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Abstract

This paper investigates the presence of explicit labour-saving heuristics within robotic patents. It analyses
innovative actors engaged in robotic technology and their economic environment (identity, location, in-
dustry), and identifies the technological fields particularly exposed to labour-saving innovations. It exploits
advanced natural language processing and probabilistic topic modelling techniques on the universe of patent
applications at the USPTO between 2009 and 2018, matched with ORBIS (Bureau van Dijk) firm-level
dataset. The results show that labour-saving patent holders comprise not only robots producers, but also
adopters. Consequently, labour-saving robotic patents appear along the entire supply chain. The paper
shows that labour-saving innovations challenge manual activities (e.g. in the logistics sector), activities
entailing social intelligence (e.g. in the healthcare sector) and cognitive skills (e.g. learning and predicting).

JEL classification: O33, J24, C38.

Keywords: Robotic Patents, Labour-Saving Technology, Search Heuristics, Probabilistic Topic Models.
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1 Introduction

The increasing diffusion of artificial intelligence (hereafter, AI) and robotic technology in the last decade has

become a renewed object of analysis in both economics and innovation studies, with contributions reporting a

steep adoption of automated processes and industrial robots (e.g. Acemoglu and Restrepo, 2019a; IFR, 2017).

The impact of automation and robotics on employment has generated concerns and vibrant debates as well

(Autor, 2015; Brynjolfsson and McAfee, 2016; Frank et al., 2019; IFR, 2017). Indeed robots (and intelligent

robots more so) are technologies that, within the recent Industry 4.0 wave, are particularly apt to substitute

human labour.1 In fact, on top of standard robotics, AI allows robots to perform an increasing variety of tasks

and functions (e.g. Frey and Osborne, 2017; Webb, 2020). Intelligent robots are able to ‘sense’ and com-

municate with their environment (e.g. machine-to-machine communication) and operate as mobile, interactive

information systems in a wider spectrum of fields, from manufacturing to service sectors (e.g. hospitals, retail

outlets).

Pressured by the threat of a new wave of technological unemployment, the extant literature has focussed

on both the quantity of jobs potentially displaced by robots, mainly by taking advantage of the International

Federation of Robotics (IFR) dataset (e.g. Acemoglu and Restrepo, 2019a,b; Graetz and Michaels, 2018), and

on the specific functions and tasks that automation might directly substitute, mainly relying on the U.S. Occu-

pational Information Network (O*NET) (e.g. Autor and Dorn, 2013; Frey and Osborne, 2017). Both streams

of literature agree that the most vulnerable occupations and tasks are those performed by low- and medium-

skilled workers, mainly executing routinised tasks. More recently, attention has been paid to the impact from

AI, which instead appears to be more pervasive for jobs and wage security of high-skilled professionals (Webb,

2020).

Notably, most economic analyses so far have investigated the employment impact of industrial robots on

the adopting sectors of the economy, chiefly focussing on manufacturing industries (e.g. automotive, electron-

ics, chemicals). Conversely, evidence lacks when it comes to sectors of origin of robotic innovations. This

constitutes a first gap in the extant literature which the present paper aims at filling. First, since robots are ex-

tremely heterogeneous and complex artefacts, it is important to reconstruct their wider technological origin and

composition. Second, scale and scope economies, and the position of innovators in the vertical supply chain

can influence the nature, rate, and trajectory of innovative activity. For instance, innovations in robot-related

technologies can be produced upstream in research intensive labs (e.g. Biomimetics Robotics Lab at MIT) or

downstream in large adopters (e.g. Amazon). Clearly, the position of the sector of origin along the vertical

supply chain might impact the very nature of a technological artefact. Ultimately, it is important to understand

whether innovation in robotics leads to a new product or service (with a potential positive effect on labour

demand) and/or to a new labour-saving process.

Indeed, a second major gap in the existing literature lies in the very scant evidence on the origin of innovations

which are explicitly meant to be labour-saving. On the one hand, whether labour-friendly or labour-saving in

their use is a question that invests specific technological adopters; on the other hand, a different issue concerns

the extent to which technological inventors explicitly manifest labour-saving heuristics when conceiving novel

robotic technology. Identifying the existence of explicit labour-saving heuristics during the invention process

might allow for a fine-grained discovery of functions and tasks which (intelligent) robots are intended to replace.

The present paper addresses these research questions by exploiting all 3,557,435 USPTO patent applications

(hereafter, patents) between 1st January 2009 and 31st December 2018, and analysing their full-texts. First, it

identifies and describes the wider spectrum of robotics-related technology, it singles out labour-saving (here-

1For a field work analysis on the adoption of Industry 4.0 technological artefacts and their effect on skills and task composition see
Cirillo et al. (2018) and Moro et al. (2019).
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after, LS) innovations, and retraces their origin in terms of specific technological content, geographical location,

and positioning of the innovators along the supply chain. Second, it explores the activities in which LS robotic

patents are concentrated, linking the technological content to the human tasks intended to be replaced.

We bring novelty both in terms of research questions and methodology. In particular our paper faces three

methodological challenges.

(i) What is an innovation in robotics? Robots have many components and interact in a complex way with their

environment. It is therefore necessary to understand innovation in robotics-related technologies by defining a

broad set of robotic patents that goes beyond the classification codes attributed by patent officers, in order to

encompass innovations in complement technologies and process implementations. We tackle this problem by

means of an original keyword search in patent texts.

(ii) How can we extract LS innovations and understand their origins? Differently from the extant literature,

largely focussing on the economic impact from adopting robots, we look for explicit LS heuristics in the know-

ledge generation of robotic innovations. In so doing, we rely on textual analysis of patent applications. We

perform an in depth semantic study in order to distinguish patents which explicitly claim a direct LS impact. In

so doing, we restrict the analysis to a semantic domain which is uncommon to inventors. In particular, we look

for a restricted dictionary of words typical of the ‘economic slang’. Once LS innovations are identified, we are

also able to pinpoint the underlying firms and inventors, their location, and the economic industry of origin.

(iii) We further ask whether LS patents are particularly concentrated in specific domains of robotics-related

activities. To answer this question, we estimate a probabilistic topic model, a natural language processing

method from the unsupervised machine learning toolbox. In so doing, we are able to measure the frequency

of occurrence of semantic topics in LS and overall robotic patents. As a result, our paper generates a human-

machine taxonomy which characterises the topics more relevant to LS patents and helps in understanding which

specific activities and functions are more exposed to LS innovation.

In a nutshell, our paper shows that the overall number of robotic patents has rapidly increased (3-fold) over

the past decade, while LS patents display no specific trend. This supports the idea that the LS property of robotic

patents is a rather established heuristics. At the country level, U.S. and Japan appear to largely dominate other

countries (although this might be biased by the use of USPTO patents); however, China exhibits a catch-up

process. LS robotic patents are largely concentrated in few dominant industries, showing a typical long tail

distribution, characterizing cumulative processes (Newman, 2005). Nonetheless, they are quite pervasive in

terms of penetration by spanning virtually the entire 2-digit NAICS spectrum. In terms of positioning along the

supply chain, LS patent holders are not just constituted by robots producers, but mainly robot adopters. Two

archetypical cases are Amazon and UPS. Therefore, LS robotic patents emerge along the entire supply chain,

signalling a considerable degree of diffusion.

Moreover, we show that LS patents do not distribute uniformly across all fields as robotic patents. Instead,

they cluster in largely human-intensive industries, such as logistics, medical, and health activities. We em-

phasise in which specific (robotics-related) fields of activity LS patents are relatively more concentrated and

position our results within the literature devoted to the analysis of tasks and occupations particularly exposed

to automation (which includes, among others, Frey and Osborne, 2017; Webb, 2020).

The remainder of the paper is organised as follows. Section 2 discusses the relevant literature and theoretical

framework. Section 3 presents our data and the empirical methodology. Section 4 discusses our results. Finally,

Section 5 concludes.
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2 Theoretical motivation: search heuristics and labour-saving trajectories

The impact of automation on jobs has (again) become one of the ‘trending’ topics within both the academic and

policy debate. Indeed, fears of technological unemployment have been always accompanying great innovative

waves. However, in the history of humanity, periods of intensive LS automation have also coincided with

the emergence of new jobs, tasks, activities, and industries.2 Nevertheless, this time may be different since

nowadays the World is on the edge of a new technological revolution (see Bartelsman et al., 2019), dramatically

accelerating in the direction of automation driven by pervasive diffusion of robots and AI (see Brynjolfsson and

McAfee, 2012, 2016; Frey and Osborne, 2017). Turning the attention to the economic literature, a very recent

strand (e.g. Acemoglu and Restrepo, 2018a,b, 2019b; Graetz and Michaels, 2018) accounts for the LS effect

of robotisation by looking at indirect measures of penetration (i.e. number of robots acquired within different

economic sectors, provided by IFR data). A drawback therein is the likely understatement of the actual role

of producers and adopters in assessing the labour impact of robots. Additionally, the use of the number of

robots per workers, available at the country/industry level, does not allow to properly dissect the firm-level and

local impact of robots. Finally, there is lack of a coherent taxonomy of the knowledge base underlying robotic

artefacts and their production/diffusion in a given economy.

In the tradition of the economics of innovation, technologies are studied by means of identification of

paradigms and trajectories (Dosi, 1982, 1997) underlying the introduction, development, and diffusion of a

given artefact. A notable question regards the extent to which the discovery of a given artefact occurs by

chance, or it is alternatively driven by some specific search heuristics or, put in the words of Rosenberg (1976),

focussing devices, namely the ensemble of technological bottlenecks, market incentives, and ultimately the

cognitive loci and the behavioural patterns of who creates those technologies (Dosi and Nelson, 2010, 2013).

Although it is generally hard to identify invariant and ex-ante search heuristics or inducement effects, a

specific search heuristic appears to be invariant throughout the history of capitalist societies, namely search

efforts aimed at the reduction of human inputs in production.3 Karl Marx was clear on the point, highlighting

how labour resistance, organisation, and claims represent powerful drivers towards mechanisation:

“In England, strikes have regularly given rise to the invention and application of new machines.

Machines were, it may be said, the weapon employed by the capitalists to equal the result of

specialised labour. The self-acting mule, the greatest invention of modern industry put out of

action the spinners who were in revolt. If combinations and strikes had no other effect than of

making the efforts of mechanical genius react against them, they would still exercise an immense

influence on the development of the industry.”

[Marx (1956, p. 161); also cited in Rosenberg (1976, p. 118)]

Granted the pervasiveness of LS heuristics in the space of technological search (Dosi, 1988; Rosenberg, 1976;

Tunzelmann, 1995), in the following we aim at understanding whether the current wave of technological in-

novation is dominated by such heuristics. In our framework, robotics, and indirectly AI, are seen as pervasive

general purpose technologies, with massive potential in terms of labour substitution across a wide range of

skills, occupations, and tasks (see Bresnahan and Trajtenberg, 1995; Cockburn et al., 2018; Trajtenberg, 2018).

2In more detail, when a process innovation is introduced, potential market compensation mechanisms are also triggered and these may
counterbalance the initial LS impact of innovation (see Dosi and Mohnen, 2019; Freeman and Soete, 1987; Piva and Vivarelli, 2018;
Simonetti et al., 2000; Van Roy et al., 2018; Vivarelli, 1995). The present paper focusses on the detection of possible LS heuristics
linked to the production and diffusion of robots, while the investigation of the price and income compensation mechanisms lies
beyond the scope and aims of the present study (for recent surveys centred on the compensation theory, see Calvino and Virgillito,
2017; Ugur et al., 2018; Vivarelli, 2014).

3In turns, these efforts are dynamically reinforced by the localised, path-dependent, and irreversible nature of technological progress
(see Atkinson and Stiglitz, 1969; Capone et al., 2019; David, 1985; Dosi, 1988).

6



Patents, as a locus of explicit codified knowledge, represent an appropriate empirical instrument to proxy the

rate and direction of innovative activity (Pavitt, 1985). By looking at the textual contents of robotic patents,

we aim at isolating the ones explicitly embedding a LS trait. In order to make the identification process as neat

as possible, we define a dictionary of words and resort to a semantic analysis. Two excerpts from LS patents

follow (emphasis ours):

“Automated systems, such as robotic systems, are used in a variety of industries to reduce labo[u]r
costs and/or increase productivity. Additionally, the use of human operators can involve in-

creased cost relative to automated systems.” [US20170178485A1]

“The use of the technology [robots] results in improved management of information, services, and

data, increased efficiency, significant reduction of time, decreased manpower requirements, and

substantial cost savings.” [US20100223134A1]

As we shall reveal in the following, the type of analysis we conduct allows to extend the analysis well bey-

ond the use of the IFR dataset. In fact, leveraging patent data on robotic artefacts, we are able to identify the

knowledge generation patterns behind this technology. In so doing, we do not restrict to patents entailing ro-

botic artefacts only as products, but also as processes (i.e. methods). In this respect, our strategy opens up the

possibility of looking at patenting patterns of both robot producers and firms involved in any sort of comple-

mentary innovation or developing processes which implement robotic technology. Indeed, the most disruptive

impact of robots is plausibly occurring among downstream, non-robotic firms through embodied technolo-

gical change within process innovation (see Barbieri et al., 2018; Dosi et al., 2019; Pellegrino et al., 2019).

Clearly, by focussing on patenting firms we inevitably circumscribe our attention to most innovative robots

adopters, i.e. large-scale, multi-product firms who have in-house capabilities of integrating processes aimed at

cost-cutting and increasing efficiency. In this way, not only we capture those firms who ‘know exclusively what

they produce’, (i.e. robotic firms), but also firms who ‘know more than what they produce’, namely non-robotic

firms holding robotic patents (Dosi et al., 2017; Patel and Pavitt, 1997).

The underlying hypothesis is that robot-as-a-product and robot-as-a-process innovations embodying LS heur-

istics are patented by different types of firms and present different degrees of pervasiveness in terms of techno-

logical diffusion. In fact, LS heuristics might be more deeply rooted in firms located outside robots manufac-

turing, such as downstream, large-scale adopters.

3 Data and methodology

Our analysis covers the entire set of 3,557,435 patent applications filed at the USPTO between 1st January

2009 and 31st December 2018. Full-texts have been downloaded from the USPTO Bulk Data Storage System4.

Roughly 350k applications are filed on average each year, showing no clear trend, as depicted in Fig. 1. We

match our data to the ORBIS (Bureau van Dijk) database through the relevant patent publication numbers.

Our methodology consists of three steps. First, we single out patents which either directly or indirectly

relate to robotics technology. Second, we implement a procedure to detect the underlying LS heuristics and

pinpoint the set of explicitly LS patents. Finally, we estimate a probabilistic topic model in order to devise a

human-machine taxonomy.

To the best of our knowledge, two extant contributions are methodologically comparable to ours. Dechezle-

prêtre et al. (2019) devise a multi-step strategy based on both patent classification and multiple keyword search

4Available here: https://bulkdata.uspto.gov/
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Figure 1: Number of patent applications to USPTO by year.

in order to identify automation patents. Mann and Püttmann (2015) manually classify a sample of patents and

then use a machine learning algorithm to elicit automation innovations from a larger population.

Our empirical strategy differs from these contributions in many respects. First, we identify a structured

dictionary of words entailing a semantic procedure (including a predicate, a direct object, and an object’s at-

tribute), rather then a simple word search, which targets LS robotic patents, rather than generic automation

ones. In so doing, we overcome the mere search for n-grams and word adjacency, we avoid arbitrary use of

the sheer occurrences of ‘automation + something’, and we control for type I errors. Second, our procedure

is general-to-specific, in that we do not restrict our attention to any ex-ante classification by patent examiners;

instead, we uncover the entire population of robotic patents identified by both patent classification codes and

content of patents themselves. Indeed, our search is conducted on the whole population of patents, independ-

ently of technological and sectoral classification. Third, in order not to retain false positives, we perform an

ex-post validation of all patents flagged by the above procedure. Our approach turns out to be more restrictive

in terms of requirements, but more comprehensive in terms of technology-industry spectrum. In fact, as we

shall see, we are able to span virtually the entire NAICS sectoral classification. In contrast, simply relying

on patent officers’ classification generally induces a downward bias, since it would only capture those patents

mainly associated with robot manufacturers, while patents related to robotics complementary technologies and

specific process implementations along assembly lines would be inevitably lost. To overcome this limitation,

we have enlarged our scope of analysis beyond the official USPTO classification.

3.1 Robotic patents

In addressing our first methodological challenge, we set up two distinct criteria, one based on the patent classi-

fication codes specified within applications, the other based on textual keyword search. A patent is labelled as

robotic if it obeys at least one of the criteria.

For the first criterion we make use of the official USPTO statistical mapping5 between former U.S. Patent

Classification (USPC) class 901, entirely dedicated to “Robots” and used by a number of previous contributions

to identify robotic patents6, and the Cooperative Patent Classification (CPC) present in recently published

USPTO applications. The concordance table lists 5 distinct CPC codes for each of the 50 subclasses of USPC

class 901, hence a total of 250 target codes, 124 of which are unique when all digits are considered. The CPC

system also defines a ‘legacy’ meta-class Y10S which targets “Technical subjects covered by former USPC

cross-reference art [. . . ] and digests”; CPC group Y10S901 then serves as a junction for former art classified as

USPC class 901. There are 50 unique CPC codes in the group, one for each of the original subclasses. Since we

wish to embrace the broadest possible definition of robotic technology, the sufficient condition for a patent to be

5Available here: https://www.uspto.gov/web/patents/classification/cpc/html/us901tocpc.html
6Among others, Obama’s 2016 “Economic Report of the President”: https://www.nber.org/erp/ERP-2016.pdf
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deemed robotic under the first criterion is that the patent exhibits at least one of the 174 mentioned (full-digit)

CPC codes (124 from the statistical mapping plus the 50 legacy codes in group Y10S901).

Our second criterion looks for the multiple occurrence of the morphological root ‘robot’ within either section

of the full-text of a patent, i.e. including abstract, description, and claims. Looking for this morphological root

seems appropriate since it displays a very low degree of ambiguity. Broadly speaking, words that contain the

(sub)string ‘robot’ are remarkably likely to refer to some sort of robotic technology. However, we initially

found that patents with a small number of occurrences therein may well be unrelated to robotics as their core

technology; a typical example is innovation in the design of golf balls which makes use of a robotic embodiment

merely for final testing, for instance in launching the ball at a certain speed. This prompted a first manual in-

spection on our behalf. We draw a random sample of a few hundreds patents containing at least one occurrence

and order them by the number of total occurrences in order to manually identify an appropriate cut-off. We find

that patents with 5 or more occurrences are already quite likely to describe either a core robotic technology, its

process implementation, or a close complement technology, with few outliers. We conservatively set the cut-off

of our second sufficient condition to 10.

3.2 Labour-saving patents

Our second methodological challenge lies in the discovery of the set of LS patents. From the set of robotic

patents identified in the previous section, we now want to single out those which explicitly claim a LS effect

of the underlying innovation. We do this by performing a multiple word co-occurrence query at the sentence

level.

To this purpose, we need to preprocess our textual corpus, along the following steps. First, we subdivide,

technically tokenise, the full-text of each robotic patent (a single string concatenating the abstract, the de-

scription, and the claims sections) into a list of sentences by means of a punctuation regexp. Second, we

similarly tokenise each sentence into a list of words. Third, we filter out a standard set of 182 stop-words,

i.e. tokens that are overly common in English (such as ‘a’, ‘the’, ‘if’, . . . ) and do not convey any useful

information to our analysis. Last, we reduce each word in each sentence to its morphological root, by means of

a stemming algorithm.7

At this point we are able to look for the presence of specific words (actually morphological roots, after the

aforementioned stemming step) within the whole corpus of robotic patents. We aim at eliciting the heuristic,

when present, that the technology described in a patent may somehow reduce human labour requirements if

implemented, either in terms of labour cost, worked hours, or the complete substitution of the workers them-

selves, by automating one or more skills/tasks they previously applied/performed. Accordingly, we develop a

methodology by which we scour all the identified sentences and look for the co-occurrence of a certain verbal

predicate, a direct object, and an attribute, which jointly convey the desired message, within the same sentence.

Fig. 2 shows the selected words we use in our query. In practice, we look for the joint occurrence of a triplet of

words (which differ from trigrams, as we do not require word adjacency), one from each set, within the same

sentence, and flag the associated patent as potentially LS if at least one sentence contains at least one of the

(336, given the Cartesian product of the three sets) triplets.

3.3 Probabilistic topic model and human-machine taxonomy

The selection of LS patents can be used to describe the set of human activities which LS innovations aim at

substituting. Thus, our next step entails the technological characterisation of the set of LS patents vis-à-vis the
7In particular, we use the Porter2 stemmer, an improved version of the original Porter (1980) algorithm, as implemented in the nltk

Python library.
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Figure 2: Structure of the labour-saving textual query.

whole class of robotic patents. In principle, this could be done by looking at the CPC codes that each filed

application comes with. However, when multiple classification codes are attributed to the same patent, there’s

no way to assess the actual relevance of each code, either cardinally or ordinally. To overcome this limitation,

we estimate the relevance of each CPC code to each patent by leveraging the latent semantic structure of the

whole collection of patents’ full-text, as identified by a probabilistic topic model.

3.3.1 Probabilistic topic models

A probabilistic topic model (see Blei, 2012; Blei et al., 2003) is a powerful natural language processing tool

in the unsupervised machine learning realm which aims at eliciting and quantifying the magnitude of the main

subject matters underlying a collection of documents in a fully automated way. Latent Dirichlet Allocation

(LDA) is the simplest such model and the one we will use in our analysis. Formally, LDA is a generative prob-

abilistic model of a collection of documents. The underlying assumption is that each document is represented

by a random mixture over latent topics and each topic is characterised by a distribution over a fixed vocabulary

of words. The intuition is that each document exhibits multiple topics in different proportions; in the generative

model, each word in each document is drawn from one of the topics proportionally to their relevance. The

generative process for LDA can be represented by the following joint distribution

p(β,θ,z,w) =
K

∏
k=1

p(βk)
D

∏
d=1

p(θd)

(
N

∏
n=1

p(zd,n|θd)p(wd,n|β,zd,n)

)
(1)

where β is the unknown set of K underlying topics βk, k = 1, . . . ,K; θ is the unknown set of topic proportions

θd,k for topic k in document d of the collection D; z is the unknown set of topic assignments zd,n for the n-th

word in document d; finally, w denotes the observable set of documents, each represented by the underlying

sequence of words wd,n. LDA is essentially a Bayesian estimator for the posterior conditional distribution of

the topic structure p(β,θ,z|w) given the observed documents w. Note that in w the multiplicity of each word

is relevant although the specific order in which the words arise is neglected, as per the so-called bag-of-words

assumption. Crucially, topic model algorithms do not require any prior annotations or labelling of documents,

as the topics emerge simply from the analysis of the original texts.

Probabilistic topic models for the analysis of patent data have been occasionally adopted in the past. Venugo-

palan and Rai (2015) map American solar photovoltaics patents to probability distributions over real world

categories and show that linguistic features from topic models can be used to identify the main technology

area that a patent’s invention applies to in a more effective way compared to traditional classification systems.

Lee et al. (2015) attempt to predict the pattern of technology convergence and use a topic model on triadic
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patents to discover emerging areas of the predicted technology convergence. Chen et al. (2017) and Kim et al.

(2015) employ a topic modelling approach for technological trajectories forecasting. Kaplan and Vakili (2015)

exploit topic modelling to study the formation of new topics in patent data (e.g. regarding fullerenes and carbon

nanotubes) and locate the patents which introduce them.

3.3.2 Topic model estimation

Our analysis proceeds along the following methodological workflow. First, we estimate a topic model on

the whole population of robotic patents. This step associates a distribution θd of membership over the K-

dimensional set β of topics to each patent d.

Second, we associate to each topic βk a distribution of CPC codes, by weighting the original attribution of

codes to each patent by the topic proportions θd found in the previous step. This informs the labelling of each

topic with a quantitative combination of pre-defined technological classes.

Finally, we compare the relevance of each topic for the whole population of robotic patents with that of the

subset of LS patents and we draw quantitative conclusions on which technologies are relatively more and less

relevant in characterising the latter with respect to the former.

When estimating a topic model, the only relevant parameter the modeller is asked to provide is the number K

of topics the model is supposed to identify. There is no general theory in the literature on how to appropriately

select the number of topics. There have been a few attempts to address this issue (see e.g. Arun et al., 2010;

Cao et al., 2009) but most scholars agree that none is truly universal. The current good practice is to run

multiple experiments with different values of K and select the most convincing one. This is less relevant for us

however, since we are more interested in characterising the macroscopic technological differences of the two

patent corpora, rather than in the specific technological characterisation of each of the two classes. We opt for

a relatively low K = 20, which allows to maintain overall tractability of exposition.

The estimation of a topic model is an iterative process, as the model incrementally learns the latent semantic

structure of the textual corpus and refines the estimate of the underlying topic distribution at every iteration. In

our implementation, we feed the whole textual collection to the learning step at each iteration.8 A typical fit-

ness measure for topic models is the so-called perplexity, defined as the inverse of the geometric mean per-word

log-likelihood. Perplexity typically decreases at each learning iteration. Rather than imposing ex-ante a fixed

number of iterations to the algorithm, we opt for computing the perplexity of the model at each step and ter-

minating the learning process once the perplexity gain runs below a certain threshold, which we conservatively

set at 0.1. In our experiment the threshold is reached after 52 iterations and final perplexity equals 667.9838.

The algorithm returns each topic βk as a list of relevant keywords and a membership value θd,k of each patent

d to topic k. These membership measures are distributions, in the sense that

θd,k ≥ 0 ∀ k = 1, . . . ,K; ∀ d = 1, . . . ,D (2)

K

∑
k=1

θd,k = 1 ∀ d = 1, . . . ,D (3)

Since we are interested in characterising the whole collection of robotic patents, and later the subset of LS

patents, we need to construct an aggregate measure of relevance Θk of each topic k for an arbitrary collection

of D documents. We define this measure as the simple average membership of all documents to each topic, as

8Specifically, we use the LatentDirichletAllocation module implemented in the scikit-learn Python library in batch learning
mode.
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follows:

Θk :=
1
D

D

∑
d=1

θd,k ∀ k = 1, . . . ,K (4)

From the properties in eqs. (2) and (3), it is straightforward to prove that Θk is itself a distribution, i.e.

Θk ≥ 0 ∀ k = 1, . . . ,K (5)

K

∑
k=1

Θk = 1 (6)

3.3.3 Topic labelling with CPC codes

Estimating a topic model returns, for each topic, a list of most important words therein, ranked by their fre-

quency within the collection. The interpretation of each topic is then entirely left to the modeller. Rather than

labelling the topics on the basis of obtained keywords alone, we leverage the original attribution of ex-ante

equally relevant CPC codes to each patent, together with the membership of each patent to the set of topics. In

particular, letting C denote the set of all CPC codes, we define a cardinal membership distribution Φc,k of each

CPC code c ∈C to each topic k = 1, . . . ,K as

Φc,k =
ϕc,k

K
∑

k=1
ϕc,k

∀ k = 1, . . . ,K; ∀ c ∈C (7)

where

ϕc,k = ∑
d ∈ D

1{c ∈ γ(d)} ·θd,k ∀ k = 1, . . . ,K; ∀ c ∈C (8)

1{·} denotes the indicator function and γ(·) is a fictitious function which returns the relevant CPC codes ori-

ginally attributed to the argument patent d by the patent examiner. ϕc,k ∈ [0,+∞] is a (unscaled) measure of

membership of CPC code c to topic k, and Φc,k ∈ [0,1] is the corresponding rescaled version to fit the unit

interval.9 In other words, all the CPC codes of a patent (1{c ∈ γ(d)}) are attributed to the applicable topics pro-

portionately to the relevance of each topic for the patent itself (θd,k). Together with the subjective interpretation

of the relevant keywords, the process of finding a suitable label for the topics, carried out in the Section 4.3,

can now be informed by (the description) of the most relevant CPC codes therein, as objectively (albeit prob-

abilistically) measured by Φc,k.

4 Results

In the present section we outline the results obtained from the three methodological steps described in the

previous section, namely, the definition of robotic and LS patents therein (Section 4.1), their sectoral and

geographical characterisation (Section 4.2), and the estimation of the probabilistic topic model (Section 4.3).

Finally, we recap our findings on human activities which LS patents intend to replace and discuss their relevance

with respect to the literature on technological bottlenecks (Section 4.4).

9It is straightforward to prove that the same distribution properties in eqs. (5) and (6) which hold for Θk also hold for Φc,k.
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Figure 3: Number of robotic patent applications by year.
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Figure 4: Number of LS patent applications by year, as percentage of robotic applications.

4.1 Robotic and labour-saving patents

Our first result entails the identification of the set of robotic patents. The CPC-based filter returns 10,929

patents. We label the set of robotic patents according to this criterion as CPC. The keyword-based filter returns

18,860 new patents, after those already found by the first criterion are discarded. We label the set of new robotic

patents according to this criterion as K10. The two criteria single out a total of 29,789 unique robotic patents,

i.e. approximately 0.84% of the original (universe) population. Fig. 3 shows the yearly evolution in the number

of filed robotic patent applications for the two aforementioned subsets. At a first glance, patents under both

definitions have almost steadily grown in number over time, with the CPC group accounting for most of the

relative increase (approximately 6-fold within our reference period). Consistent with discussions in the extant

literature, both trends exhibit an acceleration during most recent years (see Brynjolfsson and McAfee, 2012,

2016; Cockburn et al., 2018).

Our second result pertains to the identification of LS patents. The procedure returns 1,666 patents. Since we

cannot fully trust the accuracy of the filter with respect to false positives, we proceed with a manual inspection

of all the potentially LS patents, in order to ensure that the flagged sentence actually conveys the desired

message. This conservative manual validation step delivers 1,276 truly LS patents (hereafter referred simply as

LS patents), i.e. approximately 4.3% of all robotic patents, suggesting our methodology exhibits an accuracy of

≈ 77%. Of these, 461 (≈ 36.1%) come from the CPC group and 815 (≈ 63.9%) from the K10 group, indicating

that our procedure does not substantially alter the original composition of the whole population of robotic

patents.10 Fig. 4 shows the evolution in the number of LS patents over time, as a fraction of all robotic patents.

It is noteworthy that a substantial share of LS patents come from technological fields that do not belong to

the standard robot related CPC fields. No clear trend is detectable, suggesting that the underlying LS heuristic

has remained quite stable over our reference period. This result is in line with our theoretical assumption that

10In order to exclude that our LS patents are the by-product of a specific writing style of a small group of individuals, we ex-
ploit the Patent Examination Research Dataset (Public PAIR, available at https://www.uspto.gov/learning-and-resources/
electronic-data-products/patent-examination-research-dataset-public-pair) and find that the number of distinct en-
tities who have been granted power of attorney for the whole set of LS patents exceeds 450, the largest of which administers 37.
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Figure 5: Geographic location of LS patents in absolute terms.

LS heuristics appear to be a robust and invariant driver of technological evolution (c.f. Section 2). Note that

our evidence detects both an increasing innovative effort devoted to robotic technology, most of which is not

primarily classified as robotics (i.e. the K10 class, see Fig. 3), and a plateaued search heuristic guided towards

labour-displacement, equally distributed on average between the CPC and K10 families (see Fig. 4).

4.2 Firm-level analysis and supply chain

In the present section we characterise LS patents in terms of identity, geographic location, and industrial sector

of their current assignee(s). To this purpose, we match our data to the ORBIS (Bureau van Dijk) database

through the relevant publication numbers. At the time of writing, the ORBIS database contains information for

patent applications published until 31st July 2018; hence, the following analysis is intended over data truncated

to that date. 1,136 LS patents (≈ 89% of the original set) find a match, 903 of which (≈ 79%) are assigned to

at least one firm, while 233 find no corporate assignment. In total, there are 408 firms which hold at least a LS

patent (hereafter, LS firms). Note that patents assigned to more than one firm are deliberately double-counted,

since we aim at grasping the actual dispersion of the underlying LS heuristic.

The World map in Fig. 5 gives a glimpse at the geographic distribution of LS patents, given the location

of their assignees. The U.S. dominate the picture as the only country with more than 500 LS patents; this is

hardly surprising given that all our applications are filed at the USPTO, a primary target for U.S. firms. Japan

comes second, as the only other country with more than 100 LS patents, and South Korea, Taiwan, China, and

Germany follow suit, holding between 20 and 100 LS patents each. This picture is quite in line with traditional

World-class innovation centres when it comes to robotic technology.11 However, looking at absolute LS patent

figures only provides a partial understanding of the associated international patenting activity. Focussing on a

relative measure of propensity, i.e. rescaling the number of LS patents by the total number of robotic patents

assigned to firms in a given country, allows to infer where LS search efforts are more intensive, compared to

the ex-ante capability of producing a robotic patent. This new measure is represented in Fig. 6. While the latter

exercise might be biased by the small size of the underlying denominators, it is nonetheless quite informative.12

Brazil, Hong Kong, and Denmark lead the picture with more than 10% of robotic patents also being LS. Next

come, respectively, India and Singapore with at least 7.5%, and Finland, Taiwan, Belgium, and Canada, all

11An analogous heatmap constructed on the absolute number of robotic patents by country looks strikingly similar and is not included.
12A strong form of such bias arises for Argentina (excluded from both Figs. 5 and 6) where a single robotic patent has been filed in our

focus period, which also happens to be a LS patent.
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Figure 6: Geographic location of LS patents as percentage of robotic patents.

beyond the 5% threshold. With the exception of Taiwan, all top robotic patents holders lie below the 5%

threshold. In a nutshell, it turns out that countries which hold fewer robotic patents overall, actually hold more

LS patents in relative terms.

We now proceed by revealing the identity of top LS patents holding firms and then assessing their sectoral

dispersion. Fig. 7 lists the top 15 holders by absolute number of LS patents, while Fig. 8 lists the description

of the top 15 primary sectors, identified as 4-digit NAICS codes (2017 revision) assigned to the holders. Both

pictures detail the underlying CPC and K10 composition. Boeing, the aircraft manufacturer, is the largest holder

of LS patents, with a count of 45.13 Relatedly, ‘Aerospace Product and Parts Manufacturing’ is the largest

sector within which LS patents reside. Motor vehicles and their parts manufacturing, industries traditionally at

the forefront in industrial robots’ adoption, also rank very high, as the presence of automotive firms, Hyundai

and GM, in the top holders’ chart also suggest. Interestingly, retailers (Amazon) and shipping companies (UPS)

appear among the top holders, and a deeper inspection of their patents reveals that they are all about fully auto-

matic sorting and routing of packages and drone technology for deliveries. High-tech and R&D intensive firms

(e.g. Technologies holding, Intelligrated), robot manufacturers (e.g. Locus, Fanuc), and electronics/software

developers, which are the backbones of the robotic value chain (e.g. Seiko-Epson, Samsung), complete the pic-

ture. Strikingly, ‘Colleges, Universities, and Professional Schools’, namely the organisations which are most

likely to receive public funding for carrying out research, constitute the 8th largest sector in terms of LS pat-

ents holding. Therefore, the industry composition of LS patent holders highlights how robot manufacturers

rank lower than robot adopters. The logistics segment, which in our sample emerges from the presence of two

international giants, deserves particular scrutiny. The employed workforce in the shipping/delivery industry

largely carries out human-intense activities such as conveying, storing, picking, packaging. At this stage of the

analysis we cannot conclusively pinpoint the specific human tasks which are more likely to be substituted by

LS technology. However, our best guess comprises those phases of the production processes which mainly rely

on manpower as their primary input. In the following, we shall attempt to shed some light on the issue. Note

that, although we refrain from producing any type of predictive clause, the very fact that LS patents appear to

concentrate within large labour-intensive industries is quite interesting.

The frequency distribution of NAICS codes assigned to LS patent holders, pictured in Fig. 9, is also worth

noting. In particular, it reveals that, while most of the (408) LS firms are concentrated in a few industries

13It is worth noting that these patents relate to the proper aircraft manufacturing process and not to drones or other unmanned aerial
vehicles technology.
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Figure 7: Top 15 firms holding LS patents.
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Figure 8: Top 15 industry descriptions of LS patents’ holders.
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Figure 10: Count of 3-digit CPC codes assigned to robotic (a) and LS patents (b).

(already shown in Fig. 8), LS patents are overall present in as many as 91 distinct sectors, covering all 2-

digit NAICS specifications except ‘Agriculture, Forestry, Fishing and Hunting’ (code 11). In other words, the

distribution exhibits a ‘long tail’ across a wide support of NAICS codes. This ultimately suggests that the LS

heuristics embedded in robotic technology is quite widespread across the value chain.

4.3 Topic modelling and human-machine taxonomy

At the current stage, we still ignore the human activities LS patents aim at substituting. As already mentioned (in

Section 3.3), a simple analysis of CPC codes is not viable because multiple CPC codes are typically attributed

to each patent. Fig. 10 shows a histogram with the count of distinct CPC codes at the 3-digit level for robotic

(a) and LS patents (b), which reaches up to 9 per patent. While single attributions constitute the modal case

for robotic patents, tightly followed by double attributions, the picture is reversed for LS patents, and for these

latter triple attributions are almost as widespread as single ones. This suggests that, on average, LS patents

are relatively more technologically ‘complex’ than their robotic superset. To overcome the aforementioned

limitation, we estimate the relevance of each CPC code to each patent by leveraging the latent semantic structure

of the whole collection of patents’ full-text, as identified by a probabilistic topic model.

We now have all the ingredients to assess the technological differences between robotic and LS patents in

an informed way, using the CPC-topic matching developed in Section 3.3.3. In particular, we wish to order the

identified topics by their relevance to LS patents relative to robotic patents in general. We compute the aggregate

relevance distributions Θrob
k and ΘLS

k defined in Section 3.3.2 for each of the robotic and LS patents populations,

respectively. These distributions are pictured in Fig. 11, in which the topics are sorted by decreasing relevance

to the robotic patents collection (blue graph). The figure shows sizeable discrepancies between the former and

the relevance measure for LS patents (orange graph) for some of the topics. For instance, topic #6 is more than
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Figure 11: Topic relevance distributions R(k)rob and R(k)LS for robotic patents (blue graph) and their LS subset
(orange graph).

twice as relevant to LS patents than to robotic patents overall. Note however that since the (blue) graph for

robotic patents is ranked in decreasing order of relevance, by construction the (orange) graph of LS patents also

decreases on average, since the latter are a subset of the former. This implies that the mere difference between

Θrob
k and ΘLS

k (i.e. the vertical distance in Fig. 11) is not fully informative, and an appropriate comparison

requires a truly relative measure of relevance for LS patents, which we define as

Θ̃LS
k :=

ΘLS
k

Θrob
k

∀ k = 1, . . . ,K (9)

Table 1, which we report in Appendix A for convenience, contains all the relevant information for building the

human-machine taxonomy. The first column refers to the topic number, as it appears on the horizontal axis

in Fig. 11; the second column, according to which the table is sorted in decreasing order, reports the relative

relevance Θ̃LS
k of LS patents to robotic patents, expressed in percentage points; the third column lists the top

10 keywords of the underlying topic; the remaining three columns list the top 5 CPC codes denominations

associated to the topic,14 their weight, and their official description. 3-digit CPC codes are used, except for

codes in the Y10 meta-class reported in full to highlight the original USPC class they point to.

In terms of robotic patents, the five most relevant topics include biochemistry (#1), transmission of digital

information (#2), optics (#3), traditional machine tools (#4) and shaping or joining of plastics; additive man-

ufacturing (#5). The latter evidence is comforting in terms of external validity of our topic model. In fact,

according to WIPO (2019, p. 17), “among the top 20 technology fields, food chemistry (+13.4%), other spe-

cial machines (+10.1%), machine tools (+9.2%) and basic materials chemistry (+9.2%) witnessed the fastest

average annual growth between 2007 and 2017”.

Our relative distance definition allows to single out those topics in which the two populations of patents

show strong differences in terms of word occurrence (positive percentage) or similarities (negative percentage).

Indeed, LS patents are concentrated in some specific topics. Topic #6 (transport, storage and packaging) dis-

plays the highest relative relevance to LS patents (+132.2%), as its relevance more than doubles that of robotic

patents overall. This topic can be related to warehouse management and shipping: its most significant CPC

code (B65) refers to “[c]onveying; packing; storing; [. . . ]” and the top keywords are ‘carrier’, ‘conveyor’,

‘item’, ‘gripper’, ‘tape’. A quick check exposes shipping companies (or companies that have a consider-

14A number of CPC codes widely attributed to robotic patents and whose definition is less informative to the labelling process are
discarded. These are: B25 (“hand tools; portable power-driven tools; manipulators”), G01 (“measuring; testing”), G05 (“controlling;
regulating”), G06 (“computing; calculating; counting”), and Y10S901, which points to the “Robots” former USPC Class.
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able shipping division) such as Amazon and UPS, as their prime holders (see again Fig. 7). Secondary CPC

codes are typically complementary technologies for the robotic embodiment of the underlying artefact; in the

present case they mainly relate to “[b]asic electric elements” and “[i]nformation storage”.

Other topics with relative relevance above +40% include diagnosis and therapy (#20), transmission of digital

information (#10), optics (#3), chemical or physical laboratory apparatus (measuring and testing in chemistry)

(#8), and moving parts (either related to prosthetic devices such as exoskeletons or parts of land vehicles)

(#16). On the bottom side of Table 1, earth drilling and mining (#9), traditional machine tools (#4), surgery

(#14), transmitting and transmission networks (electronic communications) (#15), and shaping or joining of

plastics, additive manufacturing (#5), are all topics in which LS patents are less relevant relative to general

robotic patents, by at least -40% in our measurement.

4.4 Replaceable human activities and technological bo�lenecks

In the final step, we tentatively infer the type of human activities the technology laid out in LS patents is intended

to replace. We capture both the formal technological content of inventions using CPC codes definitions and the

substantial purpose of single robotic innovations using the vector of words which characterises each topic in

the previous analysis. Thanks to this twofold approach, we can describe the fields and activities more exposed

to LS innovations.

Notably, topics displaying a larger relative relevance of LS innovations compared to the rest of robotic

patents refer to labour-intensive environment, such as the logistics sector, in which workers currently involved

in packaging, sorting, and routing items, are particularly threatened. Healthcare constitutes another ground

for LS technology, both in the production of medical equipment and in nursing patients or taking care of

the elderly. In fact, the second topic in terms of LS relevance relates to medical industry, in line with the

development of practices, instruments, and tools possibly able to streamline and reduce the labour intensity

required in carrying out medical and healthcare operations and clinical data storage. Notably, medicine appears

twice in the table, with both positive and negative relative relevance: while topic #20 (diagnosis and therapy)

just discussed displays explicit LS contents, topic #14 mainly relates to collaborative robots for remote surgical

activity with a very low relative LS impact. However, it is worth noticing that not all collaborative robots have

a labour-friendly impact. Both prostheses and exoskeletons are collaborative in nature and therefore, labour-

complementary; yet some features therein (e.g. superhuman force, velocity, speed, reliability) may well save

additional human manpower in tasks previously carried out by a team of workers (#16).

Words related to AI emerge in the third most relevant topic (#10, transmission of digital information).

‘learn’, ‘predict’, ‘train’, and ‘evaluate’ all show an high frequency of occurrence. This topic some-

what validates the threat for massive use of ‘intelligent automation’ which might substitute human activities

primarily involving qualified professional services (c.f. Section 2). However, manual activities, a common con-

cern for policymakers as they characterise lower-skill jobs, are also frequently mentioned in LS patents (#16,

moving parts). High frequency words such as ‘workpiece’, ‘torque’, ‘finger’ suggest a particular interest

in manual and finger dexterity. Remarkably, this topic spans from medical and veterinary applications to land

vehicles CPCs.

Our estimation of the probabilistic topic model allows to pinpoint the technological bottlenecks underlying

the search efforts inspiring robotics inventors. Indeed, LS heuristics are concentrated in human activities already

identified by other contributions in the literature. Arntz et al. (2016), Frey and Osborne (2017) and Nedelkoska

and Quintini (2018) all rely on experts’ judgement (so-called Delphi method) in constructing an automation

probability measure of O*NET occupations. For instance, Frey and Osborne (2017) ask technologists to reply

to the following question for 70 selected occupations: “Can the tasks of this job be sufficiently specified,
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conditional on the availability of big data, to be performed by state of the art computer-controlled equipment?”

(see Frey and Osborne, 2017, Table 1). They claim that the probability of an occupation being automated is

inversely related to: social intelligence, such as the ability to negotiate complex social relationships, including

caring for others or evaluate differences; cognitive intelligence, such as the ability of solving complex problems;

and finger dexterity and manipulation, such as the ability to carry out precise physical tasks in an unstructured

work environment and in awkward positions.

Our work adds evidence in this perspective. The tasks identified by the aforementioned contributions actually

map to the semantic domains covered by our LS patents and emerging out of the probabilistic topic model: for

example, topics #6 and #16 involve multiple tasks related to perception and manipulation, topic #10 contains

tasks related to cognitive intelligence (e.g. “Systems and methods for consumer-generated media reputation

management”, [US20170286541A1]), and topic #20 involves tasks where social intelligence is important, in

particular for assisting and caring for others. Therefore, according to our results, these technological bottlenecks

are currently under the spot of cutting-edge research efforts by innovative firms in their knowledge space. This

result also aligns with the recent findings of Webb (2020), who shows that the most recent AI driven automation

wave targets high-skilled tasks.

5 Concluding remarks

The fast development of robotic(-related) technology, artificial intelligence, and automation has raised concerns

about the future of work. Recent literature has focussed, on the one hand, on the analysis of tasks and occupa-

tions at risk of automation (e.g. Frey and Osborne, 2017; Webb, 2020). On the other hand, on the labour market

impact of industrial robots among adopters (e.g. Acemoglu and Restrepo, 2019b). In this paper, we contribute

with an in-depth analysis of the nature of innovations in robotics-related technologies, focussing on their sectors

of origin. We study robotic patents explicitly encompassing LS heuristics and trace their distribution in terms

of firms, sectors, and geographical location, and we determine whether they differ in terms of technological

content with respect to the totality of robotic patents, by emphasising the underlying technological heterogen-

eity and the vertical supply chain behind. To address these questions we employ advanced textual analysis and

machine learning techniques on the universe of USPTO patent applications filed between 2009 and 2018, and

we exploit a direct match with ORBIS (Bureau van Dijk) firm-level database.

Our results can be summarised as follows. First, the time evolution of LS patents do not show an explicit

trend over time, hinting at a stable and established pattern of LS heuristics. Second, in terms of geographical

location, U.S. and Japan still appear to largely dominate other countries. Third, the sectoral distribution of LS

robotic patents present a long-tail, signalling a widespread nature of the underlying applications across 4-digit

industries. Fourth, patenting firms are not only constituted by robots producers, but mainly adopters, some

archetypical cases being Boeing, Hyundai, Amazon, and UPS.

Finally, by means of a probabilistic topic model and a topic-level match with patent classification codes,

we construct a human-machine taxonomy highlighting human activities which appear more likely to be dis-

placed. We find that LS patents are particularly concentrated in the following fields: (i) transport, storage

and packaging, (ii) diagnosis and therapy, (iii) transmission of digital information, (iv) optical elements, (v)

chemical and physical laboratory apparatus (measuring and testing in chemistry), and (vi) moving parts. From

our taxonomy it emerges that the typical tasks where LS research effort is focussed include (i) dexterity and

manipulations, as in packing, storing, conveying, and handling packages in the logistics industry; (ii) activities

entailing social intelligence, such as caretaking patients and the elders; (iii), activities requiring cognitive intel-

ligence and complex reasoning, e.g. the competence in predicting, learning, classifying and evaluating, typical
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of high-level professional segments. Previous literature has identified the above activities as technological bot-

tlenecks, in the sense of being particularly hard to automate. Our work suggests that search efforts exerted by

leading international companies are precisely aimed at defeating these bottlenecks.

The main limitation of our work lies on its excessively conservative measure of LS patents. Indeed, while

our procedure completely avoids type I errors (i.e. false positives), the true magnitude of LS innovation is likely

to be largely underestimated (type II error). Conceivable extensions of our framework include the analysis of

a wider range of patents beyond robotic technology and the potential matching with both firm-level economic

indicators (such as sales, wages, and productivity) and dictionaries of occupations and tasks (such as O*NET

and PIAAC).
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Appendix A

Table 1

Topic # Θ̃LS
k Words CPC Weight Description

6 +132.2% carrier

conveyor

item

gripper

tape

articl

convey

tray

packag

door

B65 24.4% Conveying; packing; storing; handling thin or
filamentary material

H01 6.8% Basic electric elements
G11 6.0% Information storage
Y02 4.6% Technologies or applications for mitigation or

adaptation against climate change
B23 4.3% Machine tools; metal-working not otherwise

provided for

20 +72.2% weld

patient

medic

cathet

treatment

tissu

lumen

electrod

needl

transduc

A61 47.8% Medical or veterinary science; hygiene
B23 17.7% Machine tools; metal-working not otherwise

provided for
G16 4.1% Information and communication technology

[ict] specially adapted for specific application
fields

H04 3.1% Electric communication technique
G09 2.0% Education; cryptography; display; advertising;

seals

10 +60.3% node

learn

predict

train

evalu

estim

score

neural

behavior

sampl

H04 16.3% Electric communication technique
A61 14.4% Medical or veterinary science; hygiene
Y02 7.8% Technologies or applications for mitigation or

adaptation against climate change
G08 4.2% Signalling
H01 3.6% Basic electric elements

3 +49.2% beam

ray

eye

scan

len

pixel

fiber

detector

radiat

fluoresc

H04 17.7% Electric communication technique
A61 17.6% Medical or veterinary science; hygiene
G02 12.1% Optics
H01 6.4% Basic electric elements
G09 6.3% Education; cryptography; display; advertising;

seals

Continues on the next page
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Table 1 – continued from the previous page

Topic # Θ̃LS
k Words CPC Weight Description

8 +48.4% sampl

assay

pipett

reagent

vessel

dispens

reaction

specimen

cartridg

analyt

B01 23.5% Physical or chemical processes or apparatus in
general

C12 13.5% Biochemistry; beer; spirits; wine; vinegar; mi-
crobiology; enzymology; mutation or genetic
engineering

Y10T436 13.5% Chemistry: analytical and immunological test-
ing

A61 6.7% Medical or veterinary science; hygiene
B65 5.4% Conveying; packing; storing; handling thin or

filamentary material

16 +46.7% workpiec

torqu

leg

finger

trajectori

pose

ball

foot

veloc

walk

A61 23.2% Medical or veterinary science; hygiene
B62 12.2% Land vehicles for travelling otherwise than on

rails
A63 7.9% Sports; games; amusements
Y10T74 6.3% Machine element or mechanism
B23 6.1% Machine tools; metal-working not otherwise

provided for

7 +35.3% substrat

chamber

wafer

gas

film

semiconductor

deposit

polish

chuck

holder

H01 45.0% Basic electric elements
C23 9.1% Coating metallic material; coating material with

metallic material; chemical surface treatment;
diffusion treatment of metallic material; coat-
ing by vacuum evaporation, by sputtering, by
ion implantation or by chemical vapour depos-
ition, in general; inhibiting corrosion of metal-
lic material or incrustation in general

G03 4.0% Photography; cinematography; analogous tech-
niques using waves other than optical waves;
electrography; holography

B08 3.2% Cleaning
B24 3.0% Grinding; polishing

13 +27.2% surgic

patient

implant

surgeon

marker

bone

surgeri

endoscop

master

tissu

A61 71.3% Medical or veterinary science; hygiene
Y10T74 4.8% Machine element or mechanism
G16 3.0% Information and communication technology

[ict] specially adapted for specific application
fields

H04 2.0% Electric communication technique
G09 1.9% Education; cryptography; display; advertising;

seals

Continues on the next page
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Table 1 – continued from the previous page

Topic # Θ̃LS
k Words CPC Weight Description

17 –16.5% suction

cleaner

nozzl

milk

teat

valv

cup

discharg

dairi

pool

A01 15.6% Agriculture; forestry; animal husbandry; hunt-
ing; trapping; fishing

A47 15.5% Furniture; domestic articles or appliances; cof-
fee mills; spice mills; suction cleaners in gen-
eral

H04 5.7% Electric communication technique
H01 4.8% Basic electric elements
E04 4.1% Building

2 –19.6% server

request

video

messag

databas

audio

voic

search

game

client

H04 26.1% Electric communication technique
A61 8.1% Medical or veterinary science; hygiene
A63 7.0% Sports; games; amusements
G10 6.8% Musical instruments; acoustics
G08 5.3% Signalling

1 –21.3% cell

acid

probe

protein

nucleic

polypeptid

hybrid

dna

molecul

plant

C12 23.1% Biochemistry; beer; spirits; wine; vinegar; mi-
crobiology; enzymology; mutation or genetic
engineering

B01 11.0% Physical or chemical processes or apparatus in
general

A61 7.1% Medical or veterinary science; hygiene
Y10T436 6.1% Chemistry: analytical and immunological test-

ing
C07 5.0% Organic chemistry

11 –33.1% vehicl

autonom

obstacl

navig

charg

uav

rout

batteri

self

dock

B60 14.3% Vehicles in general
B62 7.5% Land vehicles for travelling otherwise than on

rails
H04 7.2% Electric communication technique
Y02 7.0% Technologies or applications for mitigation or

adaptation against climate change
A47 6.7% Furniture; domestic articles or appliances; cof-

fee mills; spice mills; suction cleaners in gen-
eral

Continues on the next page
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Table 1 – continued from the previous page

Topic # Θ̃LS
k Words CPC Weight Description

19 –35.9% clamp

roller

seal

ring

rod

connector

fasten

axial

cylind

bend

A61 12.2% Medical or veterinary science; hygiene
B23 7.4% Machine tools; metal-working not otherwise

provided for
Y10T74 6.8% Machine element or mechanism
F16 6.4% Engineering elements and units; general meas-

ures for producing and maintaining effect-
ive functioning of machines or installations;
thermal insulation in general

H01 6.3% Basic electric elements

18 –36.0% gear

smart

pulley

home

rotari

occup

detector

hazard

mesh

nut

A61 15.9% Medical or veterinary science; hygiene
Y10T74 12.5% Machine element or mechanism
F16 10.7% Engineering elements and units; general meas-

ures for producing and maintaining effect-
ive functioning of machines or installations;
thermal insulation in general

H04 7.2% Electric communication technique
G08 5.8% Signalling

12 –39.2% reson

voltag

charg

batteri

conductor

induct

coil

imped

circuitri

trace

H02 16.9% Generation; conversion or distribution of elec-
tric power

H01 11.8% Basic electric elements
B60 11.6% Vehicles in general
Y02 9.3% Technologies or applications for mitigation or

adaptation against climate change
H03 9.1% Basic electronic circuitry

5 –44.2% electrod

coat

print

mold

build

panel

fabric

adhes

sheet

paint

B29 9.2% Working of plastics; working of substances in a
plastic state in general

H01 8.9% Basic electric elements
B05 6.2% Spraying or atomising in general; applying li-

quids or other fluent materials to surfaces, in
general

B23 4.9% Machine tools; metal-working not otherwise
provided for

Y02 4.8% Technologies or applications for mitigation or
adaptation against climate change

Continues on the next page
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Table 1 – continued from the previous page

Topic # Θ̃LS
k Words CPC Weight Description

15 –52.0% transmitt

inspect

sound

lumin

recept

exposur

bright

ultrason

antenna

server

H04 28.7% Electric communication technique
A61 7.2% Medical or veterinary science; hygiene
H01 6.0% Basic electric elements
G08 6.0% Signalling
A47 4.3% Furniture; domestic articles or appliances; cof-

fee mills; spice mills; suction cleaners in gen-
eral

14 –63.7% effector

surgic

stapl

articul

closur

cartridg

elong

jaw

anvil

fire

A61 55.6% Medical or veterinary science; hygiene
Y10T29 4.9% Metal working
H01 4.8% Basic electric elements
Y10T74 4.2% Machine element or mechanism
B23 3.5% Machine tools; metal-working not otherwise

provided for

4 –66.9% teach

vibrat

calibr

postur

veloc

board

mark

piezoelectr

angular

acceler

A61 10.7% Medical or veterinary science; hygiene
H01 9.3% Basic electric elements
B23 8.5% Machine tools; metal-working not otherwise

provided for
H04 7.8% Electric communication technique
Y02 6.0% Technologies or applications for mitigation or

adaptation against climate change

9 –75.2% heater

hydrocarbon

conductor

conduit

pipe

treatment

drill

gas

cool

insul

H01 8.6% Basic electric elements
E21 6.6% Earth drilling; mining
B23 5.5% Machine tools; metal-working not otherwise

provided for
Y10T29 4.4% Metal working
Y02 4.4% Technologies or applications for mitigation or

adaptation against climate change
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