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Abstract

This paper examines the impact of extreme weather events on electricity price volatility in Italy,
using a novel combination of advanced econometric techniques and a robust variable selection process.
A key feature of the study is the application of the Best Path Algorithm (BPA) for variable selection,
which identifies the most relevant predictors, with extreme weather events emerging as the primary
drivers of price volatility. These selected variables are incorporated into a GARCH-MIDAS model,
allowing for the integration of high-frequency electricity price data with low-frequency climate data
to capture both short- and long-term volatility components. Additionally, the study incorporates
external shocks, such as the Russia-Ukraine war, as exogenous variables to account for their effects
on the energy market. The results highlight the significant predictive power of extreme weather events
and external factors on returns of electricity prices. This approach provides policymakers and energy
stakeholders with improved forecasting tools, emphasizing the need for resilience in energy market
planning. Future research may extend this methodology to other regions and incorporate additional
variables to enhance predictive accuracy.

Keywords: Weather; Climate change; Electricity prices; GARCH-MIDAS

JEL codes: Q41; Q54; C1; C53
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Highlights:

1. Direct Impact of Extreme Weather: The study shows that extreme weather events are a
very effective predictor of the returns of electricity prices in Italy and Granger-cause these price
fluctuations.

2. Volatility Decomposition: Using the GARCH-MIDAS model, the study decomposes electricity
price volatility into short-term and long-term components, revealing the significant influence of
low-frequency extreme weather data on long-term price volatility.

3. Predictive Accuracy: Models that incorporate extreme weather events (such as GJRM-X and
DAGM-X) show superior predictive power for electricity price volatility, with the GJRM-X model
(Student’s t-distributed innovations) being the most accurate.

4. Forecast Improvement: The inclusion of extreme weather variables in volatility models improve
the accuracy of price forecasts, particularly when combined with ARIMA models, enhancing both
short- and medium-term forecasting of energy prices.
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1 Introduction

The paper examines the impact of extreme weather events on electricity prices in Italy using a combi-
nation of graphical models for variable selection and volatility estimation techniques. The forecast of
both volatility and average monthly prices of electricity is the main objective of this study. To purse
this goal, a novel methodological approach, offering several key contributions to the field, is employed.
First, a novel graphical model-based method to variable selection is used to identify and select variables
that encapsulate the main factors influencing electricity prices and their volatility. This approach for
variable selection shows that extreme weather events are the best predictors of electricity prices com-
pared to other variables. This outcome is not surprising, if one considers that the increasing frequency
and severity of extreme weather events due to climate change pose significant challenges for energy mar-
kets. These events affect energy prices through multiple interconnected pathways, including changes in
demand and supply dynamics, technical challenges, infrastructure vulnerabilities, and broader economic
variables. Understanding and forecasting these impacts is crucial for developing effective mitigation and
adaptation strategies. The urgency to improve this understanding is further exacerbated by the rise in
global electricity demand, which, for Italy alone, is estimated to increase by about 20% by 2030. This
increase is driven by the transition to greener technologies across various sectors, from transportation
to housing. These trends further underscore the importance of accurately predicting electricity price
volatility to ensure stable and reliable energy supplies.
The paper shows that a model relying exclusively on weather-related variables can effectively capture
all the necessary information to explain and predict electricity prices without any loss of accuracy. In
this study, extreme weather events are first employed to explain the volatility of electricity prices. Sub-
sequently, these events are used as exogenous variables in an ARX-type model for electricity price fore-
casting, highlighting the significant predictive power of meteorological factors in the energy market.
The issue of differing temporal granularity between day-ahead electricity prices and the time span of the
effects of atmospheric exogenous variables is addressed via the use of a Generalized Autoregressive Con-
ditional Heteroskedasticity - Mixed Data Sampling (GARCH-MIDAS) approach. The latter allows the
integration of high-frequency price data with lower-frequency weather data, thus capturing the detailed
effects of extreme weather on price volatility. To handle data spikes, appearing in the series of electrical
prices and in its volatility, a GARCH-Jump with Regime Switching model (GJRM) is employed. To
account for the war in Ukraine, the extension of this model, namely the GJRM-X model, is also consid-
ered. The results of the GJRM-GJRM-X models are then compared with those of Double Asymmetric
GARCH-MIDAS (DAGM) and DAGM-X models, that account for possible asymmetries and significant
external events. Eventually, the resulting best model is used to predict the energy price volatility, which
is decomposed into a short-and a medium-term component. The estimated volatility is then used to nor-
malize electricity price, thus enhancing the accuracy of predictions obtained through an ARIMA model.
The paper is structured as follows: Section 2 discusses the existing literature on electricity price forecast-
ing and the impacts of extreme weather events. Section 3 describes the methodology used for variable
selection and the volatility modeling based on GARCH-MIDAS model. Section 4 presents the data used
in the analysis and shows evidences about the occurrence of extreme weather events in Italy, while Section
5 details the empirical results so obtained. A discussion of the implications of the findings and suggestions
for future research conclude the paper.

2 Electricity price forecast and extreme weather events

This paper examines the impact of climate changes on electricity prices volatility, highlighting how rising
energy demand and the shift to alternative sources increase price volatility amind extreme weather events.
The latter are becoming more frequent and severe due to climate change. This increase poses significant
challenges across various sectors, especially in energy markets. Extreme weather events influence energy
prices through several interconnected pathways. These include changes in demand and supply dynamics,
technical challenges, infrastructure vulnerabilities, and broader economic variables. Each of these path-
ways contributes to the overall volatility and pricing.
One of the most direct impacts of extreme weather on energy prices is through changes in demand.
For instance, heatwaves significantly increase the use of air conditioning, leading to higher electricity
consumption. Conversely, cold snaps drive up heating needs, which similarly elevates energy demand.
For instance, in their review on the climatic impact on energy consumption, which focus on the use and
adoption of air conditioning, Auffhammer and Mansur [2014] demonstrated that such weather events can
cause substantial spikes in electricity consumption, leading to short-term price surges. During extreme
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heat, the grid often relies on more expensive peaking power plants fueled by natural gas, increasing the
marginal cost of electricity [Stone Jr et al., 2021, Ke et al., 2016]. Similarly, cold spells elevate electricity
demand in regions with electric heating, while in areas relying on natural gas, the heightened demand
can push up natural gas prices, subsequently raising electricity prices [Kim and Lee, 2019]. A notable
contribution to understanding demand under extreme weather conditions is the work by Miller and Nam
[2022], who modeled peak electricity demand using a semiparametric approach with weather-driven cross-
temperature response functions. Their study underscores how varying temperature extremes influence
peak demand patterns, highlighting the intricate relationship between weather variables and energy con-
sumption.
Extreme weather also disrupts the supply side of the energy market. Renewable energy sources such as
wind and solar are particularly affected by weather conditions. Storms can increase or decrease wind
power production; for instance, while high winds may boost generation, turbines might need to be shut
down to prevent damage, reducing supply [Leahy and Foley, 2012]. Solar power is similarly affected, with
cloud cover or hurricanes significantly decreasing generation. This reduction in renewable energy supply
often necessitates greater reliance on fossil fuels, which are more costly and subject to price volatility.
Additionally, fossil fuel supply chains are directly impacted by extreme weather. Hurricanes, for exam-
ple, can disrupt oil and natural gas production, especially in regions like the Gulf of Mexico, leading
to fuel price spikes that translate into higher electricity prices. Hurricane Harvey in 2017 is a notable
example of such disruptions. Power outages resulting from these disruptions can have broader economic
impacts as well. Chen et al. [2023] found that power outages can significantly hinder economic growth,
further highlighting the importance of maintaining a stable energy supply. Furthermore, Kaufmann and
Schroer [2023] discussed how environmental events, such as Hurricane Harvey, can disrupt the relationship
between gasoline prices and market fundamentals, emphasizing the cascading effects on related energy
markets. Overall, Staffell and Pfenninger [2018] developed a general framework based on high resolution
data and showed robust evidence of an increasing impact of whether on electricity supply and demand
and surmise that a key challenge is to successfully deal with extremes. The technical challenges posed
by extreme weather events to the power grid are numerous. Transmission and distribution networks are
particularly vulnerable to damage from high winds, ice, and flooding. When these networks are damaged,
power outages occur with consequent reduced supply capacity, and both these events contribute to rising
energy prices. Restoration of these networks, being costly and time-consuming, further affects prices.
Technical factors also include the efficiency of power plants, which can be compromised by extreme tem-
peratures. High temperatures can reduce the efficiency of thermal power plants, including fossil fuel and
nuclear plants, as cooling becomes less effective. This reduction in efficiency means that more fuel is
required to produce the same amount of electricity, increasing production costs and, consequently, prices.
Historical case studies illustrate the significant impact of extreme weather on energy prices. Hurricane
Katrina in 2005 caused extensive damage to the Gulf Coast’s energy infrastructure, leading to substantial
spikes in oil, gas, and electricity prices across the United State [Reed et al., 2010]. Similarly, Hurricane
Sandy in 2012 disrupted energy supplies in the Northeast, causing price surges and highlighting the vul-
nerability of coastal energy infrastructure [Meng and Mozumder, 2021]. More recently, the 2021 Texas
freeze showcased how extreme cold can disrupt both supply and demand dynamics, leading to unprece-
dented spikes in electricity prices [Bunker, 2020]. The freeze caused a surge in heating demand, while
simultaneously crippling natural gas supply and power generation capacity, resulted in widespread out-
ages and price spikes. Panteli and Mancarella [2015] highlighted how resilience of energy infrastructure is
crucial in mitigating the impacts of extreme weather on energy prices. Hurricanes, floods, and wildfires
can cause significant damage to energy infrastructure, leading to disruptions in energy supply chains and
subsequent price increases. The 2021 Texas freeze highlighted how extreme cold can cripple energy in-
frastructure, causing widespread outages and skyrocketing electricity prices [Bunker, 2020]. Investments
in resilient infrastructure, such as underground power lines and more robust grid systems, are essential
but costly, influencing the prices charged to consumers. These investments are necessary to withstand
the impacts of extreme weather and ensure stable energy supplies. Thus, extreme weather events also
impact broader economic variables and are expected to affect energy prices. Natural disasters can disrupt
economic activities, reducing industrial energy demand while recovery and reconstruction efforts can lead
to increased demand. The consequence of these contrasting effects is that insurance and financial markets
respond to these events by adjusting risk assessments. The latter can result in higher insurance premiums
for energy infrastructure, costs that are often passed on to consumers. Additionally, speculative activities
in energy markets can exacerbate price volatility. For instance, the anticipation of supply disruptions
due to approaching hurricanes might drive up prices through speculative trading even before the actual
impact is felt.
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Therefore, understanding and accurately forecasting the impact of extreme weather events on electricity
price volatility is essential. Thus,the aim of this paper is to forecast both the volatility and the average
monthly prices of electricity in Italy. The methodological approach followed for this scope brings to
the fore the crucial role played by the meteorological variables as predictors of electrical prices. The
paper aligns with that of Weron [2006, 2014], who used six types of theoretical and empirical models for
electricity price forecasting (EPF), Also the current study employs different types of models: regression
models, autoregressive models with exogenous variables (ARX-type models), and models for conditional
heteroskedasticity (GARCH). Additionally, a MIDAS-GARCH is used to deal with the differing tempo-
ral granularity between the day-ahead electricity prices, representing the forecast target, which is daily
sampled, and the weather exogenous variables, which is sampled on monthly basis. At a first step of
the analysis, a selection of the factors that are crucial in explaining electricity price in Italy is operated.
These factors are then employed as independent variables in econometric models finalized to explain and
forecast electricity volatility. The issue of variable selection has been largely discussed in the literature
with a plenty of contributions. The typical approach selects predictors in an ad hoc fashion, sometimes
using expert knowledge, seldom based on some formal validation procedures but more recently differ-
ent approach have been proposed [Garcıa-Martos et al., 2012, Maciejowska et al., 2020, Raviv et al.,
2015, Uniejewski et al., 2016, Yang et al., 2022] For the purpose of variable selection, the algorithm by
Riso et al. [2023], based on graphical models [Jordan et al., 2004, Lauritzen, 1996], is here implemented.
This algorithm selects the subset of variables that maximize the information content for explaining and
predicting a target variable, tallying with the electricity prices, in the study in exam. The algorithm
performs a reduction of the size of the original dataset, by ruling out variables that are not informative
and therefore redundant for the explanation of a variable of interest.
When it is applied to a broad series of potential independent variables for the electricity prices, including
extreme weather events, the algorithm selects the latter as best predictors. A possible explanation of this
result is that, as previously discussed, extreme weather events encapsulate vital information regarding
demand mechanisms, supply disruptions, and infrastructure challenges.
The application of this novel machine learning algorithm represents a first contribution of the paper. Since
probabilistic graphical models allow the identification of the conditional dependencies between variables
within the dataset, a direct dependency between extreme weather events and electricity price returns is
established using an information-theoretic approach. Although this relationship is only Granger-causal,
the findings are consistent with the work of Mosquera-López et al. [2024], which demonstrated the causal
impact of weather extremes upon energy prices through non-linear mechanisms. However, the use of
extreme weather events to explain the volatility of the energy price arises the problem of the discrepancy
between the sampling frequency of these variables. This issue is addressed by employing mixed data
sampling GARCH or GARCH-MIDAS models that combine high-frequency daily electricity price data
with lower-frequency monthly weather data, thus capturing the effects of extreme weathers events on
price volatility. GARCH-MIDAS models have been applied successfully in energy markets. For instance,
Liang et al. [2022] used an extended GARCH-MIDAS model for gas prices, incorporating both extreme
and normal weather conditions. Their findings demonstrated that models including weather indicators
outperformed those that neglect them. Their work highlighted the effectiveness of GARCH-MIDAS-W-
ES models that include temperature or precipitation data. However, unlike the present study, their focus
was on general weather conditions, rather than on extreme events. The employment of GARCH-MIDAS
models to model energy price volatility in terms of extreme events represents another methodological
contribution of this paper.
A challenge that arises in using GARCH models is how to handle data spikes due to exogenous shocks. To
address this problem, a GARCH-Jump with Regime Switching model (GJRM) incorporating additional
exogenous variables (GJRM-X) to account for shocks, such as the war in Ukraine, is implemented. The
outcomes of this model are then compared to those of a Double Asymmetric GARCH-MIDAS (DAGM)
model, that considers possible asymmetric impacts of specific factors on the volatility of a target variable,
and a DAGM-X model including exogenous variables. The innovations of these models have been assumed
to be distributed either as a normal or as a Student’s t-law. As it is well known, the latter distribution
proves to be more suitable for heavy-tailed scenarios, as expected in datasets involving extreme events.
The best model among all these mentioned variants is then used to explain both the short-term and the
long-term volatility of electricity prices, thus addressing the first research question on whether extreme
weather events influence volatility. Eventually, the estimated volatility is used to forecast electricity prices
using an ARIMA model. The next section details the methodological approach followed in the paper.
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3 Methodology

This section outlines the methodology approach followed to explain and forecast electrical price returns
in Italy.
The first step of the analysis is finalized to identify the optimal set of variables for explaining the volatility
of national electricity prices in Italy. The detection of the best predictors for the Italian electricity price
has been operated via a machine learning algorithm, called the Best Path Algorithm (BPA hereafter) by
Riso et al. [2023]. The BPA has been applied to a dataset comprising the Italian electricity price along
with various financial variables and the extreme climate events that occurred in Italy from 2009-01 to
2023-12. The application of the algorithm has lead to establish that the Italian electricity prices are more
directly influenced by climatic and atmospheric conditions rather than by broader financial factors.
Once the BPA has identified the variables that are most closely associated with electricity prices, the
directions of these relationships have been verified via Granger causality tests [Granger, 1969]. Subse-
quently, the volatility of the electricity prices has been modeled and forecast using different types of
GARCH-MIDAS models [Amendola et al., 2021]. These models, allowing the inclusion of variables sam-
pled at different frequencies allow the use of extreme climate events as explanatory factors of the long-run
volatility of electricity prices. Several GARCH-MIDAS models have been employed for this scope. The
most appropriate one has been selected via the Model Confidence Set procedure [Hansen et al., 2011].
Finally, the volatility from the optimal model has been used to normalize electricity prices for forecasting
purposes [Sharpe, 1966].

3.1 Variable Selection via BPA

The BPA first constructs the graphical model [see, among others, Edwards et al., 2010, Riso and Guerzoni,
2022] that depicts the relationships between the variables of the data set under examination. The BP
algorithm belongs to the Sequential Forward Search category [Nava et al., 2023], as it starts with an
empty set and progressively adds variables that may serve as potential determinants for a variable of
interest, say Y , which, for the case in exam, corresponds to the monthly average of the electricity price
in Italy.
The optimal set of predictors for Y is then detected by using the concept of mutual information . As it is
well known, mutual information between two variables represents the information gained in one variable
due to its entropy reduction when it is explained by the other variable. Therefore, the higher the mutual
information between two variables, the more significant the explanatory role that one variable can play
for the other.
The BPA detects the set of admissible predictors for Y by considering the variables of the graph that
belong to different path-steps wi linking the predictors to Y . A path step is the set of all variables Xj

whose distance from Y is equal or lower than k

Xwk
= {Xj : dY,Xi ≤ k}. (1)

where the distance between Y and another variable Xj is meant to be the number of variables lying along
the path of the graph connecting Y and Xj .

The best path-step is the one including variables that share the maximal mutual information, I, with
Y , that is

I(Y,Xwi
) ≥ I(Y,Xwj

), i ̸= j, i = 1, . . . , k (2)

where Xwi , Xwj denote the set of variables belonging to the path-steps wi and wj .
The mutual information between Y and the variables belonging to different path-steps is then mea-

sured via the Kullback-Leibler Information (KLI) index. The KLI of the distribution f(Y ) of Y and
that of its conditional expectation given the predictors Xwi

, say f(Y |Xwi
), is related to their mutual

information, as the latter tallies with the expectation of the KLI between the two densities [Dembo et al.,
1991], that is

I(Y |Xwi) = Ef(Y )[KL(f(Y ), f(Y |Xwi)]. (3)

The closer the two distributions, the greater the reduction of the entropy of Y when the set of variables
Xwi

are employed to explain it.
To evaluate the mutual information between Y and Y |Xwi , the BPA algorithm employs the entropy
coefficient of determination (ECD) [Eshima and Tabata, 2010], given by

ECD =
EC

EC + 1
(4)
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where EC is the entropy coefficient proposed by Eshima and Tabata [2007]. ECD hinges on the symmetric
Kullback-Leibler Information, KL(s) measuring the distance between either f(Y ) and f(Y |Xwi

)) or
f(Y |Xwi

)) and f(Y )

EC =

∑
X∈wi

KL(s)(f(Y ), f(Y |Xwi
))

{#X ∈ wi}
(5)

which can be read as the proportion of the variation in entropy of Y explained by Xwi
. ECD can be

viewed as a generalization of the coefficient of determination in the class of generalized linear models and,
in the special case of linear models, it tallies with the standard coefficient of determination.
Once, the set of best predictors for the variable Y has been detected, the explanatory role of each of
them is tested by applying the Kraskov et al. [2004] Mutual Information test of independence between Y
and each variable of the optimal pat-step. Indeed, as some variables within wi may be not relevant for
Y , the set of predictors can be further improved by ruling out those of them which turn out to be not
statistically significant for Y . This would allow to obtain a more parsimonious set of predictors for Y .
The set of predictors, so selected is then employed in GARCH-MIDAS regressions to estimate, now cast
and forecast the electricity price for Italy.

3.2 Granger causality

After identifying the most appropriate predictors for electricity prices using the BPA, the Granger causal-
ity test has been carried out to determine the direction of the relationships between the selected variable
and returns of the electrical prices.
The Granger causality test is finalized to check whether one variable can be usefully employed to predict
another one. Introduced by Clive W. J. Granger in 1969, the test assesses whether the past values of one
variable contain information that can help to predict the future values of another variable, beyond what
is explained by the past values of the latter variable itself [Granger, 1969]. Unlike traditional notions
of causality, which imply a direct cause-and-effect relationship, Granger causality identifies predictive
causality. It is worth pointing out that variables identified as Granger-causing one another do not nec-
essarily imply direct causation; rather, economic theory should provide the rationale for the dependency
between these variables. In this study, the Granger test is employed to verify if the variables selected by
the BPA Granger-cause the log returns of electricity prices, so that changes in these variables precede
and predict changes in log returns of electricity prices.

3.3 Garch-Midas

The GARCH-MIDAS model proposed by Engle et al. [2013] decomposes volatility into two components:
a short-term component driven by a GARCH process for high-frequency data and a long-term volatility
component captured by a MIDAS process for low-frequency data. In the study dealt with by this ppaer,
the former component is the national electricity price in Italy, the latter the variables selected by the
BPA [Riso et al., 2023].
This model can flexibly handle mixed frequency data and it is becoming increasingly popular in analyzing
the macroeconomic determinants of financial return volatility [see, among others, Pan and Liu, 2018, Riso
and Vacca, 2024, Fang et al., 2020]. It also finds applications in the study of geopolitical risks [Salisu
et al., 2022, Yang et al., 2021] and economic policy uncertainty [Liu et al., 2021].
A GARCH-MIDAS model is specified as follows

ri,t =
√

τt × gi,tϵi,t ∀i = 1, .., Nt t = 1, ..., T

ϵi,t|Ii−1,t ∼ N (0, 1)
(6)

where rit is the high-frequency component, with i denoting the high-frequency interval (e.g., day) within
the low-frequency interval t (e.g., month); Ii−1,t denotes the information set available at day i− 1 of the
period t and Nt is the number of days in month t. In this study, ri,t represent the log return, that is, the
first log-difference of the electricity prices for the day i of the month t (with i = 1, ..., Nt, where Nt is the
number of days for the period t). gi,t and τt are the short and long-term volatilities.
The short-term volatility component is assumed to follow a GARCH process ([Bollerslev, 1986]), while
the long-term volatility follows a MIDAS regression [Pan and Liu, 2018]. In particular, the extended spec-
ification proposed by [Amendola et al., 2021] is considered for the short-term volatility component. The
authors suggest extending the short-run equation to include additional volatility determinants observed
at the same frequency as ri,t. This permits to move beyond the classical (GJR)-GARCH-MIDAS frame-
work [GJRM; Conrad and Kleen, 2018, Wang et al., 2020], which typically includes only macroeconomic
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variables. Specifically, for the issue under study, this additional volatility determinant is represented by
a daily dummy variable Xi,t for the Russia-Ukraine conflict, an exogenous event that increased the cost
of electricity in Europe [Liadze et al., 2023, Ali et al., 2023]. Accordingly, the short-run component is
specified as follows:

gi,t = (1− α− γ/2− β) + (α+ γ · 1(ri−1,t<0))
(ri−1,t)

τt
+

+ βgi−1,t + z · (Xi−1,t − E(Xi−1,t))

(7)

where 1(·) is an indicator function. As it is customary in a GARCH model, the short-run parameters
are subject to: α > 0, β ≥ 0; α + β + γ/2 ≥ 1 [Bollerslev, 1986]. Following Amendola et al. [2021]and
[Candila, 2020] , it is assumed that z ≥ 0; Xi,t ≥ 0, ∀i and t

The logarithm of the long-term component τt follows a MIDAS regression ( see e.g., Pan and Liu
[2018])

τt = exp

{
m+ θ

K∑
k=1

δk(ω)MVt−k

}
(8)

where m is an intercept, MV is a stationary predetermined variable that plays the role of MIDAS term,
being sampled at a lower frequency than τt, and δj(ω) is a chosen weighting function. A GARCH-MIDAS
with gi,t and τt specified as above is called GJRM, or GJRM-X if an exogenous variable is included in
gi,t.
In this study also a Double Asymmetric GARCH–MIDAS (DAGM) model ([Amendola et al., 2019a]) is
implemented. In a DAGM model the asymmetry in the short-run is captured by a GJR-type reaction to
the sign of past returns. This model allows positive and negative variations in the MV values to have
different impacts on the long-run, providing an economic interpretation of what drives the average level of
volatility. The term τt in the DAGM model represents the slow-moving local level of volatility (long-run
component) defined as:

τt = exp

{
m+ θ+

K∑
k=1

δk(ω
+)MVi−k1{MVi−k≥0} + θ−

K∑
k=1

δk(ω
−)MVt−k1{MVt−k<0}

}
(9)

where θ+ and θ− represent the asymmetric responses to the one-sided filter, and δk(ω)
+ and δk(ω)

− are
suitable functions weighing the past K realizations of the additional stationary predetermined variable
labelled MVt [Amendola et al., 2021]. In this analysis, the parametric function δk(w

∗) is assumed to
follow a Beta structure [Candila, 2020]:

δk(ω
+) =

(k/K)ω
+
1 −1(1− k/K)ω

+
2 −1∑K

j=1(j/K)ω
+
1 −1(1− j/K)ω

+
2 −1

, δk(ω
−) =

(k/K)ω
−
1 −1(1− k/K)ω

−
2 −1∑K

j=1(j/K)ω
−
1 −1(1− j/K)ω

−
2 −1

which, being a monotonically decreasing weighting scheme, weigh more the most recent observations.
To summarize, when the effect of an exogenous event is considered in the model, the GARCH-MIDAS
framework corresponds to either a GJRM-X or a DAGM-X model (if asymmetries of volatility’s determi-
nants are accounted for) with either a normal or a Student’s t density for the innovations. In the current
study, the exogenous event represents the Russia-Ukraine conflict and it is incorporated in the models
via a dummy variable (which assumes value equal to 1 in presence of the conflict and 0 otherwise).
When no exogenous shocks are considered, the GARCH-MIDAS model tallies with either a GJRM or a
DAGM model (if asymmetric responses of the MIDAS term in the volatility equation are considered).

3.4 Model Conficence Set

Choosing the most effective GARCH-MIDAS model for explaining the relationship between extreme
climate events and electricity prices is particularly challenging when the set of competing models is large.
In many applications, no single model significantly outperforms all others because the data may not be
sufficiently informative to provide a clear answer [Hansen et al., 2011], especially in the context of price
volatility [Poon and Granger, 2003]. Nonetheless, it is possible to reduce the set of models to a smaller
subset that contains the best model with a given level of confidence via a testing procedure called Model
Confidence Set (MCS).
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The MCS, proposed by Hansen et al. [2011], can be implemented to identify the best model, according
to a user-specified criterion, from a collection of models.
An MCS is constructed starting from a set of competing models, M0, by using a criterion for empirically
evaluating their performance1. The MCS procedure relies on an equivalence test, δM, and an elimination
rule, eM.
If the equivalence test, when applied to the set M, rejects the null, then there is evidence that models
in M are not equally ‘good’ as those in M0. Then, the elimination rule eM removes the model with the
poorest performance form the set [Hansen et al., 2011] M.
This procedure is repeated until δM is accepted’, and the MCS is now defined by the set of ‘surviving’
models.
Typically, two statistics are used to implement the MCS procedure: Tmax, which compares the models
of the set and allows the identification of the model with the worst performance, and TR, that ranks
models according to their performance. Specifically, the Tmax statistic is calculated at each step of the
MCS procedure to identify the model that shows the greatest difference from the best one in terms of
a given loss function (e.g., mean squared error or absolute error). TR, instead of focusing exclusively
on the worst-performing model, as Tmax does, provides a ranking among all models, depending on a
specific loss function [Bernardi and Catania, 2018]. This statistic is particularly useful when one seeks
to determine not only the worst model but also the relative performance of each model in comparison to
those of the others [Bernardi and Catania, 2018].
In the present study, the MCS procedure is used to select the best GARCH-MIDAS model on the basis
of a comparison between the estimates of the volatility obtained from these models with the realized
volatility (RV ) of electricity price returns. The loss functions used for this scope are the Square Error
and Absolute Error
As it is well known, RV is a non-parametric measure of the total variability of a time series over a
fixed time interval, typically calculated using high-frequency data. Unlike model-based processes such as
GARCH, which rely on certain assumptions about the distribution of returns, RV is computed directly
from observed data, providing a data-driven assessment of market risk.
For the study in exam, the realized volatility for a day i has been computed as follows:

RVi =

H∑
i=1

R2
i,h (10)

where Ri,h represents the intraday returns at time h on day i and H denotes the number of intraday
intervals. The use of high-frequency data enhances the accuracy of volatility estimation by capturing a
greater portion of the price dynamics occurring within a trading day. This approach allows RV to account
for both continuous price fluctuations and potential price jumps, which may result from news releases or
other market events [Andersen et al., 2001].

3.5 Forecasting

The MCS procedure enables to select the most appropriate GARCH-MIDAS model, which integrates the
long-run with the short-run volatility of the electrical prices. The former is explained by the MIDAS
component, sampled at low-frequency data, that corresponds to the variable selected by the BPA, the
latter, is modeled by a GARCH process for high-frequency data. The global volatility of the returns of
electricity prices, accounting for both the short and the long-run components of the estimated optimal
GARCH-MIDAS model, is then used to standardize the energy prices as follows:

ni =
Ri

r̂i
(11)

Here Ri represents the returns of electricity prices, r̂i denotes the estimated global volatility via the
GARCH-MIDAS model, and ni is the normalized value of the returns of electricity prices.
The use of prices adjusted for risk facilitates their forecast as the latter turns out to be based on normalized
prices. Normalizing prices by dividing them by their volatility, which is estimated from a GARCH model,
produces risk-adjusted measures, making easier the comparisons between assets with different levels of
volatility. This approach is valuable not only for the comparative analysis of asset performance but also
for enhancing risk management and investment decision-making [Alexander, 2008]. Indeed, the use of
normalized prices permits the derivation of indicators that, being less influenced by short-term price

1The criterion can coincide with either the Mean Squared Error or the Mean Absolute Error [Catania et al., 2015]
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fluctuations, provide more robust evaluations of the assets’ risk-adjusted performance.
Finally, a predictive ARMA model, accounting for the leverage effect, is built to forecast the normalized
electricity prices. The model is specified as follows

ni+h =

p∑
j=1

ϕjni−j + β2Levi + ϵi +

q∑
j=1

θjϵi−j (12)

Here the variable Levi = Di Ri, where yi is the return of the electricity prices, and Di is a dummy variable
that takes the value of one if Ri < 0, and zero otherwise, is used as proxy of the leverage (Lev) effect.

4 Data

4.1 Extreme climate events in Italy: an overview

Climate-related hazards are expected to increase in both frequency and intensity across Europe, partic-
ularly those associated with heat waves, droughts, and heavy precipitation events [Noto et al., 2023]. By
2100, climate-related disasters could impact approximately two-thirds of the European population annu-
ally, thus involving an Expected Annual Number of People Exposed (EAPE) of 351 million, in contrast
to 5% of the population (25 million EAPE on average) between 1981 and 2010 [Masselot et al., 2023].
Similarly, the number of fatalities attributable to these events could rise from an average of 3,000 per
year (1981–2010) to 152,000 per year by 2100, predominantly due to an increase in the frequency of heat-
waves, with southern Europe being the most affected [Masselot et al., 2023, Noto et al., 2023]. However,
the modest advancements in combating climate changes highlight how many European cities continue to
struggle with achieving the targets set forth in the Paris Agreement. Therefore, there is a pressing need
for increased efforts to mitigate the most severe impacts [Salvia et al., 2021, VijayaVenkataRaman et al.,
2012].
Italy is not exempt from this culpable delay, having been severely affected by climate change in recent
decades [Amendola et al., 2019b, Iannuccilli et al., 2021]. From this perspective, analyses and studies
on extreme climatic events, such as extreme precipitation, and their trends at regional and local scales
strongly encourage the identification and the use of more optimal strategies for adaptation and mitigation.
Studies on extreme climatic event trends at the local scale are particularly crucial in the Mediterranean
area, both for the complexity of the Mediterranean climate and for the lack of specific studies in this
region [Iannuccilli et al., 2021].
Giorgi [2006] analyzed several model projections based on the IPCC Special Report scenarios [Hoegh Guld-
berg et al., 2018], describing the complexity of the Mediterranean area as ”one of the most responsive
regions to global change.” Stronger signals of this trend can be identified in the decrease in mean pre-
cipitation and in the increase of precipitation variability during the dry (warm) season. The climatic
complexity of the Mediterranean area is further intensified in the Italian peninsula due to its unique ge-
ographical location, complex topography, and orography. Italy, a long and narrow peninsula situated in
the middle of the Mediterranean Sea, spans from North Africa to continental European latitudes (between
36° and 47°N) [Iannuccilli et al., 2021]. This places it in a transition area between a very hot and dry
climate in the south and a temperate and rainy climate in the north [Bartolini et al., 2012]. According to
Kottek et al. [2006], Italy exhibits a variety of climate types, ranging from humid subtropical (typical of
the Adriatic coastal areas and the Po Valley) to cold continental and tundra (found in the alpine region
and high mountainous areas). Due to this climatic complexity, analyzing the Italian climate is challeng-
ing, particularly in studies focused on identifying precipitation trends. It is not surprising that many
studies conducted over the past few decades, aimed at analyzing and reporting precipitation trends and
extremes, have produced discordant conclusions or chaotic and nonlinear tendencies [Iannuccilli et al.,
2021]. The dataset proposed by Legambiente, known as Città Clima 2, has been employed in this study
to analyze the hypothesis of an increase in the frequency and intensity of extreme rainfall events in a
warming climate. Città Clima is an observatory by Legambiente, supported by UnipolSai Assicurazioni,
that monitors the impacts of climate change on the Italian territory, with a particular focus on urban
areas. This project aims to increase and broaden awareness of phenomena that are increasingly changing
in both magnitude and frequency. The climate risk map helps to understand what is happening in the
Italian territory by collecting and processing information on the impacts of climate events on urban areas,
infrastructure, and historical assets. The map considers episodes since 2009 that have caused damage
to begin creating an initial chart of the risk geography of our country. The objective of the map is

2Source: Legambiente
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to understand where and how these phenomena occur with greater frequency as well as to analyze the
impacts they cause, also comparing them with what occurred in the past. This aims to highlight, where
possible, the relationship between the acceleration of climate processes and issues related to settlement
or infrastructural factors in the Italian territory. The Città Clima dataset presents ten possible extreme
climate events due to climate change, classified as follows:

• Flooding from intense rainfall [Beniston, 2007, Agarwal et al., 2024];

• Damage to historical heritage from intense rainfall [O’Neill et al., 2022, Sesana et al., 2021];

• Damage to infrastructure from intense rainfall [Garg et al., 2015, Cohen et al., 2018];

• Hail damage [Hohl et al., 2002, Muehleisen et al., 2018];

• Damage from prolonged drought [Byers et al., 2020, Jääskeläinen et al., 2018];

• Tornado damage [Unnikrishnan and van de Lindt, 2016, Paudel, 2022];

• River flooding [Venus et al., 2020, Kataria, 2009];

• Landslides from intense rainfall [Lebourg et al., 2010, Roccati et al., 2019];

• Storm surges [Lewis et al., 2017, Boggess et al., 2014];

• Extreme temperatures in urban areas [Santágata et al., 2017, Waite et al., 2017].

Using this dataset, a preliminary analysis of the extreme climate events that occurred in Italy from 2009
to 2023 has been conducted. Figure 1, that shows the frequencies of different extreme climate events in
Italy from 2009 to 2023, confirms that these phenomena have increased during the last decade [Iannuccilli
et al., 2021, Moonen et al., 2002]. Looking at the the damage frequencies caused by extreme events, it
emerges that the appearance of some climatic events that were previously absent, such as prolonged
droughts, storms, and tornadoes as well as the intensification of others, such as intense rainfall and
extreme temperature in urban areas. Table 8 in Appendix A provides detailed frequencies of extreme
climate events.
Figure 2 shows the frequencies of deaths caused by extreme climate events in Italy in the same period.
The frequencies are not stable over the time span considered in the analysis, what changes over time is
the type of extreme events that are responsible for deaths. If flooding and intense rainfalls are, more
or less, always responsible of deaths in the last 15 years (through damages to infrastructure 3, in the
first part of the period, rather than through river flooding or landslides, in the last part), the prolonged
drought caused deaths in 2022 when it affected large parts of the country and was the worst in some
areas since 1976. It was part of wider European drought, believed to be the worst on the continent in
500 years. Finally, the treats of tornadoes, often underestimated, is evident from the report of deaths
that this atmospheric event has caused, in almost all Italian regions. Figures 12 and 13 in Appendix
A show the details of fatalities resulting from extreme climate events. It is evident that the years with
the highest number of deaths due to these events are 2009, 2018, and 2022. It is equally apparent, that
the extreme climate events causing the most fatalities are river flooding, flooding from intense rainfall,
followed by infrastructure damage due to intense rainfall, and tornado damage.
Figure 3 depicts a map highlighting the Italian provinces that were more hit by extreme climate events
that occurred in the considered time span, the intensification of the red color indicates a greater presence
of extreme climate events occurring in that year. The map clearly highlights how climatic events have
intensified over time, gradually affecting all provinces of the country. In the early years, the provinces
hardest hit by extreme climate events were Milan and those in the North-West of Italy. Gradually, the
province of Rome assumed the unenviable position of being the most affected by extreme climate events.
From 2016 to 2023, it stood out as the Italian province experiencing the highest number of such events
within its territory.

3The Messina floods and mudslides of 2009 were the most fatal extreme climate events in Italy in the last 15 years
[Lombardo et al., 2014]
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Figure 1: Frequencies of extreme climate events by type in Italy from 2009 to 2023

Figure 2: Frequencies of deaths due to extreme climate events in Italy from 2009 to 2023
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(a) 2014 (b) 2015 (c) 2016 (d) 2017 (e) 2018

(f) 2019 (g) 2020 (h) 2021 (i) 2022 (j) 2023

Figure 3: Maps illustrating extreme climatic events that occurred across Italian provinces from 2014 to 2023.
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4.2 Electricity Price

The electricity data is provided by the Gestore dei Mercati Energetici (GME) 4. GME was established
by the Gestore dei Servizi Energetici (GSE S.p.A.), a company wholly owned by the Italian Ministry
of Economy and Finance. GME conducts its activities in accordance with the guidelines set by the
Ministry of Environment and Energy Security (MASE) and the regulatory provisions issued by the
Regulatory Authority for Energy, Networks, and Environment (ARERA). GME operates the electricity,
gas, and environmental markets. As part of the electricity sector liberalization process, the Gestore dei
Mercati Energetici S.p.A. (GME) was initially tasked with the organization and economic management
of the wholesale Power Market under principles of neutrality, transparency, objectivity, and competition.
On the power market platform managed by GME (also known as the Italian Power Exchange, IPEX),
producers and purchasers trade wholesale electricity. Regarding electricity, GME operates a physical
forward market (MTE), a market for trading daily products (MPEG) with continuous trading, a day-
ahead auction market (MGP), and an intraday market (MI) consisting of three auction sessions (MI-A)
and one continuous trading session (MI-XBID).
Figure 4 depicts the series of the hourly Single National Price (SNP) in Italy from December 2009 to
December 2023, corresponding to the period when data collection on extreme climatic events in Italy
began. As it can be seen, the electricity price for average household consumers in Italy peaked at 66 euro
cents per kilowatt hour in the fourth quarter of 2022. This figure set an all-time electricity price record
for Italy. Since 2021, electricity prices for domestic consumption kept increasing in Italy, driven by the
growth of coal and natural gas prices. The main factors contributing to the European electricity price
spike were the economic recovery after the COVID-19 pandemic in 2021 and the interruption of Russian
imports following the Russian invasion of Ukraine in 2022.

Figure 4: Time series of electricity prices in Italy from December 30, 2009, to December 31, 2023.

Figure 5 represents the returns of the SNP, obtained by computing the first-order differences of the
logarithmic prices [Pan and Liu, 2018] defined in the following way:

Rt = log(SNPt)− log(SNPt−1)

where SNPt represents the price of the electricity at time t.

4Source: Gestore Mercati Energetici
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Figure 5: Returns of SNP

5 Results

This section describes in detail the results of the empirical analysis. As explained before, the BPA has
been employed to identify the most appropriate set of regressors for the variable of interest: the returns of
electricity prices in Italy 5. The set of variables considered for this scope are: financial data, specifically
monthly returns of various stock indexes, including exchange rates (such as “Euro-Dollar”, “Euro-Yen”,
“Euro-GBP”, and “Euro-CHF”), the “FTSE MIB index” (representing the Milan Stock Exchange), safe-
haven assets (including gold indexes and stock prices of selected mining companies such as “Newmont
Corporation”, “Agnico Eagle Mines”, and “Franco-Nevada Corporation”), stock prices of the U.S. tech
companies (“Alphabet [Google]”, “Amazon”, “Apple”, and “Microsoft”), and the most actively traded
Italian stocks (such as “ENI”, “Ferrari”, “Intesa Sanpaolo”, “Stellantis”, “Leonardo”, “Poste Italiane”,
and “Assicurazioni Generali”), as well as the frequencies of extreme climate events. The period under
study spans from January 2009 to December 2023. In this initial step of the analysis, all data are sampled
at the same frequency (monthly). A complete list of the variables included in the dataset is provided in
Table 9 reported in appendix B.

Figure 6 shows the tree resulting from the minimal BIC tree [Edwards et al., 2010], which represents
the starting point for the application of the BPA [Riso et al., 2023]. It is worth noting the particular
structure of the minimal BIC tree depicted in Figure 6 that consists of a large component formed by a
cluster of refuge assets (yellow nodes) and a cluster of exchange rates (dark green nodes). These two
clusters are connected by node 3 (the “Euro-Dollar exchange rate”) and node 32 (“Wheaton Precious
Metals Corp. Index”). Notably, node 26 (“Pricing Culture Rolex Index”), although classified as a refuge
asset, is connected only to node 3 (“the Euro-Dollar exchange rate”). Furthermore, most of the actively
traded Italian stocks (green nodes) are directly connected to node 2, which represents the “FTSE MIB
Index” (blue node). Finally, the stock prices of U.S. tech companies (pink nodes) are clustered together
and are connected to the FTSE MIB Index through node 33 (“Microsoft Corporation Index”).
As for the primary focus of this study, the returns of electricity prices, which is represented by node 1
(brown node), turns out to be directly connected to nodes 37 (orange node) and 36. The former identifies
the frequencies of extreme climate events, the latter the “Amazon stock index”, which is indirectly
connected to all other nodes.

5In this part of the analysis, electricity price returns are aggregated on a monthly basis to align their frequency with
that of other variables in the variable selection process.
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Figure 6: The minimal BIC tree (period 2009-2023)

By computing distances and path steps starting from the return of electricity price R (node 1), it
emerges that there are 11 potential subsets of variables to consider for feature selection. According to
Table 1, which shows the EC (see formula in Eq. (5)) for each of these path steps, w1 is identified as the
best path, as it exhibits the highest EC and includes the variable extreme climate events (ECE) and the
variable “Amazon Index” (AI)

Table 1: Path-steps EC for “Return of Electricity Price”

path-steps wi EC

w1 0.0133
w2 0.0119
w3 0.1001
w4 0.0074
w5 0.0033
w6 0.0032
w7 0.0029
w8 0.0028
w9 0.0028
w10 0.0027
w11 0.0026

The relevance of the variables, ECE and AI, has been tested via the Kraskov’s test [Kraskov et al.,
2004]. It results that only ECE is actually the best regressor for the return of electricity price (R). While
this result may seem intuitive, it actually suggests that the returns of electricity prices are not influenced
by the general trends of various financial stocks. This finding supports the hypothesis put forward in
several studies [see, among others, Stone Jr et al., 2021, Ke et al., 2016] that climate patterns can cause
substantial spikes in electricity consumption, leading to short-term price increases.

Table 2: Kraskov’s mutual information test of independence between the variable EP and Xw1

Variables at w1 p-value

Amazon Index 1.00
Extreme climate events 0.01
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Granger causality test have been then carried out to test the significance of the causal relationship
between ECE and EP. The null hypothesis that ECE does not Granger-cause the returns of electricity
prices is not rejected if no lagged values of the latter variable are retained in the regression. Looking at
the result of the test, it emerges that the occurrence of extreme events Granger causes the energy price.

Table 3: Granger Causality (GC) tests between ECE and R, and vice versa. Columns represent the GC
direction, the F -test results (columns 2 to 5) and the Wald χ2 test results (columns 6 to 8). Boldface
values denote significant at 1% level or less.

Direction F df1 df2 p-value(F ) χ2 df p-value(χ2)
R ⇐ ECE 3.08 10 138 0.001∗∗ 30.83 10 <0.001∗∗∗

ECE ⇐ R 1.14 10 138 0.334 11.44 10 0.334
Sample Period: 2009-01-01/2023-12-31

Having proved via the Granger causality test that extreme climate events indeed affect the returns of
electricity prices, GARCH-MIDAS models, involving extreme climate events in their long-run component,
have been implemented. More precisely, the short-term component of these models is driven by a GARCH
process explaining the volatility of high-frequency data (returns of electricity prices sampled at daily
frequencies), while the long-term component is a mixed data sampled process which includes a low-
frequency component (extreme climate events sampled at monthly frequencies) to explain the long-run
volatility of electricity prices.
GJRM and DAGM models have been estimated both with and without the inclusion of the exogenous
variable (the Ukraine-Russia war) in the short-term volatility component gi,t. The monthly frequencies
of extreme climate events have been incorporated as MIDAS terms in the long-term volatility component
τt. In all models, the innovations have been assumed to have either a Gaussian distribution or a Student’s
t-distribution. The estimation results for the GARCH-MIDAS models are presented in Table 4 for the
GJRM and GJRM-X models, and in Table 5 for the DAGM and DAGM-X models. Focusing on Table
4, looking at the result from the GJRM-X model with Student’s t-distributed innovations (Model 1), it
emerges, that the Ukraine-Russia war (represented by the coefficient z) is statistically significant, with a
positive effect on the volatility of electricity price returns. In contrast, the war variable is not significant
in the GJRM-X model with normally distributed innovations (Model 3). For all GJRM and GJRM-X
models, the intercept of the long-term component (the component of volatility driven by the frequency of
extreme events), m, is statistically significant. The parameter θ, which is statistically significant across
all models in Table 4, except for Model 4 (GJRM with normally distributed innovations), reflects the
overall sensitivity of long-term volatility to the low-frequency explanatory variable. A positive value
of θ suggests that increases in extreme climate events lead to higher long-term volatility in electricity
price returns. Similarly, for the DAGM models presented in Table 5, Model 5 (the DAGM-X model
with Student’s t-distributed innovations) shows that all parameters are significant, including θ+ and θ−,
which represent the asymmetric responses of long-term volatility to extreme climate events. In Model 7
(the DAGM-X model with normally distributed innovations), as in Model 3 (the GJRM-X model with
normally distributed innovations) in Table 4, the parameter z (representing the Ukraine-Russia war) is
not significant. Finally, the parameters ω+

2 and ω−
2 , which are the weighting functions for the past K

realizations associated with θ+ and θ−, are significant in all DAGM models, except for ω+
2 in Model 8

(the DAGM model with normally distributed innovations).
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Table 4: GJRM models results

Model 1 Model 2 Model 3 Model 4
Student-t innovations Normal innovations
GJRM-X GJRM GJRM-X GJRM

Best lag 10 11 10 11
α 0.026∗ 0.025∗ 0.025∗∗ 0.024∗

(0.014) (0.014) (0.013) (0.012)
γ 0.865∗∗∗ 0.863∗∗∗ 0.425∗∗∗ 0.423∗∗∗

(0.068) (0.061) (0.120) (0.118)
β 0.259∗∗∗ 0.261∗∗∗ 0.631∗∗∗ 0.634∗∗∗

(0.033) (0.032) (0.144) (0.140)
z 0.078∗∗ 0.023

(0.037) (0.026)
m -3.853∗∗∗ -3.804∗∗∗ -3.973∗∗∗ -3.916∗∗∗

(0.128) (0.104) (0.131) (0.104)
θ 0.017∗∗∗ 0.012∗∗∗ 0.013∗ 0.006

(0.006) (0.004) (0.007) (0.005)
ω2 1.003∗∗∗ 1.001∗∗∗ 1.256∗∗∗ 1.009

(0.297) (0.147) (0.174) (6.540)
ν 5.275∗∗∗ 5.274∗∗∗

(0.482) (0.174)
AIC -2.53 -2.53 -1.33 -1.33
BIC -2.52 -2.52 -1.32 -1.32

MSE(%) 0.16 0.16 0.15 0.15
Sample Period: 2009-12-29/2023-12-31

(∗) : p < 0.1; (∗∗) : p < 0.05; (∗∗∗) : p < 0.01.

Table 5: DAGM models results

Model 5 Model 6 Model 7 Model 8
Student-t innovations Normal innovations
DAGM-X DAGM DAGM-X DAGM

Best lag 8 11 7 11
α 0.026∗ 0.025∗ 0.025∗∗ 0.024∗∗∗

(0.014) (0.014) (0.013) (0.001)
γ 0.864∗∗∗ 0.866∗∗∗ 0.426∗∗∗ 0.423∗∗∗

(0.063) (0.053) (0.025) (0.117)
β 0.259∗∗∗ 0.261∗∗∗ 0.630∗∗∗ 0.634∗∗∗

(0.032) (0.032) (0.064) (0.141)
z 0.078∗∗ 0.023

(0.034) (0.022)
m −3.853∗∗∗ −3.795∗∗∗ −3.973∗∗∗ −3.919∗∗∗

(0.106) (0.086) (0.156) (0.112)
θ+ 0.020∗∗∗ 0.012∗∗∗ 0.014∗∗ 0.006

(0.006) (0.003) (0.006) (0.004)
ω+
2 1.005∗∗∗ 1.003 1.640∗∗∗ 1.024

(0.033) (3.107) (0.026) (6.607)
θ− 6.123∗∗∗ 9.021∗∗∗ 2.221∗∗∗ 9.501

(0.285) (0.098) ( 0.101) (269.051)
ω−
2 4.957∗∗∗ 3.992∗∗∗ 6.050∗∗∗ 5.625∗∗∗

(0.201) (0.037) (0.008) (0.012)
ν 5.276∗∗∗ 5.268∗∗∗

(0.307) (0.378)
AIC -2.53 -2.53 -1.33 -1.33
BIC -2.52 -2.52 -1.32 -1.32

MSE(%) 0.16 0.16 0.15 0.15
Sample Period: 2009-12-29/2023-12-31

(∗) : p < 0.1; (∗∗) : p < 0.05; (∗∗∗) : p < 0.01.

The estimated long volatility τt estimated via GJRM-X and DAGM-X models is plotted in Figures 7
and 8, while the global volatility is display in Figures 9 and 10
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 7: Estimated long run-volatility τ̂i for GJRM models. Sample period: 2009-12-29/2023-12-31
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(a) Model 5 (b) Model 6

(c) Model 7 (d) Model 8

Figure 8: Estimated long run-volatility τ̂i for DAGM models. Sample period: 2009-12-29/2023-12-31
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 9: Estimated global volatility τ̂i × ĝit for GJRM models. Sample period: 2009-12-29/2023-12-31
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(a) Model 5 (b) Model 6

(c) Model 7 (d) Model 8

Figure 10: Estimated global volatility τ̂i × ĝit for DAGM models. Sample period: 2009-12-29/2023-12-31

After estimating the global volatility for each GARCH-MIDAS model, the MCS procedure has been
implemented to select the best model based on the quality of its volatility estimates, compared to the
realized volatility (RV, calculated as in Eq. 10) of electricity price returns.
Figures 14 and 15, in Appedix C, compare RV with the estimated global volatility of the GJRM and
DAGM models, while Table 6 provides the results of the MCS procedure using as the Mean Square
Error (MSE) 6 as loss function to evaluate the discrepancies between RV and estimated global volatility
of each GARCH-MIDAS model at each time point . The outputs of the loss function, are stored in a
loss matrix with dimensions corresponding to the number of models (8) and the days of the evaluation
period ( from 2009-12-29 to 2023-12-31) Bernardi and Catania [2018]. The MCS procedure produces a
Superior Set of Models, shown in Table 6, which ranks the models analyzed in this study. Specifically, the
columns ”RankM” and ”RankR” indicate the position of the models based on the statistics Tmax and
TR respectively. The values in the columns ”vM” and ”VR”indicate the uncertainty associated with each
model according to the statistics Tmax and TR. In particular, the values ”vM” indicate the variability
in model performance according to ”Tmax”, with higher variance suggesting greater uncertainty in the
model’s performance. Similarly, the values ”VR” capture the variability in performance based on the
ranking statistic, where higher variance denotes greater uncertainty in rank-based performance. Models
are accepted or excluded from the MCS based on each test statistic. The columns ”MCSM” and ”MCSR”
indicate inclusion of the model in the MCS, with a value of 1 indicating the model’s acceptance when
ranked by either Tmax or TR, and a value of 0 indicating its rejection. Finally, the ”Loss” column
measures each model’s performance in terms of the loss function that is employed.

6The same results are obtained using the MCS procedure with the Absolute Error method
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Table 6: Superior Set of Models.

Model RankM vM MCSM RankR Vr MCSR Loss
Model 1 1 -1.34 1.00 1 -0.28 1.00 0.0757
Model 2 8 1.15 0.33 8 13.29 0.00 0.0764
Model 3 4 -0.82 1.00 3 1.45 0.53 0.0759
Model 4 6 1.00 0.40 6 5.53 0.00 0.0764
Model 5 2 -1.25 1.00 7 7.78 0.00 0.0758
Model 6 7 1.06 0.37 4 5.05 0.00 0.0764
Model 7 3 -0.83 1.00 2 0.28 1.00 0.0759
Model 8 5 0.99 0.40 5 5.49 0.00 0.0764

The results show in Table 6 lead to the conclusion that the best GARCH-MIDAS model in this
analysis is Model 1, the GJRM-X model with Student’s t-distributed innovations.

Table 7: Optimal ARIMA model for Normalized price of electricity n

Dependent variable: Normalized price of electricity n.

θ1 0.106∗∗∗

(0.014)

β0 −0.485∗∗∗

(0.012)

Lev 8.613∗∗∗

(0.110)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

After selecting the most appropriate GARCH-MIDAS model through the MCS procedure, the returns
of electricity prices (ni) as in Eq. 11 are normalized by using the global volatility estimate of this optimal
model.
Finally, an ARMA model is constructed for predictive purposes using the estimated ni, with the leverage
effect (Lev) as a predictor, as shown in Eq. 11. The optimal ARMA model is selected based on its out-
of-sample predictive performance. Specifically, after estimating the model over the period from January
2009 to December 2022, the same is used to forecast the normalized returns of electricity prices from
January 2023 to December 2023. The accuracy of these forecasts is evaluated using the out-of-sample
RMSE. Figure 16 in Appendix C presents the out-of-sample prediction of normalized electricity price
returns for the best model (i.e., the one with the lowest RMSE). The estimates for the best ARMA
model are provided in Table 7. Lastly, the forecast for the (unobserved) normalized returns of electricity
prices for 2024 is shown in Figure 11.
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Figure 11: Forecast of normalized electricity price (n). The blue-shaded area represents the 95% forecast
interval, while the green-shaded area represents the 80% forecast interval for the year 2024.

6 Conclusion

This study examined the impact of extreme weather events on electricity prices volatility in Italy, uti-
lizing an innovative methodological approach that combines graphical models for variable selection with
advanced volatility estimation techniques. The application of an innovative variable selection algorithm,
the Best Path Algorithm (BPA), led to identify extreme climate events as the best predictors of returns
of electricity prices, highlighting how these atmospheric factors play a predominant role compared to
traditional financial variables.

The data used in this research include a detailed historical series of daily electricity prices in Italy,
provided by the Gestore dei Mercati Energetici (GME), and a comprehensive dataset on extreme climate
events collected by Legambiente through the Città Clima project. Integrating these two data sets, with
different temporal granularities, posed a methodological challenge that we addressed using GARCH-
MIDAS models. This methodology allows for the effective integration of high-frequency data (daily
electricity price returns) with low-frequency data (monthly climate events), thereby capturing the detailed
effects of extreme weather events on energy price volatility.

To manage anomalies and spikes in the data due to exogenous shocks, such as the Russia-Ukraine
war,

GARCH-Jump with Regime Switching (GJRM) and its variant GJRM-X, which incorporates ex-
ogenous variables, were used . Different types of GARCH-models, including the Double Asymmetric
GARCH-MIDAS (DAGM) and their extended versions, were compared using the Model Confidence Set
(MCS) procedure. The latter allowed the identification of the most suitable model for forecasting the
volatility of electricity prices.

The results confirm the significant influence of extreme weather events on the volatility of electricity
prices in Italy. The selected model demonstrated superior predictive capability, enabling a decomposition
of volatility into short- and medium-term components. Furthermore, using the estimated volatility to
normalize electricity prices improved the accuracy of forecasts obtained through the ARIMA model.

The originality of this work lies in the integrated approach that combines machine learning techniques
for variable selection with advanced econometric models for volatility estimation and forecasting. The
adoption of the BPA to identify key predictors and the application of GARCH-MIDAS models to handle
data with different frequencies represent significant contributions to the existing literature.

In conclusion, the study underscores the importance of considering extreme weather events in the
modeling and forecasting of electricity prices. These findings have relevant implications for policymakers
and energy market operators, highlighting the need to develop mitigation and adaptation strategies that
account for the increasing frequency and intensity of extreme weather events due to climate change.

26



Future research could deepen the analysis by extending the approach to other countries or regions,
or by including additional climatic and financial variables. Additionally, expanding the set of variables
considered during the variable selection phase could further validate the significance of extreme weather
events as key predictors or reveal other important factors influencing electricity prices. Moreover, in-
tegrating more sophisticated predictive models and employing deep learning techniques could further
enhance the understanding of the dynamics between extreme weather events and energy markets.
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A Summary of Extreme climate events

Table 8: Frequencies of extreme climate events by type in Italy from 2009 to 2023

Extreme Climate Events 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Damage from prolonged drought 0 0 0 0 1 0 0 0 4 3 8 13 6 29 21

Damage to historical heritage from intense rainfall 0 0 2 1 1 1 4 0 0 4 2 1 3 4 3
Damage to infrastructure from intense rainfall 1 6 4 10 12 18 17 6 6 12 5 16 8 14 16

Extreme temperatures in urban areas 0 0 0 0 1 0 1 0 6 2 1 0 3 8 20
Flooding from intense rainfall 0 6 12 12 36 20 18 16 26 74 69 94 88 105 118

Hail damage 0 0 1 1 1 1 4 0 3 10 14 9 15 29 39
Landslides from intense rainfall 0 1 1 2 3 4 5 1 4 4 6 10 17 11 18

River flooding 0 3 4 1 15 16 4 6 8 20 19 19 11 13 35
Storm surges 0 1 1 3 4 3 2 4 3 5 2 2 4 18 26

Tornado damage 0 1 1 11 21 5 5 9 17 50 68 83 46 80 82

Figure 12: Frequencies of deaths due to extreme climate events in Italy from 2009 to 2023
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Figure 13: Frequencies of deaths due to extreme climate events by type in Italy from 2009 to 2023

33



B Data

Table 9: Name of the considered variables together with the related identification code of used in label
nodes

Label node Variable Name

1 Return of Electricity Price
2 FTSE MIB Index
3 Exchange Euro-Dollar
4 Exchange Euro-Yen
5 Exchange Euro-GBP
6 Exchange Euro-CHF
7 ENI index
8 Ferrari N.V. (RACE) Index
9 Moncler S.p.A. Index
10 Intesa Sanpaolo S.p.A. Index
11 UniCredit S.p.A. Index
12 Stellantis N.V. Index
13 STMicroelectronics N.V. Index
14 Enel Index
15 Assicurazioni Generali S.p.A. Index
16 Tenaris S.A. Index
17 Poste Italiane S.p.A. Index
18 Snam S.p.A. Index
19 Prysmian S.p.A. Index
20 Leonardo S.p.a. Index
21 Davide Campari-Milano N.V. Index
22 Mediobanca Banca di Credito Finanziario S.p.A. Index
23 Recordati Industria Chimica e Farmaceutica S.p.A. Index
24 Infrastrutture Wireless Italiane S.p.A. Index
25 Banco BPM S.p.A. Index
26 Pricing Culture CLONE X - X TAKASHI MURAKAMI Floor Index
27 Gold Jun 24 Index
28 Franco-Nevada Corporation Index
29 Newmont Corporation Index
30 Agnico Eagle Mines Limited Index
31 B2Gold Corp. Index
32 Wheaton Precious Metals Corp. Index
33 Microsoft Corporation Index
34 Apple Inc. Index
35 Alphabet Inc. Index
36 Amazon Index
37 Extreme Climate Events
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C Realized Volatility and Forecasting in sample

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 14: Comparison of RV (histogram in red) with the total volatility computed with the GJRM
models (line in black)
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(a) Model 5 (b) Model 6

(c) Model 7 (d) Model 8

Figure 15: Comparison of RV (histogram in red) with the total volatility computed with the DAGM
models (line in black)
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Figure 16: Out-of-sample prediction performed by the optimal ARIMA model for normalized electricity
price (n). The red shaded area represents the 95% prediction interval, while the purple shaded area
represents the 80% prediction interval.
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