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Abstract

This study examines the causal impact of PM2.5 air pollution exposure on premature mortality in

Southern European cities from 2010 to 2018. To address endogeneity, we leverage local variations in

rainfall as a source of random variation in PM2.5 exposure. Using the Two-Sample Two-Stage Least

Squares (TS2SLS) estimator to reconcile monitoring station-level and city-level data, our findings

reveal a statistically significant increase in premature mortality caused by PM2.5. According to our

preferred specification, a 1% increase in PM2.5 causes a 1.13% rise in the under-65 mortality rate

and a 1.41% rise in the infant mortality rate. The results are robust to alternative specifications.

The most affected populations are those residing in urban areas (relative to suburban areas) and

individuals living in cities located in richer regions (as opposed to poorer ones).
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1 Introduction

Air pollution poses a major public health risk, contributing to premature mortality and

to a broad spectrum of critical illnesses, including cardiovascular and respiratory diseases,

lung cancer, and increased susceptibility to infections (e.g., Pope & Dockery (2012)). Its

impact is particularly severe in urban environments (e.g., Graff Zivin & Neidell (2013); He

et al. (2019); Giaccherini et al. (2021)). Both short- and long-term exposure to air pollu-

tants are associated with a range of adverse health outcomes, with vulnerable individuals

(such as those with pre-existing health problems, children, the elderly, and the socioe-

conomically disadvantaged) disproportionately affected (e.g., Neidell (2004); Deryugina

et al. (2019); DeCicca & Malak (2020); Giaccherini et al. (2021); Palma et al. (2022),

among others).

Despite policy efforts to reduce emissions, evidenced by significant declines in key pol-

lutants1, challenges to further ameliorate air quality persist, especially in cities where

pollution levels still exceed the limits recommended by international agencies2. In 2022,

96% of the EU urban population was exposed to particulate matter concentrations sur-

passing the thresholds defined by the World Health Organization (WHO) guidelines, with

limits being breached in more than 100 cities across the continent (European Commission

2022).

Focusing on cities is important. Although urban areas represent just 4% of the EU ter-

ritory, 75% of the EU population lives in cities, intensifying exposure risks. According

to the European Environment Agency (2022b), in 2020, air pollution contributed to a

1See, e.g., EU Directives in European Parliament and Council (2008), (2010), (2016). The European Environmental
Agency estimates, for instance, an improvement in air quality, with a 22% drop in particulate matter associated with a
reduction in mortality by 45%. See European Environment Agency (2022a) and European Environment Agency (2024).

2The WHO (2021) thresholds are defined as follows: PM2.5: 5 µg/m³ (annual), 15 µg/m³ (24-hour); PM10: 15 µg/m³
(annual), 45 µg/m³ (24-hour); NO2: 10 µg/m³ (annual), 25 µg/m³ (24-hour); SO2: 40 µg/m³ (24-hour); CO: 4 µg/m³
(24-hour); O3: 100 µg/m³ (8-hour), 60 µg/m³ (peak season).
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substantial number of premature deaths across EU-27 Member States3. According to

Khomenko et al. (2021), adherence to WHO air quality standards could prevent approx-

imately 30 deaths per 100,000 urban residents annually.

In this paper, we examine the causal effect of exposure to PM2.5 on premature mortality

in European cities. Particulate matter (PM), particularly the fine particulate matter

smaller than 2.5 micrometers (PM2.5), is among the most harmful pollutants due to its

ability to infiltrate deep into the lungs and bloodstream (e.g., Chay & Greenstone (2003);

World Health Organization - WHO (2013); Pui et al. (2014); Fan et al. (2020)). Urban

concentrations of PM2.5 are especially high, with the most important sources represented

by traffic, industrial activity, and heating systems4.

The adverse health effects of air pollution are well-documented by a robust literature es-

tablishing causal links between exposure and health outcomes across demographic groups,

regions, and periods. However, much of the existing literature has examined the health

effects of pollutants different from fine particulate matter < 2.5, like Particulate Matter

(PM10), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Carbon Monoxide (CO) and

Ozone (O3). Early evidence from Chay et al. (2003) on the 1970 Clean Air Act shows re-

duced Total Suspended Particulate (TSP ) but no clear link to adult or elderly mortality.

On the contrary, studies, like, e.g., Chay & Greenstone (2003), Currie & Neidell (2005),

Knittel et al. (2016), Cesur et al. (2017), find a link between infant mortality and pollu-

tants such as TSP , CO, and PM . More recent research shifts the focus from mortality

to acute effects, with, e.g., Neidell (2004) showing CO’s impact on childhood asthma.

Bauernschuster et al. (2017) exploit transit strikes in Germany, finding that 11-13% more

3PM2.5 concentrations exceeding WHO (2021) guidelines accounted for 238,000 premature deaths, with NO2 and acute
O3 exposure linked to 49,000 and 24,000 additional fatalities, respectively.

4In urban areas common pollutants also include Particulate Matter (PM10), Nitrogen Dioxide (NO2), Sulfur Dioxide
(SO2), Carbon Monoxide (CO), Ozone (O3), and Volatile organic compounds (VOCs). See Dominici et al. (2014) and
European Environment Agency (2021).
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traffic, implies 14% increases in PM10/NO2, and 11% higher respiratory hospitalizations,

especially in children. Similarly, Bauernschuster et al. (2017) and Schlenker & Walker

(2016) link traffic and airport emissions to pediatric and asthma-related hospital admis-

sions. Instrumental variable methods improve causal inference: Deryugina et al. (2019)

use wind shifts to show PM2.5 raises mortality among 25% of the U.S. elderly; to our

knowledge, this is the only study that specifically analyzes the impact of fine particulate

matter on mortality in the U.S. Also Palma et al. (2022) leverage strikes as exogenous

shocks, finding that a one-standard-deviation increase in PM10 raises hospitalizations by

0.79 per 100,000, especially among vulnerable and younger groups. New research reveals

specific vulnerabilities: Fan et al. (2023) identifies SO2 as a cardiovascular mortality

driver, especially in children under 5 years, whereas Cakaj et al. (2023) quantify growing

ozone threats through a 1.3 per million inhabitant rise in annual premature deaths.

Our analysis is focused on the impact of PM2.5 in Southern European cities during the

period 2010-2018. We examine two distinct mortality outcomes: (1) premature mortality

from circulatory and respiratory diseases among the under 65, and (2) infant mortality, i.e.,

deaths of live-born children under one year of age. We focus on these mortality indicators

due to their well-established link to PM2.5 exposure, as documented in prior studies

(e.g., Loomis et al. (1999); Pope et al. (2009); Brook et al. (2010); Yixing et al. (2016);

Heft-Neal et al. (2020); Ortigoza et al. (2021)). Cities represent a critical setting for

examining the health impacts of air pollution. We focus on cities in Italy, Spain, Greece,

Croatia, and Portugal - countries identified by the European Environment Agency (EEA)

as experiencing some of the most severe air pollution problems in Europe, particularly

concerning PM2.5 concentrations.5 We combine measures of air pollution from ground-

5The highest PM2.5 levels in Europe are recorded in Eastern Europe and Northern Italy. In many Central and Eastern
European countries, this stems from the widespread use of solid fuels (e.g., coal for residential heating, industrial processes,
and power generation). The Po Valley (in Northern Italy) also represents a critical hotspot due to dense industrialization,
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based monitoring stations with statistics on premature mortality. To identify the causal

effect of exposure to PM2.5, we leverage local variations in rainfall as a source of random

variation in air pollution exposure.6 Dry weather conditions, coupled with intense local

economic activity, can sustain concentration levels above recommended limits for several

days. Our identification strategy exploits yearly within-city variations in precipitation,

assuming they are randomly distributed across cities and relies on the fact that, according

to the literature (e.g., Shukla et al. (2008), Sundar et al. (2020), Tripathi et al. (2021)),

rain can effectively clean the air from pollution. We conduct several robustness checks to

rule out potential violations of the exclusion restrictions.

We employ the Two-Sample-Two-Stage-Least-Squares (TS2SLS) estimator proposed by

Angrist & Krueger (1992) to properly consider station-level pollution data and city-level

mortality outcomes, avoiding aggregation bias. This estimator allows for obtaining con-

sistent instrumental variables estimation when the outcome and the instrument (but not

the endogenous variable) are observed in one sample and the endogenous and the instru-

ment (but not the outcome) are observed in a second different sample. In our case, we

can observe the instrument, the endogenous, and the outcome in the sample at the city

level. Still, we can observe only the instrument and the endogenous in the station-level

sample.

Our results show a positive and statistically significant effect of PM2.5 on both premature

mortality indicators. We find that a one-unit increase in PM2.5—corresponding to 7.5%

of the average level of PM2.5—implies an increase in the under 65 mortality rate and the

high population density, and geographical conditions that trap pollutants. This area consistently exceeds the EU PM2.5

limit (15µg/m3, 24-hour), European Environment Agency (2021). Due to insufficient mortality data for Eastern European
cities, we prioritize Southern Europe in this study.

6More generally, weather conditions have been considered by the literature as a source of randomness. For instance,
changes in wind direction have been employed as an instrument for SO2 concentrations (Yang et al. 2017), while local
weather conditions have been utilized for PM10 and CO (Knittel et al. 2016). Thermal inversions, likely to cause a
temporary accumulation of certain pollutants, have also served as instruments for PM10, CO, SO2, and O3 (Arceo et al.
2016). More recently, precipitations have been used as an instrument for PM10 exposure during the prenatal period (see
Palma et al. (2022)). Following this literature, we employ precipitation as an instrumental variable for air pollution.
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infant mortality rate of 0.2887 and 0.3134, corresponding to 8.49% and 10.57% of the

average values. These marginal effects correspond to elasticities of approximately 1.13

(under 65 mortality rate) and 1.41 (infant mortality rate), indicating disproportionate

sensitivity to air pollution, particularly among infants. Strong effects are also observed

for PM10 and NO2 exposure (4.9-6.0% increases and elasticities 1.19-1.51, respectively).

Robustness checks using multiple weather-based instruments confirm these results, par-

ticularly for working-age populations. Spatial heterogeneity reveals urban areas face more

severe mortality impacts relative to suburban areas, while a paradoxical socioeconomic

gradient emerges: lower-poverty-risk cities exhibit higher pollution vulnerability, likely

due to concentrated exposure.

We contribute to the existing literature in several ways. First, our analysis focuses on

cities, a recognised pollution hotspot, and, unlike existing studies that typically examine

single cities or countries (e.g., Deryugina et al. (2019)), we analyze a sample of southern

European cities which contribute to enhancing the external validity of our findings. Sec-

ond, we focus on under-65 mortality, which helps to avoid the common issue of ‘mortality

displacement’ (or ‘harvesting’), i.e., the fact that pollution-related deaths may reflect the

acceleration of deaths that would have occurred shortly anyway, especially among the

elderly or those with preexisting conditions. In addition, for comparison purposes, we ex-

amine infant mortality (0-1 years of age), a measure more commonly used in the literature

(e.g., Chay & Greenstone (2003), Currie & Neidell (2005), Knittel et al. (2016), Cesur

et al. (2017), DeCicca & Malak (2020)). Moreover, our mortality variables encompass

deaths due to both respiratory and cardiovascular causes. Building on this, we extend the

analysis beyond respiratory outcomes, commonly examined in earlier studies (e.g., Neidell

(2004), Schlenker & Walker (2016), Giaccherini et al. (2021)). Third, we concentrate on
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fine particulate matter (PM2.5), the pollutant more closely linked to serious health issues

and premature deaths due to its ability to infiltrate deep into the lungs and the blood-

streams. While most European studies have examined PM10 (e.g., Palma et al. (2022),

Bauernschuster et al. (2017), Giaccherini et al. (2021)), research on PM2.5—particularly

in the U.S.—has largely focused on elderly populations (Arceo et al. (2016), Deryugina

et al. (2019)). Fourth, in terms of methodology, we implement a TS2SLS approach to ad-

dress potential measurement errors from aggregating station-level pollution and weather

data to the city level. This method allows consistent estimation even when the endoge-

nous regressor is only partially observed and helps to mitigate bias from discrepancies

between local measurements and city-wide averages.

2 Data and samples

2.1 Data

We construct a geospatial data set by combining data on (i) premature mortality for

cities in Southern European countries (Italy, Spain, Greece, Portugal, and Croatia) over

the years 2010-2018 from Urban Audit (UA) with (ii) pollution and weather data from

the Airbase and Climate Data Records (CDR) of the European Environmental Agency

and the National Centers for Environmental Information, respectively.

Premature mortality. The UA database provides information on the quality of life in

cities, considered a local administrative unit where the majority of the population lives in

an urban center of at least 50,000 inhabitants. The dataset includes information on cities

and their commuting zones (the so-called Functional Urban Areas). While the dataset col-

lects comprehensive information across multiple domains (demography, housing, health,
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labor market, education, environment, transport, and tourism), substantial missing values

persist across variables. Our analysis focuses exclusively on the health components where

coverage is sufficiently complete for our purposes. As of 2020, the UA dataset contains

980 “cities” and 49 “greater cities” in 31 European countries.7 From these data, we gather

two measures of premature mortality available at the city level: (i) mortality rate among

individuals under 65 due to circulatory and respiratory diseases, measured as deaths in

this category per 100,000 of the total population, and (ii) infant mortality rate, defined

as the number of deaths of live-born children under one year of age per 1,000 live births.

Pollution and weather. The Airbase database of the European Environmental Agency

(EEA) collects data on pollutants and includes validated concentration measures from

monitoring stations in the majority of cities all over Europe. Our primary measure of

pollution is fine particulate matter PM2.5. In addition, we replicate the analysis using

alternative airborne contaminants (e.g., PM10, NO2, or O3) to assess whether our findings

hold across different types of pollutants. Furthermore, the air monitoring stations in our

dataset are geo-tagged with their location type (urban, suburban, or rural) enabling

spatial analysis of pollution effects across different settlement densities8.

Weather data, combining ground-based measurements and satellite data, are taken from

the Climate Data Records (CDR), and are systematically collected and maintained by

the National Centers for Environmental Information.9. Specifically, we consider total

precipitation, temperature, and wind speed at a 10-meter elevation.

Pollution levels are provided as pre-aggregated annual concentrations, while weather data

7The 49 greater cities correspond to 160 cities and represent a city with a larger area or a combination of several cities.
8Urban areas are defined as continuously built-up regions where streets are predominantly lined with buildings, each

having at least two floors, or large detached buildings with similar characteristics. These areas are mostly free of non-
urbanised spaces, except for city parks. In contrast, suburban areas consist mainly of detached buildings, with a lower
building density than urban areas. It’s important to note that, in this context, suburban areas can exist independently of
an urban centre, which differs from the common definition of a suburb as an outlying part of a city or town.

9For more details on the data, refer to https://www.ncei.noaa.gov/products/climate-data-records.
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consist of annual precipitation averages, computed by aggregating daily records from

monitoring stations, both georeferenced by latitude and longitude.

Additional data. We supplement our analysis with regional socioeconomic indicators

from Eurostat10: GDP per capita (NUTS3, PPS-adjusted to EU27 averages), unemploy-

ment rates, and poverty risk (NUTS2). These variables account for disparities in pollu-

tion exposure and health vulnerability. Lower-SES populations face elevated risks due to

both greater pollutant exposure and increased susceptibility from behavioral factors (e.g.,

smoking, limited health knowledge, e.g., DiNovi (2010)) and reduced capacity to mitigate

environmental harms (e.g., Sexton (1997)).11 Controlling for these factors isolates pollu-

tion effects while addressing structural inequities.

2.2 Samples

The full dataset combines data collected at two distinct levels: (i) city-level data and

(ii) the monitoring station-level data. The city-level data contains information on prema-

ture mortality outcomes and economic indicators at a yearly frequency. The monitoring

station-level data provides information about both air quality and weather conditions.

However, monitoring stations may be located in different areas of the city, potentially

failing to represent the same territorial cluster and leading to weather measurements that

are not fully representative of PM2.5 levels. Additionally, some stations may be located

far from urban centres, making PM2.5 measurements less representative of the city’s pre-

mature mortality indicators. To address these issues we take the following steps: (i) we

identify the weather monitoring station closest to each air quality monitoring station, en-

10According to Eurostat, the EU has developed a classification known as NUTS (Nomenclature of territorial units for
statistics), which divides each EU country into 3 levels: NUTS 1 (major socio-economic regions), NUTS 2 (basic regions
for regional policies), NUTS 3 (small regions for specific diagnoses). Taking Italy as an example, NUTS3 corresponds to
provinces, while NUTS2 aligns with regions. See European Commission (2017).

11Wang et al. (2022) find higher PM2.5/NO2 exposure among high-SES individuals in China; however, this likely reflects
urban density effects rather than reduced low-SES vulnerability.
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suring a maximum (average) Euclidean distance of 12.5 km (5 km); (ii) we select weather

and air quality monitoring station pairs located within a maximum (average) radius of

12.5 km (5 km) from the city centroid. This methodology enhances the spatial repre-

sentativeness of our dataset concerning both air pollution and meteorological conditions.

Notice that the selected maximum distance of 12.5 km is associated with a smaller average

distance between station pairs and between station pairs and cities.

Our final dataset collects relevant information relative to 75 cities in Southern European

countries (Croatia, Greece, Italy, Portugal, Spain) paired with pollution and weather con-

ditions measured by 180 selected monitoring stations.12 After incorporating additional

covariates, we observe minimal sample attrition. Our regression samples consist of 429

city-year and 915 station-year observations for premature mortality and 482 city-year and

1,030 station-year observations for infant mortality.13

Table A1 shows descriptive statistics. Notably, the number of observations collected at the

monitoring station level is higher than the number of observations at the city level, as a

single city may have multiple pairs of monitoring stations for pollution and meteorological

conditions. The sample consists of 57% of Spanish cities, 35% of Italian cities, 5.6% of

Portuguese cities, 1.7% of Greek cities, and 0.7% of Croatian cities. It comprises 79%

of stations classified as urban, 20% as suburban, and the remaining 1% as rural, based

on their territorial location14. Considering our outcome measures, infant mortality is, on

average, 2.97 every 1,000 live births. The under-65 mortality rate due to circulatory or

respiratory diseases is equal to 3.4 every 100,000 individuals. Regarding meteorological

12The spatial distribution, average values, and variability of the two outcomes are presented in Figures A1 and A2 in the
Appendix. Those of PM2.5 levels and mean precipitation are respectively presented in Figures A3 and A4.

13The dataset is an unbalanced panel due to gaps in city-level mortality reporting and intermittent station operation.
Thus, the observed city-years (482 for infant mortality) and station-years (1,030) are below the theoretical maximum over
the years 2010-2018 (675 and 1,620, respectively).

14For a visual representation of both urban and suburban monitoring stations, refer to the figure A5 provided in the
Appendix.
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conditions, the average precipitation level is 0.05 mm/day, the average wind speed is 6.4

m/s, and the mean temperature is 15.5°C. Annual average air pollution levels in the sample

reveal an average PM2.5 concentration of 13.3 µg/m3, PM10 at 24.5 µg/m
3, NO2 at 27.2

µg/m3, SO2 at 4.5 µg/m3, CO at 4.4 µg/m3, and O3 at 52.19 µg/m3. For comparison,

the 2021 WHO Air Quality Guidelines recommend the following limits: an annual average

of 5 µg/m3 for PM2.5, 15 µg/m
3 for PM10, and 10 µg/m3 for NO2; a 24-hour limit of 40

µg/m3 for SO2, a 24-hour limit of 4 µg/m3 for CO and a maximum of 60 µg/m3 for O3.

These statistics indicate that, on average, the levels of PM2.5, PM10, and NO2 exceed

the WHO-recommended thresholds, suggesting potential adverse health effects associated

with air pollution exposure in the sampled cities. In contrast, the average concentrations

of SO2, CO, and O3 remain within or close to the recommended limits.

3 Empirical strategy

We aim to estimate the causal effect of PM2.5 on premature mortality in Southern Euro-

pean cities. We start by considering a standard OLS regression:

Yct = α + βPM2.5ct +

NK∑
k=1

ιkXkct +

NJ∑
j=1

γjXjrt + θc + ψtrendt + ξtrend2t + ϵct, (1)

where Yct describes the outcomes of interest: (i) the under 65 mortality rate due to dis-

eases of the circulatory or respiratory systems per 100,000 individuals recorded in city

c and year t and (ii) the infant mortality rate per 1,000 live births recorded in city c

and year t. Air pollution is measured using the level of PM2.5 in micrograms per cubic

meter (µg/m3) in city c (i.e., the level measured by the air monitoring stations within a

maximum (average) radius of 12.5 km (5 km) from the city centroid of city c) and year
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t. Xct represents a matrix of covariates at the city-year level. Xrt represents a matrix of

covariates at the region-year level. θc are city fixed effects and trendit, with i = 1, 2 is a

quadratic time trend. ϵct indicates the error term.

However, in this context, the coefficient of interest, β, which quantifies the effect of air

pollution on health, can be biased if pollution exposure is non-randomly assigned across

populations. For instance, a possible concern is given by the non-random spatial sorting

of individuals and economic activities that could co-vary with both pollution levels and

health determinants. As pointed out by, e.g., Neidell (2004) and Deryugina et al. (2019),

individuals may engage in avoidance behaviors not only in response to smog alerts but

also due to persistent exposure in highly polluted areas. These adaptive behavioral re-

sponses induce attenuation bias in conventional OLS estimates, resulting in a systematic

downward bias in the estimated mortality effects of air pollution exposure. A possible

solution is to adopt an IV strategy that leverages random variations in weather condi-

tions as an instrument for air pollution. In this paper, following a large literature (e.g.,

Fontenla et al. (2019), Palma et al. (2022) - just to cite a few), we use yearly precipi-

tations recorded in city c during year t as an instrumental variable. A valid instrument

should satisfy two conditions: (i) relevance: rainfall should correlate with air pollution;

(ii) exclusion restriction: rainfall should only affect mortality through its impact on pol-

lution. As for relevance, rainfall facilitates the transportation of suspended particles from

the atmosphere to the ground, which occurs via dry and wet deposition. As a raindrop

falls through the atmosphere, it can attract tiny aerosol particles to its surface before

hitting the ground15. Concerning the exclusion restriction, it must be noted that our

identification strategy, by including city-specific fixed effects, relies on within-city yearly

15The process by which droplets and aerosols attract particles is called coagulation, a natural phenomenon that can clear
the air of particle pollutants such as PM2.5 (Ardon-Dryer et al. 2015). The effect of rainfall on pollution is broadly referred
to as the washing effect (Guo et al. 2016) or removal effect (Zhao et al. 2020).
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variations in precipitation levels, which we assume to be randomly distributed across cities

and years.

A possible threat to identification in our model is represented by healthy individuals de-

ciding to relocate to cities with greater yearly variations in precipitation levels. However,

this behavior seems implausible for at least two reasons: (i) according to the literature,

migration decisions across cities or countries are mainly driven by income or labour mar-

ket opportunities (e.g., Borjas (1999)); (ii) even admitting a possible role for weather

conditions, for the large majority of individuals it would not be fully rational to decide

to move towards cities with more rain (and, thus, worse weather conditions). However,

this mechanism may also arise spuriously if rain is positively correlated with income or if

healthy individuals decide to move away from cities with high pollution levels and smaller

yearly variations in precipitation levels. To assess this potential threat to identification,

we test whether rainfall is correlated with income and examine patterns of residential

relocation, as detailed in the robustness section 4.2.

If the above-mentioned conditions hold, we can estimate an IV model using the standard

Two-Stage Least Squares (2SLS) estimator. The first stage regression is represented by

the following equation:

PM2.5ct = α1 + λ1Rainct +

NK∑
k=1

ι1kXkct +

NJ∑
j=1

γ1jXjrt + θ1c + ψ1trendt + ξ1trend2t + ϵ1ct (2)

where Rainct represents annual mean daily precipitation recorded in city c during year t

and all the other covariates remain as previously defined and discussed in Equation 1.
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The second stage regression is represented by the following equation:

Yct = α2 + β2
2SLSPM2.5ct +

NK∑
k=1

ι2kXkct +

NJ∑
j=1

γ2jXjrt + θ2c + ψ2trendt + ξ2trend2t + ϵ2ct, (3)

Now, β2
2SLS captures the causal effect of PM2.5 on mortality.

It must be noted that both the first and second-stage equations report variables measured

at the city-year level. However, both pollution and other information about meteorological

conditions, including our instrument based on precipitation, are recorded by monitoring

stations located in different parts of the city. Ideally, one would like to exploit the station-

year variability when estimating the first stage and the city-year variability for the second

stage. This has two main advantages: (i) first-stage estimates rely on a larger sample size

and, consequently, are more precise; (ii) not aggregating pollution and weather data at

the city level, we avoid the risk of incurring in measurement errors due to estimating the

correlation between precipitation and pollution measured by monitoring stations located

in very distant areas, but close to the same city, or to relying on opposite measurements

by different stations located close to the same city, that after aggregation could potentially

lead to null variations. Nevertheless, in the latter scenario, we may observe an increase in

pollution-related mortality at the city level, stemming from an area with lower variations

in annual precipitation - and consequently higher pollution levels - if that area is more

densely populated by individuals facing elevated health risks.

To avoid these problems, we use here the Two-Sample Two-Stage Least Squares estimator

(TS2SLS) proposed by Angrist & Krueger (1992) according to which consistent instru-

mental variables estimation is possible when the outcome and the instrument (but not the

endogenous variable) are observed in one sample and the endogenous and the instrument
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(but not the outcome) are observed in a second different sample. In our case, we can

observe the instrument, the endogenous and the outcome in the sample at the city level.

Still, we can observe only the instrument and the endogenous in the station-level sample.

In the case of exact identification, the conventional TS2SLS estimator is:

β̂2
TS2SLS =

(
P̂M2.5

′
cP̂M2.5c

)−1

P̂M2.5

′
cYc (4)

where P̂M2.5c = Rainc (Rain
′
sRains)

−1Rain′
sPM2.5s. As demonstrated by Inoue & Solon

(2010), the TS2SLS estimator is preferred (i.e., more asymptotically efficient and robust

when the two samples differ in their stratification schemes) to the two-sample instrumental

variables (TSIV) version.

Unlike Equation 2 (estimated at the city-level c), the first stage equation is now estimated

at the station-level s:

PM2.5st = α1 + γ1Rainst +

NK∑
k=1

ι1kXkst +

NJ∑
j=1

γ1jXjrt + θ1s + ψ1trendt + ξ1trend2t + ϵ1st (5)

while the second stage equation remains defined as in Equation 3.

Lastly, to validate the consistency of our estimates, we consider four different specifications

of the TS2SLS version of the model presented in Equations 3 and 5: specification (1),

which includes in the first (second) stage equation station- (city-) specific fixed effects plus

a quadratic time trend, in order to account for time invariant unobservable characteristics

at the station (city) level, and non linear long-term mortality trends; specification (2),

which introduces city-specific linear trends, in place of the basic linear trend included in

specification 1, and maintains the common quadratic trend component, in order to account
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for heterogeneous temporal dynamics across cities; specification (3), which adds, relative

to specification (1), station-level covariates (i.e., the share of days with valid measurements

along the year, the average wind speed and temperature measured by station s in city

c during year t) and two spatial economic covariates (Gross domestic product GDP at

current market prices measured at p−NUTS3, and unemployment rates measured at r−

NUTS2, during year t); specification (4), which refines specification (3) by including city-

specific linear trend while excluding the common linear time trend, allowing to account

for flexible city-level temporal dynamics in mortality rates and pollution. Standard errors

are clustered at the station (city) level in all the first and second stage equations.

4 Results

4.1 Baseline results

Table 1 presents our baseline estimates of the effect of PM2.5 on the under 65 mortality

rate, specifically for circulatory and respiratory diseases measured per 100,000 individuals

in city c at time t, for all the four specifications described in Section 3. Panel A shows the

OLS estimates, while Panel B displays the TS2SLS estimates.16 OLS estimates (Panel

A) show positive but not always statistically significant effects. TS2SLS estimates (Panel

B) are always positive and highly statistically significant across all specifications. Coeffi-

cients range from 0.2660 (column 4) to 0.3346 (column 2). Our preferred specification is

shown in column (3), which includes a linear time trend instead of a city-specific linear

trend to prevent excessive absorption of PM2.5 variation, thereby preserving the identi-

fication of its effect on premature mortality.17 According to our estimates, an increase

162SLS estimates at the city level, including the first stage (equation 2) and the second stage (equation 3), for both under
65 mortality rate and infant mortality rate are reported in the Online Supplementary Material.

17While a city-specific trend, model (4), would account for unobserved local factors, it could also reduce the valuable
variation in PM2.5, compromising the precision of the estimates. Since the model already incorporates station fixed effects,
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of one unit of µg/m3 in PM2.5 (corresponding to 7.5% of the average level) is associated

with 0.2887 additional deaths per 100,000 inhabitants due to circulatory and respiratory

diseases among individuals under 65. This corresponds to an 8.49% increase relative to

the average mortality rate and implies an elasticity of approximately 1.13, indicating that

a 1% increase in PM2.5 exposure is associated with a 1.13% rise in mortality among the

under-65 population.18 The elasticity exceeding unity suggests that mortality rates are

disproportionately sensitive to marginal changes in PM2.5, underscoring the acute public

health implications of its exposure. Notably, this estimate is 20 times larger than the

OLS estimate of 0.0139, suggesting a substantial downward bias in the latter.

Table 2 shows estimates for the effect of PM2.5 on the infant mortality rate per 1,000

live births. OLS estimates, also in this case, show coefficients that are not statistically

significant (Panel A). The TS2SLS estimates (Panel B) yield positive coefficients, which

are statistically significant at the 5% and 10% levels only in the first three specifications.

In column (4), we do not find a statistically significant effect of PM2.5 on the infant

mortality rate per 1,000 live births. The magnitude of the coefficient associated with our

preferred specification is of considerable size: in this case, a one µg/m3 increase in PM2.5

(corresponding to 7.5% of the average) implies an increase in the infant mortality rate

of 0.3134 points, corresponding to 10.57% of the average infant mortality rate per 1,000

live births. The implied elasticity of 1.41 suggests that infant mortality is particularly

responsive to PM2.5 exposure, approximately 25% more elastic than the corresponding

estimate for mortality among those under 65 (1.13). This gradient in exposure sensitivity

by age group has important implications for the evaluation of mortality risk reductions

quadratic time trends, meteorological variables, monitoring station characteristics, and economic factors, the linear time
trend provides an optimal balance, capturing common temporal trends without over-controlling for local differences already
accounted for.

18The elasticity of 1.13 is computed as the ratio of the percentage change in mortality to the percentage change in
pollution: (8.49%/7.5%).
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in environmental policy.

Table 1: The impact of PM2.5 on cardio-respiratory mortality rates under 65

(1) (2) (3) (4)

Panel A: OLS

PM2.5 0.0129 0.0394* 0.0139 0.0337

(0.0233) (0.0227) (0.0241) (0.0230)

Panel B: TS2SLS

PM2.5 0.3171*** 0.3346** 0.2887*** 0.2660**

(0.1065) (0.1331) (0.1060) (0.1149)

Mean of Y 3.4012 3.4012 3.4012 3.4012

SD of Y 1.1711 1.1711 1.1711 1.1711

F-stat 29.6 62.6 31.1 53.4

p-value F-stat 8.968e-8 3.595e-14 4.58e-8 1.955e-12

Number of cities 75 75 75 75

Number of stations 180 180 180 180

Observations cities 429 429 429 429

Observations stations 915 915 915 915

Station FE Yes Yes Yes Yes

Linear trend Yes No Yes No

Quadratic trend Yes Yes Yes Yes

Station control variable No No Yes Yes

Weather control variables No No Yes Yes

City linear trend No Yes No Yes

GDP and Unemployment No No Yes Yes

Notes: The table presents baseline estimates of the effect of PM2.5 on the mortality rate from circulatory and respiratory
diseases (per 100,000 individuals aged <65 years) across four specifications (columns (1) - (4)). Panel A reports OLS
estimates, while Panel B reports TS2SLS estimates. Standard errors are clustered at the city level. Significance levels: ***
p<0.01, ** p<0.05, * p<0.1.
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Table 2: The impact ofPM2.5 on infant mortality rates

(1) (2) (3) (4)

Panel A: OLS

PM2.5 -0.0193 0.0392 -0.0205 0.02332

(0.0415) (0.0481) (0.0429) (0.0492)

Panel B: TS2SLS

PM2.5 0.3787** 0.4038* 0.3134* 0.2985

(0.1803) (0.2224) (0.1795) (0.1951)

Mean of Y 2.9665 2.9665 2.9665 2.9665

SD of Y 1.6519 1.6519 1.6519 1.6519

F-stat 29.6 62.6 31.1 53.4

p-value F-stat 8.968e-8 3.595e-14 4.58e-8 1.955e-12

Number of cities 75 75 75 75

Number of stations 177 177 177 177

Observations cities 482 482 482 482

Observations stations 1,030 1,030 1,030 1,030

Station FE Yes Yes Yes Yes

Linear trend Yes No Yes No

Quadratic trend Yes Yes Yes Yes

Station control variable No No Yes Yes

Weather control variables No No Yes Yes

City linear trend No Yes No Yes

GDP and Unemployment No No Yes Yes

Notes: The table presents baseline estimates of the effect of PM2.5 on the infant mortality rate per 1,000 live births across
four specifications (columns (1) - (4)). Panel A reports OLS estimates, while Panel B reports TS2SLS estimates. Standard
errors are clustered at the city level. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.

First stage estimates (Appendix Tables A2 and A3) show that rainfall is a strong predic-

tor of PM2.5 levels for both outcomes. The estimated coefficients are similar since the

information at the station level differs for only 3 stations more in the infant mortality rate

estimates. This is confirmed by the first-stage F-statistics, which vary from 29.6 (column

1) to 62.3 (column 2) and are well above 10 in every specification considered. According

to our preferred estimates in column (3), a one unit of rain/day (i.g., 100 mm/day) in-

crease in average rainfall is associated with a 0.1737-unit reduction in PM2.5, suggesting
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atmospheric washing-out effects. Table A4 shows reduced form estimates for the under-65

mortality rate (panel A) and the infant mortality rate (panel B). These estimates con-

sistently support the view that rain significantly affects our outcome variables plausibly

through the effect generated on PM2.5.

4.2 Additional analyses

To assess the credibility of our identification strategy, we first address potential threats

to the validity of the instrument, ensuring the exogeneity and the relevance of rainfall as

an instrument for PM2.5. Second, using specification (3), we conduct a set of robustness

analyses aimed at testing the sensitivity of our main results to alternative pollutant ex-

posures and instrumental variable configurations.

4.2.1 Instrument validity

First, we test whether rainfall is correlated with income, a potential confounder in the

relationship between pollution and mortality. As shown in Table A5 Column (1), we find

no significant correlation between GDP and rainfall, suggesting that rainfall does not op-

erate through income to affect mortality. Furthermore, as shown in Column (2), current

rainfall is not significantly predicted by precipitation levels in the two preceding years.

This supports the assumption that rainfall is not systematically influenced by persistent

local factors, thereby strengthening the evidence for the instrument’s exogeneity.

Second, we examine whether healthier individuals are more likely to relocate from cities

with higher pollution levels and lower variability in annual precipitation. We estimate

an OLS regression model that includes city-specific time trends, as well as city and year

fixed effects. Table A6 shows no significant correlation between migration decisions (im-
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migration, emigration and their difference - standardised as rates per 1,000 municipal

inhabitants) and current and lagged PM2.5 levels, nor with current and lagged weather

conditions (precipitation, wind speed, temperature), nor with current and lagged GDP.

This evidence supports our exclusion restriction and the causal interpretation of our esti-

mates on the impact of PM2.5 on premature mortality.

4.2.2 Alternative exposures and instrumental strategies

While our primary focus remains on PM2.5, we assess the robustness of our findings

by extending the analysis to other pollutants - PM10, NO2, SO2, CO, and O3 - whose

concentrations typically exhibit strong spatial and temporal correlations in urban envi-

ronments19. According to previous studies, PM10, which counts coarse (bigger) particles,

and other gas pollutants such as NO2, SO2, O3, and CO, particularly widespread in ur-

ban areas, are important contributors to the incidence of pediatric asthma globally (see

Pandey et al. (2005), Giaccherini et al. (2021), Orellano et al. (2021), Anenberg et al.

(2022)) and represent serious health risks, especially in terms of infant mortality (Currie

& Neidell (2005)). This extension serves two key purposes. First, it allows us to test the

sensitivity of our results and determine which pollutants have independent associations

with health outcomes, a critical insight for targeted environmental regulation. Second, it

helps clarify whether observed health effects stem specifically from PM2.5 or result from

exposure to a broader mix of pollutants. Additionally, the extended analysis accomplishes

two further objectives: (1) it tests whether the observed scavenging effect of rainfall is

consistent across pollutants with differing chemical compositions and atmospheric life-

19NO2 exposure has been linked to approximately 13% of the global paediatric asthma burden, and up to 50% in the most
populated 250 cities worldwide (e.g., Achakulwisut et al. (2019)). O3 is a secondary pollutant formed when volatile organic
compounds (VOCs) and nitrogen oxides react in sunlight. CO is a direct byproduct of combustion, primarily released by
vehicles, industrial processes, and household appliances such as gas stoves and heaters. Major sources of air pollutants
include fossil fuel combustion from power plants and industry, metal extraction, volcanic activity, and high-sulfur fuel use
in transport and heavy machinery.
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times, and (2) it helps identify potential heterogeneity in precipitation-driven pollution

dynamics.

We report results using these additional pollutants in Table 3. We find significant causal

effects of PM10 and NO2 on mortality. While we do not find evidence of any significant

effect when considering the other pollutants. Results in Panel A show that a one-unit

increase in PM10 (corresponding to 4.1% of the average level) implies an increase in

the mortality rate under 65 due to diseases of the circulatory or respiratory systems per

100,000 individuals of 0.1659 points (a 4.88% increase of the average mortality rate).

In comparison, a one-unit increase in NO2 (corresponding to 3.7% of the average level)

implies an increase in mortality under 65 of 0.1525 points (equal to a 4.48% increase in the

mortality rate). This corresponds to elasticities of 1.19 for PM10 and 1.21 for NO2, both

slightly exceeding the PM2.5 elasticity of 1.13 for under-65 mortality, suggesting these

pollutants may impose comparable marginal health burdens despite their lower average

concentrations.

In Table 3, Panel B, we show the effect of air pollution on the infant mortality rate

per 1,000 live births. Coefficients are positive and marginally statistically significant.

A one-unit increase in PM10 (NO2) is associated with a 6.04% (5.58%) increase in the

average infant mortality rate per 1,000 live births. These effects imply elasticities of 1.47

for PM10 and 1.51 for NO2, substantially (around 20%) higher than the corresponding

elasticities for under-65 mortality (1.19 and 1.21, respectively). This gradient reinforces

the pattern of greater infant vulnerability to air pollution observed in our primary PM2.5

results. First-stage estimates, reported in the Online Supplementary Material, confirm

that rainfall is a strong predictor of air pollution levels, but only for PM10 and NO2. In

Table 3, the F-statistic is always above 10 for these two pollutants.
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Lastly, we extend our IV strategy to include, alongside precipitations, wind speed (used,

among others, by Deryugina et al. (2019), Di Porto et al. (2021)) (2IV) and average tem-

perature (implemented, among others, by Sager (2019), Filomena & Picchio (2024)) (3IV)

as instrumental variables. This approach leverages exogenous weather-driven variation in

PM2.5 through distinct pathways: (1) precipitation’s aerosol scavenging - as discussed, (2)

wind speed’s dual role in dispersion/resuspension, and (3) temperature’s effects on emis-

sions (e.g., heating demand) and atmospheric chemistry. Together, these instruments

better isolate the PM2.5 causal effect while addressing unobserved confounding. To val-

idate our multi-instrument IV strategy, we implement the Sargan test of overidentifying

restrictions.

Table A7 reports results for both under-65 and infant mortality outcomes. The estimates

show cardio-respiratory mortality effects for individuals under 65 but not for infant mor-

tality, consistent with the earlier marginally significant estimates. In more detail, in Panel

A, we observe a statistically significant effect of air pollution on cardio-respiratory mor-

tality among individuals under 65, while no effect is detected for infant mortality, both

in the 2IV and in the 3IV specifications. The estimated effect ranges from 8.2% (2IV) to

8.7% (3IV) increases in the average mortality rate - corresponding to elasticities of 1.09

and 1.16, respectively - closely aligning with the results obtained using the baseline speci-

fication with one instrumental variable and other weather conditions as control variables.

Panel B reports first-stage estimates, supporting the view that rainfalls and wind can

reduce the concentration of pollutants, while no effects are detected for temperature. The

Sargan test - reported in the bottom part of the Table - fails to reject the null hypothesis

of valid overidentifying restrictions, confirming instruments’ validity.
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Table 3: The impact of other pollutants on mortality rates

PM10 NO2 SO2 CO O3

(1) (2) (3) (4) (5)

Panel A: < 65 Cardio-Respiratory MR × 100,000

Pollutant 0.1659** 0.1525*** -1.2305 -2.0942 -0.4929

(0.0666) (0.0574) (0.9042) (35.5495) (0.3568)

Mean of Y 3.4012 3.4012 3.4012 3.4012 3.4012

SD of Y 1.1711 1.1711 1.1711 1.1711 1.1711

F-stat 15.3 11.6 1.2662 3.9064 0.5407

p-value F stat 1.05e-4 7.286e-4 0.2613 0.0488 0.4626

Number of cities 75 75 75 75 75

Number of pollution stations 180 180 166 180 178

Observations cities 429 429 429 429 429

Observations stations 914 915 818 913 890

Panel B: Infant MR × 1,000

Pollutant 0.1791* 0.1655* -1.2172 -2.2733 -0.4712

(0.1074) (0.0958) (1.1138) (38.6009) (0.4256)

Mean of Y 2.9664 2.9664 2.9664 2.9664 2.9664

SD of Y 1.6519 1.6519 1.6519 1.6519 1.6519

F-stat 15.3 11.6 1.2662 3.9064 0.5407

p-value F stat 1.05e-4 7.286e-4 0.2613 0.0488 0.4626

Number of cities 75 75 75 75 75

Number of pollution stations 177 177 130 177 175

Observations cities 482 482 482 482 482

Observations stations 1,029 1,030 935 1,028 1,004

Notes: The table presents TS2SLS estimates of the effect of PM10 (1), NO2 (2), SO2 (3), CO (4) and O3 (5) on the
mortality rate from circulatory and respiratory diseases (per 100,000 individuals aged <65 years) (Panel A) and on the
infant mortality rate per 1,000 live births (Panel B). The specification used is that of tables 1 and 2, column (3). Notice that
the number of observations varies depending on the kind of pollutant explored. This is because not all the air-monitoring
stations have registered pollutants continuously over the considered period. Standard errors are clustered at the city level.
Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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4.3 Heterogeneity

This section investigates whether our baseline results are heterogeneous across two di-

mensions. First, we test whether the effect of PM2.5 differs between urban and suburban

areas. Second, we test whether the effect of pollution differs between the rich and the poor

areas, classifying cities located in regions above or below the median of the distribution

of the rate of individuals at risk of poverty within a given country.

Table 4 presents estimates of the heterogeneous effects of pollution on mortality across

urban and suburban areas (columns 1 and 2, respectively), exploiting information about

monitoring stations’ location. In Panel A, the effect of PM2.5 on the mortality rate un-

der 65 due to diseases of the circulatory or respiratory systems per 100,000 individuals

is significant only when considering monitoring stations located in urban, rather than

suburban areas. This result likely suggests heightened vulnerability or exposure intensity

in urban parts of the cities subject to higher concentrations of traffic-related pollutants

or to the effect of heating systems.

In columns (3) and (4), we split our sample according to whether cities are located in

regions where the proportion of individuals at risk of poverty is above or below the na-

tional median. This approach enables us to assess the effects of PM2.5 exposure relative

to economic conditions, offering a comparative perspective within the broader socioeco-

nomic context. The estimates suggest that PM2.5 has a significant effect on the mortality

rate under 65 in cities located in richer regions. Individuals living in these regions have a

lower risk of poverty at the cost of being exposed to higher levels of air pollution.

Looking at Panel B, which considers infant mortality rate per 1,000 live births, we find

no statistically significant effects either splitting our sample of cities according to ur-

ban/suburban areas (columns 1 and 2), or according to the rate of individuals at risk of
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poverty (columns 3 and 4).

Table 4: The heterogeneous effects of PM2.5

Metropolitan areas Risk of Poverty rate

Urban Suburban Above Below

(1) (2) (3) (4)

Panel A: < 65 Cardio-Respiratory MR × 100,000

PM2.5 0.3112*** 0.2456 0.1249 0.2352***

(0.1124) (0.2133) (0.9397) (0.0736)

Mean of Y 3.4674 3.2797 3.7119 3.1373

SD of Y 1.1649 1.0134 1.1233 1.1481

F-stat 30.8 2.7732 6.1475 24.3

p-value F-stat 5.788e-8 0.0981 0.0141 1.662e-6

Number of cities 67 27 46 44

Number of pollution stations 102 38 98 96

Observations cities 359 148 197 232

Observations stations 714 195 433 459

Panel B: Infant MR × 1,000

PM2.5 0.2473 0.3165 1.5334 0.2047

(0.1843) (0.3724) (2.6447) (0.1319)

Mean of Y 2.9739 2.7638 3.1643 2.7719

SD of Y 1.6209 1.5632 1.6464 1.6373

F-stat 30.8 2.7732 6.1475 24.3

p-value F-stat 5.788e-8 0.0981 0.0141 1.662e-6

Number of cities 67 27 47 44

Number of pollution stations 138 38 99 93

Observations cities 404 169 239 243

Observations stations 798 226 512 490

Notes: The table presents TS2SLS estimates of PM2.5’s effect on: (Panel A) circulatory/respiratory disease mortality (per
100,000 under-65 population) and (Panel B) infant mortality (per 1,000 live births). Results are stratified by: (1) urban
vs. (2) suburban metropolitan areas, and by poverty risk: (3) above vs. (4) below median poverty rate. Urban areas are
characterized by continuous built-up development, while suburban areas consist of largely built-up regions on the outskirts
of urban centers. Cities are further categorized based on their economic status, with distinctions made between those above
and below the poverty line (median). The specification used is that of tables 1 and 2, column (3). Standard errors are
clustered at the city level. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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5 Conclusions

This paper provides causal estimates of the impact of air pollution due to PM2.5 on

premature mortality in Southern European cities, focusing on two critical outcomes: (1)

the under-65 mortality rate due to circulatory and respiratory diseases, and (2) the infant

mortality rate. To address endogeneity concerns in pollution exposure and to account for

outcome measures at the city-level and weather and pollution measures at the monitoring

station-level, we employ the Two-Sample Two-Stage Least Squares (TS2SLS) estimator

using yearly average total millimeters of daily rainfall as our instrument. Rainfall acts an

exogenous source of variation in pollution levels, as it influences atmospheric dispersion

while being uncorrelated with unobserved determinants of mortality. We concentrate

on fine particulate matter (PM2.5) as our primary pollution measure due to its well-

documented role as a leading environmental risk factor for premature mortality and severe

health conditions. Our findings contribute to the growing body of evidence on the adverse

health effects of PM2.5, particularly in urban settings where pollution concentrations

are elevated due to traffic, heating systems, industrial activity, and other anthropogenic

sources. We find a positive and statistically significant effect of PM2.5 on both mortality

indicators. According to our preferred specification, a 1% increase in PM2.5 causes a

1.13% rise in the under-65 mortality rate and a 1.41% rise in the infant mortality rate.

Our empirical analysis further quantifies the adverse health effects of additional urban air

pollutants beyond PM2.5, specifically examining PM10 and nitrogen dioxide. The results

demonstrate statistically significant increases in both mortality outcomes studied: pol-

lutant exposure corresponds to elasticities of 1.19 (PM10) and 1.21 (NO2) for under-65

mortality from circulatory and respiratory diseases. More alarmingly, we find substan-
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tially greater impacts on infant mortality, with elasticities of 1.47 for PM10 (consistent

with findings by Palma et al. (2022)) and 1.51 for NO2 exposure. The particularly strong

effects on infant mortality highlight the heightened vulnerability of this group of the pop-

ulation to air quality degradation, warranting special policy consideration for maternal

and child health protection in urban environmental planning.

In robustness checks, we expand our IV approach to include multiple weather-based instru-

ments (adding wind and temperature to precipitation). Estimates for mortality under 65

years of age remain consistent with our baseline rainfall-only, while estimates for infant

mortality lose significance. The convergence of results across these alternative specifi-

cations strengthens the credibility of our causal identification strategy, suggesting that

our estimated pollution-mortality relationship is not sensitive to the particular choice of

weather instrument. Notably, the robustness of these effects persists most strongly for

working-age mortality outcomes, reinforcing our central findings regarding the vulnera-

bility of this demographic group to air pollution exposure.

Our analysis reveals significant spatial and socioeconomic heterogeneity in the health im-

pacts of PM2.5 exposure. We find substantially stronger effects on under-65 mortality

from circulatory and respiratory diseases in urban areas compared to suburban settings

(elasticity of 1.2), likely reflecting higher pollution concentrations and greater population

exposure in dense urban environments. Notably, the mortality impacts are particularly

pronounced in cities located in regions with lower poverty risk (below the national me-

dian), suggesting an unexpected socioeconomic gradient in vulnerability because individ-

uals living in these regions have a lower risk of poverty at the cost of being exposed to

higher levels of air pollution. This pattern may stem from several factors: differences

in population age structures, varying compositions of pollution sources with differential

28



toxicity, or distinct exposure patterns related to occupational and leisure activities. These

findings highlight the complex interplay between environmental and socioeconomic fac-

tors in determining pollution-related health outcomes, emphasizing the need for spatially

and demographically targeted policy interventions to mitigate the public health burden

of air pollution. The results underscore the importance of considering both geographic

context and local socioeconomic conditions when assessing the mortality impacts of PM2.5

exposure and designing effective regulatory responses.

Overall, our results suggest that PM2.5 is an important determinant of health. Adding

to Deryugina et al. (2019), who focus on over-65 mortality rates, we use two measures

associated with premature mortality, the mortality rate under 65 and the infant mortality

rate. The policy implications of this work point in the direction of implementing further

policies aimed at decreasing PM2.5 levels across cities, especially in those areas where air

pollution is more prevalent.
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6 Appendix

Table A1: Summary statistics

Variable Obs Mean Std. Dev. Min Max

A.Outcomes

< 65 Cardio-Respiratory MR × 100,000 pop 429 3.4012 1.1711 0.4521 11.8839
Infant MR × 1,000 pop 482 2.9665 1.6519 0 9.4118

B.Pollution

PM2.5 µg/m3 1,156 13.3422 5.6934 0.5029 41.25
PM10 µg/m3 1,155 24.5582 7.6912 3 83
NO2 µg/m3 1,156 27.1635 13.8964 3.7593 103.1538
SO2 µg/m3 1,055 4.5293 3.5125 0.0046 25
CO µg/m3 1,154 4.3622 37.2224 0.0176 644.7
O3 µg/m3 1,130 52.1915 10.1870 1.1 83.9874

C.Weather conditions

Avg wind speed m/s 1,156 6.4193 2.9046 1.6677 14.7733
Avg temperature ◦C 1,156 16.5247 2.4535 10.0019 22.6763
Precipitations mm 1,156 0.0529 0.0450 0 0.23337

D.Station characteristics and coverage

Distance < 12.5km 1,156 4.0291 3.2909 0.1827 12.3337
Data Coverage 1,156 80.3119 25.6096 0.01 100

Urban 1,156 0.7872 0.4095 0 1
Suburban 1,156 0.2076 0.4058 0 1
Rural 1,156 0.0052 0.0719 0 1

E.Economic variables

Unemployment rate NUTS2 540 16.8193 7.865 4.9 34.8
GDP NUTS3 540 97.1630 25.3325 58 204
At risk of poverty NUTS2 540 0.5037 0.5005 0 1

F.Countries

Croatia 540 0.0074 0.0858 0 1
Greece 540 0.0167 0.1281 0 1
Italy 540 0.35 0.4774 0 1
Portugal 540 0.0556 0.2293 0 1
Spain 540 0.5703 0.4955 0 1

Notes: The table presents summary statistics for key variables, grouped into six categories: (A) health outcomes - Infant

Mortality Rate (ratio of infant deaths to live births per 1,000 population) and < 65 Cardio-Respiratory Mortality Rate (ratio

of deaths due to circulatory and respiratory diseases to the total population per 100,000 population), (B) pollution levels,

(C) weather conditions, (D) station characteristics and coverage, (E) economic variables, and (F) country representation.
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Figure A1: Mortality rate under 65 per 100,000 due to diseases of the circulatory or respiratory systems
(upper panel) and average yearly % variation (lower panel)
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Figure A5: An illustration showing the location of a suburban (upper part) and an urban (lower part)
air quality monitoring stations in Rome.
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Table A2: First stage estimates for under-65 mortality rate

(1) (2) (3) (4)
Precipitations -16.9855*** -15.8956*** -17.3727*** -18.3076***

(2.5854) (2.7713) (2.5703) (2.7887)

Mean of Y 13.3422 13.3422 13.3422 13.3422
SD of Y 5.6934 5.6934 5.6934 5.6934

F-stat 29.6 62.6 31.1 53.4
p-value F-stat 8.968e-8 3.595e-14 4.58e-8 1.955e-12

Number of cities 75 75 75 75
Number of stations 180 180 180 180
Observations cities 429 429 429 429
Observations stations 915 915 915 915

Station FE Yes Yes Yes Yes
Linear trend Yes No Yes No
Quadratic trend Yes Yes Yes Yes
Station control variable No No Yes Yes
Weather control variables No No Yes Yes
City linear trend No Yes No Yes
GDP and Unemployment No No Yes Yes

Notes: The table presents first-stage estimates of precipitation on PM2.5 for the mortality from circulatory and respiratory
diseases (per 100,000 individuals aged <65 years) sample, across four specifications (columns (1) - (4)). Standard errors are
clustered at the station level. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.

Table A3: First stage estimates for infant mortality rate

(1) (2) (3) (4)
Precipitations -16.9855*** -15.8956*** -17.3727*** -18.3076***

(2.5854) (2.7115) (2.5703) (2.7255)

Mean of Y 13.3422 13.3422 13.3422 13.3422
SD of Y 5.6934 5.6934 5.6934 5.6934

F-stat 29.6 62.6 31.1 53.4
p-value F-stat 8.968e-8 3.595e-14 4.58e-8 1.955e-12

Number of cities 75 75 75 75
Number of stations 177 177 177 177
Observations cities 482 482 482 482
Observations stations 1,030 1,030 1,030 1,030

Station FE Yes Yes Yes Yes
Linear trend Yes No Yes No
Quadratic trend Yes Yes Yes Yes
Station control variable No No Yes Yes
Weather control variables No No Yes Yes
City linear trend No Yes No Yes
GDP and Unemployment No No Yes Yes

Notes: The table presents first-stage estimates of precipitation on PM2.5 for the infant mortality rate per 1,000 live births
sample, across four specifications (columns (1) - (4)). Standard errors are clustered at the station level. Significance levels:
*** p<0.01, ** p<0.05, * p<0.1.
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Table A4: Reduced form estimates

(1) (2) (3) (4)

Panel A: < 65 Cardio-Respiratory MR × 100,000

Precipitations -5.3862*** -5.3187*** -5.0155*** -4.8699**

(1.6389) (1.9234) (1.7029) (1.9828)

Mean of Y 3.4012 3.4012 3.4012 3.4012

SD of Y 1.1711 1.1711 1.1711 1.1711

F-stat 29.6 62.6 31.1 53.4

p-value F-stat 8.968e-8 3.595e-14 4.58e-8 1.955e-12

Number of cities 75 75 75 75

Number of stations 180 180 180 180

Observations cities 429 429 429 429

Observations stations 915 915 915 915

Panel B: Infant MR × 1,000

Precipitations -6.4317** -6.4181* -5.4437* -18.3076***

(2.9217) (3.3781) (3.0244) (3.4872)

Mean of Y 2.9665 2.9665 2.9665 2.9665

SD of Y 1.6519 1.6519 1.6519 1.6519

F-stat 29.6 62.6 31.1 53.4

p-value F-stat 8.968e-8 3.595e-14 4.58e-8 1.955e-12

Number of cities 75 75 75 75

Number of stations 177 177 177 177

Observations cities 482 482 482 482

Observations stations 1,030 1,030 1,030 1,030

Station FE Yes Yes Yes Yes

Linear trend Yes No Yes No

Quadratic trend Yes Yes Yes Yes

Station control variable No No Yes Yes

Weather control variables No No Yes Yes

City linear trend No Yes No Yes

GDP and Unemployment No No Yes Yes

Notes: The table presents reduced-form estimates of precipitation on the mortality rate for mortality from circulatory and
respiratory diseases (per 100,000 individuals aged <65 years) (Panel A) and on the infant mortality rate per 1,000 live
births (Panel B), across four specifications (columns (1) - (4)). Standard errors are clustered at the city level. Significance
levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table A5: Rainfall correlations with GDP and lagged precipitations

Precipitations Precipitations
(1) (2)

GDPt 0.0004 -
(0.0005) -

Precipitationst−1 - -0.1100-
- (0.0802)

Precipitationst−2 - 0.0696
- (0.0726)

Observations 540 405
Number of cities 76 76

Mean of Y 0.0591 0.0571
SD of Y 0.0484 0.0478

Station FE Yes Yes
Linear trend Yes Yes
Quadratic trend Yes Yes
Station control variable Yes Yes
Weather control variables Yes Yes
City linear trend No No
GDP and Unemployment Yes Yes

Notes: The table presents OLS estimates of current GDP (t) on current precipitation (t) in column (1) and the OLS
estimates of yearly lagged precipitation (t−1, t−2) on current precipitation (t) in column (2). The linear regressions follow
preferred specification 3. The higher observation count relative to the main specification stems from excluding mortality
outcomes, allowing broader analysis of precipitation, its lags, and GDP. Standard errors are clustered at the city level.
Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table A6: Correlations between migration to and from cities with weather conditions

Immigration Emigration Net inflow

(1) (2) (3)

PM2.5 0.1806 -0.0778 0.2584

(0.1957) (0.0991) (0.2272)

PM2.5,t−1 -0.2159 -0.2359 0.0199

(0.1736) (0.1844) (0.2162)

Precipitations 0.3139 0.1225 0.1913

(0.7634) (0.5649) (0.3962)

Precipitationst−1 0.6196 -0.1076 0.7271

(0.4801) (0.4995) (0.4779)

Windspeed -1.0966 -0.0502 -1.0464

(0.8934) (1.2187) (0.7869)

Windspeedt−1 -0.6413 0.1344 -0.7757

(1.1808) (0.3575) (1.2679)

Temperature -0.0556 0.5557 -0.61139

(0.5616) (0.4965) (0.8216)

Temperaturet−1 0.0773 0.2157 -0.1384

(0.6242) (0.3793) (0.6123)

GDP -9.91e-06 9.02e-06 -0.0001

(0.0001) (8.53e-06) (0.0001)

GDPt−1 -0.0004 -0.0001 -0.0002

(0.0002) (0.0003) (0.0002)

Constant 1282.92*** 243.33 1039.59***

(382.3498) (325.84) (282.88)

City FE Yes Yes Yes

Year FE Yes Yes Yes

City time trends Yes Yes Yes

Observations 520 520 520

Number of cities 104 104 104

Mean of Y 21.9115 20.9551 0.9564

SD of Y 7.7940 6.03599 5.2366

Notes: The table presents OLS estimates of one year lagged (t− 1) and contemporaneous (t): PM2.5, precipitation, Wind
speed, temperature and GDP on current (t) Immigration (1), Emigration (2) and Net inflow (3). Outcome variables are
standardised as rates per 1,000 municipal inhabitants. The linear regressions in columns (1)-(3) cover Italy only due to
limited data availability for other countries. Standard errors are clustered at the city level. Significance levels: *** p<0.01,
** p<0.05, * p<0.1.
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Table A7: Multiple instruments: rainfall, windspeed (2IV) and temperature (3IV)

2IV 3IV

Cardio-Respiratory Infant Cardio-Respiratory Infant

MR ×100, 000 MR ×1, 000 MR ×100, 000 MR ×1, 000

(1) (2) (3) (4)

Panel A: TS2SLS

PM2.5 0.279*** 0.1269 0.2969*** 0.1806

(0.0949) (0.1585) (0.0937) (0.1562)

Mean of Y 3.4012 2.9665 3.4012 2.9665

SD of Y 1.1711 1.6519 1.1711 1.6519

Panel B: First stage

Precipitations -17.3727*** -17.3727*** -17.3727*** -17.3727***

(2.5703) (2.5703) (2.5703) (2.5703)

Wind speed -0.4946*** -0.4946*** -0.4946*** -0.4946***

(0.1369) (0.1369) (0.1369) (0.1369)

Temperature - - -0.0512 -0.0512

- - (0.0933) (0.0933)

Mean of Y 13.3422 13.3422 13.3422 13.3422

SD of Y 5.6934 5.6934 5.6934 5.6934

Sargan-stat 0.0176 5.6617 1.4517 8.5917

p-value Sargan 0.8945 0.01734 0.4839 0.0136

Number of cities 75 75 75 75

Number of stations 180 177 180 177

Observations cities 429 482 429 482

Observations stations 915 1,030 915 1,030

Notes: The table presents in Panel A, TS2SLS estimates of PM2.5’s effect on mortality rates using multiple instrumental
variables. Columns 1 and 3 show results for mortality from circulatory and respiratory diseases (per 100,000 individuals
aged <65 years), while columns 2 and 4 report infant mortality (per 1,000 live births). Columns 1-2 use precipitation and
wind speed as IVs; columns 3-4 add temperature. Panel B reports the corresponding first-stage estimates. The specification
used is that of tables 1 and 2, column (3). Standard errors are clustered at the city level for TS2SLS estimates and at the
station level in the first stage. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table A8: First stage estimates for heterogeneity analysis

Metropolitan areas Risk of Poverty rate

Urban Suburban Above Below

(1) (2) (3) (4)

Panel A: < 65 Cardio-Respiratory MR × 100,000

Precipitations -17.3336*** -18.0809*** -3.2843 -28.8275***

(2.8580) (5.7518) (3.7547) (3.2823)

Mean of Y 14.0865 12.7678 11.5960 15.9169

SD of Y 6.1844 4.6395 4.5773 6.3016

F-stat 30.8 2.7732 6.1475 24.3

p-value F-stat 5.788e-8 0.0981 0.0141 1.662e-6

Number of cities 67 27 46 44

Number of pollution stations 102 38 98 96

Observations cities 359 148 197 232

Observations stations 714 195 433 459

Panel B: Infant MR × 1,000

Precipitations -17.3336*** -18.0809*** -3.2843 -28.8275***

(2.8580) (5.7518) (3.7547) (3.2823)

Mean of Y 13.3693 12.5434 11.2802 15.1922

SD of Y 5.7819 4.4699 4.5920 5.7756

F-stat 30.8 2.7732 6.1475 24.3

p-value F-stat 5.788e-8 0.0981 0.0141 1.662e-6

Number of cities 67 27 47 44

Number of pollution stations 138 38 99 93

Observations cities 404 169 239 243

Observations stations 798 226 512 490

Notes: The table presents first-stage estimates of precipitation on PM2.5 for mortality rate from circulatory and respiratory
diseases (per 100,000 individuals aged <65 years) sample (Panel A) and for the infant mortality rate per 1,000 live births
sample (Panel B), stratifying by: (1) urban vs. (2) suburban metropolitan areas, and by poverty risk: (3) above vs. (4)
below median poverty rate. Urban areas are characterised by continuous built-up development, while suburban areas consist
of largely built-up regions on the outskirts of urban centres. Cities are further categorised based on their economic status,
with distinctions made between those above and below the poverty line (median). The specification used is that of tables 1
and 2, column (3). Standard errors are clustered at the station level. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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