement of the irreversibility constraint.32

Before concluding this Section, consider that there are ways to reduce the

computing time.

One can move in the direction of providing a better initial guess, given

that our initial value function (V0(k) = 0) proved to be quite poor. With this

purpose in mind, consider a particular version of problem (6.1), a version in

which the representative agent is not allowed to change her capital stock. In

this case, the maximum value attainable by the representative agent would

be, for any given k0,

V (k0) = ln(c0) + 0.97V (k1),

with k1 = k0 = 3.43643k0.30 − c0.

Notice that the “max” operator has been omitted, since no decision can

be taken by the representative agent, whose consumption decision is actually

constrained. Accordingly, the maximum value that can be obtained is

V (k0) =
1

0.03
ln(3.43643k0.30 − k0),

or, in general,

V (k) =
1

1− β
ln(Akα − k).

The expression above is a commonly used initial guess for the maximum

value function; notice moreover that the logic can be applied for different

32The presence of an irreversibility constraint is much more interesting in a stochastic
model than in a deterministic one. Figure 3 suggests that whenever the initial capital
stock is below the steady-state, capital grows over time until it reaches its steady state
value. Accordingly, an irreversibility constraint can bind only if our representative agents
receives, as a gift, a capital level that is so much higher than the steady state one, that
she wants to decumulate it at a fast rate. Instead, in a stochastic model, a shock may be
sufficient to make the irreversibility constraint binding.
Notice that, when the irreversibility constraint is binding, our consumer is forced to con-
sume less than what would be optimal. Hence, she would like to avoid finding herself in
this situation. Therefore, the awareness that then irreversibility constraint may be bind-
ing, even if with a low probability, can be sufficient to deeply influence the representative
agent behavior. We shall briefly return on models with stochastically binding constraints
in Section (10.2).
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utility functions, and for δ ∈ [0, 1]. Figure 6 shows that the maximum value

function (continuous line) lies above the initial guess (dashed line), since the

latter has been obtained by imposing a constraint to the agent’s behavior

(and the maximum value function is attained by unconstrained and fully

optimizing agents). Actually, the difference between the two functions can

be interpreted as the utility cost imposed by the constraint. In other words,

when the capital stock is below the steady state, what the figure highlights

is the present discounted value of the gain in future utilities that can be

obtained by saving; when instead the capital stock is above the steady state,

Figure 6 shows the cost of being obliged to maintain an excessively high

capital stock.

Notice that, not surprisingly, the two functions take the same value in

the steady state, which is the point in which the representative agent is not

willing to modify the capital stock, and hence the constraint is not binding.

An element of interest is that the computing time collapses to about three

seconds (from around 210).

When looking for ways to reduce the computing time, another (important)

direction consists on iterating on the policy function instead of iterating on

the value function. This approach is often referred to as the “Howard’s

improvement algorithm”, which often converges faster than does the value

function iteration. On this we refer e.g. to Ljunqvistg and Sargent (2012).
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6.2. Collocation techniques. As already remarked, the previous tech-

nique is rather inefficient, because it requires the evaluation of the value

function in a large number of points. Here, we present a more efficient

method to solve dynamic models, which is known as “collocation technique”.

Because the application of this technique to a Bellman equation is rela-

tively complex, we move in small steps. We first underscore that the collo-

cation technique is a way to “approximate” or to “interpolate” a function.

Hence, it can be applied to any function, say to trigonometric or to expo-

nential ones, and not necessarily to a maximum value function. Second, we

show how this technique can be used to solve a simple — actually the simplest

— differential equation, and finally we deal with a Bellman problem.

To understand the idea underlying this technique, we need to introduce

the Weierstrass Theorem, which says:

Theorem 3. Any continuous real function f(x) can be approximated in a
interval X by a polynomial pn(x) =

∑n
i=0 aix

i.

The words “can be approximated” mean that for any number ν > 0, there

is a polynomial, of suitable degree, such that maxx∈X |f(x)− pn(x)| < ν. In

practice, a reduction in ν, i.e. in the approximation error, usually calls for

an increase in the degree of the polynomial.33

This is interesting and rather intuitive, but it does not tell us how to

proceed in practice. Hence, let us consider a specific example, choosing a

relatively challenging function: imagine that we need to approximate sin(x)

over the interval X = [0, 2π]. Let us start with the third degree polynomial,

p3(x) = a0 + a1x + a2x
2 + a3x

3. Our problem is to determine the four ai

coefficients so that our polynomial behaves as the sin(x) function in the

interval X. Because we need to determine four unknown coefficients, we

choose four points in X. In fact, imposing equality between sin(x) and p3(x)

at these points, we obtain four equations in the ai’s, which can be solved for

the unknown coefficients.

33Bear in mind, however, that the relation between ν and the degree of the approximating
polynomial is not always monotonic.



46 GIANLUCA FEMMINIS

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

x ∈ [0,2π]

3
rd

 degree approximation for Sin(x)

F
���� 7.

For example, choose x = {0, 2/3π, 4/3π, 2π}.34 At these points, the col-

location method forces the approximating polynomial to be identical to the

function which needs to be approximated. This yields:

(6.3)






0 = a0

0.86602 = a0 + a12.09440 + a24.38649 + a39.18704

−0.86602 = a0 + a14.18879 + a217.54596 + a373.49636

0 = a0 + a16.28318 + a239.47842 + a3248.05021

Solving for the ais this linear system, one obtains that the approximating

third-degree polynomial is: 0 + 1.860680x− 0.888409x2 + 0.094263x3.

For a “first impression judgement” of our results, we plot our polyno-

mial and the sin(x) function over [0, 2π]. In Figure 7, the continuous line

represents sin(x), while the dashed line is its third degree approximation.

Some further calculations show that the largest difference between the two

functions is 0.2554. This is a large number, nevertheless we can be fairly sat-

isfied with our exercise: we have been able to approximate a trigonometric

function by means of a simple third degree polynomial.

However, we must be aware that our approximation deteriorates rapidly

as we exit from the interval X = [0, 2π] (compute p3(x) at 2.5π!). The rapid

deterioration of the approximation outside the interval is a general feature

34Using the jargon, we say that we have chosen four evenly spaced “collocation points”
or “nodes”.
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of the results obtained by means of this approach. The approximation of

a function by means of the collocation method is similar to what one can

do with some pins and a flexible plastic stick: one takes the stick (the

polynomial) and the pins (the value of the polynomial at the collocation

points), and use the pins to fix the stick over the function. With a decent

number of pins, one can easily make a good job in the interval inside the

first and the last pin; outside this interval, the plastic stick keeps its original

shape.

It is now time to leave aside once again paper and pencil. Choosing, for

example, eleven collocation points, and hence using a tenth degree poly-

nomial, we can easily build an eleven equations system. We can then use

the equation matrix manipulation facilities that are built-in in computation

programs such as Matlab or Python to solve the system; with Matlab this

should take about 60/100 of a second.35 (You can deal with this problem

also by means of Mathematica or Maple).

Figure 8 shows the approximation errors for this exercise. An approxima-

tion error is defined as the difference between the actual value for sin(x) and

the value taken by the approximating polynomial, for an x ∈ [0, 2π]. The

bright side is that we are really making a decent job, the somehow dark side

is that the errors are definitely higher than average at the beginning and at

the end of the interval. This is usually regarded as a clear sign that we can

improve our approximation.

It is now possible to climb a step of the ladder that is bringing us to

the solution for the dynamic optimization problem. Up to now, we have

shown that we can approximate a function by means of a polynomial. Now

consider that the solution for a difference or a differential equation is a
function (in the example we are about to propose, the solution will be a

function of time, which shall play the role of state variable). This suggests

that we can approximate the solution for a functional equation by means of

our collocation technique.

As before, we choose a simple example, actually, we choose a differential

equation that we can easily solve analytically. This will allow us to judge

the “goodness of fit” characterizing our exercise.

35A system like (6.3) can be written in matrix form as:






1 0 0 0
1 2.09440 4.38649 9.18704
1 4.18879 17.54596 73.49636
1 6.28318 39.47842 248.05021











a0
a1
a2
a3




 =






0
0.86602
−0.86602

0




 ,

it is then easy to let an appropriate software solve it.
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Suppose that we need to solve the first order linear differential equation

(6.4)
dx(t)

dt
= 0.1x(t) + 1, given x(0) = 2,

in the interval t ∈ [0, 4]. Assume that the solution x(t) must be approxi-

mated by a second-degree polynomial: denoting with an upperbar the ap-

proximated solution, we have

(6.5) x̄(t) = a0 + a1t+ a2t
2.

A good approximation, behaving “almost like” the true solution x(t),

must fulfill equation (6.4). Actually, the true solution must satisfy (6.4) for

any t, hence, it is more than reasonable to require that the approximation

fulfills (6.4) “at least somewhere”, which means, at the collocation points.

There, the approximation must be such that:

dx̄(t)

dt
= 0.1x̄(t) + 1,

which means, exploiting (6.5) in both sides of the last equation, that — at

the collocation points — it must be true that:

a1 + 2a2t = 0.1(a0 + a1t+ a2t
2) + 1.

To determine the three coefficients we now “collocate” the above equation

in two points: the third equation for our system is provided by the initial

condition x̄(0) = a0 = 2. The two collocation points are the two extrema of
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the interval (0 and 4): had we chosen two different points, we would have

induced large errors in some portion of the interval of interest.36 Accordingly,

the system determining the ai coefficients is:

(6.6)






a1 = 0.1a0 + 1

a1 + 8a2 = 0.1a0 + 0.4a1 + 1.6a2 + 1

a0 = 2

.

A few calculations suffice to obtain the approximating function:37 x̄(t) =

2 + 1.2t + 0.075t2; in Figure 9 the approximating function is the dashed

line, while the continuous line portrays the exact solution (that is: x(t) =

−10 + 12e0.1t).

We could now compute the approximation errors, as the difference be-

tween x(t) and x̄(t). However, if we stop and think for just a second, we re-

alize that the analysis of these errors is of no practical interest: why should

we bother with the errors implied by a numerical solution when we can

36We would have large errors for the time (sub-)interval between 0 and the first collocation
point, and for that between the second collocation point and 4. There, the “stick” (our
second order polynomial in t) would retain its shape.
37A linear system like (6.6) can be written as:




−0.1 1 0
−0.1 0.6 6.4
1 0 0








a0
a1
a2



 =




1
1
2



 ,

and then solved using, for example, a matrix inversion routine.
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compute the exact one? This observation brings us close to a crucial point:

when we do not know the analytic solution for a functional equation, how

can we judge the goodness for the approximation?

The standard answer is grounded again on equation (6.4): because the

true function satisfies this equation for any t, a good approximation should

do the same. Hence, we compute the “residual function”:

R(t) =
dx̄(t)

dt
− 0.1x̄(t)− 1, t ∈ [0, 4],

and we inspect it. If this function is “almost zero”, the approximation is

good.38

In our example, the residual function is given by:

R(t) = 1.2 + 0.15t− 0.2− 0.12t− 0.0075t2 − 1 = 0.03t− 0.0075t2.

Instead, the approximation errors, computed as the difference between

the exact solution and the approximated one, are given by:

x(t)−x̄(t) = −10+12e0.1t−
(
2 + 1.2t+ 0.075t2

)
= 12e0.1t−12−1.2t−0.075t2.

Figure 10 shows the errors that we make when we let our computer ap-

proximate the solution by means of an 8-degree polynomial.39 The continu-

ous line represents the “true” errors, while the residual function is depicted

by the dashed line. Errors and residuals are computed for 200 equally spaced

points for t in the interval [0, 4].

While the approximation is very good, it can be improved: notice that

the residuals are, once again, higher than average at the beginning and

especially at the end of the interval, suggesting that some improvement is

possible.

Eventually, we are ready to cope with the real problem. We now solve:

V (k0) = max
c0
{ln(c0) + 0.97V (k1)} ,

s.t. k1 = 3.43643k0.30 + 0.85k0 − c0,

k0 given.

for k0 ∈ [0.5k̂, k̂]. Notice that this is the same problem we analyzed is Sub-

section 6.1, but for the fact that the depreciation parameter now takes the

38Obviously, it is important to specify a formal criterion to evaluate the behavior of the
residuals. However, at this introductory level of the analysis, we omit the discussion of
this point. Nevertheless, be prepared to cope with this issue when dealing with formal
research.
39In this exercise, the eight collocation points are equally spaced between 0 and 4.
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much more sensible value δ = 0.15. Notice also that we are dealing with a

quite large interval for the state variable.

Suppose first that the maximum value function is approximated by an

ordinary n− th degree polynomial: V (k) =
∑n

i=0 aik
i. Exploiting the first

order condition, 1/c∗0 = 0.97V ′(k1), one immediately obtains that:

c∗0 =
1

0.97
n∑

i=1
i aik

(i−1)
1

.

Substituting the approximating function and the first order condition

above in the original problem, we obtain:

n∑

i=0

aik
i
0 = − ln(0.97)− ln

(
n∑

i=1

i aik
(i−1)
1

)

+ 0.97
n∑

i=0

aik
i
1.

Notice that the unknowns in the equation above are n+ 2: in fact, these

are the n+ 1 coefficients (the ais), and the next-period state, k1.

If we couple the equation above with the dynamic constraint, we obtain

a two equations system with n+ 2 unknown, like

(6.7)






∑n
i=0 aik

i
0 = − ln(0.97)− ln

(
n∑

i=1
i aik

(i−1)
1

)
+ 0.97

n∑

i=0
aiki1

k1 = 3.4364k0.30 + 0.85k0 −
1

0.97
n∑

i=1
i aik

(i−1)
1

.
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Suppose now to consider two level for k0 (i.e. we consider two collocation
points). In this case we have a system of four equations, with n+3 unknowns:

(the n + 1 coefficients and two next-period states). Notice that we have

moved one step in the direction of the determination of the system: now

the number of “missing equation” is n+ 3− 4 = n− 1. Hence, if we choose

n + 1 collocation points (which means n + 1 values for k0 ∈ [0.5k̂, k̂]), we

have 2n + 2 unknowns (the n + 1 coefficients and the n + 1 values for k1,

one for each collocation point), and we can build a system composed of

2n + 2 equations. In fact, for each of the n + 1 collocation points we can

build a 2-equation system like (6.7), and then we assemble a 2n+ 2 system

considering all the collocation points. (In other words, system (6.7) is the

building block of the large system we need to solve to determine the n+ 1

ais coefficients and the n+ 1 k1s values).

System (6.7), besides being large, is non linear. To deal with this prob-

lem, we can rely on the non-linear equation solver that is embedded into a

software like Matlab or Python.40

However, a glance at (6.7) is enough to convince oneself that our system is

very non linear. Hence, one might end up having troubles with the numerical
routine.41

An often used way out is to determine the consumption function starting

from the Euler equation, which, in our specific case, readily yields c1 =

40If you do not know what a non-linear equation solver is, imagine that — having forgotten
the standard formula — you need to solve a second order equation.
In this contingency, you may draw a second order polynomial on a plane, so that the
solution(s) you are looking for are the intersection points f(x) = 0. To be specific, draw
the polynomial upward oriented. This function, y = f(x), intersects the x-axis twice, once,
or never. If there are no intersection points, there are no real solutions for the equation
f(x) = 0. (In this case, you are better drawing another second order polynomial such that
it intersects the x-axis.)
Now, pick a value for x and call it x0; this is the “initial condition” for the procedure.
Evaluate the function at x0, obtaining y0 = f(x0).
We can now sketch a naive and oversimplified numerical equation solving procedure. This
is made up of a set of instructions like the following ones.

If f(x0) > 0, and f
′(x0) > 0, then decrease x0 by a small amount.

If f(x0) > 0, and f
′(x0) < 0, then increase x0 by a small amount.

If f(x0) < 0, and f
′(x0) > 0, then increase x0 by a small amount.

If f(x0) < 0, and f
′(x0) < 0, then decrease x0 by a small amount.

Notice that, following the instructions above, one moves toward a solution for the second
order polynomial. One should apply the above set of instructions over and over again,
until a solution f(x) = 0 is reached.
Notice also that — whenever the non-linear equation admits more than a solution, which can
well happen in our case — the initial condition is crucial to determine which of the possible
solutions is selected. Finally, notice that the initial condition is relevant to determine the
time needed to converge to the solution. Miranda and Fackler [2002] and Judd [1998]
provide compact treatments of techniques used in computational economics to find the
solution of a system of nonlinear equations.
41Although it is possible to solve a system like (6.7), one often needs to feed the non-linear
equation solver with a very precise initial condition, and this can be unpleasant.
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c0
(
k−0.71 + 0.8245

)
. Assuming that ct = h(kt) =

∑n
i=0 dik

i
t, we have, for

each collocation point, a system like:

(6.8)






n∑

i=0
dik

i
1 =

n∑

i=0
dik

i
0

(
k−0.71 + 0.8245

)

ki1 = 3.43643k0.30 + 0.85k0 −
n∑

i=0
dik

i
0

,

The system above involves two equations and n+2 unknowns (the n+1

coefficients (the dis) and the next-period state, k1, which is related to the

k0 characterizing our collocation point).

It is tempting to conclude that system (6.8) is the building block of a

(2n+ 2)—equations system. In other words, it is tempting to conclude that

one can now choose n+ 1 collocation points, and solve a (2n+ 2)—equation

system (composed of n + 1 blocks like (6.8)) for the n + 1 ki1s and for the

n+1 dis. This is not the best way to carry on. In fact, in this way we omit
to consider an important information, which is the knowledge that, in the

steady state,

(6.9) ĉ

(

=
n∑

i=0

dik̂

)

= 3.43643k̂0.3 − 0.15k̂.

Loosely speaking, if we do not consider this information, our routine can

give us a solution characterizing consumption on one of the (infinite) non

optimal paths where the Euler equation is satisfied (refer back to Figure

3). To encompass the piece of information provided by the steady state, we

choose n collocation points for a nth degree polynomial. In this way, we have

2n+1 unknowns (n+1 coefficient plus n ki1s) and 2n equations (from system

(6.8) we obtain two equations for each of the n collocation point), and the

steady state equation above closes the system, which can actually be solved

rather easily. Figure 11a and 11b show the consumption function and the

residuals.42 These have been obtained using an eight degree polynomial; the

computation time is about 12/100 of a second.

Our exercises have been based on ordinary polynomials. This choice is

usually considered inefficient: ordinary polynomials have some unpleasant

characteristics. As already underscored, the residuals are often concentrated

in sub-intervals of the approximation interval;more importantly, it may hap-

pen that the approximation error rises, rather than falls, with the number

of collocation points.

42The residuals have been obtained building a grid of 200 equally spaced points for capital

in the interval [0.5k̂, k̂], obtaining for each point on the grid the corresponding next-period
value using the second equation in (6.8), and then computing the difference, for each point,
between the right- and the left-hand side of the first equation in (6.8)
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Notice also that we have always chosen evenly spaced collocation nodes.

There is no reason to believe that this is the optimal choice for colloca-

tion points, nor the Weierstrass theorem provides any guidance on how to

determine these points.

In practice, an often used procedure is to adopt a particular type of poly-

nomials, the Chebychev polynomials, which are associated to non-evenly

spaced nodes (the Chebychev collocation points). This procedure allows to

cope with both the problems we have mentioned above. Having understood
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the logic of the collocation technique, it should not be a big problem to ap-

ply it by means of Chebychev nodes and polynomials, following an advanced

textbook such as Judd [1998] or Miranda and Fackler [2002].

Also, having understood the collocation technique, it should not be pro-

hibitive to deal with “finite element” methods. While the collocation tech-

nique uses as interpolating function a polynomial which can take non-zero

values over the entire approximation interval, a finite element method uses

interpolating functions that are defined to be zero in large part of the approx-
imation interval, while they are assumed to be a (low degree) polynomial in

a specific sub-interval of the approximation interval. Refer, again to Judd

[1998] or to Miranda and Fackler [2002].

The logic of the collocation methods bears some resemblance also with

the one at the basis of the “minimum weighted residuals” technique. In fact,

this method is based on the choice of some nodes and of an interpolating

function, too. In this case, however, the coefficients of the polynomial are

chosen in a way to minimize the (weighted) differences between the value of

the function and the polynomial at the nodes. On this, see again Judd, or

McGrattan [1999]

7. A L������
�� �������� �� 
��
�
��-���
��� ��������
�

������

In our lives, very few things (if any!) can be hold as “completely sure”.

Accordingly, in our representative−agent growth model, the consideration

of some form of risk is an important step in the direction of realism. Po-

tentially, in our framework, many things can vary stochastically over time:

productivity, depreciation rate, preferences.... In this Section, we introduce

a single specific element of risk by means of a simple example, that shall

be solved through the Lagrangian approach; in the next section we tackle a

more general framework using dynamic programming.43

In the example we use to introduce the topic, we consider a Cobb-Douglas

production, Atkαt , in which the productivity parameter At is stochastic.

In particular, we assume that At can take two values, A
H
t and AL

t , which

occur with probabilities pH and pL
(
≡ 1− pH

)
, respectively. Of course, the

superscript H stands for high, while L stands for low (hence AH
t > AL

t ).We

also assume that the probability for each realization is time independent,

and that the two values, AH
t and AL

t , do not change over time. This means

that the random variable At is identically distributed and independent over

43We stick to the standard definition, dating back to the works by Frank Knight in the
twenties, according to which there is risk when the realizations for the random variables
have measurable (and known) probabilities, while uncertainty implies that the possible
outcomes have no measurable probability.
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time. Notice, in passing, that although we could take as understood the

subscript t, we prefer not to simplify the notation, in the attempt to be
clearer.

In short, output is obtained by means of the stochastic production func-

tion:

(7.1) yt = Atk
α
t =

{
AH

t k
α
t , with probability pH

AL
t k

α
t , with probability 1− pH

.

It is important to remark that period t productivity is supposed to be

known by the representative agent when she decides upon her period t con-

sumption.

Preferences are logarithmic, and they do not vary over time. Labeling as

before the present as period 0 to save on notation, our consumer’s preferences

can be summarized by the following intertemporal utility function:

(7.2) W0 =
∞∑

t=0

βt ln(ct).

Notice that the representative agent’s objective is to maximize the ex-

pected value of (7.2), i.e.

E0 [W0] = E0

[
∞∑

t=0

βt ln ct

]

,

where by E0 [.] we denote the expectation conditional on the time 0 infor-

mation set. Notice that−even in this simple case−writing in details the

objective function is challenging. Its first addendum is simply ln c0; as for

period 1 we can write: β
(
pH ln cH1 + pL ln cL1

)
, where cH1 and c

L
1 are the con-

sumption levels that will be set in place in the next period, depending on

the period 1 realization for productivity. At time 2 the situation begins to

become fairly complex. In fact, the period 2 consumption levels will depend

not only on that period realization for productivity, but also on the pro-

ductivity level that prevailed at time 1. The latter productivity influences

period 1 consumption and, in that way, the period 2 capital level. Accord-

ingly, we should distinguish four cases. Following this line of reasoning, one

would get lost fairly soon: the number of cases to be taken into account

grows exponentially with the time period!44 Indeed, this effort would be not

only huge, but also useless: our representative agent’s problem is to choose

44Bear in mind that we are considering the simplest possible case: usually, one would
like to deal with random variables with more than two realization per period. Moreover,
productivity is not time-independent, but highly correlated. Taking into account these
relevant aspects would make the problem much more intricate.
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the cts in a “sequential” way: i.e., she chooses a ct knowing kt, and having

observed the time t realization for productivity. Hence, in every period t,

what matters is only the next-period technological risk (which is limited to

the random occurrence of the two states AH
t+1, and A

L
t+1).

45

Accordingly, we can write the representative consumer’s problem by form-

ing the present value stochastic Lagrangian in a way that underscores the

“sequential” nature for our problem.

Li
0 = ln ci0 − λi0

(
k1 −Ai

0k
α
0 + ci0

)
+

+E0
[
β ln ci1 − βλi1(k2 −Ai

1k
α
1 + ci1) +

+E1
[
β2 ln ci2 − β2λi2(k3 −Ai

2k
α
2 + ci2) +

+E2
[
β3 ln ci3 − β3λi3(k4 −Ai

3k
α
3 + ci3) +(7.3)

+... ]]]

+ lim
t→∞

E0
[
βtλitkt

]

Some remarks are in order. First, at time 0 the representative agent

decides upon her consumption level and upon her period 1 resources (k1),

knowing the level of available resources (i.e. k0) and the current state of

productivity. Hence, the Lagrangian depends on current productivity: one

can write a Lagrangian for every productivity level. This is why we have

denoted the Lagrangian with a superscript i, where i = {H,L}.

Second, at time 1, our representative agent decides upon her period 1

consumption level and upon k2, knowing the period 1 productivity level and

k1. At that time, the agent maximizes:

β ln ci1 − βλi1(k2 −Ai
1k

α
1 + ci1)+

+E1
[
β2 ln ci2 − β2λi2(k3 −Ai

2k
α
2 + ci2) +E2 [ ... ]] .

Notice that, at time 0 the representative agent is aware of the fact that−in

period 1−she will be able to choose a consumption level contingent on the

future realization for productivity (and, of course, on k1). Accordingly, what

we shall do is to consider, first, the optimality conditions for period 1 from
the perspective of that period, and then we shall consider the implications of
these first order conditions from the vantage point of period 0. Of course,

this line of reasoning is applied also to the subsequent periods.

45In the jargon, our problem is of the “closed loop” type and not of the “open loop” kind,
as it would have been if the values for the entire sequence(s) of the control variable(s) had
been decided upon at time 0. For some details, see Chow [1997], Chapter 2.
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Third, notice that from period 1 onward, the Lagrange multipliers be-

come stochastic variables: they represent the marginal evaluations of con-

sumption, that is in itself stochastic, depending on the realization for pro-

ductivity.

Finally, bear in mind the last line in (7.3) is the stochastic version for the

tvc (compare with Eq. (2.6)).46

What we do now is to consider, first, the period 0 first order conditions;

we then obtain the optimality conditions for period 1 from the perspective

of that period, and finally we consider the implications of the period 1

optimality conditions from the perspective of the initial period.

The variables decided upon in period 0 are: ci0, k1, and λ
i
0. The first order

conditions are, respectively:

1

ci∗0
− λi0 = 0,(7.4a)

λi0 − αβ
(
pHλH1 A

H
1 + pLλL1A

L
1

)
kα−11 = 0,(7.4b)

k1 −Ai
0k

α
0 + ci0 = 0.(7.4c)

Notice, that, in period 0, the productivity realization is known, hence the

representative agent computes just one set of first order conditions like (7.4),
i.e. it computes them for i = H or for i = L. The same happens when our

agent optimizes at time 1 (with respect to ci1, k2, and λ
i
1). However, we have

to consider the first order conditions for any productivity realization (i.e.

for i = {H,L}). This is because we shall consider the implications of these

first order conditions from the vantage point of time 0, when the realization

for productivity is still unknown. The period 1 first order conditions are:

1

ci∗1
− λi1 = 0,(7.5a)

λi1 − αβ
(
pHλH2 A

H
2 + pLλL2A

L
2

)
kα−12 = 0,(7.5b)

k2 −Ai
1k

α
1 + ci∗1 = 0,(7.5c)

for i = {H,L}.

46In writing Problem (7.3), we have used the law of iterated expectations. This law states
that Et [Et+n [Xt]] = Et [Xt] , where Xt is a random variable and n � 1. In plain English,
the law of iterated expectations tells you that what you expect today about the day after
tomorrow, must be equal to what you think today that you are going to expect tomorrow
about the day after tomorrow (Otherwise, you should change your current expectation!).
Suppose the day you graduate, you decide to accept a job because you expect that your
gross yearly income will be 70.000 € in four years time. Clearly, it is not sensible that,
the very day of your graduation, you believe that the following year you will expect to
earn, say, 50.000 € in three years time.
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Let us now consider that, in period 0, the representative agent is aware

that in period 1 she will choose her consumption knowing the realization for

productivity; moreover, she is also aware that these consumption levels will

be decided upon having the same information (apart from productivity) that

are available at time 0. In fact, besides being contingent on productivity,

the period 1 consumption levels depend on k1, which, however is decided

upon (and hence known!) at time 0. Hence, in period 0, the unique risky

element that the representative agent faces when she decides upon her con-

sumption, is time 1 productivity. Exploiting (7.5a) into (7.4b), and then

taking advantage of (7.4a) gives:

(7.6)
1

ci∗0
= αβ

(
pH

1

cH∗1
AH
1 + pL

1

cL∗1
AL
1

)
kα−11 ,

which can be compactly written as:

1

ci∗0
= αβE0

[
1

c∗1
A1

]
kα−11 .

This is the period 0 version for the Euler equation, which relates the

current marginal utility for consumption to the next period marginal utility,

which is stochastic, depending upon productivity.

The first order conditions (7.5a-7.5c) are written from the vantage point

of time 1. At the initial time 0 our representative consumers considers that,

given the available information, it must be true that:

E0

[
1

ci∗1
− λi1

]
= 0,(7.7a)

E0
[
λi1 − αβ

(
pHλH2 A

H
2 + pLλL2A

L
2

)
kα−12

]
= 0,(7.7b)

E0
[
k2 −Ai

1k
α
1 + ci∗1

]
= 0.(7.7c)

In fact, each of the conditions (7.5a-7.5c) must be true for every realization

for productivity, and hence a fortiori, they must hold in expected value.
We can now substitute the Lagrange multipliers λH2 and λL2 out of Eq.

(7.7b), using the time 2 version of Eq. (7.5a). This gives the stochastic

counterpart of Eq. (1.9) for period 1, which is:

E0

[
1

c∗1

]
= αβE0

[
1

c∗2
Ai
2k

α−1
2

]
.
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Using this type of reasoning, one obtains that, in general, the Euler equa-

tion is:

(7.8) E0

[
1

c∗t

]
= αβE0

[
1

c∗t+1
Ai

t+1k
α−1
t+1

]
,

which tells us that the period t expected marginal utility of consumption

must be equal to the discounted expectation of the product between pe-

riod t+ 1 marginal utility of consumption and productivity of capital. The

fact that the representative agent takes into account the expectation of this

product makes economic sense. In fact, for a given current consumption, a

high future marginal productivity of capital induces an increase in future

consumption (because of the high output level), and hence a reduction in

its marginal utility. On the contrary a low future marginal productivity of

capital reduces future consumption, and hence increases its marginal utility.

These effects must be taken into account by the representative agent when

she has to decide her current consumption and hence her savings (which

should increase when she is sufficiently risk-averse).

It is easy to see that it must also be true that

(7.9) E0 [kt+1] = E0
[
Ai

tk
α
t

]
−E0

[
ci∗t
]
,

(to obtain the above equation, simply consider the appropriate version of

Eq. (7.7c)).

We now work out the details of the explicit solution for the present ex-

ample.

To determine the consumption levels, it is necessary to guess the con-

sumption function. Our tentative solution is ci∗0 = χAi
tk

α
0 where χ is an

undetermined parameter. Notice that Eq. (7.6) must pin down the same χ
for any i: this is precisely due to the fact that χ− being a constant − must

be independent from the realization for At, and therefore from the initial

state we pick.

Choosing, for example, Eq. (7.6) with i = H, we obtain:

1

χAH
0 k

α
0

= αβ

(
pHAH

1

χAH
1 k

α
1

+
pLAL

1

χAL
1 k

α
1

)
kα−11 .

Hence, simplifying when possible,

1

AH
0 k

α
0

= αβ
(
pH + pL

)
k−11 .

Notice that, if cH∗0 = χAH
0 k

α
0 , then k1 = (1 − χ)AH

0 k
α
0 ; hence the above

equation reduces to:
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1

AH
0 k

α
0

= αβ
1

(1− χ)AH
0 k

α
0

,

where we exploit the fact that pH+pL = 1. The above equation is satisfied for

χ = (1−αβ). Therefore, we have an explicit formulation for the consumption

function, which is:

(7.10) ci∗t = (1− αβ)Ai
tk

α
t .

The policy function above makes it clear that the optimal consumption

is chosen conditionally on the value assumed by the state variables, capital

and productivity.47

For completeness, we now check that our solution satisfy the stochastic

Euler equation (7.8).

Using Eq. (7.10) into (7.8), we obtain:

E0

[
pH

(1− αβ)AH
t k

α
t

+
pL

(1− αβ)AL
t k

α
t

]
=

= αβE0

[

pH
1

(1− αβ)AH
t+1k

α
t+1

AH
t+1k

α−1
t+1 + pL

1

(1− αβ)AL
t+1k

α
t+1

AL
t+1k

α−1
t+1

]

.

Simplifying where possible, we obtain:

E0

[
pH

AH
t k

α
t

+
pL

AL
t k

α
t

]
= αβE0

[
pH

kt+1
+

pL

kt+1

]
.

Because, in any state i, kt+1 = Ai
tk

α
t − ci∗t , and c

i∗
t = (1− αβ)Ai

tk
α
t , then

kt+1 = αβAi
tk

α
t . Hence, the above equation becomes:

E0

[
pH

AH
t k

α
t

+
pL

AL
t k

α
t

]
= αβE0

[
pH

αβAH
t k

α
t

+
pL

αβAL
t k

α
t

]
,

which is obviously verified.

Exercise 10. Modify the example in Section 7, assuming that

W0 =
3∑

t=0

βt ln ct,

and find the consumption function.

Exercise 11. Modify the example in Section 7, assuming that the time t+1

realization for productivity depends upon its time t realization. In particular,
assume that Pr(AH

t+1

∣∣AH
t ) = Pr(AL

t+1

∣∣AL
t ) = p, and that Pr(AH

t+1

∣∣AL
t ) =

Pr(AL
t+1

∣∣AH
t ) = 1− p. Find the consumption function.

47You can easily verify that, choosing i = L, Eq. (7.6) gives the same value for χ.
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Exercise 12. In the example in Section 7, use the guess ci0 = Ψ(Ai
t)k

α
0

(where the functional relation Ψ(Ai
t) between consumption and productivity

is assumed to be unknown) and find the consumption function (i.e. show
that Ψ(Ai

t) must be linear).

Exercise 13. Assume that: i) the return function is: c1−γ
t /(1− γ), where

γ ∈ [0, 1) ∪ (1,∞); ii) the dynamic constraint is kt+1 = Ai
tkt − ct, in which

the structure for the productivity shocks is the one described in Section 7.
Find the consumption function.

8. T�� B���
�� ���
����
�� ��� ��� ��������
� ������


We now apply the dynamic programming approach to a simple stochastic

version of the growth model. As before, we shall consider stochastic the

productivity parameter, but our reasoning applies to any form of risk that

preserves the additive separability of the objective function.48

Assuming that productivity is stochastic, we can formulate the consumer’s

intertemporal problem as:

V (k0, A0) = max
c0
{U(c0) + βE0 [V (k1, A1)]} ,

s.t. k1 = A0f(k0) + (1− δ)k0 − c0,(8.1)

A0, k0 given.

Problem (8.1) is not fully specified. In fact, we should discuss how pro-

ductivity evolves over time. More precisely, we should qualify the stochastic

process characterizing productivity. However, we postpone this discussion

for a while: if you wish, for now you can imagine that the productivity

process is independent over time (i.e. that At+1 is independent from At for

any t).

Importantly, notice that the maximum value function in (8.1) has both

capital and random productivity as its argument: as in the deterministic

case, the maximum value function depends on the states of the system.

The Bellman equation in (8.1) tells us that, to obtain the period 0 value

function V (k0, A0), it is necessary to maximize, with respect to c0, the ex-

pression U(c0) + βE0 [V (k1,A1)]. Accordingly, a necessary condition for a

48For example, one can deal with stochastic preferences of the type: W0 =
∞∑

t=0

βtU(ct, ǫt),

where ǫt is a sequence of random variables. In fact, we may write W0 = U(c0, ǫ0) +

β
∞∑

t=1

βtU(ct, ǫt), which forms the basis for the Bellman’s formulation.
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maximum is obtained differentiating U(c0)+βE0 [V (k1,A1)] with respect to

current consumption, which gives:

(8.2) Uc(c
∗
0) + βE0 [Vk(k1,A1)]

∂k1
∂c0

= 0,

where, ∂k1/∂c0 = −1, from the capital accumulation equation. We can

exploit the transition equation in (8.1), the Bellman equation and the first

order condition (8.2) to form the system:49






V (k0, A0) = U(c∗0) + βE0 [V (k1, A1)] ,

k1 = A0f(k0) + (1− δ)k0 − c
∗
0,

Uc(c
∗
0) = βE0 [Vk(k1, A1)] ,

A0, k0 given.

Our task is to find the solution for the above problem. As in the determin-

istic case there are two ways to proceed: we can (try to) solve the problem

“guessing” the solution, or we can use numerical techniques. Whenever use-

ful, in finding a solution we can exploit the envelope theorem, which in this

context implies:

Vk(k0, A0) = βE0 [Vk(k1, A1)]
∂k1
∂k0

.

The proof for this result is trivial, and it is left to the reader, who can

also work out how to apply the Benveniste and Scheinkman formula.

Before applying the techniques and the results mentioned above to the

solution of problem (8.1), we should specify under which conditions the

solution for our problem exists and is unique. In stochastic settings, this

turns out to be very difficult. In practice, what people often do (in addition

to verify that the conditions spelled out in Theorem 1 or in Theorem 2 are

fulfilled) is to check that the stochastic process playing a role in their model

enjoys the “Markov property”.50

Here, we remind what a Markov process is, and then we explain why it

is important to restrict our attention to dynamic optimization problems in

which the stochastic disturbances belong to this class.

Definition 1. (Markov process). A stochastic process xt is Markov if for
every x̄ and for every period 0, 1, 2, ..., t, ... we have

Pr {xt+1 ≤ x̄|xt, xt−1...x0} = Pr {xt+1 ≤ x̄|xt} .

49Alternative formulation exploits the transition equation and/or the first order condition
to substitute out c∗0 and/ or k1.
50For a much more detailed introduction to the issue we refer again to Thompson [2004].
Lucas, Stokey and Prescott [1989] is the key reading.
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In words, a Markov process is a random process whose future probabilities

are determined by its most recent realization. In fact, the above definition

tells us that the probability that the next period value for the process is

below a given threshold (i.e. that xt+1 ≤ x̄), depends only on the current

realization of the process, xt. Hence, the past realizations (xt−1, ..., x0) are

actually irrelevant for the determination of Pr {xt+1 ≤ x̄} . Sometimes it is

said that, with Markov processes, “history does not matter” because the

current value xt is all what is needed to compute future probabilities, and it

does not matter how variable x got there. Alternatively, we can think to a

Markov process as a sequence of random variables for which “memory does

not matter”: what we need to know is just xt, the state of the process, and

we do not need to recall the past realizations.

The fact that the random disturbances belong to Markov processes rep-

resents an enormous simplification for a dynamic optimization problem. In

fact, the maximum value and the policy function include, among their argu-

ments — besides the state variables we would find also in the non-stochastic

version of the problem — only the most recent realization for the random

variables. In other words, the most recent known realization for the ran-

dom variables represents the unique additional states of the system. The
random variables considered in the examples in the previous Section and in

the exercises obviously belong to Markov process.51

9. G���� ��� $��
��, 
� ��� �

���
���

9.1. Logarithmic preferences and stochastic Cobb-Douglas produc-

tion . In this Sub-section, we incorporate a persistent productivity shock

into the version of the Brock and Mirman’s (1972) optimal growth model

that we considered in Section 7, and we show how to obtain its closed form

solution.

The production function is Cobb-Douglas, characterized by a depreciation

parameter as high as unity, while the stochastic productivity At evolves

according to:

(9.1) lnAt+1 = ρ lnAt + ǫt+1,

where ρ ∈ [0, 1] is the “auto-regressive parameter”, and ǫt+1 is a random vari-

able that is time independent and identically distributed over time. This

means that ǫt+1 is not influenced by ǫt, ǫt−1... (hence lnAt is a Markov

process), and that the characteristics of ǫt+1 do not change over time. If

51When the random variables in a Markov process can take only a finite number of values,
then this process is called a Markov chain. When the random variables in a Markov process
are continuous, then the process is known as a Markov sequence. A dynamic optimization
problem in which the stochastic variables belong to Markov processes and the payoff enter
additively is known as a Markov decision process.



DYNAMIC PROGRAMMING: A PRIMER 65

one wishes, one can conceive ǫt+1 as a normal random variable with mean 0

and variance σ2ǫ . Notice that ǫt+1 represents the innovation in the stochastic

process (9.1). While some auto-regression in productivity is highly realistic,

the structure for At postulated in (9.1) may seem rather ad hoc: it requires
that it is the logarithm of productivity that depends on its past realization.

Notice, however, that the particular structure in (9.1) grants that produc-

tivity never becomes negative for any realization of the innovation, which

makes sense. Moreover, the structure in (9.1) is an essential ingredient to

obtain a closed form solution, and hence for now we must live with it.

The consumer’s side of the problem is unchanged, hence her preferences

are given by (4.1).

As before, the period t productivity is supposed to be known by the

representative agent when she takes her period t decisions.

Our problem is now to solve:

V (k0, A0) = max
c0
{ln c0 + βE0 [V (k1, A1)]} ,

s.t. k1 = A0k
α
0 − c0,

lnA1 = ρ lnA0 + ǫ1,

A0, k0 given.

We now introduce the tentative solution, which takes the form:

(9.2) V (kt, At) = F +G lnkt +H lnAt.

It is worth emphasizing that because the value function depends on two

state variables, it is necessary to specify a solution involving the two states.

This simple but important fact will remain true also when we deal with

numerical solutions.

The first order condition is 1/c∗0 = βE0 [Vk(k1, A1)] , which rapidly gives:

k1 = βGc∗0. This expression can be used to obtain c∗0 from the dynamic

constraint:

(9.3) c∗0 =
1

1 + βG
A0k

α
0 .

This equation implies that the next period capital stock is:

k1 =
βG

1 + βG
A0k

α
0 .

The above equation, Eq. (9.3), and the tentative solution (9.2) must be

substituted back into the Bellman equation, which gives:
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F +G ln k0 +H lnA0 =

= ln

(
1

1 + βG
A0k

α
0

)
+ βE0

[
F +G ln

(
βG

1 + βG
A0k

α
0

)
+H lnA1

]
.

Exploiting the multiplicative property of logarithmic functions, we obtain:

F +G ln k0 +H lnA0 =

= ln

(
1

1 + βG

)
+ ln(A0k

α
0 )

+ βF + βG ln

(
βG

1 + βG

)
+ βG ln(A0k

α
0 ) + βHE0 [lnA1] ,

and therefore:

F +G ln k0 +H lnA0 =

= − ln (1 + βG) + lnA0 + α ln k0

+βF +βG lnβG−βG ln (1 + βG)+βG lnA0+αβG ln k0+βHE0 [lnA1] .

Notice that we have taken advantage of the assumption according to which

the period 0 realization for At is known at the time of choosing period 0

consumption. We now exploit (9.1) to substitute, in the equation above,

βHρ lnA0 for βHE0 [lnA1] .

Having substituted out E0 [lnA1] , we recall that the resulting equation

must be satisfied for any k0, for any A0, and for any admissible value of the
parameters β and α. Hence, it must be that:






G = α+ αβG

H = 1 + βG+ βHρ

F = − ln (1 + βG) + βF + βG lnβG− βG ln (1 + βG)

.

From the first equation in the system above we obtain:

G =
α

1− αβ
.

Exploiting this result in the second equation of the system, we get:

H =
1

(1− ρβ) (1− αβ)
.

Notice that G,H > 0, because α, β ∈ (0, 1) and ρ ∈ [0, 1]. This im-

plies that Vk(kt, At), VA(kt, At) > 0: a wealthier consumer enjoys an higher

overall utility, so does a consumer who lives in a more productive economic
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environment. Notice also that the higher ρ, the larger is VA(kt, At): when

productivity is more persistent, its increase has a stronger positive impact

on the overall value simply because it displays its effects for a longer time

span.

Substituting G in the third equation gives:

F =
1

1− β

(
αβ

1− αβ
ln (αβ) + ln (1− αβ)

)
.

Because F,G, and H are independent from capital and productivity, our

guess (9.2) is verified, and the maximum value function is:

V (kt, At) =
1

1− β

(
αβ

1− αβ
ln (αβ) + ln (1− αβ)

)
+

+
α

1− αβ
ln(kt) +

1

(1− ρβ) (1− αβ)
lnAt.

The value function above is strikingly similar to the one we obtained in

Sub-section (4.1): this is an effect of the functional forms we have chosen to

describe preferences, production, and the evolution for productivity.

It is now easy to obtain the consumption function. Exploiting G in equa-

tion (9.3), we obtain k1 = αβA0k
α
0 , hence c

∗
0 = (1 − αβ)A0k

α
0 , as in the

non-stochastic case. This is a neat but slightly disappointing result, because

optimal consumption turns out to be, again, a linear function of output.

Exercise 14. Find the value function, and the consumption function for
the example in Section 7.

Exercise 15. Assume that: i) the return function is: ln ct; ii) the dy-
namic constraint is kt+1 = Ai

tk
α
t − ct; iii) there are two productivity lev-

els, AH
t and AL

t , iv) Pr(AH
t+1

∣∣AH
t ) = Pr(AL

t+1

∣∣AL
t ) = p, Pr(AH

t+1

∣∣AL
t ) =

Pr(AL
t+1

∣∣AH
t ) = 1− p. Find the value function, and the consumption func-

tion.

Exercise 16. Assume that: i) the return function is: c1−γ
t /(1− γ), where

γ ∈ [0, 1) ∪ (1,∞); ii) the dynamic constraint is kt+1 = Ai
tkt − ct, in which

the structure of the productivity is the one described in Section 7. Find the
value function, and the consumption function.

Exercise 17. Assume that i) the single period utility function is: ln(ct) +

γ ln(1− lt), where lt is labour time and γ > 0; ii) the dynamic constraint is
kt+1 = Atk

α
t l
1−α
t − ct, where 0 < α < 1, and At is described by Eq. (9.1).

Find the value function, and the related policy functions.

Exercise 18. (Cake eating with taste shocks). Assume that i) the return
function is: ln(ztct), where zt is a random variable that can assume two
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values, zH and zL with probabilities pH and 1−pH ; ii) the dynamic constraint
is yt+1 = yt − ct.

52 Find the value function, and the consumption function.

9.2. Quadratic preferences with a linear constraint. When the return

function is quadratic, the time horizon is infinite and the transition function

is linear and affected by additive shocks, a closed form solution for the

maximum value function exists.

To be specific, assume that preferences are given by Equation (4.8), and

that the intertemporal constraint, which is linear in the state variable kt, is

given by

(9.4) kt+1 = (1 + r)kt − ct + ǫt,

with ǫt representing a random variable which is independent and identically

distributed over time.

The logic of the solution method is the same we have experienced in Sub-

sections (4.2) (and in 9.1): the tentative solution takes the same functional

form of the return function. Since it is quadratic, our tentative solution is

a second order polynomial in the state variables (kt and ǫt), namely:

V (kt, ǫt) = F +Gkt +Hk2t + Iǫt + Lǫ2t +Mktǫt,

where F, G, H, I, L, and M are undetermined coefficients. The equation

above suggests that our standard procedure requires the solution of a six-

equation system. Hence, this problem is usually dealt with by means of

numerical techniques based on matrix manipulations. On this, the standard

(and very good) references are Chow [1997] and Sargent and Ljungqvist

[2012].

A few more details on the approach to models with a quadratic return

function and a linear dynamic constraint are provided in the Appendix,

where the solution to Exercise (19) is discussed.

Exercise 19. Consider a Central Bank which can control output (i.e. by
means of the interest rate) and aims to minimize:

W0 = E0

[
∞∑

t=0

βt
(
y2t + δπ2t

)
]

,

where πt is inflation and yt is output. The dynamic constraint the Central
Bank faces is a traditional Phillips’ curve: πt = πt−1 + γyt + ǫt, where ǫt is

52Interpret yt as the remaining share of a cake, and ct as the slice of the cake the consumer
decides to cut out at time t. The implicit assumption is that the consumer has free access
to a very efficient fridge.
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a random variable independent and identically distributed over time. Find
the value function and the policy function.

10. N�
��
��� �����
'��� ��� ��� “����� �� �

���
����
��”

In this Section, we illustrate two alternative techniques that can be used to

approximate numerically the maximum value function in stochastic settings.

First, we extend to the case of stochastic productivity the value function

iteration method that we introduced in Sub-section 6.1. We then remark

that this technique bitterly suffers from the “curse of dimensionality”. Fi-

nally, because the alternative we proposed for the deterministic case, namely

the use of collocation techniques, can be troublesome, we discuss a simple

application of a more efficient approach, which is the one based on “para-

meterized expectations”.

10.1. Discretization of the state space. In this Sub-section, we present

the stochastic version of the value function iteration method. To favour

comparisons, we modify the example presented in Sub-section 6.1, encom-

passing the simplest possible stochastic process for productivity. In fact, we

assume that At is independent and identically distributed over time, and

that it can take two values, AL
t = 3.36770 and AH

t = 3.50515, both with

probability 0.5 (so that Et−1[At] is equal to the productivity value used in

the non stochastic example: what we are considering here is a mean preserv-

ing spread in productivity; notice also that − being At time independent −

we drop the time suffix53). As before, α is 0.3, and β is 0.97, so that the

non-stochastic steady state for capital is normalized to unity.

Accordingly, our problem is to solve:

V (k0, A) = max
c0

{
ln(c0) + 0.97E0

[
V (k1, Ã)

]}
,

s.t. k1 = Ak0.30 − c0,(10.1)

A ∈ {3.36770, 3.50515},

k0 given.

As in Sub-section 6.1, we assume to be interested in solving the problem

for values of capital that are around the non stochastic steady state, and

we consider only five possible levels for capital: {0.98, 0.99, 1, 1.01, 1.02};

accordingly, our state space is composed of ten points, in fact the five capital

levels must be coupled with the two possible productivities.

53When productivity is unknown, being random, it is denoted by a twiddle. Accordingly,
the absence of the twiddle indicates that productivity has already taken one of its possible
values.
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The strategy to obtain the maximum value function is not relevantly

different from the one we have described for the deterministic case.

To obtain the unknown value function, we need to:

• (Step 1) specify E0[V (k1, Ã)] as a set of five arbitrary values, one for

each capital level, and denote this set of initial values asE0[V0(k1, Ã)];

• (Step 2) solve Problem (10.1) for each state k1, A, finding a new

(and hence different) maximum value function (in our case this step

substantiates in the attainment of a set composed of ten values,

denoted by V1(k0, A));

• (Step 3) let, for each capital level on the grid, V1(k1, A) = V1(k0, A),

and compute the expected maximum value function E0[V1(k1, Ã)]

using the probability distribution over A;

• (Step 4) using E0[V1(k1, Ã)] as a new arbitrary starting point, obtain

E0[V2(k1, Ã)];

• (Step 5) iterate the steps above untilE0[Vn(k1, Ã)] andE0[Vn+1(k1, Ã)]

are “sufficiently close”.

In the simulations, to stop this iterative procedure, we choose for the set

of values representing E0[V (k1, Ã)] a convergence criterion which will be

analogous to the one chosen in the non-stochastic case.

We now illustrate the above procedure by means of the extremely simpli-

fied example that we have already sketched.

We start by choosing the set of values for E0[V0(k1, Ã)]. In this example,

we choose: E0[V0(k1, Ã)] = 0 for any k1 (Step 1).

As for Step 2, notice that the above choice implies that we face problems

of the following type:

V1(k0, A) = max
c0
{ln(c0)} ,

s.t. k1 = Ak0.30 − c0,

A ∈ {3.36770, 3.50515},

k0 given.

We first consider the case A = AL. Notice that, as before, both k0 and

k1 must take one of the possible values for capital (i.e. {0.98, 0.99, 1, 1.01,

1.02}): this restricts the set of feasible consumption levels. For example, if

k0 = 0.98, for k1 = {0.98, 0.99, 1, 1.01, 1.02}, we compute: c0 = {2.36735,

2.35735, 2.34735, 2.33735, 2.32735}; the corresponding utilities are {0.86177,

0.85754, 0.85329, 0.84902, 0.84473}. The highest utility level is obtained for
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c0 = 2.36735, which is the consumption level that guarantees that the next

period capital is k1 = 0.98.

Hence, the solution for this specific problem is V1(k0 = 0.98, A = AL) =

0.86177.

Repeating this reasoning we obtain: V1(k0 = 0.99, A = AL) = 0.86607,

V1(k0 = 1, A = AL) = 0.87033, V1(k0 = 1.01, A = AL) = 0.87454, V1(k0 =

1.02, A = AL) = 0.87870. As expected, in every problem the solution corre-

sponds to the maximum feasible consumption level, which is the one leading

to k1 = 0.98.

We then consider the case A = AH . For example, if k0 = 0.98, for k1 =

{0.98, 0.99, 1, 1.01, 1.02}, we compute: c0 = {2.50397, 2.49397, 2.48397,

2.47397, 2.46397}; the corresponding utilities are {0.91788, 0.91388, 0.90986,

0.90583, 0.90178}. The highest utility level is reached for c0 = 2.50397, which

is, once again, the consumption level that guarantees that the next period

capital is k1 = 0.98, and the solution for the problem is V1(k0 = 0.98, A =

AH) = 0.91788.

As for the other capital levels, we obtain: V1(k0 = 0.99, A = AH) =

0.92211, V1(k0 = 1, A = AH) = 0.92630, V1(k0 = 1.01, A = AH) = 0.93044,

V1(k0 = 1.02, A = AH) = 0.93454. This completes Step 2 in the procedure.

The third step in the procedure is readily executed: given that pH = pL =

0.5, E0[V1(k1, A)] = {0.88982, 0.89409, 0.89831, 0, 90249, 0.90662}.

We now use this set of values as a new starting point for the maxi-

mum value function (Step 4). Accordingly, we now assume E0[V1(k1, A)] =

{0.88982, 0.89409, 0.89831, 0, 90249, 0.90662}, and we proceed with the sec-

ond iteration, as we did in Sub-section 6.1. Actually, we let our numerical

routine to perform Step 5.

The results of the routine that solves the model are reported in Table 2;

the last line provides, as a reference point, the exact solution.
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TABLE 2

iter. # E[V (0.98,Ã)] E[V (0.99,Ã)] E[V (1.00,Ã)] E[V (1.01,Ã)] E[V (1.02,Ã)]

0 0 0 0 0 0

1 0.889825 0.894094 0.898316 0.902490 0.906619

2 1.753071 1.757366 1.761613 1.765815 1.769976

3 2.590458 2.594755 2.599010 2.603218 2.607381

4 3.402731 3.407029 3.411284 3.415492 3.419656

5 4.190637 4.194935 4.199190 4.203398 4.207563

10 7.789475 7.793774 7.798029 7.802236 7.806402

50 23.197025 23.201323 23.205579 23.209786 23.213952

100 28.255542 28.259841 28.264096 28.268304 28.272469

200 29.599175 29.603474 29.607729 29.611937 29.616102

300 29.663068 29.667367 29.671622 29.675830 29.679995

375 29.665933 29.670232 29.674487 29.678695 29.682860

376 29.665943 29.670242 29.674497 29.678705 29.682870

true 29.666455 29.670751 29.675004 29.679214 29.683383

Notice that the uncertainty about future productivity has an interesting

impact on the value function: an increase in the variance for Ã negatively

influences the overall utility. (Compare the last line in Table 2 with the last

one in Table 1) This is a consequence of the fact that the preferences (4.1)

describe a risk-averse representative consumer.

Exercise 20. Check that the values for E
[
V (k, Ã)

]
in the last line of Table

2 are correct.

To provide a more challenging example, we use the program written for

the problem above to study what happens for k ∈ [0.5, 1.3] with 800 grid-

points and five equiprobable productivity levels (evenly spaced in the inter-

val A = [3.36770, 3.50515].54 Figure 12a plots the expected maximum value

function, while Figure 12b shows the differences between the true expected

value function and the approximated one; it takes about five minutes to

achieve convergence.55

Even in this simple example, the required computer time is (relatively)

high. Hence, one should consider to adopt a more efficient technique, such

as the collocation one or the finite elements method. However, the “curse of

dimensionality” never sleeps, and the implementation of these techniques in

54Productivity is naturally thought about as being a continuous random variable; in deal-
ing with this class of variables one needs to use “quadrature” techniques. In practice, this
amounts to a wise choice of the points used to discretize the continuous random variable.
Refer to Judd [1998].
55This is, again, exploiting an Intel i7-4600 CPU @ 2.70 Ghz.
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a multidimensional setting is not easy. In fact, the interpolating polynomial

must be specified in a number of variables equal to the dimension of the

state space, and the number of coefficients to be determined then grows

very quickly with the order of the polynomial.56 Hence, the number of

56Recall that P3(x) was characterized by four coefficients only, and consider that an order
three polynomial in two variables is characterized by ten coefficients. In fact:

P3(x, y) = a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2 + a6x
3 + a7x

2y + a8xy
2 + a9y

3.
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equation composing the non-linear system of ordinary equations that comes

from the collocation exercise can easily become very large, and therefore

hardly manageable for our non-linear equation solver. In practice, when the

number of state variables exceeds two, the application of these techniques

becomes a fairly tough task. The next section sketches a valid alternative.

10.2. The Parameterized Expectations Approach. As usual, we in-

troduce this new approach by means of an example.

We consider a Ramsey model which is identical to the one discussed in

Section (7), but for the fact that capital does not depreciate entirely within

one period, and hence δ ∈ (0, 1). Accordingly, in our example the stochas-

tic Euler equation (7.8) must be modified to take into account the partial

depreciation of capital; from the perspective of period t, (i.e., when the ex-

pectation are conditioned upon the time t information), such Euler equation

becomes:

(10.2)
1

c∗t
= βαEt

[
1

c∗t+1
(At+1k

α−1
t+1 + 1− δ)

]
.

Of course, the term on the right hand side in the square bracket is an

expectation, conditional on the period t information set.

Notice that the term
[

1
c∗t+1

(At+1k
α−1
t+1 + 1− δ)

]
is a function of At+1 and

kt+1. In fact, ct+1 is a function of the period t+ 1 realizations for the state

variables. Hence Et

[
1

c∗t+1
(At+1k

α−1
t+1 + 1− δ)

]
is the expectation of a func-

tion of At+1 and kt+1. These variables must be forecasted on the ground

of the period t information set, which means on the ground of At and kt.

Hence, these are the variables upon which the expectation on the right hand

side of (10.2) must be conditioned.57

Because the expectation Et

[
1

c∗t+1
(At+1k

α−1
t+1 + 1− δ)

]
is a function of the

state variables, we approximate this conditional expectations by a polyno-

mial in the state variables. Such a polynomial — as any polynomial — is

characterized by its parameters, therefore — once we have chosen the degree

of the polynomial and the values for the parameters — we have “parameter-

ized” the expectation.

We denote the approximating polynomial by F (Ψ0, At, kt), where Ψ0
is the set of coefficients of the polynomial. Notice that, for convenience,

F (Ψ0, At, kt) represents the period t conditional expectation for

αEt

[
1

c∗t+1
(At+1k

α−1
t+1 + 1− δ)

]
.

57You may be thinking that kt+1 belongs to period t information set. This is true, but
consider that kt+1 depends on ct. Because this is the variable we wish to determine, it is
inconvenient to condition the expectation on the right hand side of (10.2) on kt+1.
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Following Marcet and Lorenzoni (1999), to represent F (Ψ0, At, kt) we

choose an exponentiated polynomial of order one, that is:

(10.3) F (Ψ0, At, kt) = ψ0,1 exp(ψ0,2 ln kt + ψ0,3 lnAt).

Hence, in this example, Ψ0 is composed of ψ0,1, ψ0,2, and ψ0,3.

Using an ordinary polynomial might cause problems because it can gen-

erate a negative value for F (Ψ0, At, kt); since, as we shall see in a while, this

number is raised to a negative power (refer to Eq. (10.4a)), a numerical er-

ror would ensue. Furthermore, we know that the true expectation can take

only positive values, and the functional form in (10.3) actually guarantees

a positive F (Ψ0, At, kt) (therefore generating a positive period t consump-

tion level). Increasing the degree of the exponentiated polynomial, we can

approximate the conditional expectation with better and better accuracy.

We initialize our procedure attributing to each parameter (i.e. to ψ0,1, ψ0,2,

and ψ0,3) an arbitrary value; having chosen these values, knowing the cur-

rent values for the state variables, A0, and k0, and letting our software to

draw an appropriate sequence of random numbers representing the future

realizations for the productivity process, we can easily simulate the model.

As it will be commented upon in what follows, what we do is to obtain

“artificial” time series for consumption and next-period capital. In fact, in

any period t = {0, 1, 2, ...} , we have:

ct(Ψ0) = [βF (Ψ0, At, kt)]
−1(10.4a)

kt+1(Ψ0) = Atk
α
t + (1− δ)kt − ct(Ψ0).(10.4b)

Knowing A0 and k0, we compute c0(Ψ0), this value is used, together

with A0 and k0, to determine k1(Ψ0). Having obtained a random realization

for A1, we couple this with k1(Ψ0), and we iterate the process. Because

the values for consumption and for the capital stock obtained by means of

(10.4a) and of (10.4b) depend on the vector of parameters, we have denoted

these values as ct(Ψ0), and kt+1(Ψ0), respectively.

Notice that this simulation is based on an arbitrary choice for the vector

of parameters. Nonetheless, we take it seriously, and we construct a time

series for the auxiliary variable wt+1:

(10.5) wt+1 = α
1

ct+1(Ψ0)
(At+1kt+1(Ψ0)

α−1 + 1− δ), t = {0, 1, 2, ...}

Notice that
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Et [wt+1] = Et

[
α

1

ct+1(Ψ0)
(At+1kt+1(Ψ0)

α−1 + 1− δ)

]
.

Hence, β times Et [wt+1] represents the marginal utility of period t con-

sumption, as determined, following the Euler equation, on the ground of our

artificial time series. In our model, the marginal utility (c∗t )
−1 is a function

of the state variables kt and At. Hence, Et [wt+1] can be expressed as a func-

tion of the state variables; if the parameter vector Ψ0 and the functional

form in (10.3) were correct (i.e. it they were the ones actually satisfying

(10.2)), by regressing wt+1 on kt and At (plus a constant) we should ob-

tain exactly Ψ0. Of course, this regression must be specified in accordance

with the functional form (10.3). Because F (Ψ0, At, kt) is an exponentiated

polynomial, we run the regression

logwt+1 = logψ1,1 + ψ1,2 ln kt + ψ1,3 lnAt + ξt,

where ξt is a shock, which — under rational expectations — must be indepen-

dent over time and from the regressors (otherwise the correlations could be

exploited to improve the forecast).

We denote the set of regression coefficients as Ψ1. If the parameter vector
Ψ0 were correct, then the regression parameters Ψ1 would confirm Ψ0 (and

hence the polynomial built using Ψ1 would be equal to the original one, built

on Ψ0). In general, the regression coefficients Ψ1 can be used to simulate

again the model. Hence, we substitute the vector Ψ1 to the initial arbitrary

vector Ψ0, and we obtain new values for ct(Ψ1), kt(Ψ1), and for the related

time series wt+1. If we proceed in this way, we can obtain a new estimate

Ψ2. The crucial aspect is that iterating this reasoning, we obtain better

and better result, i.e. we obtain time series for wt+1 which are better and

better approximations for (βc∗t )
−1. (See Marcet and Lorenzoni (1999) and

the literature quoted there for more details on this convergence result).

We now solve by means of this procedure the log-utility/Cobb Douglas

production model.

In the need to specify the parameters’ values, we fix, as usual, β = 0.97,

and α = 0.3; in coherence with the example in Section 6.2, we pick, for the

depreciation parameter, the value δ = 0.15; for the productivity process we

choose, as in the previous Sub-section, AL
t = 3.36770, and AH

t = 3.50515,

both with probability 0.5. Notice that these parameters value imply a non

stochastic steady state for capital as high as 12.01171. The initial condition

for the capital stock is k0 = 6: we choose an initial condition quite far

from the long-run capital distribution to obtain some information about the

“transition” of the system to the stochastic steady state.
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Finally, we need to provide the initial values for the parameters in Ψ0.

Although we have defined as “arbitrary” these values, it is sensible to feed

the routine with values that are as close as possible to the “truth”: this

speeds up the convergence.58 Accordingly, we have chosen for ψ0,i, the

values that can be computed when δ = 1 (solve Exercise 14). These are:

ψ0,1 = 1.4540590, ψ0,2 = −0.3, and ψ0,3 = −1.59

We choose to simulate the model for 100.000 periods; at the end of each

iteration we compute, for each parameter, the difference between its initial

value, and the estimated one. When the largest difference in absolute value,

is lower than 10(−9), we assume that convergence is attained. It turns out

that this happens in 44 iteration, the required computer time being about

1 minute and one half.60

Panel (a) in Figure ?? shows the scatter plot for consumption as a function

of capital; Panel (b) displays the evolution for the parameters values: the

continuous line represents ψj,1; the dotted line is ψj,2, while the dashed line

is ψj,3.

58Actually, values that are far from the correct ones may prevent the routine to converge.
Also, it may be interesting to underscore that several applications of PEA use an algorithm
based on limited modifications of the parameters vector. Denoting by Ψ̄ the parameter
vector estimated in the least squares section of the procedure, one picks Ψn = µΨ̄ + (1−
µ)Ψn−1, with µ ∈ (0, 1), instead of choosing Ψn = Ψ̄.
59The difference between δ = 1 and δ = 0.15 is large. Thus, our starting values for the
parameters can actually be far from the “true” ones. Accordingly, the initial values may
induce instability. Should this happen, it is sensible to carry on as follows. First, run the
routine for a δ close to 1, say δ = 0.9, obtaining the “true” values for this case. Second,
reduce δ, say to 0.8, using as a starting point for Ψ, the “true” values obtained in the first
step. This should allow for the computation of a new set of “correct” values for Ψ. One
can progress this way until the desired value (δ = 0.15) is reached.
60As already underscored, when the parameter vector Ψn is correct, then Et [wt+1] =
(βc∗t )

−1. Accordingly, we computed the average difference between wt+1 and (βc
∗

t )
−1, and

we found it to be very small: -5.10x10(−7).
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From Panel (a) we see that the realized values for consumption and capital

in the time series “thicken” around their steady state distribution (consider

the “thick” portion of the plot). This happens because kt takes only a

relatively limited number of periods to move from its initial value (k0 = 6)

to its long run distribution. Notice in passing that the transition — being

short — is affected only by a necessarily limited number of realizations for

the productivity shock, and hence that the “transitional part” of the time

series we obtain is of limited interest.
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The bright side of what we have done is that we have been able to com-

pute a good approximation in a short time. In general, the Parameterized

Expectations Approach does quite well. In particular, Christiano and Fisher

[2000] argue that it should be the preferred one to solve models with sto-

chastically binding constraint.

In sum, this is a method that it is well worth considering when solving

large stochastic models.

The availability of fast and reliable methods for solving stochastic models

paves the way to researchers who wish to explore frameworks that are much

more complex, and much more interesting, than the one analyzed in these

introductory notes.
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A�����
� A. T�� ��
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In this Appendix, we detail the tasks performed by the Matlab routines

we have used in the main text.

The routines have been written for didactic purposes, they aim at being

transparent, and they are (very) inefficient. In particular, we have used

many times the "for ... end" cycle, which slows down the execution of the

routines.

We present the routines in the order they have been used in the main

text; notice that it should be possible to "cut" the routines from the pdf

file, and paste them into the Matlab editor, obtaining working .m files.61

A.1. Valfun_iter0.m. This is the script (i.e. a list of command) that

produces Table 1.

clear;

time1=clock;

% this stores the initial time.

format(’long’);

% this let Matlab to display results in the Command Window

% using the "long" format for figures (calculations are unaffected)

% we now declare the parameters values

alpha=0.3;

beta=0.97;

A=1/(alpha*beta);

% this compute the steady state capital stock;

kstar=(alpha*beta*A)^(1/(1-alpha));

states=5;

% this is the number of states we use;

kmin=0.98;

% this is the lowest capital level we use;

kmax=1.02;

% this is the highest capital level we use;

deltak = (kmax-kmin)/(states-1);

kvec=kmin:deltak:kmax;

% these two lines compute the ’grid’ for the state variable.

vini=zeros(1,states);

% this is our initial guess for the maximum value function,

% which is 0 for each gridpoint.

vfin=zeros(1,states);

% this creates the maximum value function which will be obtained

% at the end of one optimization "cycle".

cons=zeros(1,states);

% this creates the consumption vector

61For reason that are beyond my understanding, in most versions of the Adobe reader,
when you paste the script in the Matlab editor, you need to substitute the character < ’
> with the character < ′ > (which can easily be done automatically — notice that, in the
Matlab editor, the character < ′ > is the very same key, i.e. the apostophe).
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opt_choice=zeros(1,states);

% this is the vector used to store the maximum utility, inclusive

% of the discounted value of future utility, in each cycle.

% The maximum value function is made up of the optimal choices

% for every stock of capital.

err=10;

% "err" is the variable used to substantiate the convergence

% criterion. When "err" is below a threshold (specified below),

% the routine has converged.

% Variable "err" is now initialized.

z=0;

% this initializes the counter for the value iterations

while err > 10^(-5);

% convergence criterion.

z=z+1;

% this is the counter for value iterations

for i=1:states;

for j=1:states;

cons(j)=A*kvec(i)^alpha-kvec(j);

% for any given state (i), this computes the consumption compatible

% with the next period state (j).

end;

opt_choice(i)=max((log(cons)+beta*vini)’);

% this is optimal choice among consumption values (and their related

% next-period capital stock, summarized by the value in "vini").

% Notice that i indexes the current state

end;

vfin=opt_choice;

% The maximum value function is the optimal choice for every stock

% of capital.

delta=abs(vini-vfin);

% this computes the difference between the maximum value before

% and after the optimization cycle, in absolute value.

err=max(delta’);

% the "convergence variable" takes the maximum absolute difference

% between the maximum value before and after the optimization

% cycle.

vini=vfin;

% the new cycle shall start with this new guess.

Table1(z,:)=[z vfin(1) vfin(2) vfin(3) vfin(4) vfin(5)];

% these are the values which appear in Table 1, Section 6.

end;

% this ’closes’ the cycle for z.

time2=clock;

% this stores the time at the end of the execution.

time3=time2-time1;

’used?cpu?time’

time3

% this computes the "true" maximum value function (see example

% in Section 6.1)

par =alpha*beta;

cost1=1/(1-beta)*(par/(1-par)*log(par)+log(1-par)+1/(1-par)*log(A));
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cost2=alpha/(1-alpha*beta);

true_val=cost1+cost2*log(kvec);

true_val

% these are the values for the "true" value function.

Notice that Table1 contains the values used to produce the corresponding

Table in the main text.

A.2. valfun_iter1.m. This script is essentially identical to valfun_iter0.m,

but for the fact that we consider a grid of 1600 points; the state variable

is ranging from 0.7 to 1.1. This routine produces Figure 5. For specific

comments, please refer to the previous sub-section.

clear;

% for comments, refer to file valfun_iter0.

time1=clock;

format(’long’);

alpha=0.3;

beta=0.97;

A=1/(alpha*beta);

kstar=(alpha*beta*A)^(1/(1-alpha));

states=1600;

% this changes the number of points in the grid.

kmin=.7;

kmax=1.1;

deltak = (kmax-kmin)/(states-1);

kvec=kmin:deltak:kmax;

vini=zeros(1,states);

vfin=zeros(1,states);

consV=zeros(1,states);

opt_choice=zeros(1,states);

err=10;

z=0;

while err > 10^(-5);

z=z+1;

for i=1:states;

for j=1:states;

consV(j)=A*kvec(i)^alpha-kvec(j);

end;

opt_choice(i)=max((log(consV)+beta*vini)’);

end;

vfin=opt_choice;

delta=abs(vini-vfin);

err=max(delta’);

vini=vfin;

end;

time2=clock;

time3=time2-time1;

’used?cpu?time’
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time3

% The lines below compute the "true" maximum value function

par=alpha*beta;

cost1=1/(1-beta)*( par/(1-par)*log(par)+log(1-par)+1/(1-par)*log(A));

cost2=alpha/(1-alpha*beta);

true_val=cost1+cost2*log(kvec);

err_approx=true_val-vfin;

% these are the approximation error as difference between true

% values and those approximated by "vfin"

% ========== The lines below produce a two panels figure ==========

size=11; % size of font (in points)

subplot1 = subplot(2,1,1,’FontSize’,10,’FontName’,’Times?New?Roman’);

plot(kvec’,vfin’); % this builds Panel (a)

xlim([0.7 1.1]);

ylim([29.5 29.75]);

% this creates xlabel

xlabel(’Capital’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

% this creates ylabel

ylabel(’Maximum?value’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

% this creates title

title(’Panel?(a):?Maximum?Value?Function’,’FontSize’,size+3,...

’FontName’,’Times?New?Roman’)

subplot2 = subplot(2,1,2,’FontName’,’Times?New?Roman’);

plot(kvec’,err_approx’); % this builds Panel (b)

xlim([0.7 1.1]);

% this creates xlabel

xlabel(’Capital’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

% this creates ylabel

ylabel(’Approximation?errors’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

% this creates title

title(’Panel?(b):?Approximation?Errors’,’FontSize’,size+3,...

’FontName’,’Times?New?Roman’)

A.3. prim.m. The file colloc_0.m (to be discussed below) calls for the func-

tion “prim(x,num)”, which is a function written in a separated file (also

called a “function m-file”). Here we discuss the file prim.m, as a prelimi-

nary for the analysis of colloc_0.m.

The function file prim.m stores the function prim(x,num), which can be

used by other Matlab files. This file produces a row vector of length num, the

elements of which take values x0, x1, x2, ..., x(num−1). For example, if a script

file calls prim(2,5), the output of the file prim.m will be [1, 2, 4, 8, 16]. Notice

that if we multiply the output of prim.m by a column vector of parameters

(of appropriate dimension), we obtain the value of the polynomial of degree

num−1, characterized by the parameters’ values stored in the column vector,
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and computed at x. Notice that, typically, in our exercises, x will be a

collocation point.

function F=prim(x,num)

i=1;

for i=1:num;

F(i)=x^(i-1);

% this builds the row vector of length num, evaluated at x.

end;

A.4. colloc_0.m. This script approximates sin(x) in the interval [0, 2π]

using first a third, and then a tenth degree polynomial. Figure 7 and 8

are the output of this script. Notice that this script calls for the function

“prim(x,num)”.

clear;

max_pi=2*pi;

% this sets the approximation range which is [0,2*pi].

num=4;

% this sets number of coefficient of the approximating polynomial.

incr=max_pi/(num-1);

cp=0:incr:max_pi;

% The two line above determine the collocation points (cp), which

% are equally spaced (the distance between two neighboring points

% being "incr").

A=[prim(cp(1),num);prim(cp(2),num);prim(cp(3),num);prim(cp(4),num)];

b=sin(cp)’;

% A and b are used to write System (6.3)in matrix form.

z0=A^(-1)*b;

% this solves linear system; z is vector of parameter for the

% approximating polynomial.

% The next lines build the data for Figure 6;

bignum=200;

% this is the number of points where true and approximating functions

% are computed (notice that "bignum" is much larger than "num").

real_line=0:max_pi/(bignum-1):max_pi;

% Vector "real_line" is discretizing the independent variable

% in the interval [0, 2*pi].

sin_x=sin(real_line);

% Vector "sin_x" is discretizing the dependent variable in

% the interval [0, 2*pi].

for i=1:bignum;

approx_funz(i) = prim(real_line(i),num)*z0;

% approximating polynomial in the interval [0, 2*pi].

end;

plot_funz=[sin_x;approx_funz];

% this stores sin(x) and the approximating polynomial in a matrix
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% Below, we repeat the above exercise with a 10th degree polynomial

time1=clock;

num=11;

% number of coefficient in the approximating polynomial is increased

% to 11

incr=max_pi/(num-1);

cp=0:incr:max_pi;

% this creates matrix A (which is 11x11) by concatenation.

% Each of the row represents the values taken by the powers composing

% the polynomial at a collocation point.

A=[prim(cp(1),num)];

% ’prim’ is stored in a function m-file;

for i=2:num;

A=[A;prim(cp(i),num)];

end;

% vector b (which is 11x1) stores the values of the function to

% be approximated.

b=sin(cp)’;

z=A^(-1)*b;

% z is vector of parameter for the approximating polynomial

time2=clock;

% this stores the time at the end of the execution.

time3=time2-time1;

’used?cpu?time’

time3

% The lines below build the data for Figure 7;

for i=1:bignum;

approx_funz10(i) = prim(real_line(i),num)*z;

% approximating polynomial

end;

err_approx10=sin_x-approx_funz10;

% approximation error as difference between true and approximated

% function.

% The lines below build Figure 6;

size=11; % size of font (in points)

figure;

plot(real_line,plot_funz(1,:),’-’,real_line,plot_funz(2,:),’--’);

% first series (which is Sin(x) is continuous, second (which is

% the 3rd degree approximation) is dashed.

xlim([0 2*pi])

ylim([-1.25 1.25])

% Create xlabel

xlabel(’x?\in?[0,2\pi]’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

title(’3^{rd}?degree?approximation?for?Sin(x)’,’FontSize’,size+3,...

’FontName’,’Times?New?Roman’)

% The lines below build Figure 7;

size=11; % size of font (in points)

figure;

plot(real_line,err_approx10);

xlim([0 2*pi])

% Create xlabel
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xlabel(’x?\in?[0,2\pi]’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

ylabel(’Approximation?errors’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

title(’Approximation?errors?for?Sin(x)’,’FontSize’,size+3,...

’FontName’,’Times?New?Roman’)

A.5. der_1.m. This file stores the function der_1(x,num). This file pro-

duces a row vector of length num, the elements of which take values 0, 1,

2x, ..., (num − 1) x(num−2). For example, if a script file calls der_1(2,5),

the output will be [0, 1, 4, 16, 32]. Notice that if we multiply the output of

der_1.m by a column vector of parameters (of appropriate dimension), we

obtain the first derivative of the polynomial of degree num−1, characterized

by the parameters’ values stored in the column vector, and evaluated at x.

function F=der_1(x,num)

F(1)=0;

% this is the first element of the row vector of length num.

for i=2:num;

F(i)=(i-1)*x^(i-2);

% this builds the rest of the row vector of length num, evaluated

% at x.

end;

A.6. colloc_1.m. This script approximates the differential Equation (6.4)

for t ∈ [0, 4] using first a second, and then an eight degree polynomial. It also

produces Figures 9 and 10. This script uses the functions “prim(x,num)”

and “der_1(x,num)”.

time1=clock;

aa=0.1;

bb=1;

% aa and bb are the parameters of the differential equation.

x0=2;

% initial condition.

tmin=0;

tmax=4;

% these set the approximation interval.

% The lines below solve for a 2nd degree polynomial (three

% coefficients);

num=3;

% number of coefficients

incr=(tmax-tmin)/(num-2);
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vt=tmin:incr:tmax;

% this builds the vector representing calendar time

A=[der_1(vt(1),num)-aa*prim(vt(1),num); ...

der_1(vt(2),num)-aa*prim(vt(2),num)];

% ’prim’ and ’der_1’ are the functions stored in function m-files.

A=[A;prim(0,num)];

bvec=[bb;bb;x0];

% the line above stores System 6.6 in paper, written in matrix

% notation. Notice that the last line in A and bvec comes from

% the initial condition.

z0=A^(-1)*bvec;

% this solves the linear system; z0 is vector of parameter for

% the approximating polynomial

% The line below build the data for Figure 8;

bignum=200;

% this is the number of points where the true and the approximating

% functions are computed (notice that "bignum" is much larger

% than "num").

check_time=tmin:(tmax-tmin)/(bignum-1):tmax;

% vector of gridpoints for the state variable, which is time in

% the interval [0,4].

true_funz = -bb/aa+(x0+bb/aa)*exp(aa*check_time);

% exact solution for the differential equation.

for i=1:bignum;

approx_funz(i) = prim(check_time(i),num)*z0;

% approximated solution for the differential equation at "bignum"

% points. It exploits again the function m-file "prim.m".

end;

plot_funz=[true_funz;approx_funz];

% this passes the relevant data to the figure.

% The lines below solve for an 8th degree polynomial (which implies

% 9 coefficients).

num=9;

incr=(tmax-tmin)/(num-2);

vt=tmin:incr:tmax;

Anew=[der_1(vt(1),num)-aa*prim(vt(1),num)];

for i=2:num-1;

Dnew=[der_1(vt(i),num)-aa*prim(vt(i),num)];

Anew=[Anew;Dnew];

% Notice that matrix Anew is created by concatenation.

end;

Anew=[Anew;prim(0,num)];

bvecnew=[bb*ones(num-1,1);x0];

% this incorporates condition x0=2.

z=Anew^(-1)*bvecnew;

% this solves linear system; z is vector of parameter for the

% 8th degree approximating polynomial.

for i=1:bignum;

approx_funz8(i) = prim(check_time(i),num)*z;

% this is the approximated solution for the differential equation.

true_check(i)=der_1(check_time(i),num)*...

z-bb-aa*prim(check_time(i),num)*z;
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% approximation error as difference between true and approximated

% function.

end;

fake_check=true_funz-approx_funz8;

% this is the "fake" check, obtained as difference between true

% (analytical) solution and approximated solution.

plot_funz2=[fake_check;true_check];

time2=clock;

% this stores the time at the end of the execution.

time3=time2-time1;

’used?cpu?time’

time3

% The lines below build Figure 8;

size=11; % size of font (in points)

figure;

plot(check_time,plot_funz(1,:),’-’,check_time,plot_funz(2,:),’--’);

% first series (which is Sin(x) is continuous, second is dashed

xlim([0 tmax])

% Create xlabel

xlabel(’t?\in?[0,4]’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

title(’Approximation?for?dx(t)/dt=0.1x(t)+1’,’FontSize’,size+3,...

’FontName’,’Times?New?Roman’)

% The lines below build Figure 9;

size=11; % size of font (in points)

figure;

plot(check_time,plot_funz2(1,:),’-’,check_time,plot_funz2(2,:),’--’);

xlim([0 tmax]);

ylim([-10*10^-12 10*10^-12]);

% Create xlabel

xlabel(’t?\in?[0,4]’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

ylabel(’Approximation?errors?and?residuals’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

title(’Errors?of?an?8^{th}?degree?polynomial’,’FontSize’,size+3,...

’FontName’,’Times?New?Roman’)

A.7. colloc_2.m. This file solves system (6.8-6.9). This routine exploits

the Matlab built-in nonlinear equation solver. This is done through the

command fsolve(.). System (6.8-6.9) is stored in the file system0.m; Figure

11 represents the output for this script.

clear;

time1=clock;

al=0.3;

de=0.15;

be=0.97;

% this feed the routine with the parameters values.

A=1/(al*be);
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% this is a normalization.

kss=(A*al*be / (1+be*(de-1)) )^(1/(1-al));

% this computes the steady state capital stock.

kmin=0.5*kss;

% this is the lowest capital level we use.

kmax=1.0*kss;

% this is the highest capital level we use.

num=2;

% this is the (initial) number of parameters of the polynomial.

for i=1:num;

% this computes the (equally spaced) collocation points.

ck(i)=kmin+(i-1)/(num)*(kmax-kmin);

% Notice that the steady state capital (kss) is not a collocation

% point.

end;

x1=[-4;.2;.0];

% this is the initial guess for the parameter vector. (not a

% particularly smart one).

options = optimset(’display’,’off’,’MaxFunEvals’,500);

% These are the options for the nonlinear equation solver

% (refer to the Matlab manual).

z=fsolve(@system0,x1,options,num,ck,A,al,be,de,kss);

% this solves the nonlinear system. z is a vector of parameters

%(vector d in system (6.8)). Notice that system0 is a function

% m-file.

for num=3:8;

% this gradually increases the degree of the polynomial.

for i=1:num;

ck(i)=kmin+(i-1)/(num-1)*(kmax-kmin);

end;

% this computes the (equally spaced) collocation points.

x1=[z;0];

% The initial condition is given by the vector of parameters computed

% for the polynomial of degree num-1, and by a 0. This often

% is a fair guess.

options = optimset(’Display’,’iter’,’MaxFunEvals’,500);

z=fsolve(@system0,x1,options,num,ck,A,al,be,de,kss);

% z is vector of parameter d in System (6.8)

end;

time2=clock;

% this stores the time at the end of the execution.

time3=time2-time1;

’used?cpu?time’

time3

% The following lines are useful to build Figure 10;

bignum=200;

% this is the number of points where true and approximating functions

% are computed (notice that "bignum" is much larger than "num").

incr=(kmax-kmin)/(bignum-1);

chk_k=kmin:incr:kmax;

% this is the vector of gridpoints for the state variable

for i=1:bignum;
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approx_cons(i) = prim(chk_k(i),num+1)*z;

% this computes the approximation for consumption.

chk_k1(i)=A*chk_k(i)^al+(1-de)*chk_k(i)-prim(chk_k(i),num+1)*z;

% this computes k(t+1) for every k(t) which is in chk_k

resid(i)=prim(chk_k(i),num+1)*z*be*...

( al*A*chk_k1(i)^(al-1)+(1-de) )-prim(chk_k1(i),num+1)*z;

% this is the ’error’ in the Euler equation

end;

% ========== The lines below produce a two panels figure ==========

size=11; % size of font (in points)

subplot1 = subplot(2,1,1,’FontSize’,10,’FontName’,’Times?New?Roman’);

plot(chk_k,approx_cons); % this builds Panel (a)

xlim([kmin kmax]);

ylim([3.75 5.5]);

xlabel(’Capital’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

% this creates xlabel

ylabel(’Consumption’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

% this creates ylabel

title(’Panel?(a):?Consumption?function’,’FontSize’,size+3,...

’FontName’,’Times?New?Roman’)

% this creates title

subplot2 = subplot(2,1,2,’FontName’,’Times?New?Roman’);

plot(chk_k,resid); % this builds Panel (b)

xlim([kmin kmax]);

ylim([-1.5*10^(-5) 1.5*10^(-5)]);

xlabel(’Capital’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

% this creates xlabel

ylabel(’Residuals’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

% this creates ylabel

title(’Panel?(b):?Euler?equation?residuals?’,’FontSize’,size+3,...

’FontName’,’Times?New?Roman’)

% this creates title

A.7.1. system0.m. In this function file, we store seventeen equations, nine
being the number of the dis coefficients to be determined, and eight being

the number of the collocation points (of the ki1). Eight equations are of

the type
∑9

i=0 dik
i
1 =

∑9
i=0 dik

i
0

(
k−0.71 + 0.8245

)
. Because the ki1s are en-

dogenous (recall the second equation in (6.8)), each of them is determined

as a function of the corresponding ki0 and ci0

(
=
∑11

i=0 dik
i
0

)
, which pro-

vides eight further equations. The last equation is the steady state relation
∑9

i=0 dik̂
i = 3.43643k̂0.3 − 0.85k̂.

function F=system0(x,num,ck,A,al,be,de,kss)

for i=1:num;
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kap(i)= A*ck(i)^al+(1-de)*ck(i)-prim(ck(i),num+1)*x;

% this is second group of equations composing the System (6.8),

% determining the kap(i) as function of the parameters (A,al,

% de), of the k0^(i) (identified by the i-th element of the vector

% ck), and by the vector composed of the parameters d(i),

% represented by vector of unknowns (x).

F(i) = prim(ck(i),num+1)*x*be*( al*A*kap(i)^(al-1)+(1-de) )- ...

prim(kap(i),num+1)*x;

% this is first group of equations composing the System (6.8).

end;

F(num+1) = prim(kss,num+1)*x-A*kss^al+de*kss;

% this exploits the steady state relation (6.9).

A.8. valfun_iter2.m. This script performs the value function iteration

procedure described in Sub-section 10.1. There are 800 gridpoints for capital

(ranging again from 0.7 to 1.1) and five equally-spaced and equiprobable

productivity levels (going from 3.367697 to 3.505155). This routine yields

Figure 12. Table 2 is obtained by changing the number of gridpoints for the

capital stock and the number of productivity levels.

clear;

time1=clock;

format(’long’);

% this let Matlab to display results in the Command Window

% using the "long" format for figures (calculations are unaffected)

% Below we declare the parameters values;

alpha=0.3;

beta=0.97;

A=1/(alpha*beta);

kstar=(alpha*beta*A)^(1/(1-alpha));

% this computes the steady state capital stock.

states=800;

% this is the number of gridpoints;

kmin=0.7;

% this is the lowest capital level we use;

kmax=1.1;

% this is the highest capital level we use;

deltak = (kmax-kmin)/(states-1);

kvec=kmin:deltak:kmax;

% these two lines compute the ’grid’ for the state variable.

% The next six line describe the productivity process.

prods=5;

% Number of possible productivity levels.

Amin=0.98*A;

Amax=2*A-Amin;

% These implies a 4% productivity differential between best and

% worst case.

deltaA=(Amax-Amin)/(prods-1);
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Avec=Amin:deltaA:Amax;

% this creates the ’grid’ for productivity.

p_vec=1/prods*ones(prods,1);

% this introduces equal probability for every productivity level.

vini=zeros(1,states);

% this is the initial guess for expected maximum value function

vfin=zeros(1,states);

% this creates the expected maximum value function which will

% be obtained at the end of one optimization "cycle".

consV=zeros(prods,states);

% this creates the consumption matrix.

opt_choice=zeros(prods,states);

% this is the matrix used to store the maximum utility, inclusive

% of the discounted value of future utility,in each cycle.

% The maximum value function is made up of the optimal choices

% of capital.

err=10;

% "err" is the variable used to substantiate the convergence

% criterion. When "err" is below a threshold (specified below),

% the routine has converged.

% Variable "err" is now initialized.

z=0;

% this initializes the counter for the value iterations.

while err > 10^(-5);

% convergence criterion.

z=z+1;

% this is the counter for value iterations.

for h=1:prods;

for i=1:states;

for j=1:states;

consV(h,j)=Avec(h)*kvec(i)^alpha-kvec(j);

% For any given capital (i), and for any productivity (h), this

% computes the consumption compatible with next period state (j).

end;

opt_choice(h,i)=max((log(consV(h,:))+ beta*vini)’);

% this is the maximum value that can be obtained choosing among

% consumption level, taking into account the related next-period

% capital stock (whose values are in vini). Notice that i

% indexes current capital and h indexes current productivity.

end;

end;

vfin=p_vec’*opt_choice;

% this is the expected maximum value function: for every capital

% level, we compute the expected value of the optimal choice.

delta=abs(vini-vfin);

% this computes the difference between the maximum value before

% and after the optimization cycle, in absolute value.

err=max(delta’);

% the "convergenge variable" takes the maximum absolute difference

% between the maximum value before and after the optimization

% cycle.

vini=vfin;
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% The new cycle shall start with this new guess.

% Table2(z,:)=[z vfin];

% uncommenting the line above, with some modifications,

% gives the values displayed in Table 2.

end;

% this ’closes’ the cycle for z

time2=clock;

% this stores the time at the end of the execution.

time3=time2-time1;

’used?cpu?time’

time3

% The lines below compute the "true" maximum value function (see

% Example in Section <ref>sec: guess_verify2</ref>)

par=alpha*beta;

cost1=1/(1-beta)*( par/(1-par)*log(par)+log(1-par));

cost2=alpha/(1-par);

cost3=1/(1-par)*log(Avec)*p_vec*(1/(1-beta));

true_val=cost1+cost2*log(kvec)+cost3;

err_approx=true_val-vfin;

% these are the approximation errors (with respect to the true

% expected value function)

% ========== The lines below produce a two panels figure ==========

size=11; % size of font (in points)

subplot1 = subplot(2,1,1,’FontSize’,10,’FontName’,’Times?New?Roman’);

plot(kvec’,vfin’);

% this builds Panel (a).

xlim([0.7 1.1]);

ylim([29.52 29.74]);

xlabel(’Capital’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

% Create xlabel.

ylabel(’Maximum?value’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

% Create ylabel.

title(’Panel?(a):?Expected?maximum?value?function’,’FontSize’,...

size+3,’FontName’,’Times?New?Roman’)

% Create title.

subplot2 = subplot(2,1,2,’FontName’,’Times?New?Roman’);

plot(kvec’,err_approx’);

% this builds Panel (b).

xlim([0.7 1.1]);

xlabel(’Capital’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

% Create xlabel.

ylabel(’Approximation?errors’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

% Create ylabel.

title(’Panel?(b):?Approximation?Errors’,’FontSize’,size+3,...

’FontName’,’Times?New?Roman’)

% Create title.
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To obtain Table 2 in the main text, set: states=5, kmin=0.98, kmax=1.02,

and prods=2.

A.9. pea_rmsy.m. This builds the example for the Parameterized Expec-

tations Approach described in Sub-section 10.2; it produces Figure ??.

clear;

time1=clock;

% we declare below the parameters values;

alfa=0.3;

beta=0.97;

delta=.15;

k0=6;

% this is the initial capital stock

n=100000;

% this is the number of "observations" for the artificial time

% series. The following lines construct the time series for

% productivity.

vecA=rand(n,1);

% this builds a "flat" random variable on (0,1). This is preliminary

% to construct the vector of productivity shocks.

for i=1:n;

% The lines below translate the "flat" variable in a two-states

% i.i.d. process.

if vecA(i)>0.5;

vecA(i)=3.50515;

else

vecA(i)=3.36770;

end;

end;

A_ext=rand(1,1);

% "A_ext" assigns a productivity value for period n+1.

if A_ext<0.5;

A_ext=3.50515;

else

A_ext=3.36770;

end;

% These are the initial values for parameters (refer to the main

% text and to Exercise 14);

fi0=(beta*(1-alfa*beta))^(-1);

fi1=-alfa;

fi2=-1;

maxj=200;

% this sets the maximum number of iterations (it the number of

% iteration exceeds maxj, the routines stops even if convergence

% has not been achieved.

err=10;

% "err" is the variable used to substantiate the convergence

% criterion. When "err" is below a threshold (specified below),
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% the routine has converged.

% Variable "err" is initialized.

j=0;

while err>10^(-8);

% convergence criterion.

j=j+1;

% The next four variables are used to trace the parameters’ evolu-

% tion, which is displayed in the second panel of the Figure.

track1(j)=j;

track2(j)=fi0;

track3(j)=fi1;

track4(j)=fi2;

% Notice that "funct" below represents the functional form F(.),

% refer to Equation (10.3); "consum" is consumption as determined

% in Equation (10.4a); "Kap" is capital at time t+1 (refer to

% Equation 10.4b).

Kap(1)=k0;

funct(1)=fi0*exp( fi1*log(Kap(1))+fi2*log(vecA(1)) );

consum(1)= (beta*funct(1))^(-1);

% The lines above yield the first period of the "artificial" time

% series; the cycle below completes it up to period n, and also

% computes w_t+1 as defined in Sub-section 10.2 (which is, W_regr).

for i=2:n;

Kap(i)=vecA(i-1)*Kap(i-1)^alfa-consum(i-1)+(1-delta)*Kap(i-1);

funct(i)=fi0*exp( fi1*log(Kap(i))+fi2*log(vecA(i)) );

consum(i)= (beta*funct(i))^(-1);

W_regr(i-1)=consum(i)^(-1)*(alfa*vecA(i)*Kap(i)^(alfa-1)+(1-delta));

end;

% The lines below complete the computation for w_t+1 (computes for

% period n). Notice that A_ext is eventually used. Notice also that

% W_regr is "shifted" one period to facilitate the use of regression

% command

Kap_ext=vecA(n)*Kap(n)^alfa-consum(n)+(1-delta)*Kap(n);

funct_ext=fi0*exp( fi1*log(Kap_ext)+fi2*log(A_ext) );

consum_ext= (beta*funct_ext)^(-1);

W_regr(n)=consum_ext^(-1)*(alfa*A_ext*Kap_ext^(alfa-1)+(1-delta));

% Below we transform the variables to run ols.

ln_W=log(W_regr’);

ln_K=log(Kap’);

ln_A=log(vecA);

XMATR = [ones(size(ln_K)) ln_K ln_A];

% this builds the matrix of independent variables.

n_fi = XMATR\ln_W;

% this command performs the least squares fit, and creates the

% updated parameters vector.

change_fi=[abs(exp(n_fi(1))-fi0);abs(n_fi(2)-fi1);abs(n_fi(3)-fi2)];

% this is the vector of changes in parameters.

err=max(change_fi);

% convergence criterion.

% The following lines update the parameters.

% In case of instability, "mu" has to be reduced.

mu=1;
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fi0=mu*exp(n_fi(1))+(1-mu)*fi0;

fi1=mu*n_fi(2)+(1-mu)*fi1;

fi2=mu*n_fi(3)+(1-mu)*fi2;

end;

% this closes the "while err...." cycle.

coeff=[track2;track3;track4];

% this stores the coefficients (for all the cycles).

time2=clock;

% this stores the time at the end of the execution.

time3=time2-time1;

’used?cpu?time’

time3

% ========== The lines below produce a two panels figure ==========

size=11; % size of font (in points)

subplot1 = subplot(2,1,1,’FontSize’,10,’FontName’,’Times?New?Roman’);

plot(Kap,consum);

% this builds Panel (a).

xlim([6 12.6]);

ylim([3.75 5.75]);

xlabel(’Capital’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

% Create xlabel

ylabel(’Consumption’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

% Create ylabel.

title(’Panel?(a):?Consumption?Function’,’FontSize’,size+3,...

’FontName’,’Times?New?Roman’)

% Create title.

subplot2 = subplot(2,1,2,’FontName’,’Times?New?Roman’);

plot(track1,coeff(1,:),’-’,track1,coeff(2,:),’.’,...

track1,coeff(3,:),’--’);

% this builds Panel (b).

xlim([0 46]);

xlabel(’#?of?iterations’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

% Create xlabel.

ylabel(’Values?for?parameters’,’FontSize’,size,...

’FontName’,’Times?New?Roman’);

% Create ylabel.

title(’Panel?(b):?Parameters?evolution’,’FontSize’,size+3,...

’FontName’,’Times?New?Roman’)

% Create title.
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Exercise 1.

Assume that the maximum value function takes the form V (kt) = e +

f lnkt, so that the Bellman formulation is:

e+ f ln kt = max
ct,lt

{ln(ct) + γ ln(1− lt) + β(e+ f ln kt+1)} .

Since there are two controls, we need to consider two first order conditions,

which — exploiting our guess — rapidly give:

(B.1) c∗t =
kt+1
βf

and

(B.2)
γ

1− l∗t
=

βf

kt+1
(1− α)Akαt l

∗
t
(−α).

Taking advantage of the dynamic constraint and of the first-order condi-

tion (B.1), we obtain a (familiar) relation between the next-period capital

and the current output, which is:

kt+1 =
βf

1 + βf
Akαt l

1−α
t .

Hence, the first-order condition (B.2) can be written as:

γ

1− l∗t
=

(1 + βf) (1− α)

l∗t
,

which implies that the optimal labour supply is independent from the capital

stock (and from the productivity level), so that we can write:

l∗t = l∗ =
(1 + βf) (1− α)

γ + (1 + βf) (1− α)
< 1.

We now follow a well-known trail: we use the tentative solution into the

Bellman equation:

e+ f ln kt = ln

(
1

1 + βf

)
+ lnA+ α ln kt + (1− α) ln l∗ + γ ln (1− l∗)+

+ βe+ βf

(
ln

βf

1 + βf
+ lnA+ α ln kt + (1− α) ln l∗

)
,

where use has been made of the fact that c∗t = 1
1+βfAk

α
t l
∗(1−α).

Matching the coefficients for ln kt we immediately obtain:

f =
α

1− αβ
,
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while the constant is:

e =
1

1− β

(
αβ

1− αβ
ln (αβ) + ln (1− αβ) +

1

1− αβ
lnA +

+
1− α

1− αβ
ln l∗ + γ ln (1− l∗)

)
.

When γ = 0, it can be verified that e corresponds to (4.7).

Exercise 2.

From the perspective of period t, past consumption, being predetermined,

is a state of the system. Let ct−1 = xt, and notice that this equation can be

interpreted as a transition equation for xt.

The maximum value function depends upon the state variables, accord-

ingly our tentative functional form is: V (kt, xt) = e+ f ln kt + g lnxt. The

Bellman formulation is now:

e+ f ln kt + g lnxt = max
ct
{ln ct + γ lnxt + β(e+ f ln kt+1 + g lnxt+1)} .

The first order condition with respect to (current) consumption is

(B.3)
1

ct
+ β

(
f

kt+1

∂kt+1
∂ct

+
g

xt+1

∂xt+1
∂ct

)
= 0

and hence, using the dynamic constraints

1

ct
= β

(
f

kt+1
−
g

ct

)
,

so that we readily obtain c∗t = 1+βg
βf kt+1. The fact that kt+1 = Akαt −

ct implies c
∗
t = 1+βg

1+βg+βfAk
α
t and kt+1 = βf

1+βg+βfAk
α
t . Substituting these

results into the Bellman equation, we obtain

e+ f ln kt + g lnxt = ln
1 + βg

1 + βg + βf
+ lnA+ α ln kt + γ lnxt+

+ β

(
e+ f ln

βf

1 + βg + βf
+ f lnA+ αf ln kt +

+g ln
1 + βg

1 + βg + βf
+ g lnA+ αg lnkt

)
.

Notice that — in the last line of the previous expression — use has been

made again of the fact that xt+1 = ct.

Matching the coefficients for lnxt we obtain that g = γ; exploiting the

terms involving ln kt we then obtain that f = α(1+βγ)
1−αβ . This allows to get

the policy function, which is:
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c∗t = (1− αβ)Akαt .

The constant term can then obtained by exploiting our knowledge for f

and g in the following expression:

(1− β) e = ln
1 + βg

1 + βg + βf
+ lnA+ β

(
f ln

βf

1 + βg + βf
+ f lnA +

+g ln
1 + βg

1 + βg + βf
+ g lnA

)
.

When γ = 0, it can be easily verified that e corresponds to (4.7). More

interestingly, notice that our specification implies that an increase in present

consumption lowers (as usual) the marginal utility of current consumption,

and also reduces the next-period utility. In other words, the more the con-

sumer eats today, the hungrier he wakes up tomorrow. In this sense this

preferences capture the notion of habit formation: past consumption rep-

resents the consumer’s “stock of habits” in period t. More precisely, our

exercise concerns habits which are labeled “internal”, because the current

consumption of the (representative) consumer influences her own future util-
ity. A popular variant of the habit model considers customs as “external”

to the consumer. In this case, our consumer wishes to “keep up with the

Joneses”, so that it is the aggregate past consumption that affects current
utility (which would imply a modification of the first-order condition (B.3),

since the second addendum in the big round bracket would disappear).

Exercise 3.

Assume that the maximum value function takes the form V (kt) = e +

f
k1−γt
1−γ ;62 the Bellman formulation is:

e+ f
k1−γ
t

1− γ
= max

ct

{
c1−γ
t

1− γ
+ β

(

e+ f
k1−γt+1

1− γ

)}

.

The first order conditions for consumption gives:

c−γ
t = βfk−γ

t+1.

Exploiting, as usual, the dynamic constraint we obtain:

62The practice of proposing a tentative solution which has the same functional form of the
return function has a long history in dynamic programming. We exploited the same idea
in Sub-Section (4.1). It would however be sensible - after all any tentative is legitimate,
we are guessing - to start with a generic exponential function, i.e. V (kt) = e + fkgt . At
the end of the solution for Exercise 3 we will briefly explore this possibility.



DYNAMIC PROGRAMMING: A PRIMER 101

c∗t =
(βf)−1/γ

1 + (βf)−1/γ
Akt,

kt+1 =
1

1 + (βf)−1/γ
Akt.

Substituting the above results into the Bellman equation, we get:

e+f
k1−γ
t

1− γ
=

(βf)(γ−1)/γ

(1+(βf)−1/γ)
1−γA

1−γk1−γt

1− γ
+β




e+ f

1

(1+(βf)−1/γ)
1−γA

1−γk1−γ
t

1− γ




 ,

which implies that e = 0. Moreover, some obvious simplifications give

f =
(βf)(γ−1)/γ

(
1 + (βf)−1/γ

)1−γA
1−γ + βf

1
(
1 + (βf)−1/γ

)1−γA
1−γ .

Notice that the equation above allows to conclude that f is independent

from the capital stock, and hence that our guess is correct. Some further

manipulations yield:

f
(
1 + (βf)−1/γ

)1−γ
=
(
(βf)−1/γ + 1

)
βfA1−γ ,

or

1 + (βf)−
1
γ = β−

1
γA

γ−1
γ ,

so that

(B.4) f =
1

β

(
β−

1
γA

γ−1
γ − 1

)−γ
.

We now assume that βA1−γ < 1. This restriction guarantees that f > 1,

which means that the marginal productivity of capital is high enough that

a larger stock of capital benefits the representative consumer. Indeed, in an

economy in which the marginal productivity of capital does not diminish,

the case in which a larger stock of capital is welfare lessening is too sad to

be interesting.

From our expression for c∗t , we find that the policy function is:

c∗t =
β−

1
γA

γ−1
γ − 1

β−
1
γA

γ−1
γ

Akt.

Hence, the proposed restriction guarantees that optimal consumption is

a positive function of the stock of capital (a reassuring implication).
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Finally, notice that the production function shows constant returns to the

accumulable productive factor: hence, it provides a basis for endogenous

growth, which makes this structure quite popular.

We now propose an alternative “guess” for the maximum value function,

and explore its implications. We assume that our tentative solution takes

the form V (kt) = e + fkgt , where e, f , and g are unknown parameters. so

that the Bellman equation is :

(B.5) e+ fkgt = max
ct

{
c1−γ
t

1− γ
+ β

(
e+ fkgt+1

)
}

.

The first order conditions for consumption gives:

c−γt = βfkg−1t+1 ,

so that

(B.6) c∗t = (βf)
− 1
γ k

1−g
γ

t+1 .

Applying the envelope theorem to (B.5) (refer to Equation (5.1)), we

readily obtain

kt = (βA)
1

g−1 kt+1.

Exploiting the latter and (B.6) into the Bellman equation (B.5) gives:

e+ fkgt =
1

1− γ
f
γ−1
γ A

1−γ
γ k

(1−g)(1−γ)
γ

t + β
(
e+ f (βA)

g
1−g kgt

)
,

from which it is apparent that e = 0 and g = 1− γ. Notice moreover that it

must be true that

f =
1

1− γ
f
γ−1
γ A

1−γ
γ + fβ

1
γA

1−γ
γ ,

so that

1 =
1

1− γ
f−

1
γA

1−γ
γ + β

1
γA

1−γ
γ ,

which corresponds to (B.4).

Exercise 4.

Recall that U(ct) =
c1−γt
1−γ , and that kt+1 = Akt − ct. Notice that the

path characterized by the fastest possible growth for capital is obtained by

choosing zero consumption at each period of time. Choosing this path, we
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have that

kt = Atk0.

The largest one-period utility is obtained by consuming the entire output

that the representative agent can produce in that period:

U(ct) =
(Akt)

1−γ

1− γ
.

Therefore, if we follow the policy prescribing to save everything up to

period t, and then to consume the entire output, we obtain:

U(ct) =
A(1−γ)(t+1)k1−γ

0

1− γ
.

Imagine counterfactually (as in Section 4.1), that the above policy can be

followed in every period. In this case, the lifetime utility for the representa-

tive agent would be:

∞∑

t=0

βt
A(1−γ)(t+1)k1−γ

0

1− γ
=

∞∑

t=0

(
βA1−γ

)t A1−γk1−γ
0

1− γ
.

For the above series to converge, we need to assume βA1−γ < 1. When

the restriction is fulfilled, the above expression yields

A1−γk1−γ
0

1− γ

1

1− βA1−γ
.

Hence, when βA1−γ < 1 we obtain a finite upper bound for the maximum

value function, so that Theorem 2 applies and the maximum value function

is unique. Notice that the condition we have just obtained is the same we

have found reasonable to impose when discussing the results in Exercise 3.

From the restriction βA1−γ < 1 we readily obtain the required condition on

γ, which is

{
γ > 1 + logA β if A > 1,

γ < 1 + logA β if A < 1.

Exercise 5.

To solve this problem, we need to closely refer to Sub-section (4.2).

Preliminarily, we obtain the formulations for kt+1 and ct.

Once the tentative solution (4.11) is considered, from the first order con-

dition (refer to 4.10), we obtain

γ − η[(1 + r)kt − kt+1] = β (h+mkt+1) .

The two coefficients of the maximum value function, h and m, are given

by (4.14) and by (4.13), respectively.
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Exploiting the expressions for h and m readily gives

(B.7) kt+1 =
γ

ηr

(
1−

1

β(1 + r)

)
+

1

β(1 + r)
kt.

Equation (B.7) is a difference equation that can be solved for the capital

stock. Its solution is:

(B.8) kt =
γ

ηr
+

(
1

β(1 + r)

)t(
k0 −

γ

ηr

)

Notice that 1
β(1+r) is the root for the dynamic Equation (B.7) governing

capital. When β(1 + r) > 1, capital is bound to decrease over time (and

so is consumption), when instead β(1 + r) < 1 the capital stock (and hence

consumption) are ever-increasing. In the knife-edge case β(1 + r) = 1, the

capital stock is stationary.

Consumption is given by ct = (1+ r)kt−kt+1 (as implied by 4.9), so that

we immediately find:

(B.9) ct =
γ

ηr

(
1

β(1 + r)
− 1

)
+
β(1 + r)2 − 1

β(1 + r)
kt.

Exploiting Equation (B.9), we see that the marginal utility of consump-

tion is

(B.10) U ′(ct) = γ − ηct =

(
β(1 + r)2 − 1

β(1 + r)

)(γ
r
− ηkt

)
.

We now recall from Equation (2.6), that the tvc is

lim
T→∞

βTU ′(cT )kT+1 = 0.

From Equations (B.10) and (B.8), we immediately see that

lim
T→∞

βTU ′(cT )kT+1 =

= lim
T→∞

βT
(
β(1 + r)2 − 1

β(1 + r)

)(γ
r
− ηkT

)
kT+1 =

= lim
T→∞

βT
(
β(1 + r)2 − 1

β(1 + r)

)(
γ

r
− η

[
γ

ηr
+

(
1

β(1 + r)

)T (
k0 −

γ

ηr

)])

×

×

[
γ

ηr
+

(
1

β(1 + r)

)T+1(
k0 −

γ

ηr

)]

.

The limit above converges to 0 if (and only if)
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




lim
T→∞

(
β

β(1+r)

)T
= lim

T→∞

(
1
1+r

)T
= 0

lim
T→∞

(
1
1+r

)T (
1

β(1+r)

)T+1
= 0

.

The first condition requires r ≥ 0, while the third involves the additional

constraint β(1 + r) ≥ 1.

Hence, when (a) β(1+ r) > 1, the tvc is fulfilled and — as remarked above

— capital approaches its steady state value, which is γ
ηr (the discussion of the

consumption dynamics is left to the reader). When instead (b) β(1+r) < 1,

the tvc is not fulfilled and the capital stock diverges over time.

Exercise 6.

The solution must fulfil the first order condition with respect to consump-

tion, which is

U ′(c∗t ) + βV ′(kt+1)
∂kt+1
∂tc0

= 0.

Also, the envelope theorem prescribes:

V ′(kt) = βV ′(kt+1)
∂kt+1
∂kt

.

In our case, given the tentative solution V (kt) = e + f ln kt, these two

conditions become, respectively:

1

ct
+

βf

kt+1
(−1) = 0

and

f

kt
=

βf

kt+1
αAkα−1t .

Exploiting the transition function, one easily obtains f = α
1−αβ .

Exercise 7.

From Sub-section (5.2) we know that the in the Ramsey model it is true

that:

Vk(kt) = Qc (f(kt)− s∗t ) fk(kt).

The assumptions concerning utility and production functions introduced

in Sub-section (1.1) allow to immediately conclude that Vk(kt) > 0.

Consider then:

Vkk(kt) = Qcc (f(kt)− s∗t ) (fk(kt))
2 +Qc (f(kt)− s∗t ) fkk(kt).

From the assumptions in Sub-section (1.1) it is immediate to conclude

that Vkk(kt) < 0.
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Exercise 8.

Define the control variable ut = f(kt) + (1 − δ)kt − ct. This definition

implies that the next-period state is equal to the current control (kt+1 = ut).

The Bellman problem is formulated as follows:

V (kt) = max
ut
{Q (f(kt) + (1− δ)kt − ut) + βV (kt+1)} ,

s.t. kt+1 = ut,

k0 given.

The first order condition is: Qc (f(kt) + (1− δ) kt − ut) = βVk(kt+1).

Differentiating the Bellman equation “on the optimal path”, we obtain:

Vk(kt)dkt = Qc (f(kt) + (1− δ)kt − ut) (df(kt) + (1− δ)dkt − dut)+

+ βVk(kt+1)dkt+1.

Usage of the first order condition gives:

Vk(kt)dkt = Qc (f(kt) + (1− δ)kt − ut) (df(kt) + (1− δ)dkt − dut)+

+Qc (f(kt) + (1− δ) kt − ut) dkt+1.

Because dkt+1/dut = 1, we then obtain:

Vk(kt) = Qc (f(kt) + (1− δ) kt − ut) (fk(kt) + 1− δ) .

Exercise 9.

From our calculations in Section (4.1), we are already aware of the fact

that:

V (k) =
1

1− β

(
αβ

1− αβ
ln (αβ) + ln (1− αβ) +

1

1− αβ
lnA

)
+

α

1− αβ
k.

Substituting the values for the coefficients and for productivity proposed

in the main text, and the values for k in the numerical exercise, it is trivial

to verify the claim.

Exercise 10.

One can verify, setting up the constrained maximization problem, that

k4 = 0 (an obvious result, given that our consumer lives for three periods).

Accordingly, period 3 consumption is, for each state i,

(B.11) ci∗3 = Aikα3 .
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(We have omitted the time-subscript, since productivity is time-independent.)

From the Lagrangian, one can easily obtain that, from the perspective of

period 2, it must be true that:

1

ci∗2
= αβ

(
pH

1

cH∗3
AH + pL

1

cL∗3
AL

)
kα−13 .

Exploiting Equation (B.11) we obtain:

1

ci∗2
= αβ

(
pH + pL

k3

)
.

Hence, we have that k3 = αβci∗2 (for i = L,H); moreover the intertempo-

ral budget constraint guarantees that k3 = Aikα2 − ci∗2 . Accordingly, we can

obtain the period 2 policy function:

(B.12) ci∗2 =
1

(1 + αβ)
Aikα2 ,

for i = L,H.

We then consider the Euler equation, specified from the perspective of

period 1, which implies:

1

ci∗1
= αβ

(
pH

1

cH∗2
AH + pL

1

cL∗2
AL

)
kα−12 .

Exploiting Equation (B.12) we obtain:

1

ci∗1
= αβ(1 + αβ)

(
pH + pL

k2

)
.

Hence, we have that k2 = αβ(1 + αβ)ci∗1 (for i = L,H); from the in-

tertemporal budget constraint we have, as usual, that k2 = Aikα1 − ci∗1 . So,

we can conclude that ci∗1 = 1
1+αβ+(αβ)2

Aikα1 for i = L,H.

Following the steps outlined above, the reader can show that the initial

period policy function is: ci∗0 = 1
1+αβ+(αβ)2+(αβ)3

Aikα1 for i = L,H.

Notice that, as we move farther and farther away from the final period,

the policy function gets closer and closer (actually, converges) to the one

prescribed for the infinite horizon case. In fact, we have that

n∑

i=0

(αβ)i =
1− (αβ)n+1

1− αβ
.

Exercise 11.

The fact that the probability for the realization of state j at time t + 1

depends upon the time t productivity level implies that the Euler equation
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(that can be obtained from the Lagrangian) is affected by the time t state.

Hence, we have

(B.13)
1

cH∗0
= αβ

(
p

1

cH∗1
AH + (1− p)

1

cL∗1
AL

)
kα−11

when the period 0 productivity level is AH , and

(B.14)
1

cL∗0
= αβ

(
(1− p)

1

cH∗1
AH + p

1

cL∗1
AL

)
kα−11

when productivity is AL in the initial period.

We now assume that the policy function takes the form

(B.15) ci∗0 = χAikα0

in which χ is an undetermined coefficient. Notice that we are assuming that

the propensity to consume is state-independent (as it was in the version of

the model discussed in Section 7).

Taking advantage of the guess for the policy function, substitute the con-

sumption levels in the Euler equation (B.13), to obtain:

1

χAHkα0
= αβ

(
p

1

χAHkα1
AH + (1− p)

1

χALkα1
AL

)
kα−11 ,

which rapidly reduces to:

k1 = αβAHkα0 .

Since our guess (B.15) implies, for i = H, that k1 = (1− χ)AHkα0 , we

have that χ = 1− αβ. To complete the solution, one should check that the

consumption function (B.15) applies also when the initial productivity level

is low. This can be done starting from the Euler equation (B.14).

Hence, the probability structure considered in this Exercise does not af-

fect the consumption function. This, however, does not imply that such a

probability structure is completely void of consequences. On this, please

refer to Exercise 15.

Exercise 12.

The Euler equation (that can be — as always — obtained from the La-

grangian) is:

1

ci∗0
= αβ

(
p

1

cH∗1
AH

t + (1− p)
1

cL∗1
AL

t

)
kα−11 .
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Exploiting the guess ci0 = Ψ(Ai
t)k

α
0 in the above equation, we obtain:

(B.16)
1

Ψ(Ai
t)k

α
0

= αβ

(
pH

1

Ψ(AH
t )kα1

AH
t + pL

1

Ψ(AL
t )k

α
1

AL
t

)
kα−11 .

Notice that our tentative solution implies k1 = (Ai − Ψ(Ai))kα0 , so that

Equation (B.16) becomes, after some simplifications:

(B.17)
1

Ψ(Ai
t)

= αβ

(
pH

1

Ψ(AH
t )
AH

t + pL
1

Ψ(AL
t )
AL

t

)
1

Ai
t −Ψ(Ai

t)
.

Since Equation (B.17) must be valid for i = L,H, we can write:

AH
t −Ψ(AH

t )

Ψ(AH
t )

= αβ

(
pH

1

Ψ(AH
t )
AH

t + pL
1

Ψ(AL
t )
AL

t

)
=
AL

t −Ψ(AL
t )

Ψ(AL
t )

.

Accordingly, we have that

AH
t

Ψ(AH
t )

=
AL

t

Ψ(AL
t )
,

which implies Ψ(Ai
t) = ψAi

t.

Exercise 13.

With the proposed utility function, the Euler equation takes the form:

c
i∗(−γ)
0 = β

[
pc

H∗(−γ)
1 AH + (1− p)c

L∗(−γ)
1 AL

]
.

We now assume that the consumption function is

(B.18) ci∗0 = χAik0

in which χ is an undetermined coefficient. We exploit our guess to obtain

from the Euler equation

(
χAik0

)−γ
= β

[
p
(
χAHk1

)−γ
AH + (1− p)

(
χALk1

)−γ
AL
]
.

Notice that Equation (B.18) implies k1 = (1−χ)Aik0, so that the equation

above, after some simplifications, becomes

(
Aik0

)−γ
= β

[
p
(
AH
)1−γ

+ (1− p)
(
AL
)1−γ

] (
(1− χ)Aik0

)−γ
,

so that

(1− χ) =
(
β
[
p
(
AH
)1−γ

+ (1− p)
(
AL
)1−γ

]) 1
γ
.

Notice that the coefficient χ can be rewritten in a more compact way as:
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χ = 1−
(
βE
[
Ã1−γ

]) 1
γ
.

This formulation reveals that, whenever γ > 1, a mean-preserving increase

in the variance for A reduces consumption, which implies the presence of

precautionary savings. In fact, the parameter γ can be interpreted as a

measure of the representative agent’s (relative) risk aversion.

Exercise 14.

The maximum value function depends upon the two state variables, capi-

tal and productivity. Accordingly our tentative functional form is: V (kt, At)

= F +G ln kt +H lnAt. The Bellman formulation is:

F +G ln kt +H lnAt = max
ct
{ln ct + βEt [F +G ln kt+1 +H lnAt+1]} .

The first order condition with respect to (current) consumption is

1

ct
= β

G

kt+1
.

The expectation operator Et [.] “disappears” because the capital stock at

time t+ 1 is known when consumption is decided upon.

Exploiting the transition function we readily obtain

kt+1 =
βG

1 + βG
Atk

α
t ,

and hence

c∗t =
1

1 + βG
Atk

α
t .

We now take advantage of the Bellman equation, obtaining

F +G ln kt +H lnAt = ln
1

1 + βG
+ lnAt + α lnkt+

+ βEt

[
F +G ln

βG

1 + βG
+G lnAt +Gα lnkt +H lnAt+1

]
.

Matching the coefficients for ln kt we get that G = α
1−αβ ; this allows to

obtain the policy function, which is akin to the one for the non-stochastic

case (which is our standard “disappointing” result):

c∗t = (1− αβ)Atk
α
t .

Considering the coefficients for lnAt, we then obtain that H = 1
1−αβ ;

finally, we match the constant terms, which gives
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F = ln
1

1 + βG
+ β

(
F +G ln

βG

1 + βG
+HEt [lnAt+1]

)
.

Exploiting G and H, we readily get:

F =
1

1− β

(
ln (1− αβ) +

αβ

1− αβ
ln (αβ) +

β

1− αβ
Et [lnAt+1]

)
.

Compare the expression for F with expression (4.7), and notice that,

although the variability of productivity does not affect the consumption

decision, it does affect welfare: a mean preserving spread in A reduces

Et [lnAt+1], and therefore the overall utility of the representative consumer.

Exercise 15.

In this application, the current productivity level influences the future

one. Notice, in particular, that if p is close to 1, the current productivity

is going to influence production for a long time in the future. This must

bear some relevant consequence for the overall utility for the representative

agent. Nonetheless, we stick to our standard assumption:

V (kt, At) = F +G lnkt +H lnAt,

The Bellman formulation is, for the generic realization i:

(B.19) F +G ln kt +H lnAi
t =

= max
ct

{
ln cit + βEt

[
F +G lnkt+1 +H lnAt+1|At = Ai

]}
.

The first order condition with respect to the current consumption is

1

cit
= β

G

kt+1
.

The expectation operator Et [.] “disappears” because the capital stock at

time t+ 1 is known when consumption is decided upon.

Exploiting the transition function we readily obtain

kt+1 =
βG

1 + βG
Atk

α
t ,

and hence

ct =
1

1 + βG
Atk

α
t .

Inspecting Equation (B.19) one might be tempted to conclude that the

guess is not verified, since Et

[
lnAt+1|At = Ai

]
= p lnAi + (1− p) lnAj

so that the right hand side of the Equation also depends on the state Aj.

However, this conclusion concerning the guess would be wrong. Notice, in
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fact, that the conditional expectation Et

[
lnAt+1|At = Ai

]
can be expressed

as a function of the unconditional expectation E
[
ln Ã
]
, which is a constant,

and of the state Ai :

Et

[
lnAt+1|At = Ai

]
≡ p lnAi + (1− p) lnAj =

= 2(1− p)

(
lnAi + lnAj

2

)
+ (2p− 1) lnAi =

= 2 (1− p)E
[
ln Ã
]
+ (2p− 1) lnAi.

Exploiting the Equation above and our result concerning kt+1 in Equation

(B.19) we obtain (omitting the time index for productivity)

F +G ln kt +H lnAi =

= ln
1

1 + βG
+ lnAi + α ln kt + βF + βG ln

βG

1 + βG
+

+ βG lnAi + βGα ln kt + βH
(
2 (1− p)E

[
ln Ã
]
+ (2p− 1) lnAi

)
.

Matching the coefficients for ln kt we obtain

G =
α

1− αβ
.

This allows to get the policy function, which is not affected by the per-

sistence probability p:

ci∗t = (1− αβ)Aikαt .

We then consider the coefficients for lnAi, obtaining H = 1 + βG +

βH (2p− 1), and hence

H =
1

(1− αβ) (1 + β (1− 2p))
.

This shows that the current productivity level does bear relevant con-

sequence on the overall utility for the representative agent; this effect is

stronger the higher is the persistence parameter p. In fact we have that

∂H/∂p = 2Hβ/ (1 + β (1− 2p)) .

Finally, we determine F. Matching the left and the right hand side of the

Bellman Equation we obtain, once G and H have been substituted out:

F = ln (1− αβ)+βF +
αβ

1− αβ
ln (αβ)+

2β (1− p)

(1− αβ) (1 + β (1− 2p))
E
[
ln Ã
]
,

and therefore:
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F =
1

1− β



ln (1− αβ) +
αβ

1− αβ
ln (αβ) +

2β (1− p)E
[
ln Ã
]

(1− αβ) (1 + β (1− 2p))



 .

Notice that, when p = 1 (so that the problem becomes deterministic), the

maximum value function becomes:

V (kt, A
i) =

1

1− β

(
ln (1− αβ) +

αβ

1− αβ
ln (αβ) +

lnAi

1− αβ

)
+

α

1− αβ
lnkt,

which matches what has been obtained in Sub-section 4.1.

Finally, notice that, when p = 1/2, there is no persistence, and hence

the maximum value function should correspond to the one obtained solving

Exercise (14). This is exactly what happens. In fact, we have:

V (kt, A
i) =

1

1− β

(
ln (1− αβ) +

αβ

1− αβ
ln (αβ) +

β

1− αβ
E
[
ln Ã
])

+

+
α

1− αβ
ln kt +

1

1− αβ
lnAi.

Exercise 16.

As in the previous examples, the maximum value function depends upon

the two state variables, capital and productivity. As a tentative maximum

value function we choose: V (kt, A
i
t) = F +G

(Aitkt)
1−γ

1−γ , so that he Bellman

formulation is:

F +G

(
Ai

tkt
)1−γ

1−γ
= max

ct

{
c1−γ
t
1−γ

+ βEt

[

F +G

(
Ai

t+1kt+1
)1−γ

1−γ

]}

.

The first order condition with respect to current consumption is

c−γ
t = βGEt

[
A

i(1−γ)
t+1

]
k−γ
t+1,

so that

ct = (βG)−
1
γ Et

[
A

i(1−γ)
t+1

]− 1
γ
kt+1,

Exploiting the intertemporal constraint, we readily obtain

kt+1 =
1

1 + (βG)−
1
γ Et

[
A

i(1−γ)
t+1

]− 1
γ

Ai
tkt,
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and hence

c∗t =
(βG)−

1
γ Et

[
A

i(1−γ)
t+1

]− 1
γ

1 + (βG)
− 1
γ Et

[
A

i(1−γ)
t+1

]− 1
γ

Atkt.

The Bellman equation is now used to pin down the coefficients. Our

starting point is:

F +G

(
Ai

tkt
)1−γ

1−γ
=

1
1−γ

(βG)
γ−1
γ Et

[
A

i(1−γ)
t+1

]γ−1
γ

(
1 + (βG)−

1
γ Et

[
A

i(1−γ)
t+1

]− 1
γ

)1−γ

(
Ai

tkt
)1−γ

+

+ βEt





F +G

A
i(1−γ)
t+1
1−γ

1
(
1 + (βG)−

1
γ Et

[
A

i(1−γ)
t+1

]− 1
γ

)1−γ
(
Ai

tkt
)1−γ





,

from which it is immediate to see that F = 0, and that G is determined by:

G =

=
(βG)

γ−1
γ Et

[
A

i(1−γ)
t+1

]γ−1
γ

(
1 + (βG)−

1
γ Et

[
A

i(1−γ)
t+1

]− 1
γ

)1−γ+βG
Et

[
A

i(1−γ)
t+1

]

(
1 + (βG)−

1
γ Et

[
A

i(1−γ)
t+1

]− 1
γ

)1−γ .

The above expression — scaring as it may be — guarantees that our guess

is correct. In fact, it is apparent that the coefficient G does not depend on

capital, moreover it does not depend on productivity as well. In fact our

assumptions guarantee that Et

[
Ai

t+1

]
is time and state independent.

Moreover notice that, grouping terms, it is easy to obtain:

G = βGEt

[
A

i(1−γ)
t+1

] 1 + (βG)−
1
γ Et

[
A

i(1−γ)
t+1

]− 1
γ

(
1 + (βG)−

1
γ Et

[
A

i(1−γ)
t+1

]− 1
γ

)1−γ ,

and hence

1 = βEt

[
A

i(1−γ)
t+1

] 1
(
1 + (βG)−

1
γ Et

[
A

i(1−γ)
t+1

]− 1
γ

)−γ ,

so that
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G =

(
1− β

1
γEt

[
A

i(1−γ)
t+1

] 1
γ

)−γ

.

Exercise 17.

In this example, there are two states and two controls. We assume that

the maximum value function takes the form V (kt, At) = F+G lnkt+H lnAt,

so that the Bellman formulation is:

F +G ln kt +H lnAt = max
ct,lt

{ln(ct) + γ ln(1− lt)+

+ βEt [F +G lnkt+1 +H lnAt+1]} ,

with the two first order conditions quickly leading to:

(B.20) c∗t =
kt+1
βG

and to

(B.21)
γ

1− l∗t
=

βG

kt+1
(1− α)Akαt l

∗(−α)
t .

Exploiting the dynamic constraint and the first-order condition (B.20)

we obtain a (familiar) relation between the future state and current output,

which is:

kt+1 =
βG

1 + βG
Akαt l

1−α
t ,

so that the first-order condition (B.21) can be written as:

γ

1− l∗t
=

(1 + βG) (1− α)

l∗t
,

which implies that the optimal labour supply is independent from the capital

stock (and from the productivity level):

l∗t = l∗ =
(1 + βG) (1− α)

γ + (1 + βG) (1− α)
< 1.

We now follow our usual procedure: we use the tentative solution into the

Bellman equation, which gives
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F +G ln kt +H lnAt =

= ln

(
1

1 + βG

)
+ lnAt + α ln kt + (1− α) ln l∗ + γ ln (1− l∗)+

+βF+βG

(
ln

βG

1 + βG
+ lnAt + α lnkt + (1− α) ln l∗

)
+βHEt [lnAt+1] .

Since the evolution for productivity is described by (9.1), we notice that

the above equation can be rewritten as:

F +G ln kt +H lnAt =

= ln

(
1

1 + βG

)
+ lnAt + α ln kt + (1− α) ln l∗ + γ ln (1− l∗)+

+ βF + βG

(
ln

βG

1 + βG
+ lnAt + α ln kt + (1− α) ln l∗

)
+ βHρ lnAt.

Matching the coefficients for ln kt and for lnAt we obtain, respectively:

G =
α

1− αβ
,

H =
1

(1− ρβ) (1− αβ)
.

It is now trivial to compute F.

The disappointment we expressed in the main text (Sub-section 9.1) ex-

tends to the version of the model with endogenous labour supply: with

logarithmic preferences, the role for productivity shocks (even when they

are persistent!) appears to be limited.

Exercise 18.

The maximum value function depends upon two state variables: the re-

maining part of the cake (yt) and the taste shock (zt). Our guess for the

value function is : V (yt, zt) = F + G ln yt + H ln zt, so that the Bellman

formulation becomes:

F +G ln yt +H ln zt = max
ct
{ln (ztct) + βEt [F +G ln yt+1 +H ln zt+1]} .

The first order condition with respect to current consumption is

1

ct
= β

G

yt+1
.

The expectation operator Et [.] disappears because the time t+ 1 size of

the cake is known when current consumption is decided upon.
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Exploiting the transition function, we readily obtain

yt+1 =
βG

1 + βG
yt,

and hence

c∗t =
1

1 + βG
yt.

We now substitute the above results into the Bellman equation, which

gives

F +G ln yt +H ln zt = ln zt + ln
1

1 + βG
+ ln yt+

+ βEt

[
F +G ln

(
βG

1 + βG

)
+G ln yt +H ln zt+1

]
.

Matching the coefficients for ln zt we immediately obtain that H = 1,

while the coefficient for ln yt turns out to be G = 1
1−β . Accordingly, the

consumption function is c∗t = (1− β) yt. Notice that the higher is β, the

more patient is the consumer and hence the smaller is the slice of the cake

she decides to consume today.

Finally, one can verify that

F =
1

1− β

(
ln (1− β) +

β

1− β
lnβ + βEt [ln zt+1]

)
.

Exercise 19.

In this old-fashion economy, past inflation is a state variable, as the shock

is. Since the target function is quadratic, our tentative solution is a second

order polynomial in πt−1 and ǫt: V (πt−1, ǫt) = F +Gπt−1 +Hπ2t−1 + Iǫt +

Lǫ2t +Mπt−1ǫt. We assume, with no loss of generality, that Et−1 [ǫt] = 0,

V ar [ǫt| It−1] = σ2, and we introduce the Bellman equation:

F +Gπt−1 +Hπ2t−1 + Iǫt + Lǫ2t +Mπt−1ǫt = max
yt

{
y2t + δπ2t +

+ βEt

[
F +Gπt +Hπ2t + Iǫt+1 + Lǫ2t+1 +Mπtǫt+1

]}
.

The first order condition with respect to current output is

2yt + βEt

[
(G+ 2Hπt +Mǫt+1)

∂πt
∂yt

]
= 0,

which gives:

2yt = −βγ (G+ 2H (πt−1 + γyt + ǫt)) .
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Accordingly, the optimal decision for a policy maker who decides the

output level having observed the realization for the shock is:

(B.22) y∗t = −
βγG

2 (1 + βγ2H)
−

βγH

1 + βγ2H
(πt−1 + ǫt) ,

so that the transition equation becomes:

(B.23) πt = −
βγ2G

2 (1 + βγ2H)
+

1

1 + βγ2H
(πt−1 + ǫt) .

Exploiting Equations (B.22) and (B.23), and our assumptions about ǫt

into the Bellman equation, we obtain:

F +Gπt−1 +Hπ2t−1 + Iǫt + Lǫ2t +Mπt−1ǫt =

=

(
−

βγG

2 (1 + βγ2H)
−

βγH

1 + βγ2H
(πt−1 + ǫt)

)2
+

+ (δ + βH)

(
−

βγ2G

2 (1 + βγ2H)
+

1

1 + βγ2H
(πt−1 + ǫt)

)2
+

+ βF −
(βγG)2

2 (1 + βγ2H)
+

βG

1 + βγ2H
(πt−1 + ǫt) + βLσ2.

From the above expression, it is apparent that our guess is correct; it is

also clear that — at this stage — the most sensible thing to do is to feed our

computer with values for β, δ, γ, and σ2, and let it solve for the coefficients.

Exercise 20.

The problem is analogous to the one presented in Exercise (14). Hence,

the maximum value function is:

V (kt, At) =
1

1− β

(
ln (1− αβ) +

αβ

1− αβ
ln (αβ) +

β

1− αβ
Et [lnAt+1]

)
+

+
α

1− αβ
lnkt +

1

1− αβ
lnAt,

so that

E
[
V
(
kt, Ã

)]
=

=
1

1− β

(
ln (1− αβ) +

αβ

1− αβ
ln (αβ) +

1

1− αβ
Et

[
ln Ã
])

+
α

1− αβ
ln kt.

Substituting the values for the coefficients and the values for kt, and using

the productivity levels and their probabilities to compute the expected value,

it is trivial to verify the claim.
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