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Abstract

The present technological revolution, characterized by the pervasive and growing presence of robots,
automation, Artificial Intelligence and machine learning, is going to transform societies and economic
systems. However, this is not the first technological revolution humankind has been facing, but it is probably
the very first one with such an accelerated diffusion pace involving all the industrial sectors. Studying its
mechanisms and consequences (will the world turn into a jobless society or not?), mainly considering the
labor market dynamics, is a crucial matter. This paper aims at providing an updated picture of main empirical
evidence on the relationship between new technologies and employment both in terms of overall

consequences on the number of employees, tasks required, and wage/inequality effect.

JEL Classification: 033
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1. Introduction

The relationship between technology and employment has been evolving during the past century and last
decades showing its complex and multifaceted nature. The fear of technological unemployment has been
accompanying the great innovative waves. However, in the history of humanity, periods of intensive
automation have often coincided with the emergence of new jobs, tasks, activities and industries. Indeed, the
challenging question is related to the overall sign of the relationship between technological change and labor:
is technology labor-friendly or is it labor-threatening? Human kind have gone through innovative cycles,
starting from the very first one in the mid of the XIX century in UK when laborers became aware of the
potential negative impact of machines on labor, throughout the adoption of electric power to create mass
production in the mid of the XX century, up to the technological transformation associated to the extensive
diffusion of ICTs at the end of the past century (see Noble 1986; Knights and Willmott 1990; Zuboff 1988).

Nowadays, the world is on the edge of a new technological revolution based on the previous one, but
dramatically accelerating in the direction of automation by the pervasive diffusion of robots and Artificial
Intelligence (Al) (see Acemoglu and Restrepo 2017; Brynjolfsson and McAfee 2014; Frey and Osborne
2017; Kenney and Zysman 2019). In a sense, these new technologies belong to the family of General
Purpose Technologies (GPTs) which, by definition, can be applied to most sectors and can spread favoring
additional applications and incremental innovations. However, if compared to ICTs (previous GPTSs), this
new paradigm turns out to be even more rapid in its diffusion and more flexible in its adoption. Interestingly
enough, Al, self-learning algorithms and human-imitating robots can perform tasks usually requiring human
beings’ intelligence and physical ability/dexterity (such as speech recognition, decision-making advise,
disease diagnose, complex documents translation, performance of unhealthy and dangerous tasks). Dobbs et
al. (2015) from the McKinsey Global Institute estimate that, compared to the industrial revolution of the XIX
century, automation and Al’s disruption of society is happening 10 times faster and at 300 times the scale.
This kind of potentiality might affect each job and every task, even if, in the case of Al, ‘matching tasks’ are
the most prominent group (as, for instance, Uber, Airbnb, Linkedin, Amazon) (see Ernst et al. 2018). Indeed,
automation is not confined to agriculture and manufacturing, but spreads to services. If, for instance, the
regulated taxi service is considered, a ‘conventional’ taxi-driver is now challenged by more spread services
(Uber) and, in turn, a Uber-driver might be (or will be) feat by self-driving machines making the Uber-driver
job at risk. Yet, on the pros social side of a driverless vehicle, there is likely social inclusion of elderly and

disabled people (see, for instance, Pettigrew et al. 2018).

This trend is involving all the developed economies, but it might also impact on emerging and developing
countries (for evidence on the effect of the previous technological wave, see Conte and Vivarelli 2011; Haile
et al. 2017; Vivarelli 2014). Emerging economies might catch up, but they can possibly remain in a sort of

technological-trap, lagging behind unable to rapidly adjust.



This paper critically presents theories and updated evidence on the role of automation on employment and
labor markets. Section 2 discusses the potential consequences of innovation on employment, under the
assumption that automation introduces a process innovation aimed at reducing production cost and the use of
labor. However, a number of compensation mechanisms might determine a less pessimistic result on the
labor market. Section 3 examines methodological and operationalization issues related to the empirical
studies. In Section 4 an updated review of existing studies on the impact of automation on employment is
proposed discussing main evidence and limitations. Summary will emphasize main results from the literature

and will present open issues requiring additional attention from researchers and policy-makers.

2. Technological change and employment: theoretical literature review and previous evidence

To evaluate the overall effect of technological change on employment, different mechanisms have to be
taken into account. In general, the innovative effort is focused at reducing production costs as it happens in
the case of process innovations. The aim is producing the same amount of output reducing the use of
production inputs, such as labor. In this sense, innovation is frequently introduced to be labor-saving. In the
present industrial revolution, automation (robots) is more related to the introduction of new machinery able
to carry out tasks previously performed by humans, than focused on the development of more productive
vintages of already existing machines (the main consequence is that the demand for labor declines — see
Acemoglu and Restrepo 2018). In this scenario, the ‘qualitative dimension’ of workers becomes central, as
some human skills/tasks are no more necessary after innovation has been introduced, while others, even new
ones, become extremely relevant. The overall picture on the employment consequences is, therefore, more

articulated than expected.

2.1 Theoretical models

In general, when a process innovation is introduced, there might be potential market compensation
mechanisms that may counterbalance the initial labor-saving impact of innovation (see Freeman et al. 1982;
Freeman and Soete 1987; Simonetti et al. 2000; Vivarelli 1995 and 2014). This happens also in the case of
automation and Al. These countervailing forces, which might operate at different levels of aggregation -

sectoral or economy-wide -, can be classified into Classical, Neoclassical, Keynesian and Schumpeterian.

Classical mechanisms

- New machines. If robots are adopted widely, they might replace workers in some or all of their tasks.
Nevertheless, in order to have robots available, additional production is needed. As a consequence, a sectoral
shift of workers from the downstream robot-using industry towards the upstream robot-producing sectors
may counterbalance the initial negative effect on employment (see Dosi et al. 2019). Still, if among machine-
producers new pieces of equipment entirely cannibalize older ones, such an industry is not going to benefit

from any positive effect on employment.



- Decrease in prices. The productivity increase determined by the broadly adoption of robots able to run
automated tasks might induce a decline of the average production costs. This effect, just in case of highly
competitive markets, is translated into a subsequent reduction of prices. Lower prices should determine a
higher demand which might induce new hiring for labor in non-automated tasks (Acemoglu and Restrepo
2019a).

- Re-investment of extra-profits. The accumulated extra-profits which may emerge in non-perfectly
competitive markets (where the elasticity between decreased unit costs and subsequent decreasing prices is
less than one, limiting the scope of the previous mechanism) may be invested into capital formation,
expanding both the productive capacity and the intermediate demand, in both cases implying an increase in

employment.

Neoclassical mechanism

- Decrease in wages. With regard to the labor market, the initial workforce displacement leads to an excess
of labor supply which might determine a reduction, on average, of wages or, at least if legal restrictions are
at work, a limited increase. If a well-behaved production function exists, the following labor demand
increase is supposed to re-equilibrate the market and absorb the initial labor supply surplus. However, lower
wages might not have positive consequence on the demand side as inputs are not perfect substitutes and labor
is a broad category heterogeneous in its composition (it depends on education, occupation, job and task).
Indeed, the actual production processes are hardly reversible, i.e. new technologies dominate older ones
irrespectively of relative prices (see Dosi and Nelson 2010 and 2013), since knowledge and technological
change are characterized by path-dependence and increasing-returns (see Capone et al. 2019; David 1985;
Rosenberg 1982).

Keynesian mechanism

- Increase in incomes. In every situation workers are able to appropriate gains from the productivity increase.
In fact the robot adoption can lead to an increase in wages, at least for some categories of workers (those
involved in non-automated tasks), and consumption. This determines higher demand and increase in

employment via well-known Keynesian processes (compensating for the initial labor displacement).

Schumpeterian mechanism

- As emphasized by Schumpeter (1912), technological change cannot be reduced to the sole (potentially
labor-saving) process innovation. Indeed, the introduction of new products, which might be connected to the
robots’ production, entails the raise of new branches of production and stimulates additional consumption. In
general, in the case of Al, it can serve as a platform to create new tasks in many service industries. Higher

production and enlarged consumption translate into higher demand and employment in the whole economy.



Obviously enough, employment compensation by “‘decreasing prices’ may be hindered by price rigidities and
non-competitive practices, while additional incomes due to technical change are not necessarily invested in
labor-intensive activities. Finally, even new products may displace older products and so imply a weaker

impact in terms of job-creation.

Moreover, these compensation mechanisms cannot ignore the time-dimension. Therefore, the speed of this
industrial revolution and the timing of the potential compensation is an additional element to consider. Berg
et al. (2018) propose a general equilibrium model to study consequences of robots on output, wages and
inequality. Even a small increase in the level of robot productivity can augment output enormously if robots
and humans are sufficiently close substitutes. The basic mechanism discussed by the authors is that the
introduction of more productive robots initially lowers wages (see also DeCanio, 2016, for a discussion on
elasticity of substitution between human and robotic labor and the depressing effect on human wages due to
proliferation of robots) and raises the return to both robots and traditional capital. A large amount of
traditional capital has to be accumulated before a scarcity of human labor raises wages and the return on
capital declines to normal levels. The whole mechanism turns out to be good for output. However, it is also
bad for distribution, especially in the short-run. Authors propose a number of variants, but automation turns
always out to be very good for growth and very bad for equality — according to the benchmark model real
wages fall in the short-run and eventually rise, but in a worryingly long-run. Also Bessen (2019) presents a
model focusing on the impact of technology on employment critically considering the time of action. His
model is able to predict the actual labor demand — over a historical timeframe — reasonably well for cotton,
automotive and steel. If results are extended to potential implications of robot and Al, demand is sufficiently
elastic and Al does not completely replace humans, then technical change is overall able to create jobs rather
than destroy them. It is a matter of speed: in this case, a faster rate of technical change will actually create
faster employment growth (especially non-routine employment) rather than job losses. Indeed, Acemoglu
and Restrepo (2019b) affirm that Al - since it is not just a narrow set of technologies with specific, pre-
determined applications and functionalities, but it is a platform - can be deployed for much more than
automation. With Al applications creating new tasks for labor (see examples in education, healthcare,

augmented reality), there would be potential gains in terms of productivity and labor demand.

Overall, the economic theory does neither provide a clear-cut answer nor forecasts about the employment
effect of innovation (general innovation or robots and Al), since it depends on a number of factors,
assumptions, parameters, elasticities, model calibrations. Therefore, theoretical models have been integrated

by empirical studies aiming at providing additional evidence.

2.2 Previous empirical evidence and job polarization

Even referring to previous innovation waves, the theoretical literature has been supplemented with empirical
analysis on the possible relationship between innovation and the subsequent effects upon employment both
in quantitative and qualitative (skills) terms (for recent surveys, see Calvino and Virgillito 2018; Ugur et al.

2018; Vivarelli 2014). Overall, the learning lesson from previous empirical studies is that findings vary a lot



depending on level of analysis (whether firm, sector or macro), proxies for technological change (whether
embodied, such as investment in new physical capital, or disembodied, such as R&D expenditures), country
and time of the analysis. The general picture is quite heterogeneous. Most of the extant literature approaches
the job consequences of technological change at the micro-level, from which generally emerges a job-
creating effect when very innovative firms in high-tech sectors innovate by means of disembodied
technological change (see, among the most recent, Bogliacino et al. 2012; Buerger et al. 2010; Coad and Rao
2011; Van Roy et al. 2018). Nevertheless, there are less univocal results when turning to the sectoral level
(see Aldieri and Vinci 2018; Bogliacino and Pianta 2010; Dosi and Monhen 2019; Falk and Hagsten 2018;
Piva and Vivarelli 2018). Certainly, innovations are connected among sectors, therefore the macro-level
analysis is the most representative of the overall effect of innovation on employment. In this context, labor
shedding effects of productivity improvements (connected to process innovation) is likely to result in
sectoral job losses if they are not coupled with the introduction of product innovations. Hence, even in the
most naive calculations of ‘compensation effects’ one ought to account for the balance between the labor-

saving impact in some sectors and the labor-creating effect in some others (Dosi et al. 2019).

In addition, the ‘qualitative’ dimension of labor has to be taken into account. The ‘quality’ of workers comes
in as a critical variable due to the fact that new technologies ask for specific skills, creating different
dynamics among different categories of workers. This is the *Skill-bias technological change’ (SBTC).
Previous empirical literature reveals a complementarity between new technologies and skilled workers (both
in terms of education — generally tertiary educated - and occupation — white-collars are usually considered
the ‘skilled’ category), given that they are the ones able to implement effectively and efficiently those
technologies. Therefore, while a positive relationship between new technologies and skilled workers is
expected (and generally confirmed), a substitution effect between new technologies (especially when they
determine process innovations) and unskilled workers is in general recognized (see Los et al. 2014; Machin
and Van Reenen 1998).

However, the last decade has highlighted a new trend in labor market intrinsically connected to the new
technological revolution. It is associated to the recent awareness of significant changes in the employment
composition leading to job polarization and wage inequality together with a decreasing demand for middling
occupation. This means that, if jobs are ranked by their first wage, increases in employment share are
observed at the bottom and top of this distribution, while jobs in the middle have lost employment share over
time. More in detail, laborers and elementary service occupations (the low-paid) are to some extent
increasing and the professionals ones (the high-paid) are considerably growing, while middling occupations
(such as operators of machinery/electronic equipment) are declining. Indeed, this evidence emerges from the
80s to the first decade of the XXI century showing a kind of generalized trend. Jobs are changing in terms of
tasks without necessarily being related to educational and/or occupational level. This U-shaped curve
represents the polarization phenomenon. Main pieces of evidence are related to flexible labor markets
institutional settings, as in the case of UK and US (see Autor et al. 2006; Goos and Manning 2007; Goos et

al. 2014). However, more studies present similar evidence also in other countries, such as Sweden, Germany



and, recently, Portugal (see, respectively, Adermon and Gustavsson 2015; Spitz-Oener 2006; Fonseca et al.
2018).

This suggests that not only occupation and education are relevant, but indeed the ‘routine dimension” comes
into play. The routine-nature of jobs and tasks is the dimension that as to be considered. This evidence has
induced to revise the SBTC into the new ‘Task-biased Technological Change’ (TBTC) or ‘Routine-biased
Technological Change’ (RBTC) (Autor et al. 2003) or ‘Routine-replacing Technological Change’ (RRTC)
(Gregory et al. 2019), assuming that repetitive tasks can indeed be easily replaced by recent technologies
(robots, automation, Al, digitalization), while non-repetitive tasks may grasp benefits from these
technologies (or, at least, not to be negatively affected: this is the case, for instance, of non-routinized

unskilled tasks in personal services), determining a complementary effect.

In the next Sections this emerging literature will be discussed in detail considering, in primis, the

methodological and operationalization issues.

3. Methodological issues

In order to analyze the impact of robot and Al on employment/occupation/task, two issues become relevant:

1) measures and proxies of automation; 2) operationalization of occupations in terms of tasks and routines.

3.1 Automation, robots and Al

As stated in the Introduction, the present technological revolution is pervasive and very rapid. In addition,
prices of new technologies quickly decrease making automation affordable to a large number of companies,
sectors and countries (Graetz and Michaels 2018). Indeed, Boston Consulting Group (2015) estimates that
price of robots will decrease by 20% and their performance will improve by around 5% annually over the 10
years. However, not a huge number of data/variables is available at all the disaggregated levels. Considering
proxies for automation, at the sectoral/country-level data from the International Federation of Robotics (IFR)
are the prominent source of global robotics statistics in existence (De Backer et al. 2018). The definition of
industrial robot used by IFR comes from the 1SO 8373:2012 “a machine that embodies the following
characteristics: can be reprogrammed, is multipurpose in function, allows for physical alteration, and is
mounted on an axis”. IFR constructs this dataset by consolidating information on industrial robot sales from
almost every industrial robot supplier in the world. The dataset therefore contains information on annual
shipments (sales) and a measure of robot stock across roughly 100 geographic locations and industries
(starting with a preliminary edition in 1993). Based on the latest available data, between 2011 and 2016, the
average robot sales increase was, on average, 12% per year (IFR 2017). The forecasts up to 2020 are of the
same percentage. Moreover, from the sectoral specialization point of view, the majority of robot use (roughly
70%) is concentrated within transport equipment, computers and electronics, chemical and mineral
production and food and beverage production. The leading sector is automotive, followed by
electrical/electronics with a remarkable performance in the last few years. Turning attention to the

geographical specialization, almost % of the global robot sales is concentrated in five countries: China,



Korea, Japan, the United States, and - in Europe — Germany (see European Commission, 2016, for more data
and comments on European countries).

IFR provides a measure of robot stock built on the assumption that the average service life of a robot is 12
years. However, De Backer et al. (2018) use a slightly different robot stock, based on Perpetual Inventory
Method, assuming an annual depreciation rate of 10%. Authors show that US, Germany, Korea and Italy
experienced considerable growth in their robot stock during the 1993-2016 period. Nevertheless, robot
investments are not exclusive to OECD economies, with China, Chinese Taipei and Thailand having rapidly
invested in robots and quickly catching up with main European countries. In emerging economies, the need

to achieve higher quality standards is another reason for the large investments in robots.

Based on robot stock computed by De Backer et al. (2018), a scatter plot is proposed considering robot stock
and unemployment rate of 9 of the top 10 users of automated machines (Taipei, due to data limitation, has
been excluded) to visual inspect the possible relationship — ceteris paribus — between robot stock and

unemployment rate (Figure 1).

Figure 1: Scatter plot between Robot stock and Unemployment rate
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Source: elaboration on De Backer et al. (2018) analysis and World Bank data

While a number of variables, cyclical factors, country-specific effects might determine specific value for the
two variables, there seems to be no evidence of a positive relationship between robot usage and
unemployment. Obviously enough, this sketching evidence at the country level should be complemented by
detailed econometric studies (see Section 4), possibly at the micro level. But unfortunately, robot penetration

is available at the country and sectoral level, but not at firm-level, preventing firm-level studies.

3.2 Task and routines

Autor et al. (2003) define the RBTC, later refined by Acemoglu and Autor (2011). According to Acemoglu
and Autor (2011, p.1045), a task is a “unit of work activity that produces output (good and services)” and

production process is defined in terms of tasks. In this framework, job tasks are allocated to labor or to
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capital depending on: 1) the degree to which they are automatable (repetitive and replaceable by code and
machines); 2) their separability from other tasks; 3) the relative costs of using capital versus labor (in this
context, capital generally refers also to machines and robots). Acemoglu and Autor, therefore, propose a
classification based on a two-dimensional typology: routine opposed to non-routine, and manual opposed to
cognitive. This leads to the consideration of four broad categories: routine-manual, routine-cognitive, non-
routine manual, non-routine cognitive (in turn, subdivided into non-routine cognitive interactive and
analytical). ‘Routine’ tasks comprise those that are programmable, expressible in rules, codifiable and
repetitive, i.e. a protocol. Following this approach, the expectation is that technology replaces jobs with high-
routine content, while in ‘non-routine’ tasks there is more space for mental flexibility and/or physical
adaptability.

Sebastian and Biagi (2018) discuss how task-content is measured in empirical analysis. They underline that,
in general, two main options are adopted for measuring the task content of different types of jobs: 1) direct
measures, drawing from occupational databases based on the assessment of experts (as in the Occupational
Information Network (O*Net) case whose descriptors, based on US labor market, allow finding the task
content of each occupation); 2) self-reported measures, aggregating the answers of individual workers to
surveys on skills and working conditions (see Federal Institute for VVocational Training/Research Institute of
the Federal Employment Service in Germany (IAB/BIBB), Programme for the International Assessment of
Adult Competencies (PIAAC) in the OECD, European Working Condition Survey (EWCS) at the European

level).

In general, this testifies that the RBTC approach is not characterized by a unique framework for data analysis
and tasks can be classified depending on the information available in the database used. Data limitations
have to be considered. In the O*Net case, for instance, one of the main problems is that it does not allow for
a comparison over time (even if it is regularly updated) as it assumes that the task-content is fixed within
occupations/jobs. Arntz et al. (2016 and 2017) show that narrow ‘feasibility studies’, by ignoring the
substantial variation in job tasks within occupations, overstate the exposure of jobs to automation. On the
other side, self-reported sources allow studying the variability in task content within each occupation or job
type. Notwithstanding, on the minus side, self-reported sources are prone to introduce potential bias in the
measurement, since workers’ answers may reflect other things beside the task content in strict terms.

It is interesting to highlight that, when tasks are considered, empirical papers discuss the impact of robots on
different tasks or, in some cases, consider the impact of automation on employment controlling for average

tasks by means of task and routine index.

A number of recent papers, focusing on tasks, try predicting the automation risk of different occupations.

Starting from a seminal paper, Frey and Osborne (2017), using a Gaussian process classifier applied to data
from O*Net and US Department of Labor, predict that 47% of the occupational categories, mostly middle-
and low-skilled professions, are at high risk of being automated, due to the routine-nature of their tasks
(including a wide range of service/white-collar/cognitive tasks such as accountancy, logistics, legal works,

translation and technical writing). However, Arntz et al. (2016 and 2017), proposing the same exercise, but
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using also information on task-content of jobs at individual-level, conclude that only 9% of US jobs are at
potential risk of automation.

Extending the analysis to a multi-country approach, Nedelkoska and Quintini (2018) estimate the risk of
automation for individual jobs based on PIAAC in 32 OECD countries. Evidence shows that about 14% of
jobs are highly automatable (probability of automation over 70%), while another 32% of jobs have a risk of
between 50 and 70% pointing to the possibility of significant change in the way these jobs are carried out as
a result of automation (a significant, but limited, share of tasks could be automated, changing the skill
requirements for these jobs). Moreover, the risk of automation is not distributed equally among workers: the
findings in this study suggest a rather monotonic decrease in the risk of automation as a function of
educational attainment and skill levels. Conversely, Marcolin et al. (2019) exploit data from PIAAC merged
to EULFS and US CPS to construct a novel measure of the routine content of occupations for 20 OECD
countries. This measure is built on information about the extent to which workers can modify the sequence in
which they carry out their tasks and decide the type of tasks to be performed on the job. This study sheds
light on the relationship existing between the routine content of occupations and the skills of the workforce,
intended as both the skills that workers are endowed with and those that they use on the job. Marcolin et al.
highlight that the routine intensity of occupations is lower for more sophisticated occupations, i.e. such
occupations are less likely to be routinized. On average, in 2012, 46% of employed persons in PIAAC
countries are working in non-routine-intensive (18%) or low-routine-intensive (28%) occupations. They also
provide evidence of a negative but weak correlation between skill intensity and the routine content of
occupations. The more routine-intensive occupations thus tend to require fewer skills, but while non-routine-
and low routine-intensive occupations appear to be monotonically increasing in skill intensity, the same is
not true for medium- and high-routine-intensive occupations, which are mostly intensive in medium skills.
This strengthens the evidence that workers perform a bundle of tasks only barely related to workers’ human
capital or the job functions they are attached to through their occupational titles.

At the European level, Pouliakas (2018), using data on tasks and skill needs in jobs collected by the
European Skills and Jobs Survey (ESJS), bundles jobs according to their estimated risk of automation. With
respect to PIAAC, ESJES collects information on the frequency of engaging in routine, autonomous or
learning tasks at work. Following Frey and Osborne (2017) and Nedelkoska and Quintini (2018), the author
utilises highly disaggregated job descriptions and shows that 14% of EU adult workers are found to face a
very high risk of automation. The distribution of high risk of automation across industries and occupations is
also found to be skewed towards routine jobs with low demand for transversal and social skills. In addition,

the risk of job displacement by machines is higher among males and lower-skilled workers.

All in all, studies on routine-content of tasks and how they evolve together with skills and occupations is
something that should be taken into account as employment is more and more multidimensional and

heterogeneous.
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4. Automation and employment: recent empirical evidence

The most updated studies linking automation/robotization to employment/tasks are developed at the
country/industry-level, while firm-level studies are generally not available due to the lack of these
data/information at micro-level (Raj and Seamans, 2019, underline how a more systematic collection of data

on the use of these technologies at the firm level should be pursued).

An additional caveat is that these works tend to cover time-spans in which the ‘robotic’ wave has not been
fully at work. Therefore, even if they are updated in terms of publication year, evidence is generally based on
periods ahead of 2007. Omitting post-2007 data from the analysis is a sort of cleaning process to avoid
influences by the large cyclical fluctuations of the Great Recession and the subsequent recovery. However, in
doing so, the most relevant robot adoption wave is not considered. Furthermore, in terms of sectoral
composition, in the pre-2007 era industrial robots were the relevant ones, while service robots were still in

their infancy.

Two main streams of empirical analyses can be considered:
- studies analyzing the impact of robots and new technologies of employment and controlling for
routinization of tasks

- studies focusing on the change of employment due to task complexity and evolution

With reference to studies belonging to the first group, Acemoglu and Restrepo (2017) analyze the effect of
the increase of industrial robot usage (IFR data, see Section 3.1) between 1990 and 2007 in the US local
labor markets. Using a model in which robots compete against human labor in the production of different
tasks, they provide evidence of how robots may reduce employment and wages, regressing the change in
employment and wages on the exposure to robots in each local labor market. However, the exposure to
robots is not specific (IFR data do not measure robot use by subnational geography), but it is proxied using
the national penetration of robots into each industry and the local distribution of employment across
industries. Adopting this approach, authors reveal the existence of negative effects of robots on employment
and wages across commuting zones. The effect is isolated from other possible explanations connected to
globalization and routine dimension. Indeed, they control for imports from China and Mexico, the decline of
routine jobs, offshoring, other types of IT capital, and the total capital stock not correlated with robots.
According to their 2SLS estimates, one more robot per thousand workers has a significant impact in terms of
magnitude as it reduces the employment to population ratio by approx. 0.18-0.34% and wages by 0.25-0.5.

Following the labor market equilibrium approach adopted by Acemoglu and Restrepo, Chiacchio et al.
(2018) apply it in the context of the EU labor market. They assess the impact of industrial robots on
employment and wages in six EU countries: Finland, France, Germany, Italy, Spain and Sweden. These six
countries are largely representative of the European automation as they account for 85.5% of the EU robots
market in 2007. However, there are significant differences between countries in terms of penetration of
robots revealing heterogeneity even within Europe. While Germany, due to its strong automobile

specialization, employed around 4.5 industrial robots per 1000 workers in 2007, the exposure of the French
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labor force was about half that rate in the same year. The sample includes 116 NUTS regions further
disaggregated by gender, age and education to derive the employment rate and wage for each demographic
group for a total of 2,088 possible observations. As Acemoglu and Restrepo (2017), authors assume that the
distribution of robots within an industry is uniform across all regions within a country conditional on
employment shares in each region-industry, the regional exposure of robots in each industry is proportional
to the regional employment in that industry. Authors also control for regional routinization and offshoring
index. The routinization indicator quantifies the degree of routine tasks within an occupation and the
‘offshorability’ indicator is based on actual offshoring events registered by European companies. Results
show that one additional robot per thousand workers reduces the employment rate by 0.16-0.20%. The
displacement effect seems particularly evident for workers of middle education and for young cohorts, while
men are more affected than women. Their estimates, however, do not point to significant results of the
impact of robots on wage growth.

Graetz and Michaels (2018) extend and integrate previous analysis, using novel panel data on robot adoption
(IFR and EUKLEMS data to estimate robot density, i.e. the stock of robots per million hours worked) within
industries in 17 countries from 1993 to 2007. The time-span is limited also because coverage in the
EUKLEMS data becomes uneven after 2007. While the first aim is to measure the impact of robotization on
productivity, authors extend their analysis to the employment consequences. In addition to the robot adoption
variable, as robustness checks, authors compute two instruments. The first one, based on classifying tasks
performed by robots, considers data on US occupations in 1980, before robots became ubiquitous, and
defined occupations as ‘replaceable’ if by 2012, their work could have been replaced by robots. Then they
estimate the fraction of each industry’s hours worked. The second instrument is a measure of how prevalent
the reaching and handling tasks were in each industry prior to robot adoption (to check for the widespread
use of robotic arms). Dividing employees in three groups (high, medium and low-skilled), the OLS and 2SLS
estimates for the two higher-skilled groups are positive (in terms of hours worked), but limited in magnitude
and not always significant, while estimates for low-skilled workers are large and negative, and, in almost all
cases, statistically significant.

At a country-level, Dauth et al. (2017) propose the local empirical exercise in the German-case using IFR
data over the 1994-2014 time-span. They construct a measure of local robot exposure for every region. They
find no evidence that robots cause total job losses, but they do affect the composition of aggregate
employment. While industrial robots have a negative impact on employment in the manufacturing sector,
there is a positive and significant spillover effect as employment in the non-manufacturing sectors increases
and, overall, counterbalances the negative effect. They estimate that every robot destroys two manufacturing
jobs. This accounts for almost 23% of the overall decline of manufacturing employment in Germany over 20
year till the 2014. This loss was fully offset by additional jobs in the service sector. With respect to wages,
the negative impact of robots on individual earnings arises mainly for medium-skilled workers in machine-
operating occupations, while high-skilled managers gain. In the aggregate, robots raise labor productivity but

not wages. Thereby they contribute to the decline of the labor income share.
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In general, as already discussed, most of the papers studying the role of automation on employment consider
developed countries. However, also developing economies might be involved in the direct adoption of robots
or in an indirect effect connected to re-shoring of some production process phases back to developed
countries (for this reason, from the developed world perspective, many papers control for offshoring and
trade). Indeed, much of the work available in developing countries is relatively unskilled and routine,
repetitive and predictable in nature. These works are at high risks of being automated. In this regard, firms in
developed countries may find it cheaper to automate certain processes instead of running the production
abroad. The implication would be a further detrimental effect on employment in middle- and low-income
countries. For this reason, UNCTAD (2017) recommends that developing countries invest in digital
technologies, if not the risk of lagging further behind might increase. Automation could lead the developing
world into a low or middle-income trap, and even, according to Rodrik (2016), to a ‘premature de-
industrialisation’ in many of those countries.

With this global perspective in mind, Carbonero et al. (2018) provide evidence on the effects of robots on
worldwide employment and trade, including emerging economies. This is a very interesting extension as
developing countries are usually not included and they might be significantly affected by robotization and
automation. In particular, they document that the use of robots is rapidly increasing in both developed and
emerging countries. Given the globalization of the supply chain, they also look at whether robots influence
the trend in off-shoring in developed countries and, by that, the change in employment in emerging
countries. In other words, they analyze whether firms in developed countries may find it more profitable to
bring production back home after having it previously off-shored to low-cost, emerging economies. They use
IFR data at sectoral/country level merged with data on employment and value added available from the
Socio Economic Accounts of the World Input-Output Database. After the merge 41 countries and 15 sectors
survive in the 2005-2014 period. To instrument the use of robots, they introduce an index of technical
progress, defined as the ability of robots to carry out different tasks. Robots turn out to have a statistically
significant negative impact on worldwide employment. However, this effect is heterogeneous among
countries. While it is small in developed countries, for emerging economies it is -14% in the 2005-2014
period (results for developed countries are in line with preliminary evidence provided by De Backer et al.,
2018, who study the relationship between offshoring and automation in 30 developed economies for a longer
period 2000-2014).

The second group of studies begins with the seminal contribution of Autor et al. (2003) (and extensions, see
Section 3.2). It has zoomed into the relationship between new technologies (mainly computers and ICT) and
skills, sustaining indeed that innovations can replace human labor when it is largely based on routines, but
they can hardly replace non-routine tasks where technologies are complements. This analysis, covering, in
particular, the 1984-1997 time-span and referring to general computer use and ICTs, bridges the SBTC and
the TBTC as authors define the tasks involved in each of the 450 occupations included the Dictionary of
Occupational Titles. Each occupation receives a score for each of the task measures. Moreover, they measure
technological change by the evolution in the fraction of workers in the industry who use computer in their

jobs. Regressing the change in task involvement on the change in computer use reveals that technological
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change is positively related to the increased use of non-routine cognitive tasks. On the other hand, routine
tasks (both cognitive and manual) turn out to be negatively related to technological change. As far as non-
routine manual tasks are concerned, they seem to be unrelated to technological change until the 1990s when
a positive and significant relationship between them emerges.

More recently, Caines et al. (2018), after formulating a model on TBTC with a special focus on complex
tasks, study the relationship between task complexity connected to automation and the occupational
wage/employment structure in the US market. Complex tasks are defined as those requiring higher-order
skills, such as the ability to abstract, solve problems, make decisions, or communicate effectively. They
measure the task complexity of an occupation by performing principal component analysis on a broad set of
occupational descriptors in O*NET data. They establish four main empirical facts over the 1980-2005 time
period: there is a positive relationship across occupations between task complexity and wages and wage
growth; conditional on task complexity, routine-intensity of an occupation is not a significant predictor of
wage growth and wage levels; labor has reallocated from less complex to more complex occupations over
time; within groups of occupations with similar task complexity labor has reallocated to non-routine
occupations over time.

In addition, Gregory et al. (2019), after developing a task-based framework to estimate the aggregate labor
demand and employment effects of RRTC, propose an empirical analysis on regional data (238 regions)
across 27 European Union countries between 1999 and 2010. Authors show that while RRTC has indeed had
strong displacement effects in Europe, it has simultaneously created new jobs through increased product
demand, outweighing displacement effects and resulting in net employment growth. This task-based
framework builds on Autor and Dorn (2013) and Goos et al. (2014), and incorporates three main channels
through which RRTC affects labor demand considering trade and spillover, moving from a local-market
perspective. Occupations are coded by one-digit (ISCO-1988) codes: for each of these, they obtain a Routine
Task Intensity (RTI) index. Firstly, RRTC reduces labor demand through substitution effects, as declining
capital costs push firms restructuring production processes towards routine tasks. Secondly, RRTC induces
additional labor demand by increasing product demand, as declining capital costs reduce the prices of
tradables. Thirdly, product demand spillovers also create additional labor demand: the increase in product
demand raises incomes, which is partially spent on low-tech non-tradables, raising local labor demand. The
first of these three forces acts to reduce labor demand, whereas the latter two go in the opposite direction (in
a sort of compensation mechanisms at work). As such, the net labor demand effect of RRTC is theoretically
ambiguous. For each of these three labor demand channels, authors model the resulting labor supply
responses to obtain predictions for changes in employment. Empirical evidence, however, as previously

declared, is overall positive.

Overall, previous contributions have shown that empirical analyses are flourishing and, even if some of them
adopt the same methodology, results are not homogeneous. Acemoglu and Restrepo (2017) reveal a negative
and significant impact of robots on employment and wages in the US, while evidence from Chiacchio et al.
(2018) for European countries is less detrimental for employment (with no effect on wages). Indeed, the

displacement effect is especially significant for middle-skilled works in line with the ‘job polarization’
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evidence. In the case of Graetz and Michaels (2018), the evidence is less pessimistic for overall employment,
while negative consequences affect low-skilled workers. Moreover, the results proposed by Dauth et al.
(2017) for the German case put in an additional tile to the puzzle discussing an industrial composition effect
where decline in manufacturing employment has been counterbalanced by employment in service sector.
Carbonero et al. (2018) consider a worldwide approach showing that developing countries are more at risk
than developed ones in terms of negative impact (direct or indirect) from automation. From a different
perspective, additional works (Autor et al. 2003; Caines et al. 2018; Gregory et al. 2019) discuss the nature
of tasks connected to automation and complexity providing interesting, even if partially contradictory,

evidence on the overall effect of employment and wages. Table 1 presents a synoptical analysis.
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5. Summary

The link between technological change and employment has been evolving during the past century and last
decades showing its complex and multifaceted nature. On the one hand, the fear of technological
unemployment has always been increasing during great innovative waves, such as the present one; on the
other hand, economists have always been optimistic about the long-term employment impact of innovation.

Is this time different?

Indeed, the economic theory does not provide a clear-cut answer about the employment impact of new
technologies, since it depends on a number of factors, assumptions, parameters, elasticities and model

calibrations. Therefore, empirical evidence is crucial.

Overall, the learning lesson from previous empirical studies on the impact of computers and ICT is that
findings vary a lot depending on the level of analysis (whether firm, sector or macro), proxies for
technological change (whether embodied, such as investment in new physical capital, or disembodied, such
as R&D expenditures), country and time of the analysis. However, most of the extant literature points to a
job-creating effect, although this impact is very small and limited to R&D intensive firms in high-tech

manufacturing and service sectors.

Turning our attention to the recent technological wave characterized by the spread of robots and Al
applications, some methodological caveats have to be pointed out. Firstly, there seems to be no evidence of a
positive relationship between robot usage and unemployment at the national level. Obviously enough, this
preliminary evidence at the country level should be complemented by detailed econometric studies at the
micro level, but this is impossible since robot penetration is available at the country and sectoral level, but
not at the firm-level. Secondly, even the available country/sector evidence is mainly based on periods ahead
of 2007, so omitting the post-2007 period when the most relevant robot adoption has taken place, also

spreading beyond manufacturing and involving service sectors and cognitive skills.

Having these limitations in mind, different studies on the employment impact of the current automation are
generally predicting a reduction of employment, ranging from 9% to 47% of present jobs. In this regard,
estimations are very different since tasks within the same occupations are at different risk of automation;
indeed, when studies account for a detailed task classifications, forecasts become dramatically less
pessimistic (in fact, within the same occupation, some tasks may be run by a robot, but the worker implied
may shift to other tasks less automatable or even complementary to the new technologies).

Looking at skills, while previous literature on ICT has first underlined the skill-biased nature of
technological progress and later the polarization impact of innovation (making the routinized middle skilled
jobs more redundant), the available evidence on the impact of robots and Al seems to work in the same
direction. According to the different studies, on the one hand high-skilled and non-routinized jobs seem to be
relatively safe (or even expanding along robot diffusion), while on the other hand routinized low and middle

skills seem to be the more at risk.
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Finally, so far developing countries are usually not included in the empirical analyses. Yet, the few available
studies reveal that emerging economies are significantly affected by robotization and automation, and that

the labor-saving impact of these new technologies might be even more pronounced than in the developed

economies.
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