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Abstract

This paper represents one of the first attempts at building a direct measure of occupational exposure to
robotic labour-saving technologies. After identifying robotic and labour-saving robotic patents retrieved by
Montobbio et al. (2022), the underlying 4-digit CPC definitions are employed in order to detect functions
and operations performed by technological artefacts which are more directed to substitute the labour input.
This measure allows to obtain fine-grained information on tasks and occupations according to their similar-
ity ranking. Occupational exposure by wage and employment dynamics in the United States is then studied,
complemented by investigating industry and geographical penetration rates.

JEL classification: O33, J24.

Keywords: Labour-Saving Technology, Natural Language Processes, Labour Markets, Technological Un-
employment.
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1 Introduction

Robots are coming! Such a statement has been the mantra in the last recent years, with the perception that

“This time is really different” (Brynjolfsson and McAfee, 2012, 2014; Ford, 2015). A large literature on the

effects of the new wave of automation on human labour blossomed since then. Indeed, the pervasiveness of

such new technological artefacts has been one of the most relevant aspects pushing for troublesome scenarios;

among the most radical, Frey and Osborne (2017) suggests that 47% of total US employment is associated

with occupations that are potentially automatable, a very much debated figure and downward revised by further

estimations (Arntz et al., 2016). The recent empirical evidence tends however to agree that low- and medium-

skilled workers, mainly executing routinised tasks, are particularly at risk (Acemoglu and Restrepo, 2018, 2019,

2020a; Autor and Dorn, 2013; Frey and Osborne, 2017). At the same time, while some papers find a negative

impact on employment and wages, systematic evidence on the labour market impact of robotic technologies

remains elusive (Calvino and Virgillito, 2018; Mondolo, 2021).

The unfolding of robotic impact on labour markets, in terms of occupations and wages, has been mainly

estimated in the literature by two alternate methods. The first method is based on experts judgement on a subset

of occupations, expanded over the entire occupational structure by a classifier-system algorithm (e.g. Frey and

Osborne, 2017; Nedelkoska and Quintini, 2018). The second approach has been leveraging on robotic adoption

at the sectoral level, relying on the International Federation of Robotics dataset and looking at the impact on

local labour markets (e.g. Acemoglu and Restrepo, 2018, 2019, 2020a).

Currently, a direct measure of human substitutability and occupational exposure, ideally based on the effect-

ive functions and operations executed by labour saving (LS) technologies, is still absent (see Section 2). We

contribute to this literature and provide a direct link between human tasks and machine functions and, as a

result, quantify occupational exposures to LS innovation in robotics. In doing so, we build a new measure of

similarity between the textual description of the tasks performed by an occupation and the functions performed

by observed robotic LS innovations.

First, we leverage on the identification of robotic LS technologies by means of natural language processing on

robotic patents (Montobbio et al., 2022) and we perform a task-based textual match between the descriptions of

technological classifications (so called CPC codes) attributed to robotic LS patents and the O*NET dictionary of

occupations. The match exploits a cosine-similarity matrix that measures the proximity of the two dictionaries

of words. The first result of our study is therefore the construction of a direct measure of similarity between a

dictionary of technological LS functions and a dictionary of human-based functions. This is a methodological

advancement to measure proximity between humans and machines, and allows to recover a direct measure of

exposure.

In a second step, we aggregate tasks into occupations and recover a measure of exposure of each task and

related occupations to robotic LS technologies. We find that the distribution of the similarity scores across

tasks and occupations is very skewed, with high similarity events being quite rare, given the underlying het-

erogeneity between the two text corpora. Nonetheless, restricting the analysis to the top-decile of the simil-

arity distribution, around 8.6% of the overall US employed workforce (approximately 12.6 million jobs) is at

risk of substitutability. The most affected occupations are “Material Moving Workers”, “Vehicle and Mobile

Equipment Mechanics, Installers, and Repairers”, “Other Production Occupations”. Logistics and standardised

service activities are those most exposed to LS technologies, in line with the evidence that among top-owners

of LS patents, Amazon and UPS stand out (Montobbio et al., 2022).

To validate our methodology, we perform a robustness analysis by replicating the text similarity exercise

between robotic LS patents’ full-texts and the same O*NET task descriptions. The patent-task match, when
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LS functions are not taken into consideration (through CPC codes descriptions, see above), correctly pinpoints

those occupations developing new innovative robotic technologies and their systems of adoption (e.g. Robotics

Engineers; Robotics Technicians). This result reinforces the goodness of our procedure because it shows that it

tells apart substitutability detected via more prevalent functions in LS patents from complementarity detected

via the match with the entire patent text.

Then, we link the similarity measure to the actual US labour market in terms of occupations and wages.

We match our data to the Occupational Employment and Wage Statistics (OEWS) from US Bureau of Labor

Statistics for 8-digit SOC occupations (1999-2019). LOWESS estimates present a monotonically negative

relationship between occupational exposure and both (i) wage level and growth, and (ii) employment level and

growth. Remarkably, the expected U-shaped pattern (Acemoglu and Autor, 2011) is not recovered, neither in

wages, nor in occupational growth. In other words, cutting-edge robotic innovative efforts look to be directed

towards the weakest and cheapest segment of the labour market and not versus the middle one. Finally, the

geographical breakdown across US states shows that the Rust Belt area, the region surrounding the Great

Lakes experiencing industrial decline, and the South-East area, with higher prevalence of African-American

communities, record the largest employment shares of occupations that are particularly exposed to robotic LS

technologies.

The remainder of the paper is organised as follows: Section 2 discusses the literature and evidence available;

Section 3 presents the datasets used and Section 4 the adopted methodology; Section 5 shows and discusses our

results, presenting task and occupational exposure, labour market, industry and geographical penetration rates.

Section 6 concludes the paper.

2 Literature review

As briefly mentioned in the introduction, the unfolding of robotic applications on labour markets, in terms of

occupations and wages, has been mainly estimated in the literature by two alternate methods. The first method

is the one initiated by Frey and Osborne (2017), which constructed an automation probability starting from

experts judgement on a subset of 70 occupations, and then expanding the evaluation over the entire occupational

structure by means of a classifier-system algorithm. Experts were asked about the probability of automating

some particular human functions. This approach has been then employed in Nedelkoska and Quintini (2018)

to study 32 OECD countries using the PIAAC dataset and downward revised by Arntz et al. (2016).

The second approach has been leveraging on robotic adoption at the sectoral level, relying on the Interna-

tional Federation of Robotics dataset and looking at the impact on local labour markets. This is the route taken

by Acemoglu and Restrepo (2018, 2019, 2020a) which generally predict that a higher number of robots per

employee decreases wages and occupations for low-wage workers. However, cross-country studies at the in-

dustry level do find a positive impact of robotics adoption on labour productivity, and less clear-cut evidence on

employment reduction. For instance, while Chiacchio et al. (2018) find results very consistent with Acemoglu

and Restrepo (2020a), both Graetz and Michaels (2018) and Dauth et al. (2017) conclude that robots do not

significantly reduce total employment, although they do reduce the low-skilled workers’ employment share,

particularly in manufacturing.

Shifting to studies using firm-level data, results are conflicting. Domini et al. (2020), using robotic adoption

or, alternatively, imported capital equipment, does not detect labour expulsion, but rather employment growth.

Interestingly enough, in some studies the positive employment impact at the firm level appears entirely due to

the so-called “business stealing effect” – i.e. innovative adopters gain market shares at the expense of non-
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innovators (Dosi and Mohnen, 2019) – since negative employment impacts emerge once non-adopters and

sectoral aggregates are taken into account (see Acemoglu et al., 2020b; Koch et al., 2021).

Other studies, using longitudinal data and a more comprehensive measure of embodied technological change

(which includes robots) do find a labour-saving effect of new technologies (see Barbieri et al., 2018; Pellegrino

et al., 2019). Such contradictory results, out of different levels of aggregations, are not new to scholars in

the economics of innovation (Clark et al., 1981; Freeman and Soete, 1987) which identify alternate effects

of technical change on employment via a series of compensation mechanisms balancing the initial direct LS

effects of mechanisation and automation (Dosi et al., 2021; Piva and Vivarelli, 2018; Simonetti et al., 2000; Van

Roy et al., 2018; Vivarelli, 1995, 2015). Indeed, the level of analysis, whether sectoral or establishment/firm,

produces different signs on the underlying relationship (Calvino and Virgillito, 2018).

More recent papers have focused on artificial intelligence, the purportedly newcomer disruptive technology,

often blamed to have a strong LS impact on white-collar jobs, more related to service activities. Felten et

al. (2021), which refines the measure proposed in Felten et al. (2018), links the Electronic Frontier Founda-

tion dataset (EFF), within the AI Progress Measurement initiative, with O*NET (abilities). A direct matching

between 10 AI selected scopes of application (abstract strategy games, real-time video games, image recog-

nition, visual question answering, image generation, reading comprehension, language modelling, translation,

and speech recognition) and human abilities is conducted. The matching is performed by crowdsourcing a

questionnaire to gig workers at Amazon’s Mechanical Turk (mTurk) web service. To 2,000 mTurkers residing

in the United States the questions administered ask whether, for each of the 52 abilities listed in the O*NET,

they believe that the AI application is related to or could be used for. The study reports higher AI exposure for

white-collar workers. However, the measure is silent about any direct replacement or complementarity effect.

Webb (2020) proposes a direct measure of exposure via co-occurrence of verb-noun pairs in the title of

AI patents and O*NET tasks. However, titles of patents are hardly informative of the underlying functions

executed by the technological artefact and restricting to verb-noun pairs has high likelihood of false positives.

The measure of exposure is not constructed in terms of overall similarity of the two corpora but rather in

terms of the relative frequency of occurrence of the elicited pair in AI titles versus the remaining titles of

non-AI patents. Moreover, the proposed methodology does not allow to distinguish labour-saving from labour-

augmenting technologies.

Acemoglu et al. (2020a) look at AI exposed establishments and their job posts using Burning Glass Techno-

logies data, which provide wide coverage of firm-level online job postings, linked to SOC occupational codes.

In order to account for the degree of firm-level AI exposure, three alternative measures are employed, namely

the ones put forth by Brynjolfsson et al. (2018), Felten et al. (2021) and Webb (2020). Not surprisingly, con-

sidering the still relatively niche adoption, no clear effects at the industry and occupational level are detected,

while recomposition toward AI-intensive jobs is spotted. In addition, they do not find evidence of any direct

complementarity between AI job posts and non-AI jobs, hinting therefore at a prevalent substitution effect and

workforce recomposition, rather than a productivity-enhancing effect of AI adoption.

The closest analysis to our own is the one performed in Kogan et al. (2021) which constructs a text-similarity

measure between the corpus of so called breakthrough innovations, according to the methodology devised

in Kelly et al. (2018), and the fourth edition of the Dictionary of Occupation Titles (DOT). The measure is

constructed to allow for time variability by keeping constant the textual content similarity but summing it for

each defined breakthrough innovation at each time step, exploiting patent information over the period 1850-

2010. Breakthrough innovations, identified as the distance between backward and forward similarity of each

filed patent compared to the existing stock of patents, are by no means ex-ante defined as being in nature

labour-saving ones. In addition, the way the measure is built reflects more the dynamics of breakthrough
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innovations according to their emergence along subsequent technological revolutions, quite akin to the findings

in Staccioli and Virgillito (2021), rather than the actual penetration of these technologies in the labour market.

Therefore, what the measure captures is more the clustering of technologies under mechanisation in the first

period of analysis, followed by automation and the ICT phase. They find that most exposed occupations lost in

terms of wages and employment level, and that over time white-collar workers became relatively more exposed

compared to blue-collar ones. However, it is not clear whether the results are reflecting more long-run dynamics

in technological and structural change rather than actual similarity between patents and occupations. Indeed,

the within patent-occupation text-similarity is kept constant over time.

The Kogan et al. (2021)’s measure has been applied in Autor et al. (2020) interested in devising the entry of

new work titles along the historical records of the so called Census Alphabetical Index of Occupations (CAI), an

index listing all new work-title entries. The authors define complementary-technologies those patents matched

with the CAI text (new job titles), and labour-saving technologies the ones linked to the DOT text (existing job

titles). The paper documents the increasing entry of white-collar middle-paid occupations in the period 1940-

1980, while since 1980 new jobs have been concentrating in both high-educated and low-educated services.

Another application of the Kogan et al. (2021)’s measure has been done with reference to I4.0 patents in Meindl

et al. (2021), matching in this case the patent text corpus with the “detailed work activities” (DWAs) section of

the O*NET. According to their results, financial and occupational professions are more exposed to I4.0 patents

compared to non I4.0 patents.

3 Data description

The first dataset used in this study is represented by the O*NET, a primary source of occupational information,

largely employed in the literature studying the actual content of the workplace activities (Handel, 2016). It

provides details for the US occupational structure at the 8-digit level. The O*NET content model allows to

gather information on a series of attributes of the world of work, namely executed tasks, task ratings (in terms

of importance, relevance, and frequency), abilities, education, training and experience, knowledge, skills, work

activities, work context, work styles.

Among the many available descriptors, the detailed Task Statements descriptor contains specific definitions

of the tasks performed by each 8-digit occupation, while the Task Statement Ratings allows to gather inform-

ation on the actual importance, relevance and frequency of each task, being each occupation composed by a

multiplicity of tasks, also variable across occupations. The definitions of Core or Supplemental tasks synthesise

the numerical rating scores, as detailed below.

Take as an example the occupation 19-3011.00 defining “Economists”. The latter perform 11 core tasks,

some of them more specific to the occupation in itself (e.g. task 7537: “Develop economic guidelines and

standards and prepare points of view used in forecasting trends and formulating economic policy”); some

other tasks are less occupational specific (e.g. task 7542: “Supervise research projects and students’ study

projects”); some others considered to be supplemental tasks (e.g. task 20051: “Provide litigation support, such

as writing reports for expert testimony or testifying as an expert witness”). Such type of granular information

will be the basis to construct the dictionary of words defining human functions.

The second dataset employed is the Occupational Employment and Wage Statistics (OEWS) retrieved from

the US Bureau of Labor Statistics. Such dataset allows to analyse the evolution of the employment dynamics,

excluding self-employed, and it is directly linkable to the O*NET dataset via the SOC occupational codes at

full-digit. In addition the dataset allows to recover information on the average and median nominal wages for

each 8-digit SOC category.
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Fig. 1 is a snapshot of the US occupational structure in 2019, showing occupational categories aggregated

at 2-digit levels (22 codes, excluding military specific occupations) (top panel) and the evolution over the last

two decades in terms of employment shares (bottom panel). In 2019, the largest occupational share (14%) is

populated by “Office and Administrative Support” workers; “Healthcare Practitioners” and “Technical, Busi-

ness and Financial Operations, Management” both stand at 6%, while “Life, Physical, and Social Science”

are less than 1%. The snapshot tells about the remarkable de-industrialisation of the US economy, with preval-

ence of administrative operations but also of service activities related to the satisfaction of social needs, such

as “Food Preparation and Serving Related”, “Transportation and Material Moving”, while “Production” is

relegated to the fifth position with less than 7% of the US workforce. The bottom panel presents the change

in employment shares: the most growing occupation is “Healthcare Support” with almost a 100% increase

as employment share, followed by “Business and Financial Operators”, “Computer and Mathematical” oc-

cupations. In general, a negative relationship between employment share growth in the last twenty years and

employment share levels in 2019 is detectable, with those occupations recording the highest shares also exper-

iencing strong contraction, like “Office and Administrative Support” or contraction, like “Sales and Related”.

“Production” workers record the largest decline in employment share (-4%), a further confirmation of the

accelerated de-industrialisation process in the US.

Fig. 2 presents the corresponding information for nominal median wages by occupational categories at the

2-digit level. While an evident hierarchical distribution of median wages emerges (top panel), with managerial

median wages five times higher than food preparation activities, the bottom panel presents the demeaned dy-

namics of median nominal wage growth. Albeit all occupations have experienced a generalised nominal wage

growth, with a minimum 50% increase, top-growing occupations in terms of remuneration have been both

top-paid and bottom-paid ones according to the 2019 wage level: take the opposite dynamics of managerial

vs. legal activities, in top remuneration tiers, that in the first case experienced an almost doubling remuneration

when compared to 1999 levels, and a 20% increase more than the average, while in the second case recorded

the lowest median wage increase with respect to average one. Regarding the lower tiers, “Food Preparation

and Serving Related” activities, the least-paid occupations in 2019, have likely experienced a wage growth over

twenty years and a 10% wage increase higher than the average, but still maintain their relative position in the

wage hierarchy. Such crystallised hierarchical structure informs about a more rigid than expected US labour

market, wherein notwithstanding occupational changes in relative employment shares, the wage distribution

across occupational categories is quite sticky over twenty years.

The third employed dataset is represented by the universe of USPTO patent applications in robotic techno-

logies in the period 2009-2018, the last recent phase recording a steep increase in patenting activity in such

field (cf. Fig. 3). As we shall describe below, both patent text corpus and the technological fields are taken into

account (CPC classification at 4-digit level).

4 Methodology

In the present section, we develop the necessary methodology to build a new measure of similarity between the

textual description of the tasks performed by an occupation and the functions performed by LS innovations. In

particular, we leverage on the text similarity between the definitions of CPC (Cooperative Patent Classification)

codes and the descriptions of tasks contained in the O*NET dictionary of occupations. Before delving into the

methodological details of the text similarity measure that we devise (Section 4.2), it is useful to first summarise

the relevant workflow of Montobbio et al. (2022) which brought about the set of LS patents which constitutes

the starting point of the present analysis (Section 4.1). In Section 4.3 we explain how we map our measure
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Figure 1: Employment shares in 2019 and share changes (1999-2019) for 2-digit SOC occupations.
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Figure 3: Number of USPTO robotic patents per year. Source: own elaboration based on Montobbio et al.
(2022, Fig. 2).
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Figure 4: Flowchart of our methodology.

of exposure from the task level to the occupation level. Our methodological workflow is synthesised by the

flowchart in Fig. 4.

4.1 Discovery of labour-saving patents

The contribution of Montobbio et al. (2022) in the discovery of robotic LS patents unfolds along three meth-

odological steps. First, patents which either directly or indirectly relate to robotics technology are singled out.

Second, a procedure is implemented in order to detect the underlying LS heuristics and pinpoint the set of

explicitly LS patents. Finally, most relevant CPCs in robotic LS patents vis-à-vis sheer robotic patents are

identified. A brief technical summary of the relevant workflow is presented in Appendix A.

4.2 Measuring exposure with text similarity

Within the scope of the present analysis, the technological content of LS patents is proxied by the official

definitions of the relevant CPC codes. Patent publications are each assigned one or more classification terms

indicating the subject to which the invention relates. The CPC system (of which we use the version 2019.08)

consists of 250,000+ distinct codes, organised according to a multi-level hierarchical structure. For the purpose

of striking a fair balance between density of information and granularity, we focus on 4-digit codes, of which

671 are present.

In order to match the technological content of LS patents to occupations, we rely on the O*NET database (of

which we use version 25.1) which contains a thorough description of 19,231 distinct tasks, further aggregated

into 923 8-digit SOC2018 occupations according to a weighing scheme detailed in Section 4.3. In the following,

we aim at measuring the pairwise text similarity of the 671 CPC codes’ definitions and the 19,231 tasks’

descriptions.

From the methodological point of view, we adopt the so-called bag-of-words model and we measure textual

proximity between CPC definitions and task descriptions by means of cosine similarity (see e.g. Aggarwal,

2018). The bag-of-words model entails the representation of text as a multiset of underlying words, which dis-

regards any grammar structure and the order in which terms appear, but keeps their multiplicity. The underlying
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assumption is that CPC-task pairs whose text consists of the very same words, possibly repeatedly, are more

associated to one another than pairs which share few common words, or their frequency is negligible.

Each piece of text, either a CPC definition or a task description, first undergoes a preprocessing step in

which words are stemmed to their morphological root and so-called stop-words, i.e. tokens that are overly

common in English (such as ‘a’, ‘the’, ‘if’. . . ) and do not convey any useful information to our analysis,

are removed. Each text is then transformed into a vector of frequencies of the underlying words. The number of

vector components reflects the common dictionary of terms across the two whole corpora. In other words, all

vectors belong to the same vector space, whose dimension equals the number of distinct words in the common

dictionary. The similarity of each CPC-task pair is then quantified as the cosine of the angle between the two

underlying vectors.

As opposed to simply counting the occurrences of each word in each body of text, we adopt the custom-

ary tf-idf (term frequency–inverse document frequency) term-weighting scheme for computing the relevant

frequencies, according to the following definition.

Definition 1. Let D be a collection of documents d, each composed of an ensemble of terms t from a dictionary

T . The tf-idf measure of term t appearing in document d is defined as follows:

tf-idf(t,d,D) := tf(t,d) · idf(t,D) ∀ d ∈ D, ∀ t ∈ T ,

tf(t,d) := 1d(t) =

1 if t ∈ d

0 otherwise
∀ d ∈ D, ∀ t ∈ T ,

idf(t,D) := log
( |D|
|{d ∈ D : t ∈ d}|

)
∀ t ∈ T .

The associated |D|× |T | document term matrix DD is an array of tf-idf measures for all documents d in the

generic collection D and for all terms t in the relevant dictionary T . In other words,

DD
d,t = tf-idf(t,d,D), ∀ d ∈ D, ∀ t ∈ T .

The tf-idf statistic reflects how important a specific term is to a certain document, compared to other doc-

uments in the collection. The tf-idf value increases proportionally to the number of times a word appears in

the document and is offset by the number of documents in the corpus which mention that word. This helps to

adjust for the fact that some words appear more frequently in general.

Extending the reasoning to the corpus level, we construct two document-term matrices, DCPC and DTASK ,

whose rows contain the aforementioned tf-idf frequency vectors, for each CPC code definition and each task

description, respectively. Both matrices are based on the dictionary of terms from CPC definitions, namely the

smaller between the two collections, which consists of 2309 terms. Therefore DCPC has dimension 671×2309

and DTASK has dimension 19231×2309.

Finally, we construct the cosine similarity matrix S containing the cosine similarity score between all pairs

of row vectors from the document-term matrices DCPC and DTASK according to the following definition.

Definition 2. Given two vectors X ,Y ∈ R|T |, their cosine similarity is defined as the cosine of the angle

between them, which is also equal to the inner product of the same vectors normalised to unit length, as
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OCCUPATION 11-1011.00 · · · 53-7121.00

CPC
TASK

8823 8824 · · · · · · · · · 12809 12810

A01B cos(A01B,8823) cos(A01B,8824) · · · · · · · · · cos(A01B,12809) cos(A01B,12810)

A01D cos(A01D,8823) cos(A01D,8824) · · · · · · · · · cos(A01D,12809) cos(A01D,12810)

· · · · · · · · · · · · · · · · · · · · · · · ·
H05H cos(H05H,8823) cos(H05H,8824) · · · · · · · · · cos(H05H,12809) cos(H05H,12810)

H05K cos(H05K,8823) cos(H05K,8824) · · · · · · · · · cos(H05K,12809) cos(H05K,12810)

Table 1: Architecture of the cosine similarity matrix S .

follows:

cos(X ,Y ) :=
X ·Y
‖X‖ ‖Y‖ =

|T |
∑

t=1
xtyt√

|T |
∑

t=1
x2

t

√
|T |
∑

t=1
y2

t

, (♣)

where xt and yt denote the components of vectors X and Y , respectively, and ‖·‖ denotes the Euclidean norm.

Since row vectors of document-term matrices are non-negative valued, their cosine similarity is bounded by

the unit interval, i.e. cos(X ,Y )∈ [0,1]. Moreover, when term frequency is measured by tf-idf, the normalisation

denominator in eq. (♣) is redundant and cos(X ,Y ) ≡ X ·Y . Therefore, given document-term matrices DCPC

and DTASK , and extending the cosine similarity computation to the matrix level,

S = cos
(
DCPC, DTASK)≡DCPC (DTASK)′ .

The cosine similarity matrix S has dimension 671× 19231, one row for each CPC code and one column

for each task, and each cell contains the similarity score of the underlying CPC-task pair. In total, there exist

12,904,001 such pairs. The architecture of matrix S is represented in Table 1, where the task-occupation

mapping, defined in the O*NET database itself, is also highlighted.

In order to make the cosine similarity matrix reflect the technological structure of the LS patents found by

Montobbio et al. (2022), we multiply each row of S by the frequency of the associated CPC code in the

whole set of LS patents. When a patent is assigned multiple CPC codes with the same 4-digit representation,

each is taken into account separately. In other words, we filter the cosine similarity matrix by the distribution

of technological codes across LS patents. In this way, we weigh the contribution of each CPC code to the

occupational exposure of a certain task proportionately with how widespread the code appears in LS patents

(cf. Table 5). Finally, in order to rank O*NET tasks by similarity score with the ensemble of CPC codes of

LS patents, we compute column sums of matrix S across all CPC codes (rows). The result is a task similarity

vector T S containing a unique measure of aggregate similarity to each task. Given a column vector C of

frequencies of the 671 CPC codes among LS patents, vector T S is defined simply as

T S = S ′C

where the usual matrix multiplication is intended. A ranking of tasks by (aggregate) similarity score is later

presented in Table 2, where values have been rescaled between 0 and 1.
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4.3 From tasks to occupations

So far we have measured the textual proximity of LS patents to each O*NET task, mediated by CPC codes,

the result of which is stored in the task similarity vector T S (cf. Section 4.2). In order to draw conclusions

on the effect of LS technologies upon employment, we need to further aggregate the similarity measure at the

occupation level.

The O*NET database defines occupations as a collection of underlying tasks, distinguishing between core

and supplemental tasks. This classification takes into account three distinct measures, namely importance,

relevance, and frequency. In order to aggregate a task similarity measure to the relevant occupation in a sensible

way, it is crucial to understand how the core/supplemental distinction is devised in the first place. Importance

spans a range between 1 and 5, while relevance and frequency are both represented as percentages. Core tasks

are deemed critical to the occupation; the criteria a task to be classified as core require that relevance ≥ 67%

and importance ≥ 3.0. Supplemental tasks are deemed less relevant and/or important to the occupation; two

sets of tasks are included in this category, namely tasks rated≥ 67% on relevance but < 3.0 on importance, and

tasks rated < 67% on relevance, regardless of importance.

Taking the O*NET definition of core and supplemental tasks into account, we impute task similarity to

occupations with the following weights:

core :
2/3

# tasks in the occupation

supplemental :
1/3

# tasks in the occupation

It is worth noticing that occupations differ in the number of constituent tasks. This warrants the need of rescaling

the similarity contribution of each task accordingly, hence the denominator in the aforementioned weighting

scheme. A ranking of occupations by (aggregate) similarity score is later presented in Table 3, where values

have been rescaled between 0 and 1.

5 Results

In the following, we shall display our results. This section is organised as follows: Section 5.1 presents the

distribution of the text similarity measure across tasks and occupations. Section 5.2, exploiting the match with

the OEWS dataset, allows to understand the degree of penetration of technological exposure in terms of struc-

ture of the labour market, looking at employment and wages, and industry composition. Finally, Section 5.3

presents the geographical distribution of LS threats.

5.1 Task and occupational exposure

Table 2 shows the top-fifteen tasks in terms of the similarity score. Notably, the tasks presenting a higher

similarity score regard human functions related to the handling and moving of objects, materials, products,

with the first top-three tasks being (i) “Load materials and products into machines and equipment, or onto

conveyors, using hand tools and moving devices”; (ii) “Move levers or controls that operate lifting devices,

such as forklifts, lift beams with swivel-hooks, hoists, or elevating platforms, to load, unload, transport, or

stack material”; (iii) “Position lifting devices under, over, or around loaded pallets, skids, or boxes and secure

material or products for transport to designated areas”. Such types of tasks are more prevalent in the logistics

industry inasmuch they require activities like preparing boxes, packaging, sorting, and routing items.
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Figure 5: Distribution of cosine similarity with respect to tasks.

Fig. 5 presents the distribution of the similarity measure across the entire set of 19,231 O*NET tasks, ac-

cording to the Task Statements file. Given the wide spectrum of the covered tasks by the O*NET, it is not

surprising to obtain an extremely skewed distribution, with events of high similarity being extremely rare. In-

deed, cosine similarity values beyond 0.8 apply to a tiny fraction of tasks and at this stage seem to constitute

more the exception rather than the norm. However, such an extreme value distribution is quite comforting in

terms of reliability of the measure, the underlying information being quite sparse, inasmuch the probability of

false positives is low and the overall accuracy of the measure high. Nonetheless, one might consider irrelevant

or less informative the task domain, given that occupations are defined by not as a single, but rather as a set

of distinct tasks. Most exposed tasks therefore might result to be largely not core in many occupations, in line

with the evidence provided in Fig. 1, telling a picture of a labour market where administrative, office, and sales

occupations represent the largest shares of employed workers.

However, such a handful of tasks, when aggregated into occupations, happens to be quite revealing of the

direction of robotic LS efforts. Table 3 shows the corresponding top-twenty occupations most exposed to sub-

stitution exerted by some form of automation or intelligent automation, obtained by aggregating tasks into

occupations, as described in Section 4.3. Although the distribution by tasks is quite skewed, the very same in-

formation, once aggregated at the SOC level, allows the detection of a series of occupations at a strong exposure

risk. Most exposed occupations are “Industrial Truck and Tractor Operators”; “Maintenance Workers, Ma-

chinery”; “Machine Feeders and Offbearers”; “Packers and Packagers, Hand”. Such occupations are clearly

among the ones reporting the higher incidence of tasks with higher similarity scores. Browsing Table 3, it

emerges a recurrent pattern of some specific macro-occupational groups, as evident by the presence of the 2-

digit occupations “Transportation and Material Moving” (53), “Installation, Maintenance, and Repair” (49),

“Packaging and Filling Machine Operators and Tenders” (51), all recurrently ranking in the top-twenty 8-digit

most exposed occupations.

Fig. 6 presents the histogram of occupations by similarity. Albeit less skewed than the task histogram, it

confirms that high similarity is a rare event, affecting only a relatively small fraction of the entire occupational

structure. The top-twenty occupations with the highest similarity scores are indeed very few, and the mode of

the distribution stands in the medium range of similarity, between 0.2 and 0.4. The area on the right of the

orange bar identifies the range of the top-twenty most exposed occupations. But, what does it happen if we

move the bar to the left?

Fig. 7 (left-panel) plots the quantile function of the similarity distribution in Fig. 6. Given the highly skewed
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Figure 6: Distribution of cosine similarity with respect to 8-digit occupations.
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Figure 7: Quantile function of the similarity distribution for 8-digit occupations (left) and number of replaceable
employees by quantile (right).

pattern, up to the eighth decile of the similarity distribution there is a low range of variation, reaching the value

of 0.4. Higher cosine similarity values, in the range [0.6, 1] occur only after the inflection point located around

the ninth decile. This non linear-relationship informs about the existence of a threshold level beyond which

exposure dramatically increases while below such point, exposure is tamed. Such threshold behaviour has a

twofold implication: from the one hand, high-exposure risk to substitutability affects a relatively tiny fraction

of the entire occupational range, while from the other hand, whenever the risk is high, it swiftly accelerates,

potentially leading to quite probable substitutability events.

Fig. 7 (right-panel), by using the O*NET-OEWS match, allows to recover the effective number of employed

workers per each occupation at risk of substitutability. As expected, the number of replaceable employees

dramatically drops when the similarity value increases: the top-decile of the similarity distribution, on the far-

right, affects 8.6% of the employed working population, which amounts to approximately 12.6 million workers.

Notably, and differently from other extant measures, our approach allows to identify not a point value but rather

an interval of exposure which enables to understand how labour-substitutability unevenly hampers the labour

force.
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Rank Code Description CS

1 14587 Load materials and products into machines and equipment, or onto conveyors, using hand tools and moving
devices

1.0

2 3202 Move levers or controls that operate lifting devices, such as forklifts, lift beams with swivel-hooks, hoists, or
elevating platforms, to load, unload, transport, or stack material

0.96

3 3203 Position lifting devices under, over, or around loaded pallets, skids, or boxes and secure material or products
for transport to designated areas

0.9

4 17928 Lift and move loads, using cranes, hoists, and rigging, to install or repair hydroelectric system equipment or
infrastructure

0.89

5 15266 Manually or mechanically load or unload materials from pallets, skids, platforms, cars, lifting devices, or other
transport vehicles

0.88

6 14584 Remove materials and products from machines and equipment, and place them in boxes, trucks or conveyors,
using hand tools and moving devices

0.86

7 11839 Transport machine parts, tools, equipment, and other material between work areas and storage, using cranes,
hoists, or dollies

0.85

8 3217 Load materials and products into package processing equipment 0.85
9 12805 Operate conveyors and equipment to transfer grain or other materials from transportation vehicles 0.85

10 12323 Communicate with systems operators to regulate and coordinate line voltages and transmission loads and fre-
quencies

0.84

11 12798 Operate industrial trucks, tractors, loaders, and other equipment to transport materials to and from transportation
vehicles and loading docks, and to store and retrieve materials in warehouses

0.83

12 20387 Optimize photonic process parameters by making prototype or production devices 0.83
13 17496 Provide information about community health and social resources 0.83
14 13705 Unload materials, devices, and machine parts, using hand tools 0.8
15 10757 Load, unload, or adjust materials or products on conveyors by hand, by using lifts, hoists, and scoops, or by

opening gates, chutes, or hoppers
0.8

Table 2: Top 15 tasks by (rescaled) similarity.
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Rank Code Title CS

1 53-7051.00 Industrial Truck and Tractor Operators 1.0
2 49-9043.00 Maintenance Workers, Machinery 0.97
3 53-7063.00 Machine Feeders and Offbearers 0.94
4 53-7064.00 Packers and Packagers, Hand 0.91
5 49-2091.00 Avionics Technicians 0.87
6 51-9111.00 Packaging and Filling Machine Operators and Tenders 0.81
7 49-3041.00 Farm Equipment Mechanics and Service Technicians 0.81
8 49-3092.00 Recreational Vehicle Service Technicians 0.78
9 49-3042.00 Mobile Heavy Equipment Mechanics, Except Engines 0.77

10 47-2111.00 Electricians 0.76
11 49-9098.00 Helpers–Installation, Maintenance, and Repair Workers 0.75
12 49-9041.00 Industrial Machinery Mechanics 0.75
13 51-9082.00 Medical Appliance Technicians 0.75
14 47-3011.00 Helpers–Brickmasons, Blockmasons, Stonemasons, and Tile and Marble Setters 0.75
15 51-9191.00 Adhesive Bonding Machine Operators and Tenders 0.75
16 51-9023.00 Mixing and Blending Machine Setters, Operators, and Tenders 0.74
17 13-1032.00 Insurance Appraisers, Auto Damage 0.73
18 51-4111.00 Tool and Die Makers 0.73
19 49-9081.00 Wind Turbine Service Technicians 0.72
20 51-8013.04 Hydroelectric Plant Technicians 0.72

Table 3: Top 20 occupations by (rescaled) similarity.
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5.2 Industry and labour market penetration

Occupations are distributed across industries, and therefore identifying the most and least affected ones is cru-

cial for any potential policy intervention. Table 4 shows the relevance of occupational exposure to robotic LS

technologies in each NAICS 2-digit sector by weighting the cosine similarity by percentage of occupation mem-

bership to each sector. The measure, which takes value 1 for the most and value 0 for the least exposed industry

(in relative terms), depicts the manufacturing sector as the most exposed to automation. Not only manufactur-

ing is leading the ranking, but all the other sectors follow after a dramatic drop. Indeed, the industry ranking

reflects the aggregation of scattered occupations entailing manual abilities and handling, as shown above, which

however are largely concentrated in manufacturing. Moreover, manufacturing as an industry collects all those

activities related to logistics and warehouse which are still currently under the parent manufacturing companies,

while third-party logistics, doing logistics activities as a service, rank seventh across industries.

On the whole, robotic LS technologies will further deepen the long-run ongoing de-industrialisation of the

US economy (cf. Section 3). However it is remarkable the high ranking of healthcare, social assistance and

education, the most human-oriented industries. Such a result is a warning, already detected in Montobbio

et al. (2022), about the direction of cutting-edge innovative efforts diverted towards industries where, at least

in principle, the human-based component should be preferable. Similarly, public administration ranks in the

top-five most exposed sectors to substitution and this signals the ability of our measure to comprise not only

automation per se but also advanced digitalisation processes entailed by administrative services. Notably,

“Management of Companies and Enterprises”, although recording a contraction in occupational employment

shares in the last twenty years, presents the lowest similarity score.

The last battery of results is shown in Figs. 8 and 9, presenting a non-parametric LOWESS estimation (loc-

ally weighted scatterplot smoothing), as in Acemoglu and Autor (2011) and Webb (2020), of the relationship

between the cosine similarity measure, employment, and wages both in level in 2019 and in growth rate in 1999-

2019. A neat negative, almost monotonically decreasing relationship emerges in all four considered variables.

Starting with employment levels, LOWESS estimates confirm the previous evidence, showing low occurrence

of high similarity measures for the majority of employees. However, such negative relationship also emerges

when the similarity measure is compared against employment growth, revealing that shrinking occupations

in the last two decades have been also those most exposed to robotic LS technologies. Such evidence con-

firms that, among other potential sources determining the displacement of some occupations, substitutionary

technical change related to automation might have played a role.

Towards which labour force segments are such innovative efforts directed? According to the LOWESS

estimates, the relationship in terms of wage level and growth, again almost monotonically decreasing, signals

that the most exposed occupations to LS technologies are the least-paid and recording the lowest wage growth.

In other words, robotic LS technologies and their underlying patents are more directed towards substituting the

cheapest segments of the labour force.

Anecdotal evidence suggests a high incidence of highly automatised production processes in already quite

standardised workplaces (Ford, 2015); related, a large majority of case studies on Industry 4.0 questions the re-

volutionary content of the latest technological wave and highlights the patterns of continuity with ICT (Cetrulo

and Nuvolari, 2019; Cirillo et al., 2021; Dosi and Virgillito, 2019; Krzywdzinski, 2020; Santarelli et al., 2021).

High innovative efforts to automate cheap labour are what Acemoglu and Restrepo (2020b) define “so-so”

technologies. Far from judging labour from its remuneration, it is evident from our analysis that gains from

automation in terms of productivity are searched in the knowledge and technological space allowing for incre-

mental upgrading of already automated processes and substituting the labour force therein involved.
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Rank NAICS CS

1 Manufacturing 1.0
2 Health care and social assistance 0.39
3 Education services 0.33
4 Construction 0.30
5 Public administration 0.21
6 Other services, except public administration 0.18
7 Transportation and warehousing 0.17
8 Retail trade 0.16
9 Professional, Scientific and Technical Services 0.11

10 Utilities 0.10
11 Administrative and support and waste management and re-

mediation services
0.09

12 Information 0.09
13 Arts, entertainment, and recreation 0.07
14 Accommodation and food services 0.07
15 Wholesale trade 0.07
16 Mining 0.06
17 Finance and insurance 0.05
18 Agriculture, forestry, fishing and hunting 0.04
19 Real estate and rental and leasing 0.02
20 Management of Companies and Enterprises 0.00

Table 4: Relevance of exposed occupations to NAICS 2-digit sectors, obtained as a weighted average of simil-
arity and occupation membership to the underlying sector, rescaled between 0 and 1.
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Figure 8: Similarity and employment level in 2019 (left) and 1999-2019 employment growth (right). Robust
LOWESS estimates of the underlying scatter plots (bandwidth = 0.8).
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Figure 9: Similarity and wage level in 2019 (left) and 1999-2019 wage growth (right). Robust LOWESS estim-
ates of the underlying scatter plots (bandwidth = 0.8).
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Figure 10: Disaggregation by state. Employment shares of most exposed occupations (top-decile) to LS tech-
nologies. Continental US.

5.3 Geographical penetration

The United States are very much differentiated in terms of productive specialisation and ensuing occupational

composition. Understanding the different geographical penetration of robotic LS technologies across states is

useful and informative, both as a validation exercise and as a tool to perform targeted policy actions. Fig. 10

shows the state-level disaggregation of the top-exposed occupations (top-decile of the distribution in Fig. 6).

The heat-map presents five colour shades, going from the more exposed states to LS technologies (dark brown),

to less exposed states (light pink). The range of variation, considering the 8.6% share for the US as a whole,

goes from 4% to 11%. In the picture, states presenting a share below 7% are coloured in white.

Going from the most to the least exposed states, according to our results, the so-called Rust Belt area (i.e. the

region surrounding the Great Lakes) is populated by states characterised by darker reds, namely Wisconsin,

Indiana, Michigan, Illinois. Other dark red states are Alabama, Arkansas, Mississippi, Louisiana, located in the

Southern East, where African-Americans are largely concentrated. Texas, with a prevalent fraction of Hispanic

communities, presents 9% of the occupational categories exposed to LS technologies. At the opposite, all states

on the two coasts, representing the cradle of high-tech companies and of high-specialised service activities are

coloured in light red, like Washington, California, Florida, Virginia. Notably, states like New York and D.C.

are indicated in white being the share of occupations exposed to LS technologies below 7%.

6 Conclusions

This paper represents one of the first attempts at building a direct measure of occupational exposure to labour-

saving technologies. We encompass such an objective by making use of natural language processing (NLP)

techniques. First, we leverage on the information retrieved by Montobbio et al. (2022), allowing to identify

explicitly labour-saving robotic patent applications, collected in the 2008-2018 period. After identifying ro-

botic and LS robotic patents, the underlying 4-digit CPC definitions are employed in order to detect functions

and operations performed by technological artefacts which are more directed to substitute the labour input.

The measure allows to obtain fine-grained information on tasks and occupations according to their similarity
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ranking. In addition, performing a match with the occupational and wage statistics, we offer evidence on the

relationship between our exposure measure, employment and wage levels, and their changes in the last twenty

years. Industry and geographical penetrations are studied as well.

According to our results, the occupations which are more exposed to labour-saving automation are those

performing activities related to manual dexterity, manipulation, loading of objects into machines and equip-

ment, lift and load moving. These tasks are mainly characterising occupations as industrial truck and tractor

operators, packaging and filling machine operators and tenders, tool and die makers, but also medical appliance

technicians. When decomposing the information by industry, we do find that manufacturing is the most exposed

one, followed by healthcare, social assistance, and education services. In addition, although manufacturing is

the most exposed sector, many identified tasks regard logistics activities.

LOWESS estimates of the relationship between occupational exposure and labour market variables confirm

that robotic labour-saving innovations target low paid occupations, experiencing the lowest wage increases in

the last twenty years. In addition, such low paid occupations are also shrinking in terms of workforce. Although

we cannot encompass for the entire set of potential confounding factors affecting such relationship, we are able

to find striking and clear-cut patterns of innovative efforts directed toward the cheapest and most vulnerable

segments of the working population.

Exposure to LS automation and employment dynamics do not always go hand in hand. Take the 2-digit

occupation “Transportation and Material Moving”, very much exposed to labour-saving technologies, which

has however experienced a positive employment growth (cf. Fig. 1). Whenever occupations record a positive

growth, notwithstanding their high exposure rate, this signals that employment dynamics is driven by other

sources, primarily demand, which might clearly counterbalance the potential labour-saving traits of advance-

ment in robotics. Notably, the aggregation at the industry level highlights a deepening of the de-industrialisation

trend of the US economy, since manufacturing is by far the most exposed sector. However, social care and as-

sistance services, as well as education, turn out to be quite high in the exposure ranking. Therefore, not only

low-paid manufacturing and logistics workers are exposed, but also low-paid service workers. On the contrary,

managerial occupations, although reducing in employment shares, present the lowest degree of similarity.

A companion result of our study is that high similarity is a quite rare event: the CPC-task cosine similarity

matrix is sparse and high values of similarity are more the exception than the norm. This finding corroborates

our procedure, whose results are not inflated but rather conservatively underestimated, given our very cautious

identification of robotic labour-saving patents (cf. Section 4.1). As a consequence, when considering the cumu-

lative fraction of potentially replaceable occupations, the top-decile of the similarity distribution involves 8.6%

or approximately 12.6 million employees.

Strengths of our approach are, first, the construction of a direct measure of proximity by means of an objective

procedure, not resorting to subjective and mutable expert judgments, or alternatively crowdsourcing. Second,

the generality, being the measure constructed on the entire set of CPC codes, and only in a second step using a

weighting procedure to account for labour-saving technologies. This means that we obtain a similarity measure

for the entire technological (CPC) and occupational (O*NET tasks) spectra. Finally, the non linear-nature of

the quantile threshold and the sparsity nature of the matrix comfort both in terms of reliability and in terms of

labour market prospects.

A first limitation of the present study is that it gives account uniquely of robotic labour-saving innovations,

while labour-saving innovations encompass both other applications of AI technologies such as technological

change embodied in machineries and tools distinct from robots. A second limitation is that we are not able to

track adopters of these technologies and we do not know the exact number of workers, in terms of intensive

rather than extensive margin, each machine embedding a labour-saving technology is able to replace. This
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means that, potentially, if adopters are widespread and the number of their labour units is high, the occupational

losses might be much higher than predicted in this work.

Potential extensions of our study entail, first, the LS identification of other technologies beyond strict robotics

ones, such as AI or standard ICT. Second, our measure can be adopted to other labour markets, beyond the US.

Third, an application of our indicator at the firm-level constitutes a quite promising avenue of research, in order

to pinpoint the establishments and plants more exposed to labour-saving efforts.
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Appendix A

In this Appendix we briefly summarise the methodological steps adopted in Montobbio et al. (2022).

Step 1 – Identification of robotic patents The analysis starts with the entire set of 3,557,435 patent

applications published by the USPTO between 1st January 2009 and 31st December 2018. Robotic patents are

pinpointed therein according to two distinct criteria, one based on the patent classification codes specified within

applications, the other based on textual keyword search. A patent is deemed ‘robotic’ if it obeys at least one of

the criteria. In particular, a robotic patent according to the first criterion (dubbed ‘CPC’) must be assigned by

patent examiners at least one of a set of 174 full-digit CPC codes which reflect former US. Patent Classification

(USPC) class 901 (“Robots”). Likewise, a robotic patent according to the second criterion (dubbed ‘K10’)

must contain the word ‘robot’ in its full-text at least 10 times, including derivational and inflectional affixes.

The first criterion identifies 10,929 robotic patents, while the second criterion identifies another 18,860 (after

discarding robotic patents according to the first criterion). The two criteria single out a total of 29,789 robotic

patents, i.e. approximately 0.84% of the original (universe) population. Their evolution over time is shown in

Fig. 3 (Section 3).

Step 2 – Identification of labour-saving patents LS patents constitute a subset of robotic patents, iden-

tified by a multiple word co-occurrence query at the sentence level. In particular, a patent is deemed LS (after

an additional manual validation step) if its full-text contains at least one sentence in which the verbal predicate,

direct object, and object attribute belong to the following lists:



‘reduc’

‘replac’

‘elimin’

‘save’

‘lower’

‘substitut’

‘autom’


︸ ︷︷ ︸

verbal predicate

×



‘labor’

‘worker’

‘human’

‘employe’

‘manpow’

‘job’


︸ ︷︷ ︸

direct object

×



‘cost’

‘expenditure’

‘expens’

‘hour’

‘intens’

‘task’

‘time’

‘skill’


︸ ︷︷ ︸

object a�ribute

.

In total, 1,276 LS patents are found (approximately 4.3% of all robotic patents), of which 461 (≈ 36.1%) belong

to the CPC group and 815 (≈ 63.9%) belong to the K10 group.

Step 3 – Identification of the underlying technology Table 5 reports the top ten couples and triplets of

3-digit CPC codes recurring in our patents, ranked by frequency, whose description is presented in Table 6.

These account for a sizeable chunk of the identified robotics and LS patents, respectively. The focus on couples

and triplets of co-occurring classification codes allows us to better grasp the underlying technological comple-

mentarities. Indeed, our patents, both robotic and LS, are characterised by a strong recurrent pattern of coupling

between technologies belonging to automation (such as codes B25, B65) and codes related to computing and

information processing (such as those belonging to the G codes). Additionally, against a potential bias towards

industrial robots, we see the emergence of CPC code A61, explicitly related to healthcare.

To further characterise the extent to which the selected patents are complementary to the field of AI, i.e. em-

bed traits of “intelligent automation”, we check their degree of overlap with AI patents identified by Santarelli
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Robotic patents LS patents

CPC couples Count Frequency CPC couples Count Frequency

B25, G05 4,169 0.073 B25, G05 272 0.068

G05, G06 1,879 0.033 G05, G06 193 0.048

B25, G05 4,169 0.073 G06, H04 131 0.033

G06, H04 1,476 0.026 B25, G06 125 0.031

A61, B25 1,248 0.022 B25, B65 93 0.023

G01, G05 1,054 0.018 B65, G06 87 0.022

B25, G01 894 0.016 B65, G05 76 0.019

G01, G06 796 0.014 G05, H04 76 0.019

G05, H04 745 0.013 B23, B25 59 0.015

A61, G06 732 0.013 B25, H04 51 0.013

CPC triplets Count Frequency CPC triplets Count Frequency

B25, G05, G06 1,015 0.024 B25, G05, G06 98 0.025

G05, G06, H04 474 0.011 G05, G06, H04 67 0.017

A61, B25, G05 405 0.01 B25, B65, G05 51 0.013

B25, G01, G05 401 0.01 B25, G06, H04 46 0.012

B25, G05, H04 371 0.009 B65, G05, G06 43 0.011

B25, G06, H04 348 0.008 B25, G05, H04 42 0.011

G01, G05, G06 335 0.008 A01, B25, G05 36 0.009

G01, G06, H04 288 0.007 A01, G05, G06 33 0.009

B23, B25, G05 246 0.006 B25, B65, G06 32 0.008

A61, G06, G16 244 0.006 A01, B25, G06 32 0.008

Table 5: Top ten couples and triplets of 3-digit CPC codes assigned to robotic (left half) and LS patents (right
half), respectively. Source: Montobbio et al. (2022, Tab. 1).

et al. (2021), who use an analogous methodology which leverages CPC codes obtained through a statistical

concordance table with USPC class 706, “Artificial intelligence”. We find that while 10.5% of robotic patents

(3,140 units) are also classifiable as AI, when restricting the analysis to LS patents this percentage increases

to 23.5% (300 units). This evidence supports the notion of intelligent automation or intelligent robots or auto-

mated production processes, particularly when referring to LS patents.

Appendix B

In order to test the robustness of our procedure, we replicate the text similarity exercise described in Section 4

using LS patents full-texts, rather than CPC code definitions. In principle, one might expect the underlying

content of the patent to be more informative than CPC definitions when it comes to actual labour-saving efforts

and the eventual human functions substituted.

Tables 7 and 8 present the results of the top-task and top-occupation matching by similarity scores. Inter-

estingly, the identified tasks and occupations are completely different from the original exercise. Emerging

tasks are “Build or assemble robotic devices or systems”; “Set up and operate computer-controlled machines
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CPC Definition
A01 Agriculture; Forestry; Animal husbandry; Hunting; Trap-

ping; Fishing
A61 Medical or veterinary science; Hygiene

B23 Machine tools; Metal-working not otherwise provided for

B25 Hand tools; Portable power-driven tools; Manipulators

B65 Conveying; Packing, Storing; Handling thin or filamentary
material

G01 Measuring; Testing

G05 Controlling; Regulating

G06 Computing; Calculating; Counting

G16 Information and communication technology (ICT) spe-
cially adapted for specific fields

H04 Electric communication technique

Table 6: Main 3-digit CPC codes definitions. Source: Montobbio et al. (2022, Tab. 2).

or robots to perform one or more machine functions on metal or plastic workpieces”; “Build, configure, or

test robots or robotic applications”; “Conduct research on robotic technology to create new robotic systems or

system capabilities”; “Provide technical support for robotic systems”. These tasks are clearly the ones labour-

complementing, i.e. required to develop and manufacture the new robotic artefacts. Occupations more exposed

to labour-complementarity are indeed “Robotics Engineers”; “Robotics Technicians”; “Computer Systems

Engineers/Architects”; “Data Warehousing Specialists”; “Network and Computer Systems Administrators”.

Notably, the similarity measure by occupations presents a drop after the first two most-exposed occupations

onwards. In addition, the elicited occupations reveal who are those workers programming and creating LS

technologies: they belong to the upper-echelon of the occupational categories, are well paid, and growing in

number during the last two decades. Indeed, top-complementary occupations tend to belong to “Computer and

Mathematical Occupations” (15) and “Architecture and Engineering Occupations” (17).
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Rank Code Description CS

1 16596 Build or assemble robotic devices or systems 1.0
2 11944 Set up and operate computer-controlled machines or robots to perform one or more machine functions on metal or

plastic workpieces
0.98

3 21057 Build, configure, or test robots or robotic applications 0.97
4 16523 Conduct research on robotic technology to create new robotic systems or system capabilities 0.93
5 16511 Provide technical support for robotic systems 0.91
6 16587 Assist engineers in the design, configuration, or application of robotic systems 0.86
7 16525 Conduct research into the feasibility, design, operation, or performance of robotic mechanisms, components, or sys-

tems, such as planetary rovers, multiple mobile robots, reconfigurable robots, or man-machine interactions
0.84

8 16593 Install, program, or repair programmable controllers, robot controllers, end-of-arm tools, or conveyors 0.81
9 16584 Modify computer-controlled robot movements 0.8

10 16579 Maintain service records of robotic equipment or automated production systems 0.8
11 20262 Plan special events, parties, or meetings, which may include booking musicians or celebrities 0.82
12 14861 Inquire about pesticides or chemicals to which animals may have been exposed 0.79
13 16075 Implement controls to provide security for operating systems, software, and data 0.79
14 23748 Prepare and submit reports that may include the number of passengers or trips, hours worked, mileage, fuel consump-

tion, or fares received
0.79

15 1277 Perform systems analysis and programming tasks to maintain and control the use of computer systems software as a
systems programmer

0.79

16 2463 Develop networks of attorneys, mortgage lenders, and contractors to whom clients may be referred 0.78
17 246 Arrange for medical, psychiatric, and other tests that may disclose causes of difficulties and indicate remedial meas-

ures
0.77

18 11338 Transport mail from one work station to another 0.77
19 18280 Install, calibrate, or maintain sensors, mechanical controls, GPS-based vehicle guidance systems, or computer settings 0.77
20 16434 Calibrate vehicle systems, including control algorithms or other software systems 0.77

Table 7: Top 20 tasks by (rescaled) similarity (based on LS patents full-texts).
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Rank Code Title CS

1 17-2199.08 Robotics Engineers 1.0
2 17-3024.01 Robotics Technicians 0.96
3 47-2231.00 Solar Photovoltaic Installers 0.49
4 17-2072.01 Radio Frequency Identification Device Specialists 0.46
5 15-1299.08 Computer Systems Engineers/Architects 0.45
6 15-1299.02 Geographic Information Systems Technologists and Technicians 0.42
7 51-9161.00 Computer Numerically Controlled Tool Operators 0.41
8 17-2199.11 Solar Energy Systems Engineers 0.4
9 49-2091.00 Avionics Technicians 0.39

10 15-1243.01 Data Warehousing Specialists 0.38
11 17-1022.01 Geodetic Surveyors 0.38
12 15-1244.00 Network and Computer Systems Administrators 0.38
13 17-2061.00 Computer Hardware Engineers 0.37
14 15-1299.03 Document Management Specialists 0.37
15 15-1211.00 Computer Systems Analysts 0.36
16 51-4034.00 Lathe and Turning Machine Tool Setters, Operators, and Tenders, Metal and Plastic 0.36
17 17-2041.00 Chemical Engineers 0.36
18 49-9044.00 Millwrights 0.36
19 15-2051.02 Clinical Data Managers 0.36
20 17-3021.00 Aerospace Engineering and Operations Technologists and Technicians 0.35

Table 8: Top 20 occupations by (rescaled) similarity (based on LS patents full-texts).
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