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Abstract

Using the entire population of USPTO patent applications published between 2002 and

2019, and leveraging on both patent classification and semantic analysis, this papers aims

to  map  the  current  knowledge  base  centred  on  robotics  and  AI  technologies.  These

technologies  will  be  investigated  both  as  a  whole  and  distinguishing  core  and  related

innovations, along a 4-level core-periphery architecture. Merging patent applications with

the Orbis IP firm-level database will allow us to put forward a threefold analysis based on

industry of activity, geographic location, and firm productivity. In a nutshell, results show

that:  (i)  rather  than representing a technological  revolution, the new knowledge base is

strictly  linked  to  the  previous  technological  paradigm;  (ii)  the  new knowledge  base  is

characterised  by  a  considerable  –  but  not  impressively  widespread  –  degree  of

pervasiveness; (iii) robotics and AI are strictly related, converging (particularly among the

related technologies) and jointly shaping a new knowledge base that should be considered

as  a  whole,  rather  than  consisting  of  two  separate  GPTs;  (iv)  the  U.S.  technological

leadership turns out to be confirmed.

JEL classification: O33.

Keywords: Robotics,  Artificial  Intelligence,  General  Purpose  Technology,

Technological Paradigm, Industry 4.0, Patents full-text.
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1. Introduction

Are robotics and Artificial Intelligence (AI) fostering a technological revolution,  popularly known as

fourth  industrial  revolution,  that  is  Industry  4.0?  This  is  probably  the  most  interesting  socio-economic

question  nowadays.  With  the  purpose  of  addressing  such  a  challenging  question,  the  present  paper

investigates U.S.  patent  data to determine how and to what  extent  automation is  really fostering a new

technological  paradigm  and  –  partially  in  contrast  –  how  much  they  are  related  to  the  previous  ICT

paradigm.

A second aim of this study is to assess the nature and pervasiveness of the new knowledge base using

novel measures able to capture both  core technologies (basically those clearly identified by proper patent

codes) and related technologies (out of the inner core, but strictly linked to the new knowledge base).

A third purpose of this work is to investigate whether robotics and AI can be considered as parts of the

same technological paradigm or instead as separated – albeit related – general purpose technologies (see the

theoretical discussion in Section 2).

Accordingly, we will  single out robotics and AI technologies, distinguishing core patents and related

patents, along a 4-level core-periphery architecture. This mapping exercise will be based on the investigation

of the entire population – covering both manufacturing and services – of USPTO (United States Patent and

Trademark Office) patent applications published between 2002 and 2019. The strategy, aimed at identifying

technological proximity, will leverage on both patent classification schemes and on the semantic analysis of

patents full texts (see Montobbio et al., 2020; for alternative methodologies, see Kogler et al., 2013; Angue

et al., 2014).

Then, we will map core and related patents into patenting firms. To this purpose, we will match USPTO

applications with the Orbis IP firm-level database to single out the industry and geographical (by country)

distribution of those firms leading the automation wave, both in general and distinguishing between core and

related technologies. This should allow to identify leading industries and countries behind the establishment

of the new knowledge base. Moreover, digging into the sectoral belonging and geographical position of the

respective patenting firms, we will be able to assess whether (and how much) the current knowledge base

differs from the previous ICT paradigm, its degree of sectoral pervasiveness, and the extent to which robotics

and AI are related to one another and converging.

Finally, to provide a tentative picture of the possible economic impact of the new knowledge base on the

performance of firms engaged in the provision of new technologies (both core and related ones), we will

study the dynamics of labour productivity in patenting firms (Csáfordi et al., 2020). The idea here is that co-

evolution of science, technology, and production might be associated – in the long-run – with a superior

performance at the firm level (Pugliese et al.,  2019). However, in the short-term, it is well-known that the

implementation  of  a  new  knowledge  base  may  be  even  counterproductive,  in  terms  of  productivity
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performance,  due  to  a  mismatch  between  the  emerging  technologies  and  the  current  institutional  and

organisational framework – the so-called Solow’s paradox (see Solow, 1987).

The paper is organised as follows. Section  2 summarises the extant literature, emphasising similarities

and  divergences  between  the  general  purpose  technology  approach  and  the  techno-economic  paradigm

approach.  Section  3 describes  the  data  and  methodology  used  in  our  analysis.  Section  4 presents  and

discusses the main results. Finally, Section  5 wraps up and puts forward some conclusions related to the

three research questions posed in this introduction.

2. General Purpose Technologies and Techno-Economic Paradigms

To single out more detailed research hypotheses able to disentangle the basic question posed by this paper

(are robotics and AI fostering a fourth industrial revolution, the so-called Industry 4.0?), one should critically

recall  two strands of literature. The first  one is rooted in mainstream economics and deals with the key

concept  of  general  purpose  technology (GPT);  the  second  one  comes  from  the

Neo-Schumpeterian/evolutionary approach and focusses on the change in the  techno-economic paradigm

(TEP).

According  to  Bresnahan and Trajtenberg  (1995),  Lipsey  et  al.  (2005),  and  Jovanovic  and Rousseau

(2005), a GPT is a single technology – such as steam, electricity,  internal  combustion,  and Information

Technology (IT) – that underpins other technologies and multiply their value. Since it is “characteri[s]ed by

the  potential  for  pervasive  use  in  a  wide  range  of  sectors”  (Bresnahan  and  Trajtenberg,  1995,  p.  84),

technological and economic “pervasiveness” is therefore the first, distinctive property of any GPT. 

According  to  the  same authors,  a  second property  of  a  GPT is  its  ability  to  bring about  and  foster

“generalised productivity gains”. However, whereas the first property is uncontroversial, the second one is

not equally obvious. For example, analysing the “Electrification era” from 1894 until 1930, and the IT era

from 1971 onwards, Jovanovic and Rousseau (2005) observe that, in spite of exerting a protracted aggregate

impact over a long period, both of these GPTs were associated to productivity slowdowns taking place at the

start of their initial diffusion. In fact, in the case of electrification, David and Wright (1999) show that  a

marked acceleration of productivity growth in U.S. manufacturing occurred only after World War I, and was

made possible by the adoption of the electric dynamo. By the same token,  the very first  effect  of  ICT

implementation was a generalised decrease in productivity in the U.S. economy – the so-called  Solow's

paradox  (Solow,  1987),  i.e. a  widespread  difficulty  to  translate  ICT  investments  into  increases  in

productivity  (see  Ortega-Argilés,  et  al.,  2014).  The  strong  positive  impact  of  GPTs  on  productivity  is

therefore not straightforward and may also vary not only over time, but also across economies and industries

(Ristuccia and Solomou, 2014).
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Turning our attention to the evolutionary tradition, according to Freeman (1990) and Dosi (1982) (see

also  Freeman,  2019;  Dosi,  1988),  interdependencies  between  different  organisational  and  institutional

elements  characterise  the  emergence of  a  bundle  of  technologies,  which all  together  may signal  that  a

technological breakthrough has occurred and a new TEP (according to Freeman) or a new  technological

paradigm (according to Dosi) is in the making. The empirical implication of these assumptions is that, when

two or more new major technologies come along at the same time, they initially bring about a “constellation”

of changes, “the productivity effects of which have yet to be fully realised” (Freeman, 1990, p. 4).

 Whereas “pervasiveness” is a distinctive feature of the bundle of technologies that characterise any TEP,

their introduction does not necessarily lead to productivity gains.  Indeed, according to Freeman and co-

authors, a new TEP is tested during the declining phase of the previous paradigm with no (or even negative)

impact  on productivity,  while  only  the  subsequent  widespread  diffusion of  the  established new TEP is

fostering productivity gains and economic booming (see Freeman et al.,  1982; Freeman and Soete,  1987).

Moreover,  for  productivity  gains  to  occur,  closer  interactions  between  and  within  firms,  and  various

institutional,  cultural,  and  territorial  factors  are  necessary  pre-conditions  which  may  take  time  to  be

established (Perez, 1983, 1994; Dosi et al., 2020). In this framework, a “good match” between the new TEP

and the institutional  context  – both at  the micro and macro level  – is  a pre-condition for the complete

development of the technological revolution and for the diffusion of its widespread impacts on productivity

and  economic  growth.  Operationalising  this  intuition,  one  might  therefore  argue  that  the  empirical

identification of a positive and statistically significant association between a measure of the emergence of a

new TEP and a measure of productivity dynamics is a clue that the former is already established and will

soon exert its impact on economic growth.

The main difference, if any, between the GPT and the TEP approach lies in the fact that the former

emphasises the importance of a single technology, the latter of a bundle of technologies. Nevertheless, the

underlying view of the relationship between new technologies and long-run economic growth is substantially

the same. Just to emphasise three more common aspects besides pervasiveness and the association with

marked  discontinuity  in  the  dynamics  of  productivity,  both  approaches:  (i)  focus  on  technological

breakthroughs  which  have  the  potential  to  affect  the  entire  economy;  (ii)  agree  upon the  idea  that  the

emergence of new technologies creates long waves of economic growth (Rosenberg and Frischtak,  1984;

Freeman and Louçã,  2001; Aghion and Howitt,  1998)1; (iii) assess the importance of institutional changes

occurring vis-à-vis the emergence of drastic/radical technological innovations. With regard to the last point,

most of the papers collected in Helpman (1998) highlight the importance for the GPT approach of qualitative

changes  associated  to  the  emergence  of  a  new technology,  while  Gomulka  (1990)  states  that  the  TEP

approach identifies in a bundle of new technologies the trigger factor which endogenously gives rise to

several qualitative changes at the economic, institutional, and social level.

1  See also Staccioli and Virgillito (2020) for a recent analysis of long waves in labour-saving automation technologies.
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The extant recent empirical literature on GPTs and TEPs as frameworks to investigate the emergence of

robotics and AI is  rather limited.  Use of text-mining techniques to retrieve keywords in the title  or  the

abstract of AI patents led, among others, WIPO (2019) and Damioli et al. (2020) to acknowledge the role of

AI as a GPT, not different from electricity, the Internet,  and other major breakthroughs emerged during

earlier  technological  phases.  Applying  network  analysis  to  identify  the  co-occurrence  of  two  robot

technologies in patents registered with the USPTO and the Korean Intellectual Property Office (KIPO), Lee

et al. (2016) find evidence of technological convergence in robotics, therefore corroborating the hypothesis

of robotics itself as a GPT.

The  above  examples  are  consistent  with  the  definition  of  Curran  et  al.  (2010),  who  suggest  that

identification of convergence in industrial technologies entails that these display the features of a GPT. In

fact,  studying Information and Communication Technology (ICT) as a GPT,  Curran and Lecker  (2011)

gather evidence of “convergence” as a distinctive feature of major technological revolutions.2

The available theories and empirical results about the emergence of GPTs and the formation of TEPs

provide useful insights for answering the main questions posed in Section  1: are robotics and AI really

sparking  a  fourth  industrial  revolution?  Is  this  new  knowledge  base  really  pervasive,  both  from  a

technological and an economic point of view? Are robotics and AI GPTs independent of each other, or do

they jointly represent the pillars of a new TEP?3

To answer the questions posed above, we will hereinafter map automation technologies, distinguishing

core patents in robotics and AI and  related patents, with differing degrees of closeness to the core. This

mapping exercise will provide some clues to assess whether robotics and AI are revolutionary, whether they

are pervasive, and how much they are related to one another (converging into the same TEP).

3. Data and methodology

Our analysis begins with the universe of patent applications (hereafter, simply patents) published by the

USPTO  between  1st  January  2002  and  31st  December  2019.  This  is  the  widest  time  horizon  we  can

accomplish with full year data, given that applications before 15th March 2001 are not publicly available.

The USPTO Bulk Data Storage System4 releases patents full-text data on a weekly basis as concatenated

XML files, which for our target period amount to 6,018,243 distinct documents. Since the very same patent

2  The reader may think of the convergence of microelectronics, TLC, and software, as a specific feature of the ICT revolution
(see Mowery and Rosenberg, 1998).

3  Paraphrasing David and Wright (1999), the question can be also asked as follows: Does robotics stand to AI as the electric
dynamo stands to electrification? In fact, the dynamo represented for David and Wright (1999) an “enabling technology” in the
sense of Bresnahan and Trajtenberg (1985, p. 84), namely a new device “opening up new opportunities rather than offering
complete, final solutions.”

4 Available at https://bulkdata.uspto.gov/.
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may be published multiple times at various stages of its lifespan under different kind codes, we remove all

duplicates and only retain newest versions.

Given our initial  dataset,  which comprises 5,918,127  unique patents,  we single out (Section  3.1) two

subsets therein, one related to robotics technology, the other to artificial intelligence (AI). In identifying

applicable patents, we adopt a mix of two criteria, in a fashion similar to Montobbio et al. (2020): the first

criterion  targets  CPC  (Cooperative  Patent  Classification)  codes,  assigned  by  patent  examiners  before

publication,  which are  known to be relevant  to  the  objective  technological  fields;  the  second criterion,

instead, looks for the presence of certain keywords within patents full texts.

Rather than treating the membership of a patent to either subset (robotics or AI) as binary (i.e. either a

patent belongs to a subset, or it does not), we leverage on the two aforementioned search criteria to devise a

multi-level core-periphery architecture (Section 3.2) in which a patent is positioned depending on its fitness.

The selected patents are matched with the Orbis IP (BvD) database, from which detailed information

about their corporate assignees can be extracted, when applicable (Section 3.3). In particular, we focus on

their geographic location, sector of activity, and productivity.

Following the outlined methodological steps, Section  4 shall present, for each core-periphery level, the

countries and industries which have contributed the most  in terms of innovative effort,  and the average

productivity of corporate assignees, disaggregated by industry.

3.1. Robotics and AI patents

The first step of our methodological roadmap deals with the identification of robotics and AI patents. In

doing so, we adopt a twofold approach, scouring patent full-texts for specific keywords and classification

codes.

Patent classification codes, assigned by patent examiners before publication, provide an in-depth mapping

scheme based on the technical features of patents’ content. The Cooperative Patent Classification (CPC)

system,  adopted by the  USPTO since 1st  January  2013,  has  a  deeply  nested  hierarchical  structure  and

accounts for more than 260,000 categories.  Official  concordance tables5 mapping former USPC (United

States  Patent  Classification)  classes  901 (“Robots”)  and  706 (“Data  processing:  artificial  intelligence”),

widely used in similar studies covering older patents, to newer CPC codes, provide the targets of our first

search criterion. In particular, USPC classes 901 and 706 can be traced to, respectively, 124 and 244 unique

full-digit CPC codes. In addition to these latter, junction groups Y10S901 (for robotics) and Y10S706 (for AI)

and their  subgroups, which target “Technical subjects covered by former USPC” (cf.  class Y10), are also

included in the search step. A patent is deemed associated to robotics or to AI technology if it has been

assigned at least one of the codes in either the underlying concordance table or in the mentioned junction

5 Available at https://www.uspto.gov/web/patents/classification/cpc/html/us901tocpc.html and 
https://www.uspto.gov/web/patents/classification/cpc/html/us706tocpc.html.
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group6. Among our initial universe of 5,918,127 patents, there exist 22,931 robotics and 295,688 AI patents,

selected according to their displayed CPC codes, of which 2,179 overlap as both robotics and AI. In the

remainder of this paper, we shall refer to robotics and AI patents selected according to this criterion as “CPC

robotics” and “CPC AI” patents, respectively.

While classification codes are useful for singling out inventions according to the technical content of

underlying patents, they prove quite limited in scope since they are unable to encompass complementary

artefacts and technologies which are tightly related, yet do not belong, to the target search field. If a patent is

not  classified  as,  say,  AI,  but  mentions,  possibly  repeatedly,  some keywords  which  are  intimately  and

unambiguously relevant to AI, it is plausible that the patent is somehow related to the latter field.

Our second criterion relies on keyword search to capture additional patents which are related to the ones

found in the previous step. Following Montobbio et al. (2020), robotics patents are required to mention the

word “robot” (or any of its derivatives, such as ‘robots’, ‘robotic’, ‘robotics’ etc.), possibly multiple

times, somewhere across their title, abstract, description, or claims sections. Even though this criterion may

sound overly simplistic, the word “robot” is remarkably specific and unambiguous: broadly speaking, it is

very hard to conceive a sentence embedding that word which at the same time is entirely unrelated to the

field of robotics, especially within the context of a patent office. In a similar fashion, to locate AI patents we

look for any of the 48 keywords listed in Van Roy et al. (2020, Table 2) excluding “robotics”, which we

report in Table 1 for convenience.

Among our initial universe of 5,918,127 patents, there exist 201,278 robotics and 370,317 AI patents,

selected according to relevant keyword search, of which 43,519 overlap as both robotics and AI. In the

remainder of this paper, we shall refer to robotics and AI patents selected according to this criterion as “KW

robotics” and “KW AI” patents, respectively. It holds that 15,858 CPC robotics patents are also KW robotics

patents,  and 79,997 CPC AI patents are also KW AI patents.  We assume that  a matched CPC code is

stronger,  or  more  reliable,  on  average,  than  a  matched  keyword,  in  associating  a  patent  to  a  certain

technological field. Following this assumption, we remove patents from the KW robotics and KW AI subsets

which have been already selected as CPC robotics or CPC AI, respectively. Before moving forward, it is

useful to recap the various magnitudes involved, reported in Table 2.

Contrary to Montobbio et al. (2020), we do not impose ex-ante a minimum number (greater than one) of

occurrences of keywords or CPC codes for a patent to be deemed robotics- or AI-related. These numbers

however will play a crucial role in forming the basis of the core-periphery architecture outlined in the next

section.

6 Since applications published before the introduction of the CPC scheme (1st January 2013) can not display the assigned CPC
codes, we use the CPC Master Classification File (MCF) for U.S. Patent Applications, also retrievable from the USPTO Bulk
Data Storage System, which attributes relevant CPC codes to older applications.
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Table 1: AI keywords. Source: Van Roy et al. (2020).

Table 2: Relevant magnitudes of the robotics and AI subsets, and their overlap.

3.2. Core-periphery architecture

The  given  definition  of  a  robotics  or  AI  patent  in  the  previous  section  is  intentionally  broad  and

comprehensive. At this stage, we leverage on the matching score therein to construct a 4-level core-periphery

architecture aimed at capturing the degree of technological relatedness to the objective fields. We argue that,

the more CPC codes in our target list a patent is assigned, or the more often a patent mentions our target

keyword(s), the more likely that the patent constitutes a core technological advancement in either the field of

robotics or AI. Conversely, the weaker the matching in our search criteria, the more likely that the patent is

less intimately related to the said technological fields.
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Table 3: Relevant magnitudes of the robotics and AI core-periphery levels.

Given  the  four  subsets  of  patents  selected  in  the  previous  section,  CPC  robotics,  CPC  AI,  KW

robotics,and KW AI, we consider their distributions according to the following measures: for each CPC

patent,  we compute the ratio between the number of matched CPC codes (from the concordance tables

mentioned in the previous section) and the overall  number of CPC codes assigned by patent examiners;

regarding KW patents, we count the number of times any target keyword is mentioned in each patent. 7 We

then construct the 4 core-periphery (CP) levels, in increasing order of distance from the core, by splitting the

various distributions in quartiles and making the following attributions, for either robotics and AI patents:

CP1. 3rd and 4th quartiles of CPC patents;

CP2. 2nd quartile of CPC patents and 4th quartile of KW patents;

CP3. 1st quartile of CPC patents and 3rd quartile of KW patents;

CP4. 1st and 2nd quartiles of KW patents.

In this way, we allow for an overlap of CPC and KW patents in the middle CP levels, while we maintain

the idea that CPC patents are on average closer to the core than KW patents. Table 3 summarises the number

of patents in each CP level for both robotics and AI patents.

While the aforementioned choice of attribution may seem arbitrary, it is possible to show, once firm level

data is extracted in the next section, that the obtained CP levels exhibit  a satisfactory degree of mutual

consistency (see the Appendix and Table 11).

3.3. Firm-level data

With the aim of extracting firm-level data about last known corporate assignees, we match patents in our

selected subsets with the Orbis IP (BvD) database through the relevant publication numbers. Out of 742,036

unique patents, 615,182 (approximately 83%) are matched to at least one firm, of which 175,949 are robotics

patents, 483,098 are AI patents, and 43,865 are both robotics and AI patents. In total, 62,972 firms hold at

7 Since the selection of KW AI patents depends on a multiplicity of keywords, we are implicitly assuming a constant and unitary
rate of substitution between an additional occurrence of a keyword already mentioned,  and the occurrence of a previously
unmentioned keyword.
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least one of our selected patents, of which 23,772 hold at least one robotics patent, 50,221 hold at least one

AI patent, and 11,021 hold both robotics and AI patents.

Our  variables  of  interest  include  the country where each  firm is  incorporated,  its  sector  of  activity,

denoted  by  a  3-digit  NAICS  20178 (North  American  Industry  Classification  System)  code,  and  its

productivity,  defined as  average sales  per employee over the  period 2015–2019 inclusive.9 While  value

added per employee would constitute a superior measure of firm productivity, availability of added value

data on Orbis IP is very scant and would force us to neglect about 80% of matched firms. We therefore resort

to approximating firm productivity as sales per employee with the purpose of retaining the maximum amount

of available information.

Given the core-periphery architecture outlined in the previous section, we shall evaluate, for robotics and

AI  patents  at  each CP level,  the  overall  contribution of  each country and each  industrial  sector  to  the

innovative effort behind patented technologies therein. Moreover, we shall present and compare the average

productivity of the relevant sectors in each CP level. All these measures are weighted proportionally to the

number of patents held by each corporate assignee at the various CP levels. These findings are presented and

discussed in the next section.

4. Results

While in the previous section we have proposed and discussed our core-periphery taxonomy and the way

in which we have associated patents with their holding firms, the aim of this section is threefold. First, we

will map the patents taking into account their sectoral belonging on the one hand, and their nationality on the

other hand (Sections 4.1 and 4.2). Second, we will investigate the degree of similarity between robotics and

AI technologies, to assess whether they can be considered as components of the same paradigm or rather as

separate  GPTs  (Section  4.3).  Third,  we  will  present  and  discuss  the  productivity  performance  of  the

companies involved in robotics and AI technologies (Section 4.4).

4.1. Industries

Table 4 assigns all our robotics patents to the sectors which the holder company belongs to. The

sectors are identified by their NAICS 3-digit codes and are ranked according to the first column,

reporting their overall prevalence. The following columns report the sectoral incidence within the

four core-periphery categories.

Not  surprisingly,  “machinery  manufacturing”  (corresponding  to  NAICS  code  333,  which  comprises

“establishments primarily engaged in manufacturing industrial and commercial machinery”) is playing a

8 See the specification at https://www.census.gov/eos/www/naics/.

9 In case some of the yearly data are missing, we compute the average using only available data.
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Table 4: Sectoral relevance to robotics patents for each core-periphery level.

leading role in robotics patenting, with more that 30% of the patents in the core category belonging to this

industry. Interestingly enough, its role is declining when we move to the periphery, dropping to about 19% in

CP2, about 15.5% in CP3, and about 10.4% in CP4. As a result, on the whole ranking – including both core

and related technologies – “machinery manufacturing” (333) is ranked second, with an overall weight equal

to 14.28%.

13



Indeed,  in  the  overall  ranking,  “computer  and  electronic  product  manufacturing”  (corresponding  to

NAICS  code  334,  which  comprises  “establishments  primarily  engaged  in  manufacturing  computers,

computer  peripheral  equipment,  communications  equipment,  and  similar  electronic  products,  as  well  as

components for such products”) is leading, with a percentage equal to 21,64%; however, this sector turns out

to be less important than “machinery manufacturing” in the very core (about 24% of CP1 patents), while its

weight maintains relevance in the remaining three categories (ranging from 18% to 23%). 

Putting  together  these  first  results,  it  is  obvious  that  machinery  manufacturing  and  computer  and

electronic product manufacturing account for more than 50% of core robotics patenting, with machinery

manufacturing appearing central in the very core, and computer and electronic product manufacturing more

or less equally distributed from the technological core to the related but more peripheral technologies. While

not surprising, this outcome highlights, on the one hand, the key role of manufacturing in robotics patenting

and, on the other hand, the crucial link between robotics and computer and electronic manufacturing (that is

an intrinsic strong relationship between the previous technological paradigm and the new knowledge base –

see Section 2).

The third sector accounting for a relevant portion of robotics patenting is “professional, scientific and

technical services” (corresponding to NAICS code 541, which comprises “establishments primarily engaged

in activities in which human capital is the major input”). This sector accounts for 13.64% of the entire patent

population and ranges from about 9% in CP1 to about 14.5% in CP4. High-tech services are therefore rather

active  in  robotic  patenting,  and  their  role  monotonically  increases  when we move  to  the  technological

periphery. 

A smaller  –  albeit  still  relevant  –  role  in  the  core  technologies  (CP1)  is  played  by  “transportation

equipment manufacturing” (336, starting from about 9% in the very core and monotonically declining to

about 5% in CP4) and by electrical devices (335), also decreasing from the core (about 8%) to the periphery

(about 2%). In contrast, some industries are definitely under-represented in the core, but are quite important

in the related technologies; this is the case of “chemical manufacturing” (325) which holds less than 1% of

patents in the core category and increases up to about 9% in CP3 and CP4, and of both “miscellaneous

manufacturing” (339) and “credit intermediation” (522) which hold about 1% of patents in the core category

and increases up to about 4% in the more peripheral categories.

Other  industries,  which  deserve  to  be  mentioned  for  their  (relatively  minor)  role  in  the  core,  are

“educational  services”  (611,  about  2% in  CP1),  with  a  more  relevant  role  in  the  related  technologies;

“merchant  wholesalers,  durable  goods”  (423,  about  2% in  CP1,  with  a  similar  role  in  the  periphery);

“management of companies and enterprises” (551, about 1.5% in CP1, with an increasing role in the related

technologies) and “administrative and support services” (561, about 1.5% in CP1, with a slightly increasing

role in the periphery).
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Table 5: Sectoral relevance to AI patents for each core-periphery level.

On the whole, robotics patenting appears to be characterised by a clear leadership of machinery, electrical

and computer  manufacturing  (and to  a  lesser  extend high-tech  services  and transportation),  particularly

within core technologies.
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However, robotics also shows an appreciable degree of pervasiveness: particularly when we move to

related  technologies,  other  additional  industries  are  rather  active  both  within  manufacturing  (chemicals,

miscellaneous) and services (professional, scientific, technical, credit and educational services).

Turning our attention to AI technologies, Table 5 reports the sectoral ranking in a similar fashion to the

previous Table 4.

In AI technologies the leadership is  shared between “professional,  scientific and technical  services” 10

(541) and “computer and electronic product manufacturing” (334), with the former leading in the core (about

23% in CP1) and declining when we move to the related technologies, and the latter slightly behind in the

core (about 22%) but monotonically increasing moving to the periphery up to about 29%. As a result, the

overall ranking is led by computer and electronic manufacturing with an incidence of about 25.5%.

Therefore, the leadership in AI technologies (where the design and production of algorithms require a

joint contribution of hardware and software components) appears equally spread between manufacturing and

services, and this marks a relevant difference in comparison with robotics, more centred on manufacturing.

On the other hand, computer and electronic manufacturing turns out to be a key sector in both technological

maps; this outcome is important since it highlights both a high degree of connectivity between robotics and

AI technologies and a strong relationship between the new knowledge base and the former technological

paradigm (see the research questions posed in Section 1).

A further corroboration of the key role of services in AI technologies comes from the important roles

played by “publishing industries” (corresponding to NAICS code  511,  which comprises “establishments

primarily engaged in publishing newspapers, periodicals, books, databases, software and other works”) and

“credit intermediation” (corresponding to NAICS code 522, which comprises “establishments that (1) lend

funds raised from depositors; (2) lend funds raised from credit market borrowing; or (3) facilitate the lending

of funds or issuance of credit”), which both score between 6% and 7% in the overall ranking and in the four

core-periphery categories.

Other industries worth to be mentioned are “transportation equipment manufacturing” (336), “machinery

manufacturing”  (333,  relatively  marginal  with  regard  to  AI  technologies,  while  being  a  clear  leader  in

robotics, see above), “administrative and support services” (561), “telecommunications” (517, a new entry in

our sectoral mapping), electrical devices (335), “merchant wholesalers, durable goods” (423), “management

of companies and enterprises” (551), and “educational services” (611). All these sectors show an incidence

ranging from 2% to 6% with no strikingly significant change moving from the core to the periphery.

Indeed, with the notable exception of the two leading sectors (with high-tech services more important

within the core, and computer and electronic manufacturing playing a larger role in the related technologies),

10  This result is expected, since code 541 includes software.
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Table 6: Country relevance to robotics patents for each core-periphery level.

the AI mapping appears more balanced than robotics, with a similar incidence of the different sectors across

the four core-periphery categories.

Out of the first 12 industries ranked in the robotics and AI charts, 10 overlap, while two manufacturing

sectors (chemical and miscellaneous) only appear in robotics, and two service sectors (publishing industries

and telecommunications) only appear in the AI top 12.

On  the  whole,  AI  technologies  seem to  be  characterised  by:  a  joint  (and  probably  complementary)

leadership of high-tech services (including software) and computer and electronic manufacturing; relatively

minor  sectoral  discontinuities  between  core  and  related  technologies  (in  contrast  with  robotics);  and  a

considerable degree of pervasiveness with many manufacturing and service sectors actively involved. In the

vast majority of industries, this pervasive impact overlaps with the one triggered by robotics technologies

(see above).
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4.2. Countries

In this section we investigate which countries are emerging as leaders in the robotics and AI technologies

and so which are the nations at the forefront of the new knowledge base. Table 6 reports the country ranking

in relation to robotics technologies; notice that European Union countries are included both as an aggregate

and as single nations.

The U.S. definitely lead the ranking, accounting for more than 50% of total robotics patenting; with the

notable  exception  of  the  core  technologies  (where Japan ranks first),  the  U.S.  advantage is  remarkably

confirmed in CP2, CP3, and CP4. As was the case in the “ICT era”, the U.S. appear strongly dominant both

in the core and related robotics technologies, while Japan seems to share a leading position only in the core

technologies where computer and machinery manufacturing play a key role (see  Table 4). The European

Union, as a whole, jointly accounts for about 14% of robotics patenting, with no significant differences

moving from core to related technologies.

South Korea and Germany are both playing a certain role in the core (CP1) as well as in the related

technologies, with incidences which range around 5-6%. Another bunch of countries are represented with an

overall  weight larger than 1%, namely The Netherlands, U.K., Switzerland,  China, Taiwan, Canada and

France. On the whole, robotics patenting appears geographically very concentrated.

Turning our attention to the AI technologies, consider Table 7.

As far as AI technologies are concerned, the U.S. dominant position is even more striking: 2/3 of AI

patents are held by U.S.  companies,  and this is  true on the whole,  for  the  core,  and for the peripheral

categories. Japan again ranks second, with an incidence around 10% across the different categories. The E.U.

ranks third,  accounting for about  9.5% of AI patenting,  with no significant  differences across the core-

periphery categories.

As  was  the  case  with  robotics  (see  Table  6),  South  Korea  and  Germany  rank  third  and  fourth,

respectively,  with  a  stronger  presence  of  Germany  in  the  core  and  of  South  Korea  in  CP2,  CP3,  and

particularly in CP4. China, U.K., Canada, The Netherlands and Taiwan follow with percentages ranging

from 1% to 2%. 

In a nutshell, AI patenting appears even more geographically concentrated than robotics patenting, with

the U.S. dominating the scene, a collateral – but still important – role of Japan and South Korea, while

Germany and China follow behind.

Putting together the evidence from  Table 6 and  Table 7, we can conclude that the U.S. have a clear

advantage in both robotics and AI technologies, accounting for 55%–65% of patenting activity in the new

knowledge base; moreover, while this leadership is shared with Japan in the robotics core technologies, it is

absolutely dominant in all the other examined categories. Although this outcome may be partially biased by 
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Table 7: Country relevance to AI patents for each core-periphery level.

the dataset used in this study (USPTO), it is however obvious that the new knowledge base is mainly forged

in the U.S., with Japan, the E.U. and – to a lesser extent – South Korea playing a collateral role. For the time

being, the rest of the world – including China – lags behind.

4.3. Similarities and differences between robotics and AI technologies

The degree of similarity between robotics and AI technologies in the patterns discussed in Sections 4.1

and 4.2 should be investigated in greater detail. This will help to answer the research questions put forward

in Sections 1 and 2 concerning the possible revolutionary nature of these technologies, and whether they can

be considered separate GPTs or as components of the same technological constellation, which in turn can be

seen as the trigger factor of a new paradigm. 
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Table 8: Cosine similarity and Spearman rank correlations between robotics and AI core-periphery levels.

As far as sectoral belonging is concerned, we already noticed that robotics patenting is more

centred on manufacturing (particularly machineries and computers), while AI technologies are more

focussed on services (particularly professional, scientific and technical services). Moreover, both

robotics and AI share a key role played by computer and electronic product manufacturing.

Putting  together  these  various  pieces  of  evidence,  we  may  assess  that  both  the  investigated  key

technologies  are  strongly  linked  with  the  former  technological  paradigm,  triggered  and  shaped  by  the

computer revolution. In this respect, the question whether robotics and AI technologies are really fostering a

technological revolution or just a radical revival of the extant paradigm remains open. Moreover, robotics

appears characterised by a manufacturing core, while AI technologies seem much more balanced between

manufacturing and services. From this point of view, AI can be considered more widespread and pervasive

than robotics. On the other hand, if we move from the core technologies to the periphery, robotics shows a

better capacity to engage non-core sectors, while AI rankings are very similar11.

However, both technologies display a considerable overall level of pervasiveness with a dozen of 3-digit

sectors each showing to hold more than 2% of total patenting. Once again –-within the first  12 sectors

(accounting for more than 80% of the entire patenting activity in both technological fields) – in robotics,

manufacturing  sectors  are  more  represented  than  services  (56.8% vs.  27.7%  of  all  patents),  while  the

opposite is true for AI technologies (37.8% vs. 44.6% of all patents).

As already noticed, out of the first 12 industries ranked in the robotics and AI rankings, 10 are in common

(and the remaining 4 are however within the top 20 sectors in both the rankings; see Table 4 and Table 5). In

more detail,  Table 8 reports two distinct proximity measures, namely cosine similarity and Spearman rank

correlation, between the sectoral distributions of the different core-periphery categories for robotics and AI

(see the Appendix for a formal definition).

11 As can be seen in Table 11 reported in the Appendix, all the obtained cross-level similarity coefficients are systematically lower
for robotics technologies, corroborating their more pervasive nature. 
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Indeed, the correlation coefficients between robotics and AI sectoral rankings are close to 90% for all

patents, and monotonically increase from around 65% to about 93% if we move from the core (CP1) to the

periphery (CP4).

If  we  jointly  consider  all  these  pieces  of  evidence,  the  emerging  scenario  might  be  summarised  as

follows:

▪ Robotics and AI are both strongly related and still dependent on computer technologies;

▪ Both technologies show a considerable level of pervasiveness; however, only 12 industries account

for more than 80% of total patents both in robotics and AI;

▪ Although robotics is more concentrated in manufacturing, the two technologies appear rather similar

in terms of sectoral penetration, particularly when we move from the core to the more peripheral

technologies;  this  can be considered as  an evidence supporting the convergence of the  two key

technologies of the current automation wave.

As far as geographical belonging is concerned, we have already underlined the dominant role of the U.S.

in both the robotics and AI technologies. This is consistent with the leading U.S. role in the ICT paradigm

and with the revealed strong relationships between robotics, AI, and computer technologies (see above).

Since the three technological families are strictly interlinked, the U.S. seem to be favoured by their historical

leadership in the past decades and by the intrinsic synergies they can exploit.

Japan, the E.U. and some other Asian countries (particularly South Korea and China) lag behind, with

Japan playing a key role in robotics manufacturing.

In  summary,  whether  robotics  and AI technologies  will  prove to  be  revolutionary or  incremental  in

comparison with the ICT, in both cases the dominant role of the U.S. will be confirmed for the decades

ahead.

4.4. Productivity

In this section, we will discuss some preliminary evidence about the productivity performance exhibited

by companies filing for patent protection in robotics and AI technologies (see Section 3.3 for details about

the computation of average productivity levels).

Limiting our analysis to the leading sectors in both technologies and comparing the Table 9 and Table 10,

we can detect the following pieces of evidence:

▪ Computer  manufacturing companies  show similar  levels of  productivity  performance in the  two

technological fields (with AI leading), and in both cases productivity increases moving from the core

to the periphery.
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Table 9: Average sectoral productivity (in thousand USD) of robotics patents holders for each core-

periphery level.

▪ Machinery manufacturing firms exhibit  a better performance in the robotics technologies, and in

both cases they show a decreasing trend moving from CP1 to CP4.

▪ High-tech services display a higher average productivity in robotics (particularly in CP1); in robotics

productivity decreases moving to the periphery, while the reverse is true in the AI technological

field.

▪ In transportation manufacturing, productivity is higher in robotics and declines moving from CP1 to

CP4, while the opposite is true in AI technologies.
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Table 10: Average sectoral productivity (in thousand USD) of AI patents holders for each core-

periphery level.

On the whole, computer companies appear to have similar productivity performance in both technology

fields, with a comparative advantage by firms operating in the related technologies, rather than in the core

ones.

The other two manufacturing industries playing a relevant role in both technological fields are machinery

and transportation. In those two sectors, companies are getting more in terms of productivity within robotics,

and machinery firms are particularly productive in the core categories of both fields.
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Professional,  scientific and technical services are also more productive in robotics (particularly in the

core), while within AI their productivity increases moving to the periphery.

With the exception of computer companies, in the other three leading sectors robotics firms are more

productive than their AI counterparts, with outstanding performances in the robotics CP1 category. Taking

into account that  robotics  technologies  are  less young than AI ones,  this  seems to suggest  that  leading

companies should not to be afraid of being on the technological frontier. Conversely, operating in the AI

technologies appears more risky in terms of productivity performance (Solow’s paradox), and this emerges

particularly true within the CP1 category, at least for high-tech services and transportation. Finally, computer

manufacturing firms (which accompany the new technologies well rooted in the previous paradigm – see

previous subsections) are better performing in the related technologies where it is more likely to extract

value from technological scale and scope economies.

5. Conclusions

The outcomes and the analyses put forward in the previous sections can be summarised in providing some

answers to the three key questions laid down in the introduction (cf. Section 1).

First of all, can robotics and AI be considered the drivers of a proper technological revolution (what is

popularly named as Industry 4.0)? The results discussed in Section 4 cast some doubts about the radicalism

of the new knowledge base. Indeed, both computer manufacturing and software services still play a key role

in supporting the diffusion of robotics and AI, and this holds true for the core knowledge and the related

technologies as well (although hardware appears to be more crucial in the core for robotics, while this role is

played by software in AI). This is a clear evidence that the new knowledge base is strictly linked to (and

somehow dependent on) the previous technological paradigm. While the emergence of the “ICT paradigm”

as  a  successor  of  the  previous  “Fordist/mass-production  paradigm”  was  rightly  seen  as  a  revolution,

nowadays the discontinuity seems to be less pronounced, and the new knowledge base appears to be more as

a deepening of the current technological trajectory rather than a radical shift in paradigm. Consistently, the

U.S. leadership is confirmed and incontestable.

A second purpose of this work was to assess the nature and pervasiveness of the new knowledge base. As

discussed in Section 4 regarding both robotics and AI, twelve industries account for more than 80% of the

entire patenting activity (with manufacturing sectors playing a leading role in robotics and services emerging

as more crucial in AI). This means that the new knowledge base is characterised by a considerable (but not

impressively widespread) degree of pervasiveness, at least for the time being. 

Our third purpose of this work was to investigate whether robotics and AI can be considered as parts of

the same “technological paradigm” or instead as separate – albeit related – “general purpose technologies”.

As discussed in Section 4, ten out of the twelve leading sectors in robotics and AI patenting are in common
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to the two technologies. Moreover, from a geographical point of view, the main actors are the same and

ordered with the same ranking. These pieces of evidence support a view that considers robotics and AI

strictly related, converging (particularly among the related technologies) and jointly shaping, if not a new

paradigm (see above), a new knowledge base, which should be considered as a whole and not as consisting

of two separate GPTs. Although robotics is more centred on manufacturing while AI finds its roots in high-

tech  services,  the  two  technologies  resemble  an  interconnected  knowledge  constellation,  which  can  be

legitimately named “automation”.

A further question that  we raised in the Introduction was whether the new knowledge base involves

productivity-enhancing innovation. This is a difficult question, and Section 4.4 aimed at providing just some

preliminary  descriptive  evidence.  On  average,  a  better  productivity  performance  is  detectable  more  in

robotics than in AI, and more in the related technologies than within the core ones. These outcomes seem to

be consistent with the Solow’s paradox: newer technologies (AI) and innovation in the inner technological

cores might be characterised by inferior productivity outcomes, at least at the dawn of a new knowledge

base.

This study is of course affected by the limitation of being based on American patents: while the U.S.

market is essential for companies aiming to play some role in the robotics and AI technologies, the USPTO

database may still be biased against European and Asian actors, and therefore underestimate their role in the

emergence of the new knowledge base.

Further research should extend the analysis to European and Asian patent offices, and investigate in more

detail the relationship between the new knowledge base, productivity performance, and economic growth.
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Appendix

In this technical appendix we formally define the two proximity measures, namely cosine similarity and

Spearman rank correlation, used in the construction of Table 8 and discussed in Section 4.3. As extensions to

the underlying core-periphery levels are straightforward, we only explain their development in the overall

case.

Once a group of patents are matched to their corporate assignee(s) (cf. Section 3.3), it is possible to build

a rank of their corresponding sectoral industries, sorted by frequency of occurrence. Provided that there exist

99 NAICS codes at the 3-digit level, the ranking can be expressed as a vector in the 99-dimensional vector

space of natural  numbers.  Given two such vectors   corresponding to,  say,  the whole sets of

robotics and AI patents, respectively (or any of their core-periphery subsets), it is possible to define their

cosine similarity as the cosine of the angle between them, which is also equal to the inner product of the

same vectors normalised to unit length. Formally,

 ,

where   and   denote the components of vectors   and  , respectively, and   denotes the Euclidean

norm. Since rank vectors are non-negative, values of their cosine similarity are bound to the unit interval

.

In a similar fashion, it is possible to define the Spearman rank correlation as the usual Pearson correlation

coefficient between the rank vectors  and . Formally,

 .

Once these similarity measures are defined, it is possible to check whether the core-periphery architecture

devised  in  Section  3.2 displays  a  satisfactory  degree  of  inner  consistency.  Ideally,  given  the  defined

hierarchy, adjacent levels should bear more mutual similarity than non-adjacent ones. Accordingly, level

CP1 should be closer to level CP2 than to level CP3, and closer to level CP3 than to level CP4, and level

CP2 should be closer to CP3 than to CP4. Table 11 reports the cross-level proximity measures, both in terms

of cosine similarity and Spearman correlation, for both robotics and AI patents,  corroborating our core-

periphery structure by validating the aforementioned requirement.
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Table 11: Cross-level cosine similarity and Spearman rank correlation within the core-periphery

architecture for both robotics and AI patents.
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