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Abstract

We analyze the effects of a vaccination program providing free flu vaccine to individ-
uals aged 65 or more on take-up and hospitalization. By using linked patient-general
practitioner (GP) data, we implement a regression discontinuity design around the
threshold at age 65. We find that the program increases vaccination take-up by
6 percentage points, which corresponds to 75% of the take-up for non-eligible in-
dividuals, and reduces the probability of hospitalization by about 44%. We show
that the effect on take-up is not entirely due to an income channel, and that the ef-
fect on health is mainly driven by patients with higher-quality GPs and emergency
hospitalizations.
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1 Introduction
Seasonal influenza is a serious public health issue that causes severe illness and death in
high-risk populations. Worldwide, these annual epidemics are estimated to result in about
3 million to 5 million cases of severe illness, and about 290,000 to 650,000 deaths (WHO,
2017).1 The elderly are the individuals most affected by the influenza virus, and by the
development of severe complications in case they are infected. In the latest influenza
seasons in the United States, the influenza hospitalization rate of the elderly has been
four times the overall hospitalization rate, and has more than doubled the hospitalization
rate of the second most affected age group.2 Similar figures emerge for Europe, where
nearly half of the hospitalization and death cases refer to the oldest age group.3

The main strategy to protect the more vulnerable individuals has been to implement
vaccination programs, especially targeted toward the elderly population.4 In 2003, the
World Health Organization (WHO) urged to increase vaccination coverage to 75% among
older persons, and, in 2009, the European Union (EU) Council issued a recommendation
encouraging Member States to implement policies aimed at reaching this target.5 Even
though the influenza vaccination remains non-mandatory, many countries have thus at-
tempted to increase the coverage by offering the flu vaccine free to individuals above a
certain age, which, depending on the country, ranges between 59 and 65 years.6

This paper assesses the effects of a flu vaccination program for the elderly, implemented
in Italy, on vaccination take-up and health outcomes, measured by the hospitalizations
occurred during the same flu epidemic season.7 According to the program, the influenza
vaccine is freely provided, during a single visit with the general practitioner (GP), to
individuals aged 65 or more. The program is likely to affect the individual’s propensity to
get the shot, because it lowers both the monetary and nonmonetary time costs associated
with the vaccination decision. We identify the effects of the program by adopting a
regression discontinuity (RD) strategy around the threshold at 65 years of age, and by

1Influenza epidemics also have substantial implications for the health sectors, as clinics and hospitals
can be overwhelmed during illness periods (WHO, 2017), and for the overall society, as long as, through
health, they may also affect human capital accumulation, labor force participation and, ultimately, eco-
nomic growth (Adda, 2016).

2Data from the Center for Disease Control and Prevention (CDC). Website:
https://gis.cdc.gov/GRASP/Fluview/FluHospRates.html.

3Data from the European Centre for Disease Control and Prevention (ECDC). See, for instance, ECDC
(2018b).

4While antiviral drugs to treat the flu symptoms have been improved in the last decades, immunization
has been found to be more effective and to have fewer adverse effects than the antivirals (Stephenson and
Nicholson, 2001).

5Resolution WHA 56.19 and European Council Recommendation N. 2009/1019/EU.
6ECDC (2018a) provides an overview of these programs implemented in European countries. In the

United States, flu vaccination is part of the preventive services to which individuals are entitled within
Medicare Part B, for which they become eligible when they turn 65.

7In the rest of the paper, we will use interchangeably the term flu vaccination and vaccination to
describe the vaccination against the seasonal influenza virus.
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using administrative individual-level data from the metropolitan area of Milan, in the
North of Italy, for the influenza vaccination campaign 2013.8

Our work relates to several strands of the literature. First, this paper is related to
the literature which exploits eligibility rules based on age thresholds to assess the effects
of health insurance, or free health provision, on health services consumption and health
outcomes. Card et al. (2008; 2009) document that individuals eligible for Medicare from
age 65 have higher use of medical services, and face a significant reduction in mortality.
Card et al. (2008) also find that the effect is heterogeneous in the population, and that
individuals without health insurance before age 65 increase more than the others the use
of low-cost services, such as doctor’s visits.9

This paper also relates to the economic and public health literature which assesses the
effectiveness of vaccination programs, in terms of both vaccination take-up and health.10

In the context of pediatric vaccinations, Chang (2016) estimates that state legislation
mandating private insurers to cover pediatric immunizations increases the vaccination
take-up rates substantially, suggesting that individuals are responsive to policies lower-
ing the cost of immunization. Ward (2014) instead focuses on an influenza vaccination
program expanding coverage to the entire population. She finds that when the free flu
vaccination is provided also outside the typical target groups (i.e., children and individu-
als aged 65+), the vaccination rates of newly eligible age groups increase leading to health
improvements, also for the older individuals.11

Finally, our study builds on the medical and economic studies which investigate the
determinants of flu vaccination decisions. The medical literature suggests that demo-
graphic characteristics (such as gender and socio-economic status), as well as features
of the health care system (such as vaccination cost) are strongly correlated with the flu
vaccination decision (Nagata et al., 2011; Daniels et al., 2004). Within the economic
literature, Mullahy (1999) and Schmitz and Wübker (2011) analyze the microlevel deter-
minants of flu vaccine take-up, and find that the most important correlates of individuals’
flu vaccination decision are age, health status, and physicians’ quality. Mullahy (1999)
also suggests that, in addition to the out-of-pocket price of the vaccine, individuals may
also respond to the nonmonetary time cost of getting the vaccination.

8Metropolitan areas correspond to NUTS-3 level.
9For Italy, Ponzo and Scoppa (2016) evaluate the effects of cost-sharing exemption provision for indi-

viduals aged 65+ with a low income, on health services consumption and health outcomes. They report
that individuals eligible for cost-sharing exemption have a higher consumption of drugs and specialist
visits, while they do not detect any effects on health outcomes.

10Most of this literature considers policies recommending or mandating pediatric vaccinations before
kindergarten or school entry (Carpenter and Lawler, 2019; Lawler, 2017; Abrevaya and Mulligan, 2011).

11There are also examples of vaccination programs assessment in the medical and epidemiological
literature, such as Hardelid et al. (2011) and Nichol et al. (2007). However, these studies are based on
observational analysis, and are thus very likely to suffer from bias and confounding factors. Randomized
controlled trials, which are largely used in this literature, cannot be practically implemented in this
setting, because influenza vaccination programs are already in place in most developed countries.
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Our paper on the effects of universal access to free flu vaccination at age 65 makes
four important contributions to the literature on the determinants of vaccination and
health. First, our study provides new and clear evidence on the relationship between a
specific health prevention policy, take-up and health outcomes, thereby improving our
understanding of the implications of policies aimed at increasing vaccination rates. Un-
like policies based on age-threshold studied by most prior work, that imply eligibility
for insurance or free provision for a broad set of health services, the policy considered
in this paper represents a particularly powerful intervention for the evaluation of vacci-
nation programs, because eligibility for free vaccination is the only change occurring at
the age threshold. Moreover, vaccination policies based on age-threshold eligibility are
implemented in many developed countries, but very little is known about their actual
effects on the individual’s decision to take up the shot. Figure 1 displays the age profile
for the flu vaccination take-up, as reported in our data: while showing that take-up rises
with age, the figure also documents that the most striking increase happens at age 65,
suggesting that individuals react to the program at the moment they become eligible.

[Figure 1 about here]

Second, our analysis, based on individual-level data and a sound identification strategy,
provides an estimate of the individual’s reaction to eligibility for free vaccination, which is
not affected by other confounding factors. The individual-level dimension is particularly
relevant in the context of flu vaccination for adult individuals. In fact, flu vaccination
grants immunity only for the current flu season, and the decision to take the shot needs
to be made every year. Nevertheless, in our data we observe a strong persistence in the
vaccination decisions after age 65, which points to the importance of understanding the
determinants of individuals’ decision to get the shot in the first place once they become
eligible for free provision.12

Third, our paper focuses on a group of the population, i.e., the elderly, to whom health
prevention policies are typically targeted. In addition to providing evidence on how older
individuals respond to a policy lowering the costs associated with flu vaccination, our
study also examines the health consequences of such program, thus contributing to a better
understanding of the benefits associated with vaccination programs targeted toward the
elderly population. In fact, the evidence on vaccine effectiveness is less robust for this age
group (Lone et al., 2012), and also the vaccine per se is less effective because of immunity
senescence (Simonsen et al., 2007). Because the flu vaccination only grants immunity
for the current season, it is important that the focus of our analysis on health is on
hospitalizations that occurred during an outcome period based on influenza surveillance

12For instance, our data shows that about 80% of the 66-year-olds, in their second year of eligibility
for the program, had the flu vaccination for the first time the year before.
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data for the same flu epidemic season, so we can claim a clear link between the vaccination
policy and the health outcomes.

Fourth, our analysis sheds light on potential heterogeneous responses to universal
eligibility for free vaccination, in terms of both take-up and health. Importantly, the data
allows us to observe not only individual characteristics that are likely to matter for the
immunization decision (such as health status and income) but also the characteristics
of the GP with whom each individual is registered, who may also play a role for the
effectiveness of the program. This makes it possible not only to identify the subgroups of
the population that comply more with the policy, but also to provide evidence on potential
channels driving the effects on vaccination and health.

Our results show that universal eligibility for free vaccination increases the individual’s
vaccination take-up by 6 percentage points, corresponding to a 75% increase with respect
to the average of 64-year-olds. We interpret this estimate as a local average treatement
effect (LATE) of the vaccination program on the take-up. We show that this result is
robust to a wide variety of specification choices and methodologies, and, importantly, we
do not find any change in vaccination take-up at other ages before and after age 65. We
show that the effect mainly comes from individuals with poor health and low income,
as well as from individuals who are not eligible for cost-sharing exemptions within the
Italian national healthcare system.

When evaluating the effect of the vaccination program on short-term health outcomes,
we observe a reduction in the probability of hospitalization of about 44% compared to
the average, even though the estimates are not always statistically significant at conven-
tional levels. The reduction mainly refers to individuals registered with GPs with long
experience and a high number of patients (that we interpret as being of a higher quality),
as well as to emergency hospitalizations. The latter confirms the strong link between the
influenza infection and the occurrence of complications that require emergency access to
the hospital, especially for the elderly population. We interpret these changes in hospi-
talizations at age 65 as the intention-to-treat (ITT) effect of the vaccination program: in
fact, the consequences that we observe on the health measures may be due to the increase
in the individual’s vaccination take-up, as well as to any changes in the individual’s health
behavior during the flu season or to spillover effects.

The rest of the paper is structured as follows. Section 2 gives an overview of the
institutional background: Subsection 2.1 describes seasonal influenza and the vaccination
programs implemented in most developed countries; Subsections 2.2 to 2.4 describe the
flu vaccination program under study, the 2013 vaccination campaign, to which our data
refers, and the Italian national healthcare system. Section 3 presents the identification
strategy and discusses the main identification assumptions, while Section 4 describes the
data. Section 5 presents the baseline results on vaccination take-up (Subsection 5.1), a
number of robustness checks (Subsection 5.2) and heterogeneous effects (Subsection 5.3).
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Section 6 presents the results on health outcomes, and Section 7 concludes.

2 Institutional background

2.1 Seasonal influenza and vaccination

Seasonal influenza is an acute and highly contagious infectious disease with mostly res-
piratory symptoms. It is caused by the influenza virus and is easily transmitted, pre-
dominantly via the droplet and contact routes and by indirect spread from respiratory
secretions (WHO, 2017). Each year, influenza causes substantial morbidity and mortality,
particularly in elderly individuals and those with poor or chronic health conditions, who
face the highest risk of developing subsequent serious complications.

Vaccination is the safest and most recommended strategy to reduce the epidemics
(WHO, 2017). For this reason, despite being typically non-mandatory, it is strongly
recommended for elderly and high-risk individuals. In addition, in order to increase the
vaccination coverage, countries have adopted different policies aimed at lowering the cost
of immunization. In the United States, the Affordable Care Act (2010) provided that flu
vaccination should be included in the preventive services covered by private insurance;
the coverage becomes universal when individuals turn 65 and are eligible for Medicare.
In Europe, the majority of countries provide free flu vaccination (either within the public
national healthcare system or in a national health insurance scheme) to individuals who
are above a certain age threshold, which, depending on the country, varies between 59
and 65 years.13

However, despite the elderly vaccination rate being typically higher than that of other
age groups, it is still far from reaching the WHO target of 75% in many developed coun-
tries. For instance, in the 2013-2014 season, the vaccination rate of individuals above
age 65 was around 65% in the United States, while in Europe it ranged from 75% in the
UK and the Netherlands, to about 60% in central/Mediterranean countries, to 10% in
Eastern Europe (ECDC, 2014).14

In the northern hemisphere, the influenza virus circulates during the winter, while the
flu vaccination campaigns usually take place in the autumn. According to recommenda-

13As of 2018, age 65 is the threshold for providing free flu vaccination used by the majority of the
European countries with the exception of Germany, Greece, Hungary, Iceland, Portugal, and the Nether-
lands that use age 60, and Slovakia that uses age 59 as a threshold (ECDC, 2018a). Nevertheless, a
relevant number of countries envisages forms of out-of-pocket payments, either in the cost of the shot
or the injection (Belgium, Bulgaria, Cyprus, Estonia, Latvia, Iceland, Ireland, Luxembourg, Norway,
Lithuania, Liechtenstein, Poland, Slovenia, Sweden) (ECDC, 2018a).

14In the United States, in the 2013-2014 flu epidemic season, the vaccination rate of individu-
als aged 50-64 was around 40%, and the rate of adults 18-49 was 32% (data from CDC, website:
https://www.cdc.gov/flu/fluvaxview/trends/age-groups.htm). In Europe, the vaccination rate of older
individuals is significantly higher than the vaccination rate of individuals with chronic medical conditions
(of any age), for whom the vaccine is still recommended (ECDC, 2017).
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tions of the Center for Disease Control and Prevention (CDC) and the European Centre
for Disease Prevention and Control (ECDC), the flu vaccination should be repeated every
year because (i) the influenza virus constantly evolves, and (ii) the immunity elicited with
the influenza vaccine is not as long-lived as the one following natural influenza infection,
especially for elderly individuals. Every spring, WHO establishes the types of vaccines to
be used in the next season, according to the predictions on the type of virus most likely
to be circulating.15

2.2 The influenza vaccination program in Italy

In Italy, vaccination against seasonal influenza is regulated according to the National Plan
for Preventive Vaccination (NPPV hereafter), which is established by the Italian Ministry
of Health. The flu vaccination campaign starts in late October and finishes by the end
of December, while the circulation of the influenza virus occurs between November and
April of the following year (ECDC, 2017).

The NPPV establishes that flu vaccination shall be completely free for selected cate-
gories of individuals, who may be at risk of complications in case of flu infection.16 The
first category refers to the elderly: individuals are entitled to free vaccination from the
calendar year in which they turn 65, regardless of their month and day of birth.17 Other
categories of individuals are offered a free flu vaccine, regardless of their age, because they
may be at-risk of complications in case of contagion: (i) individuals aged less than 65 and
affected by a certified chronic disease (especially those of the respiratory and cardiovascu-
lar systems), diabetes, or other diseases determining a weakening of the immune system;
(ii) women in their second or third trimester of gestation; (iii) individuals institutionalized
into nursing homes.

According to the NPPV regulations, individuals eligible for free flu vaccination get the
immunization from the GP during one visit. More precisely, individuals eligible for free
vaccination pay neither the vaccine shot, nor the injection nor the visit(s) from the GP,
and thus face a zero out-of-pocket price. In order to increase the vaccination take-up in the
at-risk categories above, the NPPV regulations also call for an active role of the GP, who
should identify the eligible individuals among their patients who may be at higher risk of
complications in case of flu infection, and actively offer them the vaccine (Ministero della
Salute, 2013). In particular, individuals aged more than 65, who can be easily identified

15There are two main types of influenza virus known as A and B, which are important in human disease
(WHO, 1980). At any one time there is a mix of influenza viruses circulating. Influenza A and one or two
strains of influenza B viruses (depending on the vaccine) are included in each year’s influenza vaccine.

16As a preventive measure, the flu vaccine is also offered free to individuals working in the health,
education or military sectors, care-takers of individuals at risk of complications, and individuals working
in contact with animals (Ministero della Salute, 2013).

17This implies that e.g. individuals born in 1948, turning 65 in 2013, are eligible for free vaccination
in the 2013 campaign (i.e. in preparation for the 2013-2014 flu epidemic season) but not in the 2012
campaign.
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in the health records through their birth date, are offered the flu immunization at the
beginning of any vaccination season.

All the individuals aged less than 65 and not included in any of the categories above
have to get a prescription from their GP in order to buy the vaccine at the pharmacy
and refer back to the doctor or to professional nurses to get the shot.18 This implies that
individuals not eligible for free vaccination bear not only the monetary cost of immuniza-
tion,19 but also a nonmonetary cost, mainly due to the time spent in the immunization
process.

2.3 The 2013 flu vaccination campaign

For our analysis, we have access to data on the 2013 flu vaccination campaign, which
lasted between October and December 2013. According to data from the Italian National
Health Institute (NHI), which is in charge of documenting the vaccination coverage and
the epidemiological characteristics of each flu seasonal epidemic, 15.6% of individuals
of any age received the vaccination in the 2013 season, while the vaccination rate for
individuals 65+ was 55.4%.20 The rates are in line with the vaccination coverage rates in
the adjacent campaigns, as shown in Appendix Figure A.1.

The laboratory analysis conducted for the virological surveillance of the 2013 campaign
showed a good match between the vaccine composition and the virus actually circulating
(Ministero della Salute, 2014).21 The NHI also keeps track of the health consequences of
the flu epidemic, by gathering data on the number of flu-related cases, as reported by GPs,
and at attendance at the emergency rooms with respiratory symptoms. These data refer
to influenza-like illness cases, based on both the symptoms and on a medical examination
of the patient, but not on the analysis of biosamples. In the 2013-2014 epidemic season,
the virus circulated between week 43 in 2013 (mid-October) and week 17 in 2014 (end of
April). In this period, there were almost 4.5 million influenza-like illnesses (corresponding
to about 7.5% of the Italian population), out of which about 100 were severe. Cases with
respiratory or flu-like symptoms accounted for 9.4% of all attendances at the emergency
rooms, and, of these, 20% ended up in a hospitalization (ISS, 2014). For our analysis on
health outcomes, we use the definition of the outcome period from the epidemiological

18The injection must be performed by a doctor or professional nurse, in order to check for potential
side effects of the vaccine.

19The price of the vaccine shots sold in pharmacies might vary from 12 to 30 euros, depending on the
year, type, and producer. The price for an injection can vary between 10 and 30 euros, depending on the
doctor and on whether it is done at home or in the clinic.

20These rates include vaccinations performed either within or outside the NPPV. Website:
http://www.epicentro.iss.it/influenza/coperture-vaccinali

21The vaccine used in the 2013-2014 season was trivalent, with two strains of influenza A and one of
influenza B virus included (Ministero della Salute, 2014; WHO, 2014). An ECDC study (Valenciano
et al., 2015), by using data on influenza virus cases registered in Germany, Hungary, Ireland, Portugal,
Romania, and Spain estimates that the vaccine effectiveness against seasonal influenza in the 2013-2014
season has been 52.2% for the total population, and 49.1% for individuals aged more than 60.
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study of the 2013-2014 season (ISS, 2014), and consider the hospitalizations that occurred
during this time span.

2.4 The Italian healthcare system

The Italian national healthcare system (NHS hereafter) is mainly public and managed by
the regional governments, while minimum quality standards are defined at the state level
for all the regions.22 Under the NHS, all residents can consult a free general practitioner
(GP, often called a family doctor), who is responsible for prescriptions of drugs and
requests for specialist visits. Hospitalizations (including accommodation and treatments)
are also freely provided by the NHS to all residents. Cost-sharing is instead required for
specialist visits, diagnostic checks, and drugs. Individuals are exempted from the cost-
sharing in case of (i) poor health conditions (i.e. certified chronic disease or disability),
(ii) low income, or (iii) a combination of both poor health and low income.23 Cost-sharing
exemptions for low income apply to individuals with income below a certain threshold,
unemployed, or retired with a pension below a minimum level.24

Typically, the cost-sharing exemption due to chronic health conditions only allows
the individual to gain free access to drugs and specialist visits related to the certified
chronic disease. However, in case of extremely serious health conditions, the cost-sharing
exemption is extended to all drugs and specialist visits. This implies that individuals with
extremely poor health or certified chronic diseases do not enjoy any additional benefit, in
terms of cost-sharing exemptions, from a low-income status. In our analysis, we shall use
these cost-sharing exemption rules, based on certified health conditions and low-income
status, to group individuals according to their poor health or income-related fragility.25

22In Italy, there are 20 regions (NUTS2 level).
23Chronic diseases include, among others: cancer, diabetes, chronic renal insufficiency, heart and neu-

rological diseases.
24Under (a) and (c) above, the cost-sharing exemption is automatically granted; under case (b) the

unemployed should file the request. Exemptions due to low income are valid for one year only, and as
long as the low-income condition applies.

25In our data, we observe whether the individual has a cost-sharing exemption due to (i) chronic disease
or disability, (ii) low-income, or (iii) a combination of the above categories. It should be noticed that
category (i) does not coincide with individuals aged less than 65 and eligible for free vaccination due
to chronic health conditions, because eligibility for free vaccination mainly applies to individuals with
diseases of the respiratory/cardiovascular system or diseases determining a weakening of the immune
system (Ministero della Salute, 2013). This implies that the category of individuals exempted from cost-
sharing because of poor health conditions overlaps but does not coincide with the category of individuals
aged less than 65 and eligible for free vaccination, as defined in Subsection 2.2. See Section 4 for a more
detailed description of the data.
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3 Identification strategy

3.1 The regression discontinuity design

The aim of this paper is to analyze the effect of universal eligibility for free flu vaccination
on vaccination take-up and individuals’ health. To this purpose, we exploit the fact that
in Italy flu vaccination is free for all individuals aged 65+, and identify the effect of such
age-related change in a RD framework. In practice, we use exact birth dates to determine
individuals’ assignment to the treatment (i.e., eligibility to free flu vaccination).

In the 2013 vaccination campaign, all individuals born before January 1 1949 are eligi-
ble for free flu vaccination under the NPPV; conversely those born after can be considered
eligible only if belonging to any of the other categories listed in Section 2.2. This frame-
work makes it possible to estimate the effects of the age-related change on vaccination
take-up (and health outcomes), by comparing individuals who are essentially identical
under all characteristics (observed and unobserved), but differ for being born in days
close to the cutoff day, but on opposite sides. In order to make our comparison of eligible
and non-eligible individuals credible, we focus the analysis on individuals born within 365
days from the cutoff birth date (January 1, 1949).

Let di (running variable) be the distance (in days) between the individual’s date of
birth and the cutoff point, such that it is positive for those born before the cutoff day
(eligible for free vaccination), and negative for those born after (non-eligible). The baseline
RD equation takes the following form:

Pr(Vi) = α + ETi(βRD + fR(di)) + (1− ETi)f
L(di) + ϵi (1)

where: ETi is a dummy defining the eligibility for the treatment status (i.e. taking
value 1 for those born before January 1 1949 and 0 otherwise); fR and fL are unknown
smoothing functions of the running variable di, on the right and left hand side of the
cutoff, respectively; Vi is a dummy indicating whether individual i got vaccinated in the
2013 campaign. Given that the assignment to the treatment is deterministic and based
on the date of birth, which, in a sufficiently small neighborhood of the cutoff date, can
be considered as-good-as random, the parameter βRD is an estimate of the causal effect
of universal free vaccination on the outcomes of interests:

β̂RD = lim
di→0+

E(Vi|di)− lim
di→0−

E(Vi|di) (2)

Similarly, defining Hi as the health status of the individual during the flu disease
spread, we use the same estimation framework to retrieve the short-term effects of vac-
cination on individual health. Notice that, while we interpret the effect on vaccination
take-up as a local average treatment effect (LATE), the estimated effect on health shall
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be interpreted as an intention-to-treat (ITT) effect. In the first case, we observe both the
eligibility status (determined by the age threshold) and the individual’s direct compliance
with the policy change; in the second case, instead, the effect of the policy change on
health is likely to be influenced also by related changes in the individual’s health behavior
or spillover effects.

3.2 Tests for the identifying assumptions

The identification of the effects of universal eligibility for free vaccination relies on a num-
ber of factors. First, the cutoff at age 65, after which free vaccination becomes universal,
must generate a sizable variation in the vaccination take-up to allow identification of the
effects. As we have seen from Figure 1, the largest increase in vaccination probability
occurs at age 65. Figure 2 shows in details the discontinuous change in flu vaccination
probability when comparing 64- and 65-year-olds: the average vaccination probability of
64-year-olds is 8%, while the average vaccination rate for 65-year-olds is 18%.

[Figure 2 about here]

Second, there should not be manipulation in the running variable. This assumption
can be tested by investigating the presence of discontinuities in the density of the obser-
vations close to the cutoff (McCrary, 2008). Figure 3 reports the number of individuals
born in each calendar day for the years 1948 and 1949, showing an unexpectedly high
number of births on January 1, 1949. This pattern seems consistent with a framework
where birth registers were manually filled, and parents retained some discretion when
declaring the date of birth of their children.26 The McCrary test, reported in Figure A.2,
confirms that there is a statistically significant jump in the number of births at the cutoff
date: the estimated discontinuity is -0.183 (0.029), with a t-statistics of 6.284. Thus, in
order to provide conservative estimates of the causal effect under study, we adopt a donut
specification (Barreca et al., 2016), by excluding from the analysis the individuals who
are born exactly at the cutoff date and in the day before and after. In a later section
we also show that the results are robust to using different donut specifications or the full
sample.

[Figure 3 about here]

Third, the regression discontinuity design delivers an estimate of the effect of univer-
sal eligibility for free vaccination by comparing individuals aged 64 and 65 in the 2013
vaccination campaign, under the assumption that these two age groups do not differ in

26In the years after World War II, it was standard to give birth at home and then declare the birth to
the General Register Office of the municipality of residence in the days following the event.
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any other observable or unobservable characteristic associated to the vaccination deci-
sion. To assess whether observable factors differ between the two groups, in Figure 4 we
plot selected characteristics as a function of the individual’s birth date. In particular,
we consider the share of females, the share of individuals living in urban areas and those
with a certified cost-sharing exemption for chronic conditions (i.e. as a proxy for health
status), as well as GP’s age, experience and number of patients.27 The evidence reported
in Figure 4 does not show any discontinuity in these variables close to the cutoff date.
We also check this more formally, by estimating a non-parametric regression (similar to
Equation (1)) using as dependent variables individuals’ and GPs’ characteristics. Results
are presented in Table A.1 in the Appendix A and confirm the graphical evidence depicted
in Figure 4.28

[Figure 4 about here]

Whilst other socio-economic characteristics may also be associated with the individ-
ual’s perceived benefits and costs of vaccination, the administrative data we use do not
contain information such as education, employment or family composition. To check
whether any of these characteristics also change around the cutoff date, we use an alter-
native source of data: the Italian Survey on Health (ISH). We select the 2013 wave and
only consider 64- and 65-year-old individuals; due to the limited number of observations,
we perform the analysis with the ISH survey on the whole Italy. We then specify and
estimate non-parametric regressions, similar to Equation (1), using as dependent vari-
ables a set of dummies for specific individual characteristics, such as: female, certified
chronic disease, high school diploma, retired status, working in public sectors (such as
education, health or military services), marital status, living alone or living with son(s).
The main results, reported in Table A.3 in the Appendix, confirm the absence of discon-
tinuities at the cutoff date in gender and health status, as already documented with the
administrative data, as well as in the other socio-economic characteristics.

Fourth, no other relevant policy change should affect the cohorts of individuals, at
the threshold of age 65, considered in this study. Along this line, one first concern is
related to the retirement age threshold as in 2013. Estimates in columns (7) and (8) of
Table A.3 show that the proportion of retired individuals does not change discontinuously
at the cutoff age. Indeed the retirement age, while being different across job types, in

27More precisely, we define a dummy variable equal to 1 if the individual is female, a dummy variable
equal to 1 if the individual lives in a urban area, and a dummy variable equal to 1 if the individual is
exempted from the health cost-sharing rule because she has a chronic disease; regarding the GPs’ char-
acteristics, these refer to the family doctor of each individual and represent the doctor’s age, experience
and number of patients. Additional details on the definition of these variables are provided in Section 4.

28In Section 5, when presenting our results, we also show that these are robust to the inclusion and
exclusion of these variables as covariates in the regressions. Table A.2 also shows that there are no
discontinuities in the proportion of individuals entitled to exemption from cost-sharing because of health
issues and low income, low income only or without exemptions.
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no case in 2013 coincided with age 65.29 A second concern is that individuals, when
they turn 65 and have an income below 36,000 euro, become eligible for cost-sharing
exemptions for specialist visits and diagnostic checks. Since at age 65 everyone is eligible
for free vaccination, regardless of the income level, cost-sharing exemptions should not
affect individuals’ vaccination decision. Still, such rule may affect our analysis of health
outcomes if individuals, due to cost-sharing exemption at 65, use more specialist visits
which may improve their short-term health outcomes. To address this, we check whether
the proportion exempted from cost-sharing because of low income changes discontinuously
at the cutoff.30 Results reported in Table A.2, columns (3) and (4), show that this is not
the case.

Finally, the presence of spillover effects could represent an additional threat to our
identification strategy if, when deciding whether to get the flu vaccination or not, indi-
viduals internalize the perceived level of herd immunity of one’s peers (e.g. colleagues at
work, neighbors or family members).31 However, in our setup this can occur only if the
level of herd immunity changes discontinuously at the cutoff date, which may happen if
65-year-olds expect to interact only with other eligible individuals – thus facing higher
herd immunity among their peers – and not with 64-year-olds non-eligible for free vac-
cination. While we believe that such separation between 65- and 64-year-olds is rather
unrealistic, such free-riding behavior is also strategically unsound since it would eventu-
ally drive vaccination take-up above 65 years of age to zero. In Tables A.1 and A.3, we
show that there are no relevant discontinuities at the cutoff date along different peers clus-
tering groups – such as urban or rural area, family composition and employment status –
corroborating our claim that herd immunity does not follow specific patterns.

4 Data

4.1 Data and variables description

For our analysis we use administrative individual-level records of all residents aged 50 and
more in the metropolitan area of Milan (Italy), which covers the municipality of Milan
and 133 surrounding municipalities.32 The data are provided by the Agency for Health

29Retirement age in 2013 was regulated by Law 201/2011.
30In our data, we cannot identify the specific category of individuals exempted from cost-sharing due

to age 65+ and low income. Instead we have information on any exemptions related to a low-income
status. See Subsections 2.4 and 4.1.

31For herd immunity it is intended in the medical literature the protection against a certain disease
that any individual gets as a spillover effect that comes from the fact that a substantial share of the
population is immune to that disease because of the vaccination.

32The Milan metropolitan area corresponds to the NUTS level 3 and is located in the Lombardy region,
in the north-west of the country. It includes approximately 3.2 millions inhabitants, and it represents the
second largest metropolitan area in Italy, after Rome.
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Protection, which is in charge of governing the healthcare sector in the area.33

The data include individual records from the General Health Register (GHR), contain-
ing demographic characteristics (gender, municipality of residence, and the date of birth),
the exact date of flu vaccination (if any), and additional information on cost-sharing ex-
emptions due to chronic health conditions and/or low income. The GHR also contains
information about the GP assigned to each individual. The data covers the 2013-2014 flu
epidemic season, from fall 2013 until spring 2014.

From the GHR we create a dummy variable (Vi) which takes value 1 if the individual
received the flu vaccination between October and December 2013, and zero otherwise. The
date of birth of the individual is our running variable (di). We use the information on
cost-sharing exemptions to derive four dummy variables proxying for individuals’ health
and income status: (i) a dummy variable indicating exemption due to chronic health
conditions; (ii) a dummy variable for individuals exempted from cost-sharing due to poor
health and low income; (iii) a dummy variable indicating exemption for low income only;
and (iv) a dummy variable indicating that the individual does not have exemptions of any
sort. In the analysis, we control for the gender and place of residence of the individual,
by defining a variable Urban equal to 1 if the individual lives in the municipality of Milan
or the neighboring municipalities, 0 if instead lives in rural areas. We also control for
the individual’s health status, by including the dummy for cost-sharing exemption due
to chronic health conditions, and for selected characteristics of the GP assigned to each
individual ( experience, age, and number of patients). Finally, we use the set of dummies
on cost-sharing exemptions defined above to analyze heterogeneous effects.

We also merge the GHR with the register of Hospitalization Records (HR), reporting
all hospitalizations that occurred in the territory of the Agency, and the duration of
the attendance (in days). For the analysis of the effects of vaccination on health, we
construct two variables based on the occurrence of hospitalization events, considering
both the intensive margin (i.e., a dummy indicating whether or not at least one event
occurred) and the extensive margin (i.e., the number of days of hospitalization). The
information on hospitalizations refers to planned and emergency occurrences.34 For the
health outcomes, we consider the period when the influenza virus was circulating, from
week 43 in 2013 until week 17 in 2014, according to the epidemiological report of the
National Health Institute (NHI) (ISS, 2014). Note that for all vaccinated individuals,
we exclude the hospitalizations occurred in the 14 days after the vaccination, as the
immunization process takes at least 14 days to produce its effects (Russo, 2015).

A drawback of the information contained in the GHR is that only flu vaccinations
provided within the NPPV are recorded. These include individuals (of any age) eligible

33Agenzia di Tutela della Salute (ATS-Milan) in Italian.
34A hospitalization may be planned if, e.g., requested by the GP. Emergency hospitalizations, instead,

occur after an access to the emergency rooms.
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for free vaccination according to the categories listed in Section 2.2. Thus, in our data,
we cannot observe whether individuals aged 64 – and not eligible for free vaccination
– get the flu vaccine outside the NPPV and refer to a doctor for the injection. While
official information on the number of individuals who receive the flu vaccine outside the
NPPV (i.e., by paying for it) is not available, aggregate statistics from the National Health
Institute indicate that, in the Lombardy region, the overall flu vaccination rate for the
45-64 age group is 3.7%. This figure is very close to the 3.6% vaccination rate recorded in
the GHR data for the metropolitan area of Milan in the flu epidemic season under study,
thus suggesting that flu vaccinations outside the NPPV are expected to be negligible.
Moreover, in Section 5.2, we assess the importance of flu vaccinations outside the NPPV,
by providing evidence from survey data, that report information on individuals who get
the flu vaccine either under the NPPV or privately.

4.2 Sample selection and descriptive statistics

For the empirical analysis, as described in Section 3, we select individuals aged 64 or
65 in 2013 (i.e., born between January 1, 1948 and December 31, 1949), and exclude
those born on the cutoff date (January 1, 1949), or on the day before or after (donut
specification). We keep only individuals who get the flu vaccination until December
2013, or who did not get the flu vaccination in the 2013 campaign, and for whom we
have reliable information on their GP.35 In order to keep the individual’s vaccination
decision as much homogenous as possible in the sample, we also exclude individuals with
a certified disability or institutionalized in nursing homes.36 The final sample consists of
68,962 individuals.

[Table 1 about here]

Table 1 reports the descriptive statistics of the variables used in the analysis. The
variable Treated indicates individuals aged 65 in 2013 (i.e., born in 1948), who are 51% of
the sample. In the 2013 campaign, 12% of individuals aged 64 or 65 got the flu vaccination,
while 3% of individuals in the same age group experienced at least one hospitalization,
for an average length of stay at the hospital of 0.36 days.37 Females represent 54% of the
sample, 60% live in a urban area, and 14% are eligible for cost-sharing exemption due to
a chronic health status. In terms of GP’s characteristics, in our sample, the average age is

35In the data, we drop individuals who got the flu vaccination in January or February 2014, which
represent 0.11% of the population aged 64 or 65. Regarding the GPs’ characteristics, we drop 2.3% of
the observations because the information on the GP was missing or unreliable.

36Individuals with a disability or institutionalized in nursing homes represent 9% of the entire popula-
tion aged 64 or 65 years. For these individuals the flu vaccination decision is rather different, as they are
likely to receive the vaccination at their home or at the nursing institution. However, our main results
and conclusions hold when these individuals are included in the analysis. Results are available on request.

37The average length of stay for the hospitalized is around 10 days.
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58, with an average of 24 years experience in the practice, and a total number of patients
for each doctor close to 1,500.

5 Eligibility for free vaccination and take-up

5.1 Baseline results

Baseline estimates of the effect of universal eligibility for free flu vaccination on the vacci-
nation take-up probability are reported in Table 2. We perform RD robust estimates fol-
lowing the non-parametric optimal bandwidth selection procedures suggested by Calonico
et al. (2014) and Calonico et al. (2017), and use a triangular kernel and a coverage error
rate (CER) bandwidth selector. The estimated parameter is around 6 percentage points
in all specifications, regardless of whether we include additional controls, or whether we
use a polynomial of order 0 or 1. The bandwidth used for the estimation ranges between
28 and 60 days from the cutoff date, meaning that for our estimates we are considering
individuals born within one or two months from January 1, 1949.

[Table 2 about here]

Our estimate implies that the introduction of universal eligibility for free vaccination
induces an increase in the likelihood of getting the flu vaccination by 6 percentage points,
with the probability of getting a flu vaccine increasing up to 18% for those aged 65.
Considering that the target vaccination rate for the 65+ group is 75%, one may be inclined
to regard such effect as rather modest. However, if we compare the estimated parameter
with the average vaccination rate of the 64-year-old (approximately 8% in our sample), a
6 percentage point increase corresponds to a 75% increase in vaccination take-up, which
is a sizable effect.

[Table 3 about here]

Results from a parametric specification on vaccination take-up probability are reported
in Table 3. All the parametric regressions use a triangular weight, which is decreasing
in the distance from the cutoff, so that observations near the cutoff receive larger weight
than do observations farther from the cutoff. Furthermore, we vary the bandwidth by
using samples of individuals born within 1 month, 3 months, 6 months, or 12 months
from the cutoff date. As expected, when increasing the bandwidth, and thus the number
of observations, we prioritize precision over bias and the estimates become larger than
the non-parametric ones. However, the estimates using a bandwidth of 1 month or 3
months are very similar to the ones presented in Table 2, and do not change substantially
whether we include additional controls in the regression, or when a linear or a quadratic
specification is used, with or without interaction terms between the treatment and the
running variable.
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5.2 Robustness checks

In the following analysis, we perform several robustness tests. First, we test for the
occurrence of changes in vaccination take-up at different ages, by performing a placebo
exercise. Second, we implement several specification checks, by focusing on three main
dimensions: (i) the clustering of the standard errors, (ii) alternative donut specifications,
(iii) the use of different bandwidth selector and kernel.38 Finally, using complementary
data from the Italian Survey on Health (ISH), we show that vaccinations taken outside
the NPPV do not affect our baseline estimates.

Placebo exercise. To make sure that the estimated change in vaccination probability
is due to the flu vaccination program at age 65, and not to underlying trends or other
unknown factors, we replicate the baseline analysis using placebo age groups. We consider
couple of adjacent cohorts not affected by the treatment in the campaign under study and
assign the placebo treatment status to the older one. In practice, we consider two couples
of cohorts before age 65 (i.e., the 64- and 63-year-olds, and the 63- and 62-year-olds),
and two couples of cohorts after age 65 (i.e., the 66- and 65-year-olds, and the 67- and
66-year-olds).

[Table 4 about here]

Results reported in Table 4 show that in no case the placebo treatment matters for
the individual’s vaccination decision. Importantly, this placebo analysis confirms that the
estimated change in vaccination probability that we document at age 65 is due to the
introduction of universal eligibility for free vaccination, and not, for instance, to a natural
increase in the vaccination propensity due to an older age.

Sensitivity and specification checks. In the baseline analysis standard errors are
not clustered. In Table A.4 in the Appendix, we show that the baseline results do not
change if we implement alternative clustering. First, given that our running variable is
discrete, as suggested by Lee and Card (2008), we cluster standard errors by date of birth
(our running variable). Then, to account for individuals sharing the same GP or living
in the same municipality, we also cluster standard errors by GP and by municipality. In
all cases, our main results are confirmed.

Furthermore, we check the sensitivity of our estimates with respect to the exclusion
from the estimation sample of individuals born around the cutoff date. In Table A.5 in
the Appendix, we report the results obtained from different samples: (i) No Donut with
the entire sample, (ii) Donut 0 where we drop individuals born on the cutoff date, (iii)
Donut 2 and Donut 3 where we exclude individuals born on the cutoff date and those
born 2 or 3 days immediately before or after. Results are unchanged.

38We also check that the parametric estimates are robust to clustered standard errors (by cutoff date,
by municipality of residence or by GP), or to different donut specifications. The results are very similar
to the ones presented in Table 3, and are available upon request.
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Finally, we test the robustness of the non-parametric results presented in Table 2 to
the optimal bandwidth selector and to the kernel. While the baseline analysis is performed
using the coverage error rate (CER) bandwidth selector and the triangular kernel, in Table
A.6 in the Appendix we show that the results do not change if we instead use the mean
square error (MSE) bandwidth selector or the uniform kernel.

Flu vaccination outside the NPPV . An important issue concerns the extent
to which individuals aged less than 65 get the flu vaccination outside the NPPV. As
previously discussed, GHR data only provides information on flu vaccinations provided
within the NPPV, thus neglecting individuals who purchase the vaccine at the pharmacy
and refer to a doctor for the shot. While evidence from aggregate data suggests that the
vaccination rate outside the NPPV is negligible (see the discussion in Section 4.1), we
complement our analysis by replicating our baseline estimates on survey data drawn from
the 2013 wave of the Italian Survey on Health (ISH), which asks individuals whether they
received the flu vaccination in the 12 months before the interview, either within or outside
the national vaccination program.

Hereafter, we discuss some caveats concerning the use of ISH data. First, with ISH
data it is not possible to retrieve the exact date of birth of the respondents, since the
age variable is coded as “age – in years – at the time of the interview”.39 Second, it is
not possible to retrieve the same territorial level as in the GHR data (i.e., Milan and
its metropolitan area), as only a bigger (NUTS 2) geographical disaggregation (i.e., the
Lombardy region) is available. Third, due to the wording of the question, respondents are
asked to report flu vaccination decisions in the previous 12 months so that the information
is likely to refer to the 2012 vaccination campaign (i.e., the campaign before the one
considered in our analysis). Still, as shown in Appendix Figure A.1, the two campaigns
had very similar vaccination rates: in the Lombardy region, the elderly vaccination rate
was 48.2% in 2012 and 48.6% in 2013.40

In Table A.7 in the Appendix, we report the results we obtain replicating our baseline
specification on the ISH data. Estimated effects, for the entire sample, on the vaccination
take-up (reported in columns 1 and 2), show an increase in the take-up probability of
about 7 percentage points (smaller for polynomial of degree one). The results appear
less precisely estimated as we restrict the sample to geographical areas closer to the one
covered by the GHR data, albeit always positive in sign and similar in magnitude. Overall,
the results from this replication exercise confirm the existence of an increase in the take-up
probability at age 65 and show that the magnitude of the effect is in line with our main
findings with GHR data.

39Interviews were performed in September and December 2012, and March and June 2013. In order to
be as precise as possible in the attribution of the treatment status in the replication analysis below, we
restrict the sample to individuals aged 65 or 64 and interviewed in the month of December 2012.

40Data from the NHI.
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5.3 Heterogeneous effects

In this section, we analyze whether the flu vaccination program has heterogeneous effects
on vaccination take-up depending on the individuals’ characteristics and GPs’ attributes,
in order to shed light on the mechanisms driving the behavioral responses to free access
to vaccination.

Individuals’ characteristics. To investigate the role of individuals’ characteristics
on the vaccination decisions, we replicate our baseline analysis by splitting the sample
according to the individual’s health status and income.41 Using the information on cost-
sharing exemptions certified by the NHS, we identify four categories of individuals: (i)
those affected by a chronic disease, (ii) those with poor health status and low income, (iii)
those with a low income, and (iv) the remaining individuals with no certified exemptions.
As mentioned in Section 2.4, since cost-sharing exemption associated with a chronic and
severe health condition imply free access to a great proportion of specialist visits and
drugs, we expect the cost-sharing exemption for low income to play no additional role,
and thus interpret the four categories above as providing a ranking in the health-income
space which improves from categories (i) to (iv).

[Table 5 about here]

Results are presented in Table 5. Panel A shows no effect of universal eligibility for free
vaccination on take-up for individuals who have a certified chronic condition. While this
result might seem counterintuitive, given that individuals in this group are characterized
by the worst health status and potentially could benefit the most from flu vaccination, it
should also be noted that they are likely to be eligible for free vaccination even before age
65, because of their chronic health condition, as outlined in Section 2.2. Thus, the absence
of any effects for this category suggests that, even though the categories of individuals
exempted from cost-sharing due to a chronic condition and those exempted from paying
the flu vaccination do not perfectly coincide, there is a significant overlap between the
two.

Panels B, C, and D report the effect of universal eligibility for free vaccination on
individuals exempted from cost-sharing because of poor health status and low income
(Panel B), low income only (Panel C), or without any exemptions (Panel D). We find
that individuals characterized by both poor health and low income (Panel B), as well
as individuals without any exemptions from cost-sharing (Panel D), are more resilient to
free vaccination eligibility after 65, with an increase in the vaccination probability ranging
between 7 and 9 percentage points. In the context of the flu vaccination program under
study, it should be noticed that the age threshold induces a reduction in the monetary and
nonmonetary time cost associated with the immunization. Individuals who are exempted

41We do not find differences in the vaccination take-up across gender and place of residence; results are
reported in Appendix Table A.8.
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from cost-sharing because of low income, among which there are unemployed or employed
with a minimum income level, may be more reactive to the reduction in monetary cost,
even though this appears to be the case only if they also value the health benefits of not
getting the flu, as in case of poor health conditions. On the contrary, the monetary cost
of the vaccine (and its subsequent reduction induced by the program) is likely to matter
less for individuals without any exemptions, who instead may value more the reduction
in the nonmonetary costs associated with the flu immunization program. Furthermore,
the increase in vaccination take-up that we document for individuals without exemptions
seems in line with Card et al. (2008), who show that Medicare eligibility at age 65 matters
especially for individuals without previous health insurance.

Summing up, this heterogeneity analysis points to the evidence that a pure income
effect cannot be considered as the main driver of the decision of taking the vaccine shot,
because low-income individuals only react to the policy if they have poor health condi-
tions, and thus also value the expected benefits of vaccination. Individuals without any
exemptions from cost-sharing also increase their take-up when becoming eligible: as this
group may be less responsive to a change in the out-of-pocket price of the vaccine, we
interpret this finding as evidence that the nonmonetary cost reduction implied by the
program also plays a role for the vaccination decision.

GPs’ characteristics. Since eligible individuals typically receive the vaccine shot
from their GP, the role of GPs may be important when assessing the individual’s response
to free vaccination. We thus check whether selected GPs’ characteristics (experience and
number of patients) matter for the individual’s response to universal free vaccination at
age 65. More precisely, we take experience (i.e., number of years of practice within the
NHS) and the number of patients as proxies of GP’s perceived quality. Results from this
exercise are presented in Table 6. In general, we find that the magnitude of the effect on
vaccination take-up is greater for higher-quality GPs (i.e., with more experience and a
larger number of patients), even though the estimates are not statistically different.

[Table 6 about here]

6 Effects on health outcomes
In this section, we document the effects of universal access to free vaccination for indi-
viduals 65+, on health outcomes. We use as a measure of health the individual’s hos-
pitalization probability and hospitalization duration measured in the same 2013-2014 flu
epidemic season (see Section 4 for details on the variables construction). We acknowledge
that such health measures refer to quite serious outcomes, so that many minor illnesses,
associated with the influenza virus, may end up undetected. However, the likelihood
of hospitalization is the highest for the elderly population under study (ECDC, 2018b),
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mainly because this age group is more likely to be affected by complications related to the
influenza virus in case of contagion. Moreover, by focusing on hospitalization, which is a
very costly treatment that in Italy is provided free to everyone by the NHS, we are able
to better account for one of the main costs associated with the treatment of influenza.42

Furthermore, since the immunization induced by the flu vaccination is only valid for
the same season, we restrict attention to the short-term effects on health in the weeks
of the virus diffusion (i.e., between October 2013 and April 2014). We are confident
that this allows us to claim a stronger link between the change in eligibility rules for the
65+ group and the individual’s health status in the forthcoming weeks. However, we
cannot rule out that the observed health outcomes may be related to other factors, also
changing as a consequence of the program, such as the individual’s health behavior, or the
level of herd immunity in the population.43 This implies that any potential health effect
documented in this section should be interpreted as an intention-to-treat (ITT) effect of
the flu vaccination program.

6.1 Baseline results and heterogeneous effects

Table 7 presents the main results of the effects of eligibility for free vaccination on hos-
pitalization outcomes using a non-parametric analysis, while Table A.10 in the Appendix
reports the results of the parametric analysis. In both cases, we find that eligibility for
free vaccination does not induce any statistically significant improvement in hospitaliza-
tion outcomes, neither at the intensive nor at the extensive margins.44 The absence of
any overall improvement in hospitalization outcomes for the whole sample of 64- and
65-year-olds, however, could hide the presence of heterogeneous effects. Thus, mirroring
the analysis that we have performed on vaccination probability, we look at heterogeneous
effects by individuals’ and GPs’ characteristics. Moreover, we exploit an additional fea-
ture of the hospitalization records, to look at the heterogeneous effects by hospitalization
types.

[Table 7 about here]

Heterogeneous effects by individuals’ characteristics. We focus on the sub-
groups defined according to the categories of cost-sharing exemptions described in Section

42One day of hospitalization costs, on average, 674 euros to the NHS, while for an average length the
cost may exceed 4,000 Euros (Ministero dell’Economia e delle Finanze, 2007). One emergency intervention
costs on average 12,500 euros (Ministero della Salute, 2007).

43As shown in Section 3.2 we find no evidence of specific clustering in groups at the 65 cutoff, so we
expect herd immunity to have only a second-order effect. On the other hand, it could be the case that
eligible individuals not only get the free flu vaccination, but also are more exposed to information about
(non-medical) preventive measures, such as washing hands, which may induce a change in their health
behavior and, potentially, affect their short-term health status.

44We also repeat the same battery of robustness checks that we have performed for the baseline analysis
on vaccination probability, and in all cases the absence of a statistically significant effect is confirmed.
Results are available on request from the authors.
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2.4.45 The results are presented in Table 8 and show a small decline in the probability of
hospitalization for selected groups of individuals, even though most estimates are gener-
ally not statistically significant. More precisely, individuals with a cost-sharing exemption
for a chronic disease (Panel A) and those without any cost-sharing exemptions (Panel D)
experience a reduction in the probability of hospitalization. It should be recalled that
individuals with a cost-sharing exemption for poor health and low income (Panel B) and
individuals with no exemptions (Panel D) were those who exhibit the largest increase in
vaccination take-up. The results on health outcomes suggest that there are small health
gains only for the latter group, and not for the former. One potential explanation could
be that having a chronic health condition contributes to a less effective response to the
vaccine (Restivo et al., 2018). Moreover, the reduction in the probability of hospital-
ization that we observe for individuals with chronic health conditions suggests that this
group, despite not being directly affected by the vaccination program, may benefit from
a higher vaccination rate in the population and thus from the spillover effects that the
program generates.

[Table 8 about here]

Heterogeneous effects by GPs’ characteristics. Table 9 reports the results on
health outcomes when we look at heterogeneous effects by GPs’ characteristics. There
is a statistically significant reduction in both the probability of hospitalization and the
number of days at the hospital for individuals with GPs having a total number of patients
above the median. Since GPs of higher perceived quality are likely to reach the maximum
number of patients first, we interpret this result as an indication that physicians’ quality
matters for the individual’s short-term health. Given that we did not detect significance
differences in the vaccination take-up by GPs’ characteristics, this result suggests that
higher-quality physicians may be more convincing in advising patients not only about
the flu vaccination but also about the health behavior to adopt in order to decrease the
likelihood of infections or complications.

[Table 9 about here]

Heterogeneous effects by type of hospitalization. As mentioned in Section
4, hospitalization records refer to both planned and emergency care. We thus replicate
the analysis on these two alternative measures on both extensive and intensive margins.
The results, presented in Table 10, show that the main effect comes from emergency
hospitalizations. Given that the average probability of emergency hospitalization is 0.016,
the estimated coefficients represent a reduction ranging between 44% and 94% from the
baseline. This confirms that the influenza virus in the elderly population can lead to
complications for which patients need immediate and intensive care.

45As for the probability of vaccination, we find no differential effects for female or male individuals, or
for individuals living in a urban rather than a rural area (see Appendix Table A.9).
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[Table 10 about here]

7 Conclusions
In this paper, we analyze the effects of a vaccination program implemented in Italy, as in
many other developed countries, which actively provides free flu vaccination to individuals
aged 65 or more. The program implies a reduction not only in the out-of-pocket price of
the vaccine, but also in the nonmonetary time cost associated with the vaccination, since
eligible individuals can get it directly from their GP in a single visit.

We estimate that the vaccination take-up increases by 6 percentage points for those
becoming eligible for the program: this effect is sizable, as it corresponds to 75% of the
average vaccination rate of the non-eligible 64-year-olds. We do not find evidence of
a strong income effect, because low-income individuals only react to the policy if they
have poor health conditions, and thus also value the expected benefits of vaccination.
Individuals without exemptions from cost-sharing also increase their vaccination rate,
as a consequence of the policy: as these individuals may be less resilient to a change
in the out-of-pocket price of the vaccine, we interpret this finding as evidence that the
nonmonetary cost reduction implied by the program also matters for the vaccination
decision.

We also evaluate the effects of the free vaccination program on individuals’ short-term
health status, measured by the hospitalization probability and duration, in the same
flu epidemic season. We document a slight decline in the hospitalization probability of
selected categories of individuals (those exempted from cost-sharing because of chronic
diseases and those without exemptions), but the estimates are not always statistically
significant at conventional levels. We find that the short-term health outcomes improve
in case of high-quality GPs, indicating the importance of the GP’s role not only for the
decision to get the flu shot, but also for the health behaviors to adhere to in order to avoid
the flu infection. Finally, we document a sizable reduction in the probability of emergency
hospitalizations. Simple back-of-the-envelope calculations show that the monetary cost
savings associated with the decrease in emergency hospitalizations would be enough to
cover between one half and one third of the per-capita cost associated with an extension
of the program to the closest non-eligible cohort (i.e., the 64-year-olds).46

Our work bears important policy implications for the effectiveness of flu vaccination
programs. Given that the 75% WHO target is often not met in the elderly and high-

46According to the estimates in Table 10, emergency hospitalizations decline by 0.7 to 1.5 percent. By
applying this reduction to the group of 64-year-old untreated individuals, and considering that emergency
hospitalizations have an average cost of about 12,500 euros (Ministero della Salute, 2007), back-of-the-
envelope calculations show that per-capita savings would range between 2.8 and 1.5 euros. These should
be compared with the per-capita cost of the immunization of the untreated group. In the Italian NHS con-
text, regional governments buy the vaccine shots at a reduced price, through public auctions procedures,
and the average price for a vaccine is around 5 euros (Casadei et al., 2009).
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risk population, policymakers have debated over reducing the age for eligibility for free
vaccination. Our estimates on vaccination take-up suggest that the individuals’ reaction
to an extension of free vaccination to the segment of the population close to the current
age threshold would be sizable, and such measures may thus be effective in increasing
the overall take-up. However, our results also indicate that the effect is hardly given
by a pure income response, and thus, in addition to free provision, policymakers should
look for other leverages in order to increase the take-up. For instance, this may involve
widespread information campaigns, aimed at stressing the reduction in nonmonetary time
cost associated with the program, or a more pro-active role of GPs in reaching the flu
vaccination targets. The role of GPs seems particularly important in order to identify
the segments of the eligible population who are more fragile also from a socio-economic
point of view, because, as we have documented, individuals characterized by a poor health
status are already likely to respond to vaccination programs.
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Figures

Figure 1
Flu vaccination probability: the age profile.
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Notes: the figure shows the proportion of individuals who got vaccinated against the seasonal influenza in the 2013 cam-
paign, by age; the vertical dashed line indicates the threshold at age 65, after which flu vaccination becomes recommended
and free for the whole population. The sample is truncated at age 90 due to the very small number of individuals older
than 90. Source: based on General Health Register, ATS-Milan.

Figure 2
Change in probability of flu vaccination at age 65.
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Notes: the figure plots the probability of getting a vaccination against the seasonal influenza in the 2013 campaign for
individuals born in 1948 and 1949, with 24 bins (12 on each side of the discontinuity marked by the vertical line), where dots
correspond to the mean value of the vaccination probability in each bin; the horizontal axis indicates the running variable
(recoded so that the value 0 corresponds to the cutoff date of January 1 1949, the positive values to birth dates in 1948 and
the negative values to birth dates in 1949). Source: based on General Health Register, ATS-Milan.
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Figure 3
Number of individuals born per calendar day.
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Notes: the figure shows the number of individuals born in each calendar day of the years 1949 (i.e., aged 64 in 2013) and
1948 (i.e., aged 65 in 2013); the date of birth (horizontal axis) is recoded so that the value 0 corresponds to the cutoff date
of January 1 1949, the positive values to birth dates in 1948 and the negative values to birth dates in 1949. The black
dot indicates individuals born on January 1 1949, the triangles individuals born on January 2 1949 and December 31 1948,
the diamonds individuals born on January 3 1949 and December 30 1948. Source: based on General Health Register,
ATS-Milan.
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Figure 4
Continuity of observable characteristics at age 65.
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Notes: the figure shows scatter plots with 24 bins (12 on each side of the discontinuity marked with the vertical line)
where dots correspond to the mean value of each variable in each bin; the horizontal axis indicates the running variable
(recoded so that the value 0 corresponds to the cutoff date of January 1 1949, the positive values to birth dates in 1948 and
the negative values to birth dates in 1949). See Table 1 for definitions of the variables. Source: based on General Health
Register, ATS-Milan.
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Tables

Table 1
Descriptive statistics.

mean sd min max N
Treated 0.514 0.500 0 1 68962
Outcome variables: 68962
Flu vaccination 0.123 0.328 0 1 68962
Prob. Hospitalization 0.037 0.188 0 1 68962
No. Of days at hospital 0.361 2.941 0 88 68962
Covariates: 68962
Female 0.539 0.498 0 1 68962
Living in urban area 0.594 0.491 0 1 68962
Exempted because of a chronic disease 0.138 0.345 0 1 68962
GP’s age (years) 57.960 6.939 30 79 68962
GP’s experience (years) 24.614 10.514 0 38 68962
GP’s number of patients 1480.722 251.865 1 1975 68962

Notes: descriptive statistics performed on the sample of individuals born in 1948 or 1949; we exclude individuals with
disability and those institutionalized in nursing homes; we further exclude those born on December 31st, 1948 and January
1st and 2nd, 1949. The variable Treated indicates individuals born in 1948 (i.e. those who are 65 years of age in 2013 and
thus benefit from free vaccination); Any hospitalization indicates whether the individual got hospitalized at least once; No.
of days at hospital indicates the number of days of hospitalization. The health outcomes variables are calculated in the
observational period (which corresponds to the weeks of diffusion of the influenza virus, i.e. from 2013 week 42 to 2014
week 17). Female is a dummy equal to 1 for females; Living in urban area is a dummy equal to 1 for those who reside in
the main city (Milan) and in its neighboring municipalities; Exempted because of a chronic disease is a dummy equal to 1
for individuals who are exempted from cost-sharing because of serious chronic diseases; GP’s number of patients indicates
the overall number of patients followed by each family doctor, while GP’s experience indicates the number of years since
the doctor started to work as family doctor. Source: based on General Health Register and Hospitalizations records,
ATS-Milan.

Table 2
Eligibility for free vaccination at age 65 and take-up: non-parametric estimates.

(1) (2) (3) (4)
RD estimate 0.060*** 0.059*** 0.060*** 0.059***

(0.012) (0.012) (0.014) (0.014)
N.Obs.: total 68962 68962 68962 68962
N.Obs.: effective left 2807 2807 6212 5924
N.Obs.: effective right 2349 2349 5556 5260
BW 29 28 62 60
Order Loc. Poly. (p) 0 0 1 1
Covariates X X

Notes: RD robust estimates with Triangular Kernel and Coverage Error Rate (CER) optimal bandwidth selector (Calonico
et al., 2014; 2017); for the list of covariates included and their definitions see Table 1. Significance levels: *** p<0.01, **
p<0.05, * p<0.1. Source: based on General Health Register, ATS-Milan.
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Table 3
Eligibility for free vaccination at age 65 and take-up: parametric estimates.

(1) (2) (3) (4) (5) (6)
Panel A. BW=1 month
Treated 0.068*** 0.068*** 0.066*** 0.068*** 0.074** 0.072**

(0.017) (0.018) (0.017) (0.017) (0.030) (0.030)
N 5618 5618 5618 5618 5618 5618
Panel B. BW=3 months
Treated 0.060*** 0.059*** 0.059*** 0.060*** 0.054*** 0.051***

(0.009) (0.010) (0.009) (0.009) (0.015) (0.015)
N 17276 17276 17276 17276 17276 17276
Panel C. BW=6 months
Treated 0.062*** 0.062*** 0.061*** 0.062*** 0.055*** 0.055***

(0.007) (0.007) (0.007) (0.007) (0.010) (0.010)
N 35398 35398 35398 35398 35398 35398
Panel D. BW=12 months
Treated 0.080*** 0.079*** 0.079*** 0.080*** 0.058*** 0.058***

(0.005) (0.005) (0.005) (0.005) (0.008) (0.008)
N 68962 68962 68962 68962 68962 68962
Covariates X X X
Specification:
(i) Linear
(ii) Linear with interaction X X
(iii) Quadratic X X
(iv) Quadratic with interaction X X

Notes: parametric estimates with triangular weights and different bandwidths (BW): estimates in Panel A, B, C and D
are performed on a sample including, respectively, individuals born one, three, six and twelve months before and after the
cutoff date. The RD estimate is the coefficient of the variable Treated, which indicates individuals born in 1948 (i.e. those
who are 65 years old in 2013 and thus benefit from the universal free vaccination). Linear and quadratic specifications with
and without interactions are shown. For the list of covariates included and their definitions see Table 1. Significance levels:
*** p<0.01, ** p<0.05, * p<0.1. Source: based on General Health Register, ATS-Milan.
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Table 4
Placebo analysis on age groups before and after age 65.

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A. Before age 65 Age group 64-63 Age group 63-62
RD estimate -0.003 -0.003 -0.010 -0.011 0.006 0.006 0.008 0.007

(0.007) (0.007) (0.011) (0.011) (0.006) (0.006) (0.009) (0.009)
N.Obs.: total 66949 66949 66949 66949 65552 65552 65552 65552
N.Obs.: effective left 5412 5689 5601 5504 6285 6383 6690 6472
N.Obs.: effective right 4521 4785 4703 4619 5550 5668 5921 5765
BW 54 56 55 55 65 66 69 66
Panel B. After age 65 Age group 66-65 Age group 67-66
RD estimate 0.012 0.012 0.007 0.007 -0.001 -0.001 -0.002 -0.003

(0.012) (0.012) (0.016) (0.016) (0.010) (0.010) (0.014) (0.014)
N.Obs.: total 71152 71152 71152 71152 72072 72072 72072 72072
N.Obs.: effective left 5921 6011 5921 5921 7185 7279 8881 8678
N.Obs.: effective right 5258 5351 5258 5258 6736 6836 8282 8078
BW 59 59 59 59 71 71 88 85
Order Loc. Poly. (p) 0 0 1 1 0 0 1 1
Covariates X X X X

Notes: RD robust estimates with Triangular Kernel and Coverage Error Rate (CER) optimal bandwidth (BW) selector
(Calonico et al., 2014; 2017) on samples constituted each time by two subsequent cohorts of individuals: the older cohort
plays the role of the placebo treated group, the younger cohort that of the placebo control group. For example, the estimate
for the 64-63 age group is obtained treating the 64-year-olds as the treated group and the 63-year-olds as the control group.
In all regressions, individuals born within a day from the cutoff date (i.e., between December 31 and January 2 of the
following year) have been excluded. For the set of covariates included in the estimations and their definitions, see Table 1.
Source: based on General Health Register, ATS-Milan.
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Table 5
Effects of eligibility for free vaccination at age 65 on take-up by type of exemption from cost-
sharing.

(1) (2) (3) (4)
Panel A. Patients with exemption for chronic disease
RD estimate 0.024 0.019 0.019 0.013

(0.025) (0.025) (0.031) (0.030)
N.Obs.: total 9502 9502 9502 9502
N.Obs.: effective left 592 592 1126 1126
N.Obs.: effective right 478 478 994 994
BW 43 42 82 82
Order Loc. Poly. (p) 0 0 1 1
Covariates X X
Panel B. Patients with exemption for health conditions & low income
RD estimate 0.076*** 0.076*** 0.094*** 0.095***

(0.016) (0.016) (0.026) (0.026)
N.Obs.: total 30375 30375 30375 30375
N.Obs.: effective left 2082 2082 2641 2556
N.Obs.: effective right 1836 1836 2379 2291
BW 47 48 61 58
Order Loc. Poly. (p) 0 0 1 1
Covariates X X
Panel C. Patients with exemption for low income
RD estimate 0.024 0.024 0.024 0.024

(0.016) (0.016) (0.018) (0.018)
N.Obs.: total 15419 15419 15419 15419
N.Obs.: effective left 465 448 1222 1222
N.Obs.: effective right 406 392 1062 1062
BW 21 21 54 54
Order Loc. Poly. (p) 0 0 1 1
Covariates X X
Panel D. Patients without exemptions
RD estimate 0.072*** 0.071*** 0.067*** 0.065***

(0.013) (0.013) (0.023) (0.023)
N.Obs.: total 13666 13666 13666 13666
N.Obs.: effective left 1192 1169 1006 985
N.Obs.: effective right 1046 1026 873 854
BW 62 61 52 52
Order Loc. Poly. (p) 0 0 1 1
Covariates X X

Notes: RD robust estimates with Triangular Kernel and Coverage Error Rate (CER) optimal bandwidth selector (Calonico
et al., 2014; 2017); for the list of covariates included and their definitions see Table 1. Panel A reports the estimates for
patients who are exempted from the general cost-sharing because of a chronic disease; Panel B reports the estimates for
patients with exemption from the general cost-sharing because of a serious health condition and low income; Panel C reports
the estimates for patients who are exempted from the general cost-sharing rule because of low income only; Panel D reports
the estimates for patients who have no exemptions. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Source: based
on General Health Register, ATS-Milan.
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Table 6
Effects of eligibility for free vaccination at age 65 on take-up by GPs’ characteristics.

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A. Doctor’s experience BELOW MEDIAN ABOVE MEDIAN
RD estimate 0.050*** 0.049*** 0.048*** 0.047** 0.065*** 0.065*** 0.066*** 0.066***

(0.017) (0.017) (0.018) (0.018) (0.013) (0.013) (0.019) (0.019)
N.Obs.: total 31077 31077 31077 31077 37885 37885 37885 37885
Panel B. Doctor’s No. of patients BELOW MEDIAN ABOVE MEDIAN
RD estimate 0.054*** 0.054*** 0.056*** 0.056*** 0.064*** 0.062*** 0.061*** 0.059***

(0.014) (0.014) (0.019) (0.019) (0.016) (0.016) (0.018) (0.018)
N.Obs.: total 34102 34102 34102 34102 34860 34860 34860 34860
Order Loc. Poly. (p) 0 0 1 1 0 0 1 1
Covariates X X X X

Notes: RD robust estimates with Triangular Kernel optimal bandwidth selector (Calonico et al., 2014; 2017); for the list
of covariates included and their definitions see Table 1. The variable used for the sample split is excluded from the list of
the covariates included in the corresponding specification. The sample splits according to the doctor’s characteristics have
been defined by using the median value of each variable: the median experience is 25 years, the median number of patients
is 1548. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Source: based on General Health Register, ATS-Milan.

Table 7
Eligibility for free vaccination at age 65 and hospitalization: non-parametric estimates.

(1) (2) (3) (4)
Panel A. Prob. Hospitalization
RD estimate -0.008 -0.007 -0.016* -0.015

(0.006) (0.006) (0.010) (0.010)
N.Obs.: effective left 4041 4041 4707 4609
N.Obs.: effective right 3421 3421 4109 4009
BW 40 41 47 47
Panel B. No. Of days at hospital
RD estimate -0.147 -0.137 -0.180 -0.171

(0.112) (0.111) (0.163) (0.162)
N.Obs.: effective left 3612 3744 4424 4509
N.Obs.: effective right 3055 3147 3815 3890
BW 37 37 45 45
N.Obs.: total 68962 68962 68962 68962
Order Loc. Poly. (p) 0 0 1 1
Covariates X X

Notes: RD robust estimates with Triangular Kernel and Coverage Error Rate (CER) optimal bandwidth selector (Calonico
et al., 2014; 2017); for the list of covariates included and the definitions of both the covariates and the outcome variables see
Table 1. Significance level: *** p<0.01, ** p<0.05, * p<0.1. Source: based on General Health Register and Hospitalizations
records, ATS-Milan.
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Table 8
Effects of eligibility for free vaccination at age 65 on hospitalization by type of exemption from
cost-sharing.

(1) (2) (3) (4)
Panel A. Patients with exemption for chronic disease
a. Any hospitalization
RD estimate -0.031 -0.027 -0.052** -0.049**

(0.020) (0.020) (0.025) (0.025)
b. No. of days at hospital
RD estimate -0.258 -0.206 -0.494 -0.450

(0.433) (0.429) (0.579) (0.577)
Panel B. Patients with exemption for health conditions & low income
a. Any hospitalization
RD estimate 0.012 0.013 0.006 0.007

(0.009) (0.009) (0.016) (0.016)
b. No. of days at hospital
RD estimate -0.096 -0.085 -0.228 -0.222

(0.159) (0.156) (0.244) (0.245)
Panel C. Patients with exemption for low income
a. Any hospitalization
RD estimate -0.000 0.000 -0.006 -0.005

(0.008) (0.008) (0.015) (0.015)
b. No. of days at hospital
RD estimate -0.007 -0.009 0.062 0.064

(0.098) (0.097) (0.170) (0.171)
Panel D. Patients without exemptions
a. Any hospitalization
RD estimate -0.019* -0.019 -0.024 -0.024

(0.012) (0.012) (0.016) (0.016)
b. No. of days at hospital
RD estimate -0.113 -0.117 -0.148 -0.153

(0.073) (0.073) (0.101) (0.101)
Order Loc. Poly. (p) 0 0 1 1
Covariates X X

Notes: RD robust estimates with Triangular Kernel and Coverage Error Rate (CER) optimal bandwidth selector (Calonico
et al., 2014; 2017); for the list of covariates included and their definitions see Table 1. Panel A reports the estimates for
patients who are exempted from the general cost-sharing because of a chronic disease; Panel B reports the estimates for
patients with exemption from the general cost-sharing because of serious health issues and low income; Panel C reports
the estimates for patients who are exempted because of low income; Panel D reports the estimates for patients who have
no exemptions. Significance level: *** p<0.01, ** p<0.05, * p<0.1. Source: based on General Health Register and
Hospitalizations records, ATS-Milan.
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Table 9
Effects of eligibility for free vaccination at age 65 on hospitalization by GPs’ characteristics.

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A. Doctor’s experience BELOW MEDIAN ABOVE MEDIAN
a. Any hospitalization
RD estimate -0.005 -0.004 -0.023 -0.023 -0.004 -0.003 -0.012 -0.011

(0.008) (0.008) (0.015) (0.016) (0.009) (0.009) (0.013) (0.012)
b. No. of days at hospital
RD estimate -0.168 -0.162 -0.250 -0.245 -0.091 -0.086 -0.159 -0.148

(0.146) (0.145) (0.191) (0.190) (0.142) (0.142) (0.215) (0.214)
N.Obs.: total 37885 37885 37885 37885 31077 31077 31077 31077
Panel B. Doctor’s No. Of patients BELOW MEDIAN ABOVE MEDIAN
a. Any hospitalization
RD estimate 0.002 0.002 -0.006 -0.005 -0.018* -0.017* -0.027* -0.026*

(0.007) (0.007) (0.012) (0.012) (0.010) (0.010) (0.015) (0.015)
b. No. of days at hospital
RD estimate -0.080 -0.078 -0.047 -0.044 -0.247* -0.232* -0.348** -0.337**

(0.148) (0.149) (0.243) (0.243) (0.138) (0.137) (0.159) (0.160)
N.Obs.: total 34102 34102 34102 34102 34860 34860 34860 34860
Order Loc. Poly. (p) 0 0 1 1 0 0 1 1
Covariates X X X X

Notes: RD robust estimates with Triangular Kernel and Coverage Error Rate (CER) optimal bandwidth selector (Calonico
et al., 2014; 2017); for the list of covariates included and their definitions see Table 1. The variable used for the sample
split is excluded from the list of the covariates included in the corresponding specification. The sample splits according to
the doctor’s characteristics have been defined by using the median value of each variable: the median age of doctors in the
sample is 59 years, the median experience is 25 years, and the median number of patients is 1548. Significance level: ***
p<0.01, ** p<0.05, * p<0.1. Source: based on General Health Register and Hospitalizations records, ATS-Milan.

Table 10
Effects of eligibility for free vaccination at age 65 on hospitalization by hospitalization type.

(1) (2) (3) (4) (5) (6) (7) (8)
Type of hospitalization: PLANNED EMERGENCY
Panel A. Prob. Hospitalization
RD estimate -0.000 -0.000 -0.004 -0.003 -0.007* -0.007 -0.015** -0.015**

(0.005) (0.005) (0.007) (0.007) (0.004) (0.004) (0.006) (0.006)
Panel B. No. Of days at hospital
RD estimate -0.087 -0.084 -0.082 -0.077 -0.068 -0.060 -0.150 -0.141

(0.072) (0.072) (0.106) (0.105) (0.069) (0.068) (0.098) (0.098)
N.Obs.: total 68962 68962 68962 68962 68962 68962 68962 68962
Order Loc. Poly. (p) 0 0 1 1 0 0 1 1
Covariates X X X X

Notes: RD robust estimates with Triangular Kernel and Coverage Error Rate (CER) optimal bandwidth selector (Calonico
et al., 2014; 2017); for the list of covariates included and their definitions see Table 1. Significance level: *** p<0.01, **
p<0.05, * p<0.1. Source: based on General Health Register and Hospitalizations records, ATS-Milan.
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A Appendix: Additional Figures and Tables

Figure A.1
Proportion of individuals getting flu vaccination, by age group and flu epidemic season.

Notes: the figure shows the proportion of individuals who get vaccinated against the seasonal influenza by age group and
by flu epidemic season. Source: own elaboration from data from the National Health Institute (NHI).

Figure A.2
McCrary test for the manipulation of the running variable
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Notes: the figure depicts the McCrary test for the density of the running variable around the cutoff; the running variable is
indicated on the horizontal axis (recoded so that the value 0 corresponds to the cutoff date of January 1 1949, the positive
values to birth dates in 1948 and the negative values to birth dates in 1949). The test is performed on the overall sample,
which does not exclude observations at the cutoff. The estimated discontinuity is -0.1835 (0.0292), with a t-statistics of
6.2842. Source: based on General Health Register, ATS-Milan and McCrary (2008).
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Table A.1
Test of continuity of the observable characteristics at age 65: non-parametric estimates.

(1) (2) (3) (4) (5) (6)
Individual’s charact. FEMALE URBAN AREA CHRONIC DISEASE
RD estimate 0.016 0.035 -0.004 -0.035 -0.004 -0.012

(0.016) (0.022) (0.014) (0.025) (0.009) (0.013)
N.Obs.: effective left 4707 6610 6119 4924 7693 8249
N.Obs.: effective right 4109 5907 5475 4275 6955 7541
BW 48 66 61 50 78 84
N.Obs.: total 68962 68962 68962 68962 68962 68962
Order Loc. Poly. (p) 0 1 0 1 0 1
GP’s charact. AGE EXPERIENCE NUMB. PATIENTS
RD estimate -0.029 0.094 0.297 0.532 2.895 -2.248

(0.199) (0.343) (0.314) (0.543) (7.116) (9.726)
N.Obs.: effective left 6402 5232 5530 4707 6402 7873
N.Obs.: effective right 5726 4566 4857 4109 5726 7134
BW 64 52 55 48 64 80
N.Obs.: total 68962 68962 68962 68962 68962 68962
Order Loc. Poly. (p) 0 0 1 1 0 0

Notes: RD robust estimates with Triangular Kernel and Coverage Error Rate optimal bandwidth selector (Calonico et al.,
2014; 2017); for the the definition of the variables see Table 1. Significance level: *** p<0.01, ** p<0.05, * p<0.1. Source:
based on General Health Register, ATS-Milan.

Table A.2
Test of continuity in the proportions of individuals for each type of exemption from cost-sharing
at age 65: non-parametric estimates.

(1) (2) (3) (4) (5) (6)
Type of exemption: HEALTH & LOW INCOME LOW INCOME NOT EXEMPTED
RD estimate -0.008 -0.021 0.001 0.014 0.021 0.019

(0.015) (0.022) (0.013) (0.018) (0.014) (0.021)
N.Obs.: total 68962 68962 68962 68962 68962 68962
N.Obs.: effective left 5423 6212 5315 6610 3239 4424
N.Obs.: effective right 4751 5556 4648 5907 2692 3815
BW 54 62 53 66 33 45
Order Loc. Poly. (p) 0 1 0 1 0 1

Notes: RD robust estimates with Triangular Kernel and Coverage Error Rate optimal bandwidth selector (Calonico et al.,
2014; 2017); for the definition of the different groups, see the notes to Table 5. The test of continuity in the proportion of
individuals with exemption because of a chronic disease is presented in Table A.1, Panel A, Columns (5) and (6). Significance
level: *** p<0.01, ** p<0.05, * p<0.1. Source: based on General Health Register, ATS-Milan.
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Table A.3
Test of continuity of the observable characteristics at age 65: non-parametric estimates from the
ISH survey data.

(1) (2) (3) (4) (5) (6) (7) (8)
Female With chronic disease High school diploma Retired

RD estimate 0.009 0.044 -0.010 -0.024 -0.032 -0.018 -0.051 -0.028
(0.025) (0.043) (0.034) (0.049) (0.033) (0.038) (0.043) (0.050)

N.Obs.: total 29169 29169 29169 29169 29169 29169 29169 29169
N.Obs.: effective left 2343 1977 823 1596 823 1977 411 1238
N.Obs.: effective right 2313 2009 1066 1706 1066 2009 772 1382

Work in Edu/Health sectors Married Living alone Living with son(s)
RD estimate 0.022 0.044 -0.002 -0.017 0.033 0.043 -0.060 -0.046

(0.033) (0.043) (0.033) (0.044) (0.022) (0.031) (0.039) (0.045)
N.Obs.: total 19717 19717 27685 27685 29169 29169 29169 29169
N.Obs.: effective left 710 1370 823 1596 1238 1596 411 1596
N.Obs.: effective right 889 1425 1066 1706 1382 1706 772 1706
Order Loc. Poly. (p) 0 1 0 1 0 1 0 1

Notes: RD robust estimates with Triangular Kernel and Coverage Error Rate (CER) optimal bandwidth selector (Calonico
et al., 2014; 2017). Covariates definitions: Female (1 if female), High school diploma (1 if got at least the High School
Diploma), With chronic disease (1 if any chronic disease is declared), Retired (1 if retired or out of the labor force), Work in
Edu/Health sectors (1 if individual works or has worked in the education, defense or health sectors), Married (1 if married),
Living alone (1 if lives alone), Living with son(s) (1 if lives with at least one son). The estimation sample includes only
individuals interviewed in the month of December 2012. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Source:
based on Italian Survey on Health (ISTAT, 2013).

Table A.4
Robustness of estimates of eligibility for free vaccination at age 65 on take-up: clustering of the
standard errors.

(1) (2) (3) (4) (5) (6)
Panel A. Local polynomial of order zero
RD estimate 0.060*** 0.059*** 0.060*** 0.059*** 0.056*** 0.056***

(0.011) (0.011) (0.012) (0.012) (0.019) (0.015)
N.Obs.: effective left 3004 2905 3004 2905 5719 4041
N.Obs.: effective right 2523 2423 2523 2423 5034 3421
BW 30 30 30 30 58 41
Order Loc. Poly. (p) 0 0 0 0 0 0
Panel B. Local polynomial of order one
RD estimate 0.056*** 0.055*** 0.058*** 0.057*** 0.057*** 0.055***

(0.012) (0.012) (0.013) (0.013) (0.019) (0.015)
N.Obs.: effective left 7778 7489 7086 6774 9733 8249
N.Obs.: effective right 7043 6761 6387 6101 9260 7541
BW 78 75 71 68 100 84
Order Loc. Poly. (p) 1 1 1 1 1 1
N.Obs.: total 68962 68962 68962 68962 68962 68962
Kernel Type Triangular Triangular Triangular Triangular Triangular Triangular
BW selector CER CER CER CER CER CER
Covariates X X X
SE Clustered by:
Date of birth X X
GP X X
Municipality X X

Notes: RD robust estimates with Triangular Kernel and Coverage Error Rate (CER) optimal bandwidth (BW) selector
(Calonico et al., 2014; 2017); for the list of covariates included and their definitions see Table 1. The different specifications
cluster the standard errors, respectively, by date of birth (the running variable), GP, or municipality. Significance levels:
*** p<0.01, ** p<0.05, * p<0.1. Source: based on General Health Register, ATS-Milan.
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Table A.5
Robustness of estimates of eligibility for free vaccination at age 65 on take-up: alternative donut
specifications.

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A. Local polynomial of order zero
RD estimate 0.047*** 0.046*** 0.057*** 0.056*** 0.063*** 0.062*** 0.062*** 0.058***

(0.011) (0.011) (0.011) (0.011) (0.012) (0.012) (0.012) (0.012)
N.Obs.: effective left 2600 2600 2978 2888 2774 2774 2548 2589
N.Obs.: effective right 2324 2324 2408 2303 2358 2358 2203 2163
BW 25 24 28 28 30 29 29 27
Order Loc. Poly. (p) 0 0 0 0 0 0 0 0
Panel B. Local polynomial of order one
RD estimate 0.045*** 0.044*** 0.058*** 0.057*** 0.065*** 0.064*** 0.062*** 0.057***

(0.011) (0.012) (0.014) (0.014) (0.014) (0.015) (0.015) (0.015)
N.Obs.: effective left 6684 6573 5890 5805 5988 5690 5768 5796
N.Obs.: effective right 6161 6067 5093 4998 5410 5092 5219 5179
BW 65 64 58 56 61 58 61 59
Order Loc. Poly. (p) 1 1 1 1 1 1 1 1
N.Obs.: total 69474 69474 69192 69192 68766 68766 68557 68753
Kernel Type Tri Tri Tri Tri Tri Tri Tri Tri
BW selector CER CER CER CER CER CER CER CER
Covariates X X X X
Specification:
(i) No donut X X
(ii) Donut 0 X X
(iii) Donut 2 X X
(iv) Donut 3 X X

Notes: RD robust estimates with Triangular Kernel and Coverage Error Rate (CER) optimal bandwidth (BW) selector
(Calonico et al., 2014; 2017); for the list of covariates included and their definitions see Table 1. Specification (i) No Donut
is performed including all individuals (i.e., also those born between December 31 and January 2); specification (ii) Donut 0
is performed excluding only individuals born on January 1 (i.e. individuals for whom the running variable is equal to zero);
specification (iii) Donut 2 is performed excluding individuals born between December 30 and January 3 (i.e. individuals for
whom the running variable takes values between +/−2); specification (iv) Donut 3 is performed excluding only individuals
born between December 29 and January 4 (i.e. individuals for whom the running variable takes values between +/−3).
Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Source: based on General Health Register, ATS-Milan.

Table A.6
Robustness of estimates of eligibility for free vaccination at age 65 on take-up: bandwidth
selector and kernel.

(1) (2) (3) (4) (5) (6)
Panel A. Local polynomial of order zero
RD estimate 0.070*** 0.068*** 0.060*** 0.059*** 0.070*** 0.068***

(0.013) (0.013) (0.012) (0.012) (0.013) (0.013)
N.Obs.: effective left 1841 1730 2807 2807 1841 1730
N.Obs.: effective right 1443 1343 2349 2349 1443 1343
BW 18 17 29 28 18 17
Order Loc. Poly. (p) 0 0 0 0 0 0
Panel B. Local polynomial of order one
RD estimate 0.055*** 0.054*** 0.057*** 0.056*** 0.055*** 0.054***

(0.014) (0.014) (0.011) (0.012) (0.011) (0.011)
N.Obs.: effective left 4924 4924 10603 10110 8608 8526
N.Obs.: effective right 4275 4275 10244 9693 7939 7840
BW 50 49 109 104 87 86
Order Loc. Poly. (p) 1 1 1 1 1 1
N.Obs.: total 68962 68962 68962 68962 68962 68962
Kernel Type Uniform Uniform Triangular Triangular Uniform Uniform
BW selector CER CER MSE MSE MSE MSE
Covariates X X X

Notes: RD robust estimates with Triangular or Uniform Kernel and Mean Square Error (MSE) or Coverage Error Rate
(CER) optimal bandwidth (BW) selector (Calonico et al., 2014; 2017); for the list of covariates included and their definitions
see Table 1. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Source: based on General Health Register, ATS-Milan.
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Table A.7
Eligibility for free vaccination at age 65 and take-up: non-parametric estimates using the ISH
survey data.

(1) (2) (3) (4) (5) (6) (7) (8)
RD estimate 0.068** 0.071** 0.074 0.042 0.053 0.060 0.103 0.035

(0.033) (0.032) (0.048) (0.064) (0.038) (0.038) (0.068) (0.078)
N.Obs.: total 29169 29169 6487 2976 29169 29169 6487 2976
N.Obs.: effective left 411 411 208 136 1596 1596 372 305
N.Obs.: effective right 772 772 238 140 1706 1706 399 280
Order Loc. Poly. (p) 0 0 0 0 1 1 1 1
Covariates X X X X X X
Sample:
Italy X X X X
North-West regions X X
Lombardy region X X

Notes: RD robust estimates with Triangular Kernel and Coverage Error Rate (CER) optimal bandwidth selector (Calonico
et al., 2014; 2017). Covariates included: gender (1 if female), education level (1 if the individual has at least a high school
education level (ISCED 3 or more)), chronic disease (1 if any chronic disease is declared), retirement status (1 if retired
or out of the labor force). The estimation sample includes only individuals interviewed in the month of December 2012;
North-West regions include: Lombardy, Piedmont, Aosta Valley and Liguria. Survey weights applied. Significance levels:
*** p<0.01, ** p<0.05, * p<0.1. Source: based on Italian Survey on Health (ISTAT, 2013).

Table A.8
Eligibility for free vaccination at age 65 and take-up: heterogeneous effects by individuals’ gender
and place of residence.

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A. Gender of patient FEMALE MALE
RD estimate 0.068*** 0.066*** 0.065*** 0.062*** 0.048*** 0.048*** 0.050** 0.050***

(0.014) (0.015) (0.017) (0.017) (0.016) (0.015) (0.019) (0.019)
N.Obs.: total 37157 37157 37157 37157 31805 31805 31805 31805
Panel B. Patient living in urban/rural area URBAN RURAL
RD estimate 0.076*** 0.075*** 0.072*** 0.071*** 0.031* 0.030* 0.029 0.027

(0.014) (0.014) (0.018) (0.018) (0.016) (0.017) (0.020) (0.019)
N.Obs.: total 40967 40967 40967 40967 27995 27995 27995 27995
Order Loc. Poly. (p) 0 0 1 1 0 0 1 1
Covariates X X X X

Notes: RD robust estimates with Triangular Kernel optimal bandwidth selector (Calonico et al., 2014; 2017); for the list
of covariates included and their definitions see Table 1. The variable used for the sample split is excluded from the list of
the covariates included in the corresponding specification. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Source:
based on General Health Register, ATS-Milan.
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Table A.9
Eligibility for free vaccination at age 65 and hospitalization: heterogeneous effects by individuals’
gender and place of birth.

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A. Gender of patient FEMALE MALE
a. Any hospitalization
RD estimate -0.010 -0.008 -0.011 -0.010 -0.001 -0.001 -0.022 -0.022

(0.008) (0.008) (0.010) (0.010) (0.009) (0.009) (0.014) (0.014)
b. No. of days at hospital
RD estimate -0.067 -0.056 -0.146 -0.128 -0.188 -0.189 -0.249 -0.256

(0.107) (0.106) (0.237) (0.234) (0.156) (0.156) (0.172) (0.172)
N.Obs.: total 37157 37157 37157 37157 31805 31805 31805 31805
Panel B. Patient living in urban/rural area URBAN RURAL
a. Any hospitalization
RD estimate -0.006 -0.005 -0.009 -0.007 0.002 0.003 -0.018 -0.019

(0.009) (0.008) (0.012) (0.012) (0.008) (0.007) (0.012) (0.012)
b. No. of days at hospital
RD estimate -0.159 -0.134 -0.212 -0.189 -0.075 -0.072 -0.149 -0.139

(0.156) (0.154) (0.224) (0.221) (0.103) (0.100) (0.182) (0.182)
N.Obs.: total 40967 40967 40967 40967 27995 27995 27995 27995
Order Loc. Poly. (p) 0 0 1 1 0 0 1 1
Covariates X X X X

Notes: RD robust estimates with Triangular Kernel and Coverage Error Rate (CER) optimal bandwidth selector (Calonico
et al., 2014; 2017); for the list of covariates included and their definitions see Table 1. The variable used for the sample
split is excluded from the list of the covariates included in the corresponding specification. Significance level: *** p<0.01,
** p<0.05, * p<0.1. Source: based on General Health Register and Hospitalizations records, ATS-Milan.

Table A.10
Effects of eligibility for free vaccination at age 65 on hospitalization: parametric estimates.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
Bandwidth size: BW=1m BW=3m BW=6m BW=12
Panel A. Prob. Hospitalization
Treated -0.013 -0.014 -0.013 -0.013 -0.003 -0.003 -0.003 -0.017* 0.004 0.005 0.004 -0.003 0.002 0.002 0.002 0.005

(0.011) (0.011) (0.011) (0.018) (0.006) (0.006) (0.006) (0.009) (0.004) (0.004) (0.004) (0.006) (0.003) (0.003) (0.003) (0.005)
Panel B. No. Of days at hospital
Treated -0.102 -0.104 -0.102 0.041 -0.085 -0.084 -0.085 -0.196 0.008 0.010 0.009 -0.082 -0.010 -0.010 -0.010 0.015

(0.178) (0.176) (0.177) (0.279) (0.097) (0.096) (0.097) (0.151) (0.063) (0.063) (0.063) (0.101) (0.048) (0.048) (0.048) (0.073)
N 5618 5618 5618 5618 17276 17276 17276 17276 35398 35398 35398 35398 68962 68962 68962 68962
Covariates X X X X X X X X X X X X X X X X
Specification:
(i) Linear X X X X
(ii) Linear with interac X X X X
(iii) Quadratic X X X X
(iv) Quadratic with interac X X X X

Notes: parametric estimates with triangular weights and different bandwidths (BW): estimates are performed on a sample
including, respectively, individuals born one, three, six and twelve months before and after the cutoff date. The RD estimate
is the coefficient of the variable Treated, which indicates individuals born in 1948 (i.e. those who benefit from the free access
to the vaccination). Linear and quadratic specifications with and without interactions are shown. For the list of covariates
included and their definitions see Table 1. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Source: based on General
Health Register and Hospitalizations records, ATS-Milan.
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