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Abstract 

We review the theoretical underpinnings and the empirical findings of the literature that investigates the effects 

of innovation on firm survival and firm productivity, which constitute the two main channels through which 

innovation drives growth. We aim to contribute to the ongoing debate along three paths. First, we discuss the 

extent to which the theoretical perspectives that inform the empirical models allow for heterogeneity in the 

effects of R&D/innovation on firm survival and productivity. Secondly, we draw attention to recent modeling 

and estimation effort that reveals novel sources of heterogeneity, non-linearity and volatility in the gains from 

R&D/innovation, particularly in terms of its effects on firm survival and productivity. Our third contribution is to 

link our findings with those from prior reviews to demonstrate how the state of the art is evolving and with what 

implications for future research.  

 

Keywords: Innovation, R&D, Survival, Productivity 

JEL classification: O30, O33 
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1. Introduction 

From an endogenous growth perspective, the effect of innovation on economic growth is mediated through two 

channels: firm dynamics (entry and exit) and firm productivity. In the first-generation models (Romer, 1990 and 

1994; Grossman and Helpman, 1991), the search for new ideas by profit-maximizing firms and the nonrivalry of 

knowledge are at the heart of the growth in the productivity of the resources allocated for the development of 

new product varieties.  In the second-generation models (Aghion and Howitt, 1992 and 1998; Klette and 

Kortum, 2004; Aghion et al., 2014 and 2015), innovation drives growth through creative destruction (firm entry 

and exit) and productivity gains secured by successful innovators1. Innovation, firm dynamics and productivity 

are central issues in the evolutionary models of industry evolution too, albeit the emphasis here is on 

heterogenous effects due to different technological regimes, sources of innovative knowledge, modes of 

innovating and patterns of innovation diffusion (Nelson and Winter, 1982; Dosi and Nelson, 2013).  

Given this theoretical background, the aim of this study is to summarize the theoretical underpinnings of and 

evaluate the empirical evidence on: (i) how innovation affects firm dynamics; (ii) how innovation affects firm 

productivity; and (iii) why the effects of innovation on firm survival and firm productivity are inherently 

heterogeneous. Addressing these questions will enable us to contribute to the economics of innovation literature, 

particularly to its microeconomic (and mainly empirical) sub-strand, where innovation is the main driver of firm 

dynamics and productivity.2  

The attention to heterogeneity in the evidence base enables us to contribute to evidence synthesis along three 

paths. First, we complement the existing reviews by highlighting the extent of heterogeneity in the reported 

effect-size estimates and demonstrating that heterogeneity is even more visible in the evidence from recent 

studies published after 2010. We concur with the existing reviews that the balance of the evidence indicates a 

positive innovation effect on firm survival and productivity. However, we argue that the overall effect conceals a 

high degree of heterogeneity, which needs to be unpacked to arrive at verifiable conclusions about where, why 

and how innovation may or may not deliver the expected gains in terms of survival and productivity.   

Our second contribution is to argue for and suggest future research avenues that can provide ex ante theoretical 

explanations and develop commensurate empirical models for taking account of and quantifying the sources of 

heterogeneity. Particularly, we call for addressing a range of factors that lead to heterogeneity in the effects of 

innovation on firm survival and productivity, including time- and industry-specific technological opportunities; 

innovation types (e.g., product vs process innovation; input or output measures of innovation, etc.); innovation 

                                                           
1 In this respect, several empirical studies have confirmed that R&D expenditures and innovation foster aggregate economic 
growth (Mansfield, 1988; Mankiw et al., 1992; Nelson, 1993; Daveri, 2002; Ortega-Argilés et al., 2014). 
2 Our work is also consistent with the tradition of studying firm survival and firm productivity as indicators of post-entry 
performance, where the selection process leads productive firms to survive and grow while others to stagnate and ultimately 
exit (Audretsch and Mata, 1995; see also next section). 
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intensity and scale; and firm types in terms of age, size, market share, etc. Indeed, we demonstrate that the 

research effort is evolving in that direction, as reflected in method and modeling developments that highlight the 

contingent nature of the effects of innovation on firm survival and productivity.  

Our third contribution is to argue that the confounding role of the market power needs to be placed under sharper 

relief in the modeling, estimation and interpretation of the estimates for the effects of innovation on firm survival 

and productivity. True, the role of market power is already recognized in the existing reviews, particularly in the 

reviews of the innovation-productivity literature (Hall et al., 2010; Hall, 2011). We acknowledge these efforts, 

but we go further to call for explicit modeling of market power and the interaction of the latter with innovation 

intensity in both firm survival and productivity models. This contrasts with the general practice so far, where the 

issue is usually acknowledged only ex post by reviewers, with evidence of slow ‘take up’ in primary studies. 

As mentioned above, this review follows earlier reviews of both research fields published around 2010, which 

include: (i) Manjón-Antolín and Arauzo-Carod (2008) on innovation and firm dynamics; (ii) Hall et al. (2010) 

on productivity effects of R&D capital based on knowledge capital models; and (iii) Hall (2011) on the evidence 

from the Crépon-Duguet-Mairesse (CDM) model of innovation and productivity. We first summarize the 

theoretical underpinnings (Sections 2 and 4) that inform the empirical models in both research fields. This is 

followed by a synthesis of the empirical findings in each field (Sections 3 and 5), which consists of combining 

the conclusions from previous reviews with a more detailed evaluation of the post-2010 works. The choice of 

2010 as a demarcation year enables us to establish whether post-2010 studies pay more attention to 

heterogeneity, uncertainty and volatility in the aftermath of the global financial crisis.3  On the other hand, 

combining the existing review evidence with a synthesis of the recent findings enables us to reflect the 

cumulation of knowledge over time whilst placing the recent modeling and estimation innovations in sharper 

relief. The rest of the paper is organized as follows. We first review the literature on the relationship between 

R&D/innovation and firm survival, from a theoretical viewpoint in Section 2, and empirically in Section 3. Then, 

we review the literature on the productivity effects of innovation, from a theoretical viewpoint in Section 4, and 

empirically in Section 5. Finally, in Section 6 we discuss the implications for future research. 

 

2. Innovation and firm survival: theoretical underpinnings 

The empirical work on innovation and firm dynamics is informed by three theoretical traditions. The first is the 

insights from evolutionary theory, originally articulated in the seminal contribution by Nelson and Winter (1982) 

and updated through so-called history friendly models (Malerba et al. 2001 and 2016; Capone et al., 2019). In 
                                                           
3 We expect such a shift in focus epistemologically – i.e., irrespective of whether the data period in the post-2010 studies 
cover the post-crisis years. This expectation and the periodisation it informs are based on the observation that there has been 
an increase in the number of studies that incorporate uncertainty and volatility into their models explicitly (Doraszelski and 
Jaumandreu, 2013; Peters et al., 2017a; 2017b; and 2018; Andrew, 2020).  
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the evolutionary framework, heterogenous firms operate with bounded rationality and satisficing behaviour and 

the industry is characterized by uncertainty and out-of-equilibrium dynamics (Dosi et al., 2020). In this setting, a 

steady-state industry structure may be elusive but the level of profitability (hence that of productivity) is a key 

determinant of firm survival. Whilst innovative firms realise higher profits, increase their market shares, and 

survive longer; non-innovative firms realise lower profits, shrinks, and eventually exit. The probability of 

innovation, in turn, depends on the technological regime in the industry. The probability is higher in un-

routinised regimes with higher levels of technological opportunities, but it is lower in routinised regimes where 

innovation is an incremental or unintended consequence of routinised production. Finally, the positive effect of 

innovation on survival is more obvious in good times, rather than in bad times when innovative strategies 

become riskier (Cefis and Marsili, 2019). 

Drawing on Audretsch (1991), we formalise the evolutionary arguments in two equations: a probability of 

innovation equation (1) and a probability of survival equation (2). The probability that a firm j innovates in 

industry i at age t is denoted with (𝐼𝐼𝑖𝑖𝑖𝑖
𝑗𝑗 ) and depends on a constant that defines the asymptotic conditions (A) and 

on whether the firm is in an industry characterised by a routinised (r) or un-routinised (u) innovation regime. 

Whereas the un-routinised (entrepreneurial) regime is favourable to innovative firm entry, innovation in a 

routinised regime is largely undertaken by incumbents. Formally: 

 

𝐼𝐼𝑖𝑖𝑖𝑖
𝑗𝑗 = 𝐴𝐴 (1 + 𝑟𝑟𝑒𝑒−𝑢𝑢𝑖𝑖⁄ )           (1) 

 

For a given constant, the probability of innovation by a young firm (a firm with small t) is higher when the 

industry represents an un-routinised regime - i.e., when u is large relative to r. In contrast, the probability of 

innovation declines when age (t) increases or when the industry represents a routinised regime – i.e., when r is 

large relative to u.4 Nevertheless, the firm is faced with a positive exit hazard and the probability of its survival 

depends on the probability of innovation and other factors as stated in (2):  

 

Pr�𝑌𝑌𝑖𝑖𝑖𝑖
𝑗𝑗 > 0� = 𝑓𝑓�𝐼𝐼𝑖𝑖𝑖𝑖

𝑗𝑗 , [𝑃𝑃𝑖𝑖 − 𝑐𝑐(𝑌𝑌𝑖𝑖∗)], [𝑐𝑐(𝑌𝑌𝑖𝑖∗) − 𝑐𝑐(𝑌𝑌𝑖𝑖)]�     (2) 

 

                                                           
4 In Audrestch (1991), the source of the innovative advantage also differs between newly established and incumbent firms. 
The newly established firms have innovative advantage if information outside of the industry is more important for 
generating innovative activity. By contrast, the incumbent firms have the innovative advantage if information based on non-
transferable experience in the market is more important for generating innovative activity. The source of innovative 
advantage, however, is not an explicit part of the model.  Its effect on the probability of innovation is captured through the 
relative sizes of the routinised and un-routinised regimes.  
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Here, Pr (Yij > 0) is the probability of firm j at age t surviving in industry i, and it increases if: (a)  the probability 

of firm innovation at age t (𝐼𝐼𝑖𝑖𝑖𝑖
𝑗𝑗 ) increases; (b) the price-cost margin in the industry (i.e., the market power given 

by 𝑃𝑃𝑖𝑖 − 𝑐𝑐(𝑌𝑌𝑖𝑖∗)) increases; and (c) the firm is NOT burdened with a size disadvantage due to higher average cost 

of c(Y) relative to the average cost of c(Y*) at the minimum efficient scale  – i.e., if 𝑐𝑐(𝑌𝑌𝑖𝑖) ≤ 𝑐𝑐(𝑌𝑌𝑖𝑖∗).  If conditions 

(b) and (c) are determined exogenously in the industry, the probability of innovation in condition (a) is the 

choice variable that determines the firm’s survival in, or exit from, the industry. This is because innovation 

enables the firm to grow, attains  the  minimum efficient scale (MES) of production, and enjoys the benefits of 

market power in the industry if exists. Considered in conjunction with equation (1) and recalling that the exit 

hazard is higher when firm is new and producing below the MES, the firm’s probability of survival is higher if it 

enters an industry with an un-routinised innovation regime and innovates with a higher probability. In contrast, 

when the firm enters a routinised regime, both the probability of innovation and the effect of the latter on 

survival are lower.  

The second strand of the literature models firm dynamics as an endogenous outcome of passive or active 

learning. This line of work also acknowledges firm heterogeneity but assumes maximising firm behaviour that 

allows for identification of an equilibrium (steady-state) industry structure. In the passive learning models of 

Jovanovic (1982) and Hopenhayn (1992), heterogenous firms are subject to idiosyncratic productivity shocks 

and learn about their efficiency as they operate in the industry. Whilst the efficient firms survive and grow; the 

inefficient decline and exit when the cost of exiting are lower than the costs of remaining in business. In 

Jovanovic’s noisy selection model, firms are initially endowed with unknown, time-invariant characteristics (i.e. 

ex-ante efficiency parameters). Ex-post, the prior distribution is updated as evidence comes in and some 

entrepreneurs discover that they are more (or less) efficient than others. Efficient firms survive and grow, 

inefficient firms exit. The effect of innovation investment on firm survival, if any, is limited to ex post 

information it provides about the  firm’s stochastic efficiency draws.  

In contrast, in the active learning model of Ericson and Pakes (1995), heterogenous firms are engaged in 

investment with uncertain outcomes, including R&D investment. New entrants may either adjust in size to the 

minimum efficiency scale (MES) of the industry “core” or choose/find a niche within which the likelihood of 

survival is relatively high. Therefore, new entrants that begin with relatively low levels of investment are likely 

to exit the market, while some more entrepreneurial entrants experience a sequence of initial successes and begin 

to increase their profits, invest more in strategic assets, and increase their probability of survival. The firm’s exit 

decision is endogenous and depends on whether the efficiency gain from investment in research and 

development is larger than the increase in the exogenously determined factor price index. Through simulations, 

the authors demonstrate that their model is successful in predicting several outcomes in industry evolution, 

including entry and exit rates in the industry, the correlation between entry and exit rates, and the higher growth 

rates among small but surviving firms. These properties notwithstanding, the model predicts that the effect of 
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R&D investment on firm survival is indeterminate as it depends on the stochastic outcomes of the investment, 

the success of other firms, and the competitive pressure from outside the industry.  

The third strand builds on Schumpeterian concepts of competition, innovation and creative destruction 

(Schumpeter, 1934). In formal models (Aghion et al. 2005; 2014; 2015), the effect of product-market 

competition on innovation follows an inverted-U pattern. When competition increases from a low initial level, it 

induces firms to escape competition by increasing innovation (the escape competition effect). In contrast, 

competition reduces the incentive to innovate when it increases from a high initial level where the profit-diluting 

effects are stronger (the Schumpeterian effect). Ugur et al. (2016a) demonstrate that the Schumpeterian models 

also imply an inverted-U relationship between innovation and firm survival. Innovation increases the probability 

of survival when it increases from a low initial level, but it may reduce the probability of survival when it 

increases from a high initial level due to diminishing scale effects or increased risks.   

In Ugur et al. (2016a), survival time is a positive function of the number of innovative product lines that the firm 

operates (k),  the ratio of the firm’s output to its initial value (Y/V0) which captures the firm’s growth 

opportunities, and  the average value of the innovative product lines (v) – as stated in (3) below).  

 

𝐸𝐸[𝑡𝑡] ≅ 2 
2𝜇𝜇−𝜎𝜎2

[ln (𝑘𝑘) + 𝑙𝑙𝑙𝑙𝑌𝑌𝑖𝑖 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑙𝑙𝑙𝑙𝑙𝑙]       (3)  

 

The first term in (3) reflects the relationship between the volatility (𝜎𝜎) and drift (𝜇𝜇) parameters of the 

firm value. Provided that 𝜎𝜎 < �2𝜇𝜇, equation (3) states that survival time increases with the number of 

innovative product lines (k),  the extent of growth opportunities (Y/V0), and  the average value of the 

innovative product line (v). 5  Replacing the average value of the innovative product line (v) with its 

endogenously determined value in Schumpeterian models of innovation, equation (3) can be re-written 

as:  

 

𝐸𝐸[𝑡𝑡] ≅ 2 
2𝜇𝜇−𝜎𝜎2

�ln (𝑘𝑘) + 𝑙𝑙𝑙𝑙𝑌𝑌𝑖𝑖 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑙𝑙𝑙𝑙𝜋𝜋 − Ϛ𝑤𝑤𝑧𝑧𝑖𝑖
𝜂𝜂

𝜌𝜌+𝑥𝑥−𝑧𝑧𝑖𝑖
 �       (4) 

 

In (4), the numerator of the last term (𝜋𝜋 −  Ϛ𝑤𝑤𝑧𝑧𝑖𝑖
𝜂𝜂) is the productivity/profitability of innovation, which is equal 

to difference between average gross profits (𝜋𝜋) and average cost of the R&D investment (Ϛ𝑤𝑤𝑧𝑧𝑖𝑖
𝜂𝜂) in the 

innovative product line. Because of its addition to costs, the R&D intensity, zi, in the numerator is negatively 

                                                           
5 This assumption is in line with existing evidence on various stock markets including the UK, which indicates that the 
volatility parameter is usually around one-tenth of the drift parameter (Casas and Gao, 2008). 
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related to survival time. However, the R&D intensity in the denominator is positively related to survival time as 

it mitigates the adverse effects of creative destruction (x) and the discount rate (𝜌𝜌). Taking the first- and second-

order derivatives of the survival time equation, Ugur et al (2016a) demonstrate that this non-monotonic 

relationship between R&D intensity and survival time is concave – i.e., it has an inverted-U shape.  

Despite divergent assumptions about maximising firm behaviour, the three strands of the theoretical literature 

converge on three predictions concerning firm dynamics and industry evolution: (i) the growth rate in the 

industry is positively correlated with innovation or creative destruction, both of which imply higher entry and 

exit rates; (ii) small and new firms exit more frequently (Mata and Portugal, 1994; Mata et al., 1995), but those 

that survive tend to grow faster (Lotti, Santarelli and Vivarelli, 2001 and 2003); and (iii) firm age and size are 

positively correlated and both have positive effects on survival time. These predictions enjoy significant support 

in empirical work, full or partial reviews of which include Geroski (1995); Vivarelli and Audretsch (1998); 

Caves (1998); Santarelli and Vivarelli (2007); Manjón-Antolín and Arauzo-Carod (2008); Vivarelli (2013); 

Quatraro and Vivarelli (2015). They are also supported by more recent findings reviewed in Rosenbusch et al. 

(2011), Hyytinen et al. (2015) and Ugur et al. (2016a).  

Nevertheless, the theoretical predictions are less convergent with respect to how innovation affects firm survival. 

In both active and passive learning models, industry evolution is a stochastic process and the dynamic 

equilibrium is industry specific. Even in the active learning model, the firms have ‘truly idiosyncratic outcomes 

to even identical investment decisions’ (Ericson and Pakes, 1995: 67). Hence, the relationship between 

investments (including R&D investment) and firm survival is ambiguous. This is because the probability of 

successful investment is determined endogenously by the industry structure that, in turn, is only probabilistically 

related to its structure in the previous period.  

This contrasts with predictions from the evolutionary model, where firms in un-routinised technological regimes 

are more likely to innovate and innovation is positively correlated with survival. The higher probability of 

innovation investment in these regimes enables the firms to catch up with technology frontier and attain the 

minimum efficient scale (MES), while also avoiding the adverse of the industry-wide creative destruction 

(Audretsch,1991; Audretsch and Mahmood, 1995). The innovation premium may be relevant in routinised 

technological regimes too, but this premium may not be realised because of lower probability of innovation in 

such regimes.  Overall, more innovative firms are more likely to survive in both regimes, but more innovative 

firms are more likely to be located in un-routinised as opposed to the routinised regimes. 

Somewhere in between lies the prediction from the Schumpeterian models of competition, where the  

relationship between investment in innovation and firm survival is inverted-U-shaped. This relationship mirrors 

the hump-shaped relationship between competition and innovation, but it is driven by diminishing returns to 

investment irrespective of whether firms are neck-and-neck or leader-laggard innovators. Up to a certain 
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threshold, the marginal returns to investment in innovation are higher than marginal costs, the innovative product 

lines are profitable, and hence the probability of survival is increasing with innovation. After that threshold, 

however, the marginal benefits of investment fall short of the marginal costs, the new product lines are loss-

making, and the probability of survival declines with innovation (Ugur et al., 2016a).  

 

3. Innovation and firm survival: evidence and implications for future research 

The discussion above indicates that, theoretically, the effect of innovation on firm survival depends on the 

industry-specific cost and incentive structures that determine the probability of innovation (evolutionary 

models); the stochastic outcomes of the investment in innovation (active learning models); the extent of creative 

destruction (innovation intensity) in the industry (evolutionary and Schumpeterian models); and the risk-return 

profile of the R&D investment that depends on the firm’s innovation intensity (Schumpeterian model). Given 

these theoretical antecedents, we expect heterogeneity to emerge as a prominent feature of the empirical findings 

on the relationship between innovation and firm survival.  

Indeed, effect-size heterogeneity has been acknowledged in a systematic review by Manjón-Antolín and Arauzo-

Carod (2008). The authors report a number of contrasting findings on the survival effects of innovation, 

including: (i) positive and stronger effects of process innovation as opposed to product innovation; (ii) strong 

and positive effects of process innovation among large firms, but weak or insignificant effect among small firms; 

(iii) usually positive effects when innovation is measured with R&D investment. However, this review covers 

only a small set of innovation-survival studies because its focus is on methodological developments in the wider 

literature on firm survival. Furthermore, the review aims to uncover the range of “firm- and industry-specific 

covariates that provide largely consistent results across samples, countries and periods.” As such, the authors do 

not engage in a systematic discussion of either the sources of observed heterogeneity or its implications for 

future research on innovation and firm survival.6  

We have expanded the set of innovation-survival studies in Manjón-Antolín and Arauzo-Carod (2008) with eight 

additional studies published in or before 2010. Table A1 in the Appendix provides summary information on the 

samples, innovation measures and estimators used as well as findings reported in these studies. Examining the 

evidence from the combined set, we observe that the extent of heterogeneity in summarised findings is now 

higher than what has been reported in Manjón-Antolín and Arauzo-Carod (2008). Furthermore, the extent of 

heterogeneity is also higher than what is reported in the literature review sections of most primary studies 

                                                           
6 As we indicate below, more recent research pays greater attention to heterogeneity in in the effects of innovation on firm 
survival. A pertinent example is Hyytinen et al. (2015), who draw attention to the extent of heterogeneity in the related 
literature before reporting their own findings on the relationship between innovation and start-up survival among Finnish 
firms.  
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published until 2010 (e.g. Cefis and Marsili, 2005 and 2006; Esteve-Pérez et al., 2004; Esteve-Perez and  

Manez-Castillejo, 2008).  

One source of heterogeneity is the innovation intensity of the industry within which the firm is located. In line 

with the predictions of the evolutionary models (Audretsch, 1991; Audretsch and Mahmood, 1995; Mahmood, 

2000; and Segarra and Callejón, 2002), a higher level of intra-industry innovation intensity increases exit hazard. 

This prediction ties in with predictions from Schumpeterian models of innovation (Aghion et al., 2014; 2015), 

where higher levels of creative destruction in innovation-intensive industries render the firm’s existing 

technology obsolete at faster rates. Hence, firms in innovation-intensive industries face a higher level of exit 

hazard unless their levels of innovation are high enough to counterbalance the adverse effects of both product-

market competition and creative destruction.  

Given these theoretical predictions, estimates for the effect of innovation on firm survival would be 

heterogenous and potentially biased unless researchers control for industry effects. Some studies address the 

industry-specific effect by including industry dummies in their survival models (e.g., Agarwal and Audretsch, 

2001; Agarwal et al., 2002; Mahmood, 2000; Cefis and Marsili, 2005). Nevertheless, the use of industry 

dummies may not be sufficient to control for cross-industry variation in innovation intensity for two reasons. 

First, dummy variables are blunt instruments that also control for other sources of inter-industry heterogeneity. 

Secondly, using industry dummies instead of controlling for observable innovation intensity within the industry 

can lead to biased estimates if inter-industry variation in innovation intensity is theoretically related to the 

relationship between firm-level innovation and firm survival.7  

 In the absence of a unified approach to modelling inter-industry variation in innovation intensity, the reported 

effects of innovation of firm survival tends to be heterogeneous – with the effect depending on the industry 

composition of the sample and whether industry effects are controlled for or not. Therefore, we identify the first 

implication for future research as follows: survival or hazard models should control not only for the effect of 

industry-level innovation intensity but also for the interaction of the latter with the firm’s own innovation 

intensity. Such specification is necessary to minimise the risk of model misspecification and to tease out 

pertinent information on: (i) the magnitude of the survival premium due to the firm’s own innovation effort 

relative to the creative destruction effect of the intra-industry innovation intensity; (ii) potential non-linearities in 

the relationship between firm-level innovation and firm survival; and (ii) the optimal level of firm-specific 

innovation at which exit hazard is minimised given the level of intra-industry innovation intensity.  

Another conclusion that can be distilled from the pre-2010 studies in Table A1 is that the effect of the firm-level 

innovation on firm survival varies in sign between and sometimes within studies. The reported effects are 

                                                           
7 A similar concern is raised in Hall et al. (2010) when they discuss the case for and against the inclusion of industry and 
time dummies in R&D and productivity models.  
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positive in majority (53%) of the studies (Audretsch, 1991; Audretsch and Mahmood, 1995; Cefis and Marsili, 

2005; Cefis and Marsili, 2006; Esteve-Perez and  Manez-Castillejo, 2008; Esteve-Pérez et al., 2004; Fontana and 

Nesta, 2009; Klepper and Simmons, 2005; and Wagner and Cockburn, 2010). However, the effect is 

insignificant or mixed in the remaining 47% of the studies. In the set of studies reporting mixed effects, the 

heterogeneity reflects sectoral variations in Mahmood (2000) and Helmers and Rogers (2011); variation between 

innovation inputs and outputs in Ortega-Argilés and Moreno (2007) and Wilbon (2002); variation between flow 

and stock measures of innovation outputs (Buddelmeyer et al., 2009); and variation between innovation output 

types (e.g., patents versus trademarks in Jensen et al., 2008).   

Effect-size heterogeneity notwithstanding, the evidence from pre-2010 studies indicates a third interesting 

pattern: the effect on survival is more (less) likely to be positive when the explanatory variable is an output 

(input) measure of innovation. Positive survival effects are reported when the output measure of innovation is 

product innovation (Audretsch, 1991; Audretsch and Mahmood, 1995; Banburry and Mitchell, 1995; and 

Fontana and Nesta, 2009) or intellectual property assets (IPAs) such as patents or trademarks (Buddelmeyer et 

al., 2010; Helmers and Rogers, 2010; Jensen et al., 2008; Wagner and Cockburn, 2010). This pattern is in line 

with Rosenbusch et al. (2011), who report that output measures of innovation, relative to input measures, are 

more likely to be associated with higher post-entry firm performance of small and medium enterprises (SMEs).  

This pattern can be explained by the argument that product innovation and IPAs reveal innovation successes that 

enhance firm survival whereas the survival premium due to input measures such as R&D investment is subject to 

inherent uncertainties and failure risks. This is a pertinent argument, particularly with respect to the effects of 

innovation on survival among small and medium enterprises (SMEs). However, evolutionary and Schumpeterian 

models of the innovation-survival relationship offer an alternative explanation, which relies on the positive 

correlation between market power and the output measures of innovation. Indeed, output measures of innovation 

are more likely to indicate firm success in converting innovation investments into innovation outcomes. 

Successful innovations, in turn, enables firms to grow in the product space as a result of increased efficiency at 

the supply side and the positive effect of product variety on the demand side. Hence, in the case of output 

measures of innovation, the efficiency-enhancing and demand-shifting effects of innovation are intertwined; and 

the survival premium will reflect both efficiency gains and any increase in market power (See the review by 

Hall, 2011 on the role of market power in the relationship between innovation and productivity). Given this 

dynamic, an added implication for future research is that it is necessary to control for market power and the 

latter’s interaction with the innovation measures to: (i) isolate the effect of innovation outputs from market 

power effects; and  (ii) verify whether innovation and market power are complements or substitutes in their 

effects on firm survival.  

Moving on to post-2010 studies summarised in Table A2 in the Appendix, we observe that the relationship 

between innovation and survival is even more heterogenous than the pre-2010 studies. This trend is 
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acknowledged in Hyytinen et al. (2015), who  provide an extensive review of the literature before they report 

their findings on the effects of innovation on start-ups in Finland. The percentage of the post-2010 studies that 

report a positive relationship between innovation and firm survival is 33%, as opposed to 53% of the pre-2010 

studies in Table A1. Furthermore, the sources of heterogeneity include not only innovation types (process versus 

product innovation) or firm size discussed in the context of the pre-2010 studies. In the post-2010 studies, we 

also observe that the effect of innovation on firm survival differs by the level of R&D intensity (Ugur et al., 

2016a; Zhang and Mohnen, 2013); by appropriability of the investment in innovation (between input and output 

measures (Hall and Sena, 2017); between firms that are single-product and diversified innovators (Colombelli et 

al., 2016); and by risk appetite (Hyytinen et al., 2015). It is also pertinent to note that the proportion of estimates 

indicating positive process innovation effects on survival in the post-2010 studies is higher than the pre-2010 set. 

Finally, the innovation’s effect on survival is more likely to be positive when firms engage in both process and 

product innovations, and when innovation is measured with IPAs (Hall and Sena, 2017; Ortiz-Villaios and 

Sotoca, 2018).  

With respect to R&D intensity as a source of effect heterogeneity, Ugur et al. (2016a) and Zhang and Mohnen 

(2013) draw on UK and Chinese firm data respectively and report an inverted-U relationship between innovation 

intensity and firm survival. The inverted-U relationship holds for R&D in both samples and for R&D and 

product innovation in the Chinese data. This finding is in line with the prediction from the Schumpeterian model 

of innovation discussed above.  It indicates that both input and output measures of innovation are associated with 

a survival premium, but the latter is subject to diminishing scale effects due to higher investment risks at higher 

levels of innovation intensity. When the level of innovation increases beyond an optimal threshold, survival time 

declines as the profitability of the innovative product lines and the expected value of the firm decline. 

A finding in Ugur et al. (2016a) indicates that R&D intensity and industry concentration are complements, with 

a positive interaction effect on survival. Given the concave relationship between R&D intensity and firm 

survival, this finding indicates that the survival-increasing effects of R&D intensity is prolonged (i.e., the turning 

point is pushed to the right) as the level of concentration increases. Stated differently, in more concentrated 

industries, the positive effect of innovation on survival probability is enjoyed over a longer segment of the R&D 

intensity distribution. This finding is also in line with Schumpeterian models of innovation, where the firms’ 

desired levels of innovation investment and the effects of the latter on firm survival is a function of an ‘escape 

competition’ incentive. It allows for reiterating the case for explicit modelling of market power and the 

interaction of the latter with the firm’s own innovation effort with a view to disentangle the efficiency-enhancing 

and mark-up effects of innovation on firm survival. 

Pooling both pre- and post-2010 studies, we identify three method-related issues in the empirical research on 

innovation and firm survival. The first concerns the paucity of the attempts at modelling frailty. Although the 

causes and consequences of frailty have been discussed at length in survival analysis (Aalen, 1994; Wienke, 
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2010; Mills, 2011), two-thirds of the empirical studies reviewed here do not control for frailty or unobserved 

heterogeneity. Furthermore, most of the studies that do control for frailty are in the post-2010 set in Table A2. 

The neglect of frailty is a potential source of bias, which is highly likely given the emphasis on firm 

heterogeneity in the theoretical models that inform the empirical models. To the extent that firms are 

heterogenous in terms of management quality or quality of the firm’s R&D personnel, it is necessary to augment 

the survival (or hazard) models with frailty as unobserved random effect (see, Mills, 2011). Statistical theory 

predicts that the effect of the covariates on the population hazard diminish in favor of the frailty effect as time 

increases (Gutierrez, 2002). Stated differently, models without control for frailty may yield upward-biased 

estimates for the effects of the covariates in the survival model, including the covariate(s) capturing innovation.   

We think the evidence on frailty indicates three implications for future research. First, it is good practice to 

verify if frailty is significant and report the findings explicitly. Secondly, it is necessary to report not only 

whether frailty is significant, but also to comment on whether a significant frailty effect is associated with 

stronger or weaker effects of innovation on survival.8 A third implication is that it is necessary to test whether 

frailty (unobserved heterogeneity) is correlated with the covariates in the model and to take account of 

endogeneity that results from the correlation.9 

The summary information in Tables A1 and A2 allows for two further method-related observations. One 

concerns the choice between proportional hazard (PH) and accelerated failure time (AFT) estimators.10 Because 

there is no clear guidance about which approach is more appropriate, empirical studies choose one or the other. 

This is acceptable, but good practice requires sensitivity checks based on alternative specifications. Whilst some 

studies report such sensitivity checks and justify the preferred model on the basis of model fit criteria (e.g., 

Ortega-Argilés and Moreno, 2007; Cefis and Marsili, 2012; Fernandes and Paunov, 2015; Ugur et al., 2016a), 

this is not the case across the board. Therefore, we suggest that future research conduct sensitivity checks and 

justify their preferred estimators based on model-fit diagnostics. Such diagnostics include the Schoenfeld (1982) 

residuals test to decide between the semi-parametric and parametric baseline hazard models; and the Akaike and 

                                                           
8 It must be noted that the studies that control for frailty tend to pay attention only to whether the sign of the estimated 
coefficients on innovation remain the same between models with and without frailty.   
9 This issue arises irrespective of whether frailty is modelled as a multiplicative or additive term in the baseline hazard. If 
exists, such correlation is a cause of endogeneity. Researchers can address the letter through Mundlak (1978) corrections, 
which involve augmenting the survival model with time averages the covariates correlated with frailty to ensure mean 
independence. 
10 This issue arises because the shape of the hazard function is unknown and economic theory provides information only 
about the relevant covariates and their expected effects on the likelihood of firm exit. Stated differently, survival studies 
tend to estimate a reduced-form hazard model where the logarithm of the hazard is a linear function of two arguments: the 
baseline hazard function and the covariate function that includes innovation and other covariates suggested by the theory. 
The PH estimators assume that the baseline hazard function depends on time only whereas AFT estimators assume that it 
depends on time and the function of the covariates. Hence, the baseline hazard is the same in both estimators only if the 
covariates are assumed to be zero. Furthermore, the interpretation of the coefficient estimates differs. In the PH models, the 
coefficients are semi elasticities of the hazard with respect to the covariates, whereas they measure the effect of the 
covariates on the length of the predicted time until the failure event is likely to occur in the AFT models. 
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Bayesian information criteria (AIC/BIC) and the Cox-Snell residuals plots to choose between PH and AFT 

specifications of the parametric baseline hazard.  

The final method-related observation concerns to the choice between continuous and discrete-time hazard 

models. This issue again arises from the absence of theoretical guidance on which conception of time is more 

appropriate for firm survival data (see, Manjón-Antolín and Arauzo-Carod, 2008). On the one hand, duration 

time (i.e., the time to exit) is theoretically continuous. On the other hand, firms are observed only at some 

intervals, usually every year in annual surveys or in accounting data. The data constraint makes the discrete-time 

models more appropriate but discrete-time models estimate the odd ratio instead of the hazard rate for exit to 

occur by time t. A possible extension for future research would be to compare the performance of both discrete 

and continuous time models and choose the best-performing model on the basis of predictive power indicators 

such as the area under the receiver operating characteristic curve (AUC), as demonstrated by Gupta et al. (2018) 

in the context of financial distress hazard estimations.  

 

4. Innovation and firm productivity: theoretical underpinnings  

In early endogenous models, innovation drives economic growth through spillover effects that sustain 

investment in physical and human capital by raising the latter’s marginal product above the discount rate 

(Romer, 1986; Lucas, 1988).  In later models (e.g., Romer, 1990; Aghion and Howitt, 1992; Aghion et al., 

2015), innovation drives productivity growth through technological change that reduces production costs11 or 

increases product quality or both. One line of empirical research that follows from the endogenous growth theory 

investigates what came to be known as the spillover (or standing-on-the-shoulders) effect of the knowledge stock 

on the production of new knowledge (i.e., on the production of innovation outputs).12 This empirical strand has 

been reviewed in a recent meta-analysis by Neves and Sequeira (2018), who report that the average spillover 

(standing-on-shoulders) effect is positive but smaller than one.  

The empirical literature on innovation and productivity we review below constitutes the second line of empirical 

research that resonates with but also predates the theoretical endogenous growth models. This line of research 

builds on a Cobb-Douglas production function augmented with knowledge capital, which is constructed from 

investment in innovation. Here knowledge capital is an additional input and has separable effects on output by 

affecting the level of total factor productivity (TFP). Stated differently, knowledge capital (i.e., investment in 

innovation) enables the firm to obtain a higher level of output with given levels of physical capital and labour as 

                                                           
11 The most common case being through labour-saving innovation (Freeman and Soete, 1987; Simonetti, Taylor and 
Vivarelli, 2000; Piva and Vivarelli, 2018). 
12 The metaphor “standing on the shoulders of giants” is attributed to Isaac Newton and used in work on the economics of 
innovation to refer to spillovers from investment in innovation. Innovation spillovers play a central role in endogenous 
growth models, where investors in innovation benefit from ideas embedded in the existing stock of knowledge.  
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conventional inputs. This formulation ties in with the first-generation endogenous growth models, where 

innovation is growth enhancing because it increases the productivity of the resources used in the production of 

goods and ideas. It is also compatible with second-generation models, where innovation is a source of creative 

destruction (i.e., higher entry and exit rates) and technological change that increase firm productivity.   

Following the seminal contribution by Griliches (1979), empirical work based on knowledge capital has 

flourished and expanded in several directions. One strand, which came to be known as the primal approach 

because of its reliance on a production function, estimates  a Cobb-Douglas production function augmented with 

R&D capital stock. Assuming perfect competition in factor markets and separability of the knowledge capital 

(K) form conventional inputs capital (C) and labour (L), the production function can be stated as follows: 

 

𝑄𝑄𝑖𝑖𝑖𝑖 =  𝐴𝐴𝑒𝑒𝜆𝜆𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝛼𝛼𝐿𝐿𝑖𝑖𝑖𝑖
𝛽𝛽 𝐾𝐾𝑖𝑖𝑖𝑖

𝛾𝛾𝑒𝑒𝑢𝑢𝑖𝑖𝑖𝑖           (5) 

 

Here, 𝑄𝑄𝑖𝑖𝑖𝑖 is real output of firm or industry i at time t. Cit is deflated physical capital stock; Kit is deflated R&D 

capital; Lit is labour (number of employees or hours worked); and 𝐴𝐴𝑒𝑒𝜆𝜆𝑖𝑖 is technological progress with a rate of 

disembodied technological change 𝜆𝜆. Using lower case letters to denote logged values, the model is: 

 

𝑞𝑞𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑐𝑐𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑙𝑙𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑘𝑘𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖 + 𝜆𝜆𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖         (6) 

 

The logarithm of technical progress yields a firm- or industry-specific effect (𝜂𝜂𝑖𝑖) and a time effect (𝜆𝜆𝑖𝑖). 

Following Mairesse and Griliches (1988), the empirical work adopts various assumptions about the intercept 

( 𝜂𝜂𝑖𝑖) and the slope coefficient of interest (𝛾𝛾). Some studies assume that both the intercept and the slope 

coefficient are constant across firms/industries and hence use pooled OLS for estimation (e.g., Adams and Jaffe, 

1994; Mairesse et al., 2005; Ortega-Argiles et al., 2010). Some others assume random intercepts drawn from the 

same distribution and constant slopes. Then the parameters are estimated with a between estimator that consists 

of a cross-sectional (total) OLS with data averaged over time for each cross-sectional unit (Griliches, 1980 and 

1998c; Schankerman, 1981; Bartelsman et al., 1996; Ortega-Argiles et al., 2010) . Elasticity estimates from 

pooled OLS or between estimators are referred to as elasticity estimates in the level dimension.  

Some studies assume that the firm-specific effects are constant over time and utilise a within estimator, where all 

terms in the model are either first-differenced or expressed as deviations from the within-firm mean (Griliches 

and Mairesse, 1991; Mairesse and Hall, 1996). Productivity estimates from time-differenced or within estimators 

are referred to as elasticity estimates in the temporal dimension. Estimates from the level and temporal 
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dimensions will be consistent if model (6) is specified correctly and the covariates are not subject to 

mismeasurement.  

In elasticity models, the elasticity of output with respect to knowledge capital, 𝛾𝛾, is assumed constant across 

firms or industries. If firms operate with different factor shares depending on the competitive equilibria they are 

faced with (Hall et al., 2010), it is more appropriate to assume rate-of-return rather than elasticity equalisation. 

Then, the change in R&D capital stock (∆𝑘𝑘𝑖𝑖𝑖𝑖) is transformed into R&D intensity, assuming that the annual 

depreciation rate is close to zero. This transformation allows for rate-of-return estimations, where the coefficient 

of interests is 𝜌𝜌 in the output model (7a) or its total factor productivity (TFP) equivalent (7b) below.13 

 

∆𝑞𝑞𝑖𝑖𝑖𝑖 =  ∆𝜆𝜆𝑖𝑖 + 𝛼𝛼∆𝑐𝑐𝑖𝑖𝑖𝑖 + 𝛽𝛽∆𝑙𝑙𝑖𝑖𝑖𝑖 + 𝜌𝜌 𝑅𝑅𝑖𝑖𝑖𝑖
𝑄𝑄𝑖𝑖𝑖𝑖

+ ∆𝑢𝑢𝑖𝑖𝑖𝑖       (7a) 

 

∆𝑇𝑇𝑇𝑇𝑃𝑃𝑖𝑖𝑖𝑖 =  ∆𝜆𝜆𝑖𝑖 + 𝜌𝜌 𝑅𝑅𝑖𝑖𝑖𝑖
𝑄𝑄𝑖𝑖𝑖𝑖

+ ∆𝑢𝑢𝑖𝑖𝑖𝑖         (7b) 

 

A second variant of the knowledge capital model has been proposed by Crépon, Duguet and Mairesse (1998). 

The model, which came to be known as the CDM model for short, extends the Griliches-type knowledge capital 

model along two dimensions. 14 First, it takes account of potential selection in the firm’s decision to innovate and 

how much to invest in innovation. Secondly, it controls for endogeneity that may arise from mismeasurement of 

the innovation variables and/or from simultaneity in the relationship between inputs and outputs in the 

production function. The model consists of a system of four equations: (a) usually two research equations (8a 

and 8b)  that model the firm’s decision to innovate (𝑦𝑦0𝑖𝑖) and/or its choice of the level of innovation intensity 

(𝑦𝑦1𝑖𝑖); (b) an innovation output equation (9) that models the effect of innovation investment on innovation 

outputs (𝑦𝑦2𝑖𝑖) such as process or product innovation, patents, sales revenue from innovative products, etc.; and (c) 

a labour productivity equation (𝑦𝑦3𝑖𝑖) augmented with predicted innovation outputs (10).  

 

𝑦𝑦0𝑖𝑖 =  �
1 𝑖𝑖𝑓𝑓 𝑦𝑦0𝑖𝑖∗ = 𝑋𝑋0𝑖𝑖𝛽𝛽0 + 𝜀𝜀0𝑖𝑖 > 0
0 𝑖𝑖𝑓𝑓 𝑦𝑦0𝑖𝑖∗ = 𝑋𝑋0𝑖𝑖𝛽𝛽0 + 𝜀𝜀0𝑖𝑖 ≤ 0        (8a) 

                                                           
13 Elasticity and rate-of-return estimates based on the knowledge capital model have become known as the primal approach, 
in contrast to the dual approach based on cost or profit functions. This review excludes the dual-approach studies as the 
latter are small in number and their model specifications are more varied than the primal-approach studies. A review of the 
dual-approach studies is provided in Hall et al. (2010).  
14 The CDM model has inspired a large volume or empirical research after its publication in the Economics of Innovation 
and New Technology (EINT) in 1998. A recent special issue of the EINT (vol. 26, no. 1-2, 2017) celebrates the twenty years 
of research informed by the CDM model. The special issue features bibliometric and epistemological reviews that locate the 
CDM model in the wider field of research on innovation and productivity as well as research articles reflecting the state-of-
the-art in the specification and estimation of the CDM model.  
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𝑦𝑦1𝑖𝑖 = 𝑦𝑦1𝑖𝑖∗ = 𝑋𝑋1𝑖𝑖𝛽𝛽1 + 𝜀𝜀1𝑖𝑖   𝑖𝑖𝑓𝑓 𝑦𝑦0𝑖𝑖 =  1        (8b) 

 

𝑦𝑦2𝑖𝑖 = 𝛼𝛼21𝑦𝑦1𝑖𝑖 + 𝛼𝛼23𝑦𝑦3𝑖𝑖 + 𝑋𝑋2𝑖𝑖𝛽𝛽2 + 𝜀𝜀21𝑖𝑖    𝑖𝑖𝑓𝑓 𝑦𝑦0𝑖𝑖 =  1      (9) 

 

𝑦𝑦3𝑖𝑖 = 𝛼𝛼32𝑦𝑦2𝑖𝑖 + 𝑋𝑋3𝑖𝑖𝛽𝛽3 + 𝜀𝜀3𝑖𝑖   𝑖𝑖𝑓𝑓 𝑦𝑦0𝑖𝑖 =  1       (10) 

 

Vectors 𝑋𝑋0𝑖𝑖, 𝑋𝑋1𝑖𝑖, 𝑋𝑋2𝑖𝑖  and 𝑋𝑋3𝑖𝑖 are covariates that explain the innovation  decision,  innovation  input,  innovation  

output  and  labour  productivity; and the ε terms are idiosyncratic errors with multi-variate normal distributions. 

The  predicted  inverse  Mills’  ratio  (Heckman, 1979) is usually included in (9) and (10) to correct for possible 

selection bias. Finally, the α’s and β’s are the vectors of unknown parameter to estimated. vectors. 15  

In the original study by Crépon, Duguet and Mairesse (1998), the effect of R&D capital intensity on labour 

productivity from the preferred asymptotic least squares (ALS) estimation is 0.119. As indicated by Mairesse et 

al. (2005), this is very close to the OLS estimate from Griliches-type production function estimated with the 

same dataset. Does this mean that the more structured CDM model that is supposed to correct for selectivity and 

endogeneity is promising too much but delivering too little? Not necessarily. The CDM delivers more reliable 

estimates in the presence of selection and when the innovation variable is mis-measured. This is more likely to 

be the case when the innovation measures consist of indicator variables that capture the firms’ yes/no responses 

to innovation surveys; or the firm’s self-assessment of what is ‘new’ to the market and what is new to the firm 

itself. Other examples of innovation indicators that may suffer from selection and mismeasurement problems 

include indicator variables for organisational innovation or so-called non-technological innovation. It is in these 

situations that the CDM model delivers on its promises by correcting for downward bias in the productivity-

effect estimate when the innovation measure is mis-measured. It also corrects for the simultaneity bias that may 

be upward or downward, depending on whether efficient or inefficient firms select into becoming innovation-

active in any of these innovation types.  

Nevertheless, it must be noted that the quality of the CDM model’s correction for selection or mismeasurement 

depends on whether the innovation decision and input equations (equations 8a and 8b above) and the innovation 

output equation (equation 9) are specified correctly. In Crépon, Duguet and Mairesse (1998), model specification 
                                                           
15 Crépon, Duguet and Mairesse (1998) estimated the model in two steps using asymptotic least squares (ALS) or minimum 
distance estimators. In the first step, the reduced-form (auxiliary) coefficients in each equation are estimated separately, 
taking account of error correlations. In the second step, the information about the auxiliary parameters is used to estimate 
the structural parameters of interest – mainly the effects of innovation outputs on productivity. When the innovation output 
measure is continuous, the coefficient estimate is the elasticity of productivity (usually labour productivity) with respect to 
the innovation output. When the innovation output is measured with an indicator variable, the coefficient estimate indicates 
the productivity difference between innovative and non-innovative firms. 
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has been informed by Schumpeterian perspectives on innovation. The authors control for firm size, market share, 

diversification indicators, demand conditions and technological opportunities and a range of industry and time 

dummies. In later applications, a wider range of explanatory variables are controlled for and the theoretical 

justification for selection is theoretically more eclectic. Considering Lööf and Heshmati (2006) as an example, 

we can see that physical capital per employee, R&D personnel, indicators of obstacles to innovation, product life 

cycle, and growth rate in the firm’s main market, etc. are added to covariates measuring firm size or demand 

conditions. The downside of this modeling flexibility is increased risk of model misspecification. Given the 

absence of a commonly agreed theoretical framework that informs model selection, the added structure in the 

CDM model can deliver two outcomes working at cross purposes: correction for selection and mismeasurement 

on the hand and heterogeneity and perhaps bias on the other, depending on which covariates are included in or 

excluded from the innovation equations.  

 

5. Innovation and firm productivity: evidence and implications for future research 

The two variants of the knowledge capital model introduced above - the Griliches-type knowledge capital model 

and the CDM model with a richer structure that controls for selectivity and endogeneity – have underpinned a 

long-lasting research effort for modeling and estimating the effects of innovation on firm productivity. In a 

content and bibliometric review,  Broström and Karlsson (2017) document how this academic endeavour 

developed through methodological and estimation innovations and careful attention to the conceptual linkages 

between theoretical underpinnings and empirical effort aided with the emergence of rich datasets. The authors 

also demonstrate that the interest in this line of research has been associated positively with increased interest in 

the diffusion of innovation as a research theme in 2000s. In what follows below, we take stock of the evidence 

reported in the research field, paying particular attention to sources of heterogeneity in the evidence base and to 

the boundary-pushing methodological contributions that have emerged so far and are likely to inform future 

developments. 

 

5.1 The Griliches-type knowledge capital model  

The evidence from the Griliches-type knowledge capital model until 2010 has been evaluated by several 

narrative reviews (Hall et al., 2010; Mairesse and Sassenou, 1991; Mairesse and Mohnen, 1994; Hall, 1996). The 

latest and most comprehensive narrative review (Hall et al., 2010) reported that the effect of R&D capital on 

productivity are positive and economically significant. The median elasticity estimate is approximately 0.08 and 

the median private rate of return on R&D investment is between 20% and 30%.  These summary measures, 

however, conceal a high degree of heterogeneity.  
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The narrative reviews identify several sources of the heterogeneity in the evidence base, including variations in 

measurement, model specification and estimation methods.  One measurement issue is the absence of firm-level 

prices in the data. This missing data problem implies that the firm-level price indices may be different than the 

industry-level price indices used to deflate the inputs and outputs in the model.16 Given that quality 

improvements are higher in the products of innovation-intensive firms, the absence of firm-level prices is 

conducive to higher (lower) elasticity estimates if innovation-intensive firms are (are not) represented in the 

sample. Hence, the estimates will reflect both ‘true’ productivity improvements and revenue gains due to market 

power when innovation-intensive firms are included in the sample (see, Hall et al., 2010; Griliches, 1998b; 

Hanel, 1994).  

A second measurement issue is double counting, which occurs when R&D expenditures on capital and R&D 

personnel are not deducted from the observed measures of physical capital and labour in the production function. 

Hall et al. (2010) report that the elasticity estimates would be biased downward if physical capital and labour are 

not corrected for double counting. Downward bias is also reported in some studies that estimate elasticities in the 

temporal dimension or rates of return using time-differenced data, albeit the bias is less clear cut (Harhoff, 1994; 

Hall and Mairesse, 1995).  

The third source of heterogeneity relates to model specification. Some studies report smaller elasticity estimates 

when the labour input in the production function is disaggregated by skill levels (Mairesse and Sassenou, 1991; 

Crépon and Mairesse, 1993). Hall et al. (2010) indicate that this is due to positive correlation between skilled 

labour and R&D, which suggests that skilled labour and R&D capital may be complements. The elasticity and 

rate-of-return estimates also tend to be smaller when the knowledge capital model controls for R&D spillovers 

(Ugur et al., 2016b).17  

The fourth source of heterogeneity relates to the estimators used. On the one hand, elasticity estimates in the 

temporal dimension are usually smaller than the elasticity estimates in the cross-sectional dimension.18 On the 

other hand, Ugur et al. (2016b) report that the elasticity estimates are smaller when the generalised method of 

moments (GMM) or other instrumental variable (IV) methods are used to correct for endogeneity, but this is not 

                                                           
16 It must be indicated that lack of firm-level price data is an issue in both Griliches-type and CDM-type knowledge capital 
models.  
17 Stated differently, the elasticity estimates may be upward biased if the knowledge production does not take account of the 
knowledge spillovers from external R&D or cooperative R&D (Cassiman and Veugelers, 2002; Piga and Vivarelli, 2003). 
18 One reason is the mismeasurement of the R&D capital, which is exacerbated when the growth rates of the R&D capital or 
its deviation from the mean are used.  Another explanation is potential multicollinearity between the time effects reflecting 
autonomous technological change and the growth rates of R&D capital. A third explanation relates to missing data on 
cyclical variables such as capacity utilisation or person-hour worked instead of headcount employment (Hall et al., 2010).  
A fourth explanation is that R&D investment is less responsive to business cycle conditions or policy interventions 
compared to physical capital. Finally, Bloom (2007) demonstrates that the persistence of the R&D investment series 
increases as uncertainty increases. Therefore, the within-firm variation in R&D capital is smaller than the between-firm 
variation; and the explanatory power of the R&D stock series is reduced when the elasticity estimates are based on within 
estimators. 
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the case with respect to rates-of-return estimates. A fifth source of heterogeneity is the variation in the R&D 

intensity of the firms/industries in the sample. Hall et al. (2010) report that the elasticity estimates are larger 

when the sample consists of high-R&D-intensity firms, but this is more likely to be the case when the estimates 

are based on the cross-section dimension.  

Ugur et al. (2016b) builds on the existing reviews until 2010 and updates the evidence synthesis. Drawing on 

meta-analysis tools, they establish where the balance of the evidence lies and what explains the heterogeneity in 

the reported estimates. The average of the elasticity and rate-of-return estimates after controlling for publication 

selection bias are positive (0.06 and 14%, respectively), but heterogenous. The median estimate across primary 

studies ranges from 0.008 to 0.313 for elasticities at the firm or industry level; and from 8% to 68% for rates of 

return at the firm level or industry level. Strongly consistent evidence is reported on additional sources 

heterogeneity, as summarised below.  

1. The use of perpetual inventory method (PIM) for constructing the R&D capital is associated with 

relatively larger estimates compared to other methods where the R&D capital accumulation is a 

multiplicative rather than additive process. This is because the PIM accords the same weight to 

additional units of R&D investment in year (t) irrespective of the R&D capital stock in year (t-1). This 

may be a source of upward bias if the contribution of an additional unit of R&D investment to R&D  

capital is a positive function of the latter in the preceding year(s). Hence, there is a case for sensitivity 

checks involving the use of logarithmic methods of R&D capital capital construction, as suggested 

earlier in Klette (1994). 

2. Small-firm  data  is associated with smaller elasticity estimates of productivity at the firm level. This 

may be due to high failure rates among young and small firms or lower market power or both – as 

predicted Schumpeterian models of innovation and firm performance (Aghion et al., 2014). However, it 

may be also due to higher incidence of measurement error or selectivity in the data on small firms, 

which the knowledge capital model, unlike the CDM model,  does not address explicitly (Pellegrino and 

Piva, 2020). 

3. Elasticity estimates for R&D-intensive firms or industries are larger than non-R&D-intensive or mixed 

firms/industries. This finding is in line with Hall et al. (2010) and indicates that that R&D-intensive 

firms/industries are better placed to exploit the benefits of innovation as a result of either enhanced 

efficiency or increased market power or both. 

4. Publicly funded R&D (i.e., an R&D subsidy) is associated with smaller productivity estimates at the 

firm or industry level. One reason is that public support for business R&D may be concentrated in 

firms/industries that generate higher levels of R&D (knowledge) spillovers and hence lower levels of 

appropriability (e.g., health and defence). Secondly, public funds may be concentrated in industries with 

lower returns due to large scales at the capacity building phase (e.g., aircraft and communications 
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sectors). Finally, firms may be less efficient in the use of public subsidies in general, or subsidies may be 

misdirected (Hall et al., 2010). The implication for future research is that it may be necessary to 

decompose the R&D capital into public and private components to establish whether both types are 

complements (substitutes) and enter the production function separately (or in total). 

5. Finally, instrumental variable estimators such as generalized method of moments (GMM) two-stage 

least squares (2SLS) yield smaller elasticity estimates compared to OLS estimators. This finding 

suggests that R&D investments and productivity may be responding to unobserved shocks in the same 

direction, leading to upward bias in OLS estimates of the innovation investment’s productivity effects.  

We follow Ugur et al (2016b) and draw attention to two methodological innovations in the research field 

evaluated above: the adoption of a common factor framework to estimation of  the Griliches-type model with 

spillovers (Eberhardt et al., 2013) and the modelling of productivity as an endogenous outcome in Doraszelski 

and Jaumandreu (2013).19 Eberhardt et al. (2013) argue and demonstrate that the conventional knowledge capital 

model yields upward-biased productivity effects of own R&D capital at the industry level – mainly because of 

its failure to take account of the cross-sectional dependence driven by spillovers as an unobserved common 

factor. On the other hand, Doraszelski and Jaumandreu (2013) model productivity as an unobservable 

endogenous outcome. They are able to account for uncertainty, non-linearity, and heterogeneity in the 

productivity effects of R&D. The productivity estimates from their model are smaller than the ‘average’ of 0.08 

reported in the reviews discussed above. However, their estimates are larger than those derived from a Griliches-

type knowledge capital model applied to the same dataset. They also report that the productivity effects of R&D 

are non-linear – with the effect increasing in the level of R&D intensity and hence indicating increasing returns 

to scale in R&D investment.  These studies provide added evidence on heterogeneity in the productivity effects 

of innovation; and herald further searches for methodological innovations in the studies to follow.  

We provide a summary of the recent studies where the search for methodological innovation is evident (Table 

A3 in the Appendix).  Of these, Belderbos et al. (2015) test for non-linear returns to R&D and for 

complementarity between the firm’s own R&D and the R&D conducted by its foreign subsidiaries. They report 

that returns to own R&D investment reflect diminishing scale effects (and own R&D and foreign subsidiary 

R&D are complements) among firms in low-tech industries.  Among firms in high-tech industries, there are 

neither diminishing scale effects nor complementarity between own and foreign-subsidiary R&D. Non-linear 

returns to R&D (with some evidence of diminishing returns to scale) are also reported in Kancs and Silerstovs 

(2016), who utilize the endogenous productivity model of Doraszelski and Jaumandreu (2013) and treatment-

effect estimators based on propensity score balancing. Their findings indicate that the returns to R&D investment 

                                                           
19 A judicious review of the methodological developments until the cut-off year of 2010 is not feasible here due to space 
limitations. However, we refer the reader to excellent discussions in Griliches and Mairesse (1995) and Hall et al. (2010) on 
model specification, identification and estimations issues in the research field until 2010.  
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are about 15% on average, ranging from −2% for low levels of R&D intensity to 33% for high levels of R&D 

intensity. Furthermore, firms in high-tech sectors both invest more in R&D and secure higher returns. 

Nevertheless, the returns to R&D increases at smaller rates as R&D intensity increases, indicating the existence 

of an optimal threshold beyond which the innovation’s effect on firm productivity may become smaller than its 

effect on the firm’s average costs.  

The evidence from this recent work enables us to make two observations about implications for future research. 

The first is about the need to endogenize productivity – in line with the approach in Doraszelski and Jaumandreu 

(2013). This approach utilizes a dynamic model where the firm invests in R&D to improve productivity over 

time. However,  productivity is also a determinant of investment in R&D and other types of investment (e.g., 

investment in physical capital)  as well as subsequent decisions on static inputs such as labour and materials. 

Furthermore, the evolution of productivity is subject to random shocks that reflect uncertainties related to 

investments in both physical capital and R&D investments.  

Following this line of modeling, Andrew (2020) offers two methodological contributions: taking account of the 

firm’s life cycle and using age as an argument in the Markov process for productivity; and estimate the 

productivity effects of R&D with a conditional heteroskedasticity estimator, which captures the effects of 

innovation on the mean and variance of total factor productivity (TFP). This study reports three novel findings 

that lend support to our call for identifying and quantifying the sources of heterogeneity, non-linearities and 

uncertainty in the innovation-productivity relationship: (i) R&D investment has non-linear effects on both the 

level and volatility of the TFP in the next period; (ii) older firms are more efficient in converting R&D spending 

into productivity gains and in undertaking R&D investment with more uncertain returns / success rates; and  (iii) 

productivity is persistent in that firms with higher productivity are also more efficient in converting R&D inputs 

into future productivity gains.  

The second implication is about the potentially confounding effect of market power in the innovation-

productivity relationship. This issue is addressed in Máñez et al. (2015), who extend the Olley and Pakes (1996) 

method of estimating production functions with endogenous inputs in two directions. On the one hand, and 

similar to Doraszelski and Jaumandreu (2013), they assume that productivity evolves in accordance with an 

endogenous rather than exogenous Markov process. On the other hand, they estimate two production functions 

jointly – one with labour input and an inverse demand function for materials; and one with labour and capital  

inputs and inverse demand functions for materials and capital. In both models, the demand for materials and 

capital is assumed to be heterogenous, depending on the firm’s R&D and export status. The total factor 

productivity (TFP) obtained as the residual from the joint estimation is then regressed on the firm’s R&D and 

export status using OLS and system GMM estimators. Their findings indicate that R&D-active firms have higher 

levels of productivity, and R&D and exporting status are complements. They also control for market power and 

report that the positive effect of R&D on productivity remains positive but becomes slightly smaller when 
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market power is controlled for. This finding ties in with our argument above that the innovation’s effect on firm 

productivity (or survival) is due to improved efficiency and enhanced market power at the same time. The 

finding in Máñez et al. (2015) indicates that this is the case with respect to R&D investment as an input 

measures of innovation. Market power is likely to be a confounding factor even when output measures of 

innovation (e.g., product innovation or IPAs) are used, as long as the firm’s output is not deflated with firm-

specific deflators.  

 

5.2 CDM model  

The empirical work based on the CDM model has also been reviewed several times. Hall and Mairesse (2006) 

provide an early synthesis in their introduction to a special issue of the Economics of Innovation and New 

Technology (vol. 15, no. 4-5) titled: Empirical Studies of Innovation in the Knowledge Driven Economy. This is 

followed by further reviews, including Hall (2011), Mohnen and Hall (2013), Lööf, Mairesse and Mohnen 

(2017) in a new special issue of the EINT (vol. 26, no. 1-2, 2017), and Mohnen (2019). In the paragraphs below, 

we first identify the range of convergent and divergent findings from the reviews and from the empirical studies 

published until around 2010 (Table A4 in the Appendix). Then we focus on more recent primary studies (Table 

A5 in the Appendix) to verify the extent and sources of heterogeneity in the evidence base identify the range of 

methodological developments with implications for future research.  

The reviews by Hall and Mairesse (2006), Hall (2011), and Mohnen and Hall (2013)  identify several convergent 

patterns in the findings of the studies published until around 2010. First, the elasticity with respect to innovative 

product sales per employee is usually between 0.09 and 0.13. Secondly, the typical elasticity estimates from the 

CDM and Griliches-type models are similar when the estimates are based on continuous rather than dichotomous 

measures of innovation. For example, the average CDM estimates based on the intensity of innovative product 

sales is around 0.10 and this is well within the confidence interval for the average estimate of 0.08 from the 

Griliches-type knowledge capital model based on R&D capital. A third convergent pattern is that  the 

productivity effects are significantly larger when the sample consists of high-innovation-intensity firms (0.23 - 

0.29) or the innovation measure is an indicator variable (with effect-size estimates ranging from 0.17 to 0.45).  

Finally, the largest effects on productivity seem to be due to organizational innovation, defined as innovation in 

business processes and work practices. This is the case in two out of three studies (Polder et al., 2009; Raffo et 

al., 2008; and Siedschlag et al., 2010) that report estimates for organisational innovation until 2010.20   

One conclusion we derive from these findings is that the selection and mismeasurement issues that the CDM 

model is designed to address are less severe when the innovation measure is continuous. In contrast, they are 

quite severe when innovation is measured with an indicator variable; and the indicator variable refer to newer 
                                                           
20 The issue of organizational innovation will be discussed at more length below, where we review the recent contributions.  
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types of innovation (e.g. organization innovation or non-technological innovation) captured in recent innovation 

surveys. As such, the CDM model appears to be delivering on what it is designed to achieve. As indicated above, 

however, the reliability of the correction for selection and mismeasurement error depends on whether the 

innovation equations in the CDM model (equations 8a and 8b and 9) are specified correctly. If not, model 

misspecification can be a new source of heterogeneity and perhaps bias, depending on which covariates are 

included in or excluded from the innovation decision equations. Therefore, the consistently larger productivity 

gains due to new types of innovation (e.g., organizational innovation, non-technological innovation, etc.) require 

further scrutiny of whether the CDM model’s correction for selection and mismeasurement is sufficiently robust 

and consistent. 

A second conclusion follows from the relatively larger productivity effects associated with output measures of 

innovation. This empirical pattern raises the question of whether market power is a confounding factor for the 

estimates based on product innovation dummies and/or on samples of highly innovative firms. The role of 

market power in the innovation-productivity modeling is discussed at some length in Hall (2011), where two 

channels are identified for the effect of innovation on productivity. One is the ‘efficiency of production’ channel 

whereby the innovating firm’s productivity increases directly as a result of producing a higher level of output 

with the same level of inputs. The second is the ‘demand-shift’ channel whereby the increases its revenue (hence 

its productivity) because of increased demand for the firm’s innovative products. If the industry is perfectly 

competitive, the firm does not respond to increased demand by increasing its price-cost margin. However, the 

firm can increase its price-cost margin (and its revenue productivity) if industry-level competition is imperfect. 

Indeed, the demand-shift (i.e., the market-power) effect of innovation on the firm’s measured productivity is 

larger, the less elastic is the demand for the firm’s innovative products (Hall, 2011).  

This confounding effect is more likely when innovation is measured with ‘outcome’ variables such as product 

innovation or IPR assets, which cause an outward shift in the firm’s demand curve. It is also more likely when 

the sample is restricted to high-innovation-intensity industries. In such industries, incumbents undertake 

innovation due to a Schumpeterian ‘escape-competition’ motive, which increases entry costs for new firms and 

enable incumbents to increase their market shares at the same time. The richer set of innovation types included 

in the CDM model and the larger effect-size estimates associated with outcome measures of innovation increase 

the need for disentangling the direct productivity effects of innovation from indirect market-power effects. Yet 

the focus in the research filed so far has been on celebrating the discovery of a wider set of innovation types 

(including organizational innovation) with ever larger effects on productivity rather than addressing the question 

of whether the reported productivity-effect estimates are confounded by market power.  

More recent studies that estimate a CDM model are summarized in Table A5 in the Appendix. We observe five 

directions in which the CDM model has been extended, four of which reflect methodological innovations and 
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one reflects an important attempt at investigating the role of appropriability (intellectual property rights 

protection - IPRP) choices made by the firms.   

One methodological development has been the use of Heckman selection models (Heckman, 1976; 1979) to 

correct for selectivity in the research and innovation equations (Halpern and Muraközy, 2012; Aboal and Garda, 

2016; Aboal and Tascir, 2018; and Tello, 2015). We observe that the heterogeneity in the reported effect-size 

estimates is higher after the increase in the use of Heckman selection procedure. In some studies, for example in 

Aboal and Garda (2016) and Aboal and Tascir (2008), the elasticity estimates are large (between 1.5 and 5); and 

the magnitude is larger when firms engage in non-technological as opposed to technological innovation. In 

contrast Tello (2015) reports insignificant effects. In between, Halpern and Muraközy (2012) report that the 

effect is insignificant when the productivity model is estimated with one innovation type at a time; but the effect 

is positive and larger than the average reported in Hall’s (2011) review when both technological and non-

technological innovation are included in the model.  

We are of the view that these variations may reflect the limitations of the Heckman selection routine in 

correcting for selectivity. The model can yield unbiased estimates for the auxiliary coefficients in the research 

and innovation equations if two conditions are satisfied (see Puhani, 2000). First, there must be a sufficient 

number of exclusion restrictions - i.e., a sufficient number of covariates in the innovation output equations that 

are excluded from the research equations.  Secondly, the assumption made about the distribution of the error 

terms in the selection equation must be valid. Given these conditions, we suggest that researchers using 

Heckman-type selection in the context of the CDM model should report evidence on whether these conditions 

are satisfied; and how the productivity estimates based on Heckman-type selection differ from those based on 

ALS or maximum likelihood estimations proposed by the proponents of the CDM model.  

The second method-related contribution is due to work by Bettina Peters and her co-authors (Peters et al., 2017a; 

2017b; and 2018), who build on the stochastic productivity specification proposed by Doraszelski and 

Jaumandreu (2013) and incorporate the market power dimension discussed above. In their models, the firm 

operates in a monopolistically competitive market and maximizes its short-run profit by setting its product price 

at a mark-up over marginal cost. Given this price-setting behaviour, and for a given age and level of capital 

stock, innovation has heterogenous effects on the firms’ revenue productivity. Two sources of heterogeneity are 

variation in the firms’ innovation intensity and financial strength. The authors report that innovation benefits 

constitute a larger proportion of the firm’s market value when the firms are more innovation intensive and have 

higher financial strength. The authors also report that the productivity gains from innovation are larger when the 

estimation depends on marketing innovation. The evidence of larger effects at high levels of innovation intensity 

and when the innovation measure is marketing innovation strengthens the case for disentangling the efficiency 

and market power effects of innovation. The case for disentangling the market power and efficiency effects of 

innovation also finds support in recent findings by Baum et al. (2017). The authors adopt a Generalized 
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Structural Equation Model (GSEM) approach to estimating the CDM model, which corrects for selectivity, 

mismeasurement and endogeneity problems and offers the added value of allowing for feedback effects from 

productivity to future R&D investment. The authors report that the effect of product innovation (innovative 

product sales intensity) has a positive effect on productivity, and the effect is larger among knowledge-intensive 

firms.   

Despite the apparent case for taking account of market power and the interaction of the latter with innovation 

intensity, only Castellaci (2011) address the issue by augmenting the innovation output and productivity 

equations of the CDM model with market concentration and the interaction of the latter with product innovation 

intensity. They report that firms in concentrated industries invest more in innovation, but firms in such industries 

secure smaller productivity gains. This finding is puzzling because it implies that firms that benefit less from 

innovation undertake higher levels of innovation! Furthermore, their estimate of the productivity effect becomes 

negative when the Herfindahl index of market concentration is 0.15 or greater. This empirical issue 

notwithstanding, the findings in Castellaci (2011) lend further support to our argument that market power is a 

likely confounding factor in the relationship between innovation and productivity. 

The third methodological innovation is due to Damijan et al. (2011), who compare the evidence from the CDM 

with ‘treatment effect’ evidence based on propensity score matching. The elasticity estimate from the CDM 

model is large (0.98) when the innovation variable is the probability of undertaking a product or process 

innovation. However, the average treatment effect on the treated (ATT) is insignificant when estimated non-

parametrically and using propensity score matching of innovative and non-innovative firms. The discrepancy 

between parametric and non-parametric estimation results raises the question of whether researchers should use 

treatment-effect estimations methods for verifying the robustness of the parametric estimates from the CDM 

model or other models of innovation and productivity. The advantage of the treatment-effect methods is that they 

allow for inference of causal effects if the matching or balancing quality is good. The disadvantage is that the 

results remain highly sensitive to the selection or matching models used to ensure matching or balancing quality. 

Overall, we are of the view that treatment-effect estimators can be used to address the selection and simultaneity 

issues that the CDM model is designed to address.  

The fourth innovation in the post-2010 research based on the CDM model is that of Hall and Sena (2017). This 

study enhances the specification of the innovation and productivity equations in the CDM model by linking the 

CDM research agenda with the economics literature on intellectual property rights protection (IPRP). It 

estimates the effects of innovation output on productivity, conditional on whether firms protect their innovation 

through formal or informal IPR methods. It reports that firms that innovate and use formal IPRP methods are 

more productive than other firms. With respect to informal IPRP methods, the authors find that only large firms 

are more productive when they innovate. Thirdly, the authors find that both process and product innovations 

have positive and significant effects on productivity only when firms use both formal and informal IPRP 
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methods to protect their innovation. These findings are highly informative in that both innovation and IPR 

protection are closely related to market power. As such, it provides further support for taking account of and the 

interaction of the latter with innovation activity in both CDM and Griliches-type models.  

The final observation from Table A5 in the Appendix relates to the wider range of innovation measures used in 

the estimations of the CDM model. In addition to organizational innovation that has been investigated in the pre-

2010 studies, the recent studies estimate the productivity effects of marketing innovation (Aboal and Garda, 

2016; Aboal and Tascir, 2018; Peters et al., 2018); firm’s broadband connectivity (Bartelsman et al., 2019); and 

innovations in resource planning, customer resource management and supply chain management (Bartelsman et 

al., 2017). Interestingly, the productivity effects of these ‘non-technological’ innovation types are larger 

compared to the effects of process or even product innovation, which requires sustained investment in research 

and development. One question that arises from these findings is that why firms secure higher levels of 

productivity gains when they engage in narrowly defined innovations instead of more encompassing innovation 

types? The second question is whether these ‘non-technological’ innovation types are introduced as a result of 

investment in R&D (which is a predictor of the innovation output in the CDM model) or they represent external 

consultancy inputs that do not necessarily reflect the innovativeness of the purchasing firm. Therefore, we are of 

the view that future research must pay more attention to how we can reconcile the flexibility that the CDM 

model offers for modelling the innovation-productivity relationship with the need for further theorisation about 

the relevance of the expanding range of ‘non-technological’ innovation types.  

 

6. Conclusions and implications for future research 

The evidence from the extant literature indicates that the effect of innovation on firm survival and productivity is 

positive. It also indicates that the research effort in both fields has made significant contributions by pursuing 

novel research questions and engaging in boundary-pushing methodological innovations. As such, our review 

lends added support to similar findings from prior reviews. Nevertheless, we identify three issue areas that have 

received inadequate attention in prior reviews: (i) a high degree of heterogeneity in the evidence base and the 

exacerbation of the latter by the proliferation of innovation variables used in empirical research; (ii) potentially 

confounding effects of market power in the relationship between innovation on the one hand and survival and 

productivity on the other; and (iii) the need for more systematic decision-making with respect to methodological 

choices. In what follows, we take each issue in turn and identify tentative implications for future research.  

The first issue area is heterogeneity in the evidence base, which has been acknowledged but not problematized 

in prior reviews. We observe that heterogeneity in the reported effects of innovation on firm survival or 

productivity has increased as the innovation variables have become more varied in both research fields. In 

addition to input and output measures of innovation, we observe the emergence of what we tentatively describe 
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as ‘non-technological’ innovation types such as organisational innovation, marketing innovation, human 

resources management innovation, logistics innovation, etc. These ‘non-technological’ innovation types are 

compatible with the updated innovation definition in the third edition of the Oslo Manual (OECD, 2005).  

However, there is little or no theoretical explanation for the high level of variation in their estimated effects on 

productivity or other measures of post-entry performance. Heterogeneity in the evidence base is also observed in 

relation to different levels of innovation intensity in the industry. Whilst the innovation-productivity research 

tends to report larger productivity effects among more innovative firms, some innovation-survival studies report 

decreasing survival times at higher levels of innovation intensity.  

Given these empirical patterns, we identify three questions that need to be addressed more systematically than 

what has been acknowledged in the literature. The first is the extent to which the ‘non-technological’ innovations 

are funded through the firms’ R&D budgets. This is important because the concept of innovation in the 

theoretical models presupposes a knowledge production function in which R&D investment is a major input. 

This is even more explicit in the CDM model, where the predicted levels of innovation output are functions of 

R&D investment. Given this backdrop, the inclusion of ‘non-technological’ innovation types in productivity or 

survival models would constitute model misspecification if ‘investment’ in such innovations is part of the 

operating expenditures rather than R&D expenditures. The second question is about reconciling the ever 

expanding range of innovation measures used in the empirical research with the absence of theoretical 

explanations as to why the ‘newer’ innovation types affect survival or productivity; and why their effects can be 

expected to be larger (or lower) than those of ‘older’ innovation types. The third question is about whether the 

effects of innovation of firm survival or productivity are subject to increasing or decreasing scale effects; and 

how to reconcile the larger productivity effects reported at high levels of innovation intensity with relatively 

shorter survival time (or higher hazard rates) reported by some survival studies focusing on firms with higher 

innovation intensity.  

To address the first two questions, we recommend better engagement with the emerging literature on 

heterogeneous innovations (Akcigit and Kerr, 2018) and on the differential effects of innovation and imitation at 

different levels of proximity to the technology frontier (Aghion et al., 2014). Such engagement helps in 

addressing the disjuncture between data and theory. It may also inform the development of a new innovation 

typology, where innovations are classified on the basis of funding source, the knowledge frontier in the industry, 

and the relative weights of innovation (discovery) and imitation  (standing on the shoulders of innovators) 

inherent in the innovation measures.  From this perspective, coexistence of findings indicating larger 

productivity effects but shorter survival times at higher levels of innovation intensity are consistent and 

complementary. This is because larger productivity effects of innovation among innovation-intensive firms are 

necessary to compensate for higher risks that, in turn, constitute a source of higher exit hazard that reduces the 
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average survival time. Given our review findings, we recommend controlling for the initial level of 

R&D/innovation intensity through non-linear specifications of both productivity and survival models.   

The second issue area concerns the potential correlation between innovation and market power, which is again 

indicated but not problematized in prior reviews. We demonstrate that it is necessary to disentangle the 

efficiency-enhancing effects of innovation from the demand-shifting effects on both survival and productivity. 

This is justified by the evidence indicating that innovation types more likely to be associated with market power 

(i.e., innovation types with strong demand-shifting effects such as product innovation, marketing innovation of 

intellectual property assets) tend to have relatively stronger positive effects on firm survival and productivity. It 

is also justified by the evidence of larger productivity effects of innovation among innovation-intensive firms, 

which may also enjoy a higher level of market power if their investment in innovation is driven by a 

Schumpeterian ‘escape-competition’ motive.  

We are aware of the difficulties involved in disentangling the efficiency-enhancing and demand-shifting effects 

of innovation in the absence of firm-specific cost and price data and demand conditions. Nevertheless, it is 

feasible to control for market power in both productivity and survival models by utilising Lerner indices when 

profit data are available or industry-level concentration indices when such are unavailable. The existing evidence 

indicates that the effect of innovation on productivity is slightly smaller when market power is controlled for. 

There is also evidence indicating that innovation and market power may have complementary effects. Therefore, 

correct identification and estimation of the market structure and the interaction of the latter with the innovation 

activity of the firm are important both in terms of academic research and in terms of evidence-based innovation 

and competition policies. 

The third issue area is methodological.  Our review acknowledges the boundary-pushing methodological 

innovations in both research fields. However, it also identifies a need for a systematic approach to 

methodological choices and robustness analysis. Starting with the innovation-survival models, we recommend 

taking account of frailty in a systematic manner and correcting for any endogeneity due to correlation between 

frailty and the regressors. We also recommend model-performance- and statistical-test-based selection between 

proportional hazard and accelerated failure time models; and between continuous and discrete-time hazard 

models. With respect to innovation-productivity analysis, we acknowledge the innovations that endogenize 

productivity, take account of its persistence and capture the effect of innovation on both the level and volatility 

of productivity. Nevertheless, we argue that further work is required for strengthening the economic and 

statistical theoretical framework that underpins the innovation equations in the CDM model.  
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APPENDIX: SYNOPSIS TABLES 
Table A1: Studies on innovation and firm survival published until 2010 

Study Sample Innovation measure Estimator Effect on survival# Control for 
frailty 

Audretsch (1991) US firms Small firm innovation output rate, industry 
innovation output rate Discrete time logit Small firm innovation rate positive; 

industry innovation rate negative No 

Audretsch and Mahmood 
(1995) US firms Small firm innovation output rate, industry 

innovation output rate Discrete time logit Small firm innovation rate positive; 
industry innovation rate negative No 

Banburry and Mitchell 
(1995) 

Implantable cardiac pacemaker 
firms (US) Product innovation Discrete time logit Insignificant after controlling for market 

share No 

Buddelmeyer et al. 
(2010) Australian firms Patent applications and stocks; trade-mark 

applications and stocks 
Piece-wise constant exponential 
hazard model 

Patent applications negative; patent 
stocks and trademarks positive Yes 

Cefis and Marsili (2005) CIS: Dutch manufacturing 
firms 

Innovator/non-innovator dummy; 
Process/product innovation dummies 

Continuous time, parametric 
duration model  Positive No 

Cefis and Marsili (2006) CIS: Dutch firms Innovator/non-innovator dummy; Innovation 
expenditures; R&D Exp. State transition probabilities Positive No 

Esteve-Perez et al. 
(2004) Spanish manufacturing firms R&D and export Continuous-time Cox 

proportional hazard model Positive  No 

Esteve-Perez and  
Manez-Castillejo (2008) Spanish manufacturing firms R&D and advertising  Continuous-time Cox 

proportional hazard model Positive Yes 

Fontana and Nesta 
(2009) 

121 local area network (LAN) 
switch equipment producers R&D and product innovation Discrete time hazard and 

competing risk models 
Both R&D and product innovation 
reduce the risk of exit No 

Helmers and Rogers 
(2010) UK firms established in 2001 Patents (EPO and UK) and trademarks Discrete-time probit Positive, but some sectoral 

heterogeneity  No 

Jensen et al. (2008) Australian firms Patents and trademarks, applications and 
stocks 

Piece-wise constant exponential 
hazard model 

Positive if trademarks, insignificant or 
negative if patents No 

Klepper and Simmons 
(2005) 

US manufacturers of autos, 
tyres, televisions, and penicillin  Counts of product and process innovations Parametric ad semi-parametric 

hazard models 
Lower exit hazard among earlier 
entrants is due to innovation No 

Mahmood (2000) US firms Industry R&D intensity Log logistic hazard model Mixed findings No 

Ortega-Argilés and 
Moreno (2007) Spanish firms R&D intensity, process and product 

innovation 

Continuous-time Cox 
proportional hazard, log-logistic 
and log-normal models 

R&D and process innovation positive; 
product innovation mixed Yes 

Segarra and Callejón 
(2002) Spanish firms Industry R&D intensity  Continuous-time Cox 

proportional hazard model Negative No 

Wagner and Cockburn 
(2010) 

356 Internet-related firms that 
made an IPO in 1990s Patents, patent citations Continuous-time Cox 

proportional hazard model Positive No 

Wilbon (2002) High technology IPOs R&D intensity, Intellectual property rights 
instruments Survival probability R&D intensity negative; IPR 

instruments positive No 
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Table A2: Studies on innovation and firm survival published after 2010 
 

Study Sample Innovation measure Estimator Effect on survival# Control for 
frailty 

Børing (2015) Norwegian firms Process or product innovation dummies Continuous-time competing risk 
model 

Insignificant for exit, positive for 
mergers and acquisitions No 

Boyer and Blazy (2014) Micro French firms Innovation dummy Continuous-time Cox 
proportional hazard model Negative No 

Cefis and Marsili (2012) CIS: Dutch firms Innovator/non-innovator dummy; Process or 
product innovation dummies 

Discrete-time multinomial logit; 
complementary log-logistic Positive Yes 

Colombelli et al. (2013) French manufacturing firms Co-occurrence of technological classes in 
patent applications 

Continuous-time parametric 
duration model Positive No 

Colombelli et al. (2016) CIS and INSEE: French firms Dummies for process and product 
innovations, separately and jointly 

Continuous-time parametric 
duration model 

Positive when process, insignificant 
when product and positive when both No 

Fernandes and Paunov 
(2015) Chilean plant level data Single-product and diversified innovators 

Discrete-time probit, logit, 
complementary log-log, 
continuous-time Weibull 

Positive if diversified, negative if single-
product innovation  Yes 

Giovanetti et al. (2011) Italian firms Innovation and R&D dummies Continuous-time Cox 
proportional hazard model 

Positive if R&D, insignificant if 
innovation dummy No 

Helmers and Rogers 
(2011) 

High- and medium-tech start-
ups in the UK in 2000 Patents (EPO and UK) and trademarks Discrete-time probit Positive No 

Hyytinen et al.  (2015) Finnish start-ups Single dummy for process and product 
innovation and innovation-active firm Discrete-time probit Negative. The negative effect is 

exacerbated by higher risk appetite No 

Kim and Lee (2016) Korean firms R&D intensity and stock Parametric hazard model Positive Yes 

Ortiz-Villajos and 
Sotoca (2018) 200 selected UK firms 

Significant innovations (SI), patented (SI-P) 
and unpatented (SI-UP) significant 
innovations 

Continuous-time parametric 
duration models  

Positive and consistently significant 
effect if SI; Positive but partly 
significant effect if SI-UP.  

No 

Tsvetkova et al (2015) 
1803 US start-ups in 1991; 
computer and electronic 
product manufacturing. 

Log of patent applications at the 
metropolitan area level 

Continuous-time parametric 
duration models 

Negative for full sample, insignificant 
for firms established with 4+ employees  Yes 

Ugur et al. (2016a) UK firms R&D intensity Continuous-time parametric 
duration models 

Inverted-U; complementarity with 
industry concentration  Yes 

Wojan et al (2018) US firms Far-ranging / incremental innovation Discrete-time complementary 
log-logistic model 

Both positive, larger for far-ranging 
innovation No 

Zhang and Mohnen 
(2013) Chinese firms R&D intensity, product innovation Complementary log logistic Inverted-U for both R&D intensity and 

product innovation Yes 
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Table A3: Innovation and productivity studies based on Griliches-type knowledge capital model (post-2013) 

 

  

 Sample Innovation measure Estimator Effect on productivity Comments 

Altomonte et al. (2016) 
French, German, Italian 
and Spanish  
manufacturing firms 

R&D dummy Simultaneous equations 
without instruments 

Positive without instruments, 
reverse causality between 
productivity and R&D 

TFP regressions. 

Andrew (2019) Compustat firm data R&D expenditures Skedastic regressions 

R&D effects both level and 
volatility of TFP over life cycle. 
Insignificant effect over two 
periods.  

Production function with 
stochastic knowledge 
accumulation. 

Belderbos et al. (2015) Dutch firms 
Domestic (own) R&D 
and foreign 
(outsourced) R&D 

System GMM estimator 

Inverted-U for both; both are 
complementary only among 
firms close to technology 
frontier. 

Production function augmented 
with lagged dependent variable, 
and own and outsourced R&D. 

Bond and Guceri (2017) Large UK firms R&D capital 
R&D dummy OLS and system GMM Positive effect on productivity 

The effect is larger if the firm is 
affiliated and group members 
are R&D-active in the same 
sector 

Castellani et al. (2019) Firms in EU Industrial 
R&D Scoreboard  

R&D capital and 
physical capital per 
employee  

Pooled OLS and fixed effects 
Positive effects of both, but 
effects of R&D capital is higher 
among US firms. 

Labour productivity as 
dependent variable 

Kancs and Siliverstovs 
(2016) 

Firms in EU Industrial 
R&D Scoreboard 

Share of R&D 
investment in total 
capital expenditures 

Generalised propensity score 
estimations of treatment 
effects 

Positive but not monotonic; 
larger effects in high-tech 
sectors; Insignificant or 
negative effects at very low 
levels of R&D intensity 

The effect follows a prolonged 
inverted-U shape; firms in high 
tech sectors invest more in 
R&D and secure higher 
productivity gains. 

Máñez et al. (2015) Spanish manufacturing 
firms 

R&D investor and 
exporter dummies 

Simultaneous equation 
modeling for the production 
function; OLS and system 
GMM for productivity 
estimates 

Both R&D and export have 
positive productivity effects; 
R&D investment and exporting 
are complements 

Productivity effects of R&D 
and exporting are slightly 
smaller when market power is 
controlled for. 

Ortega-Argilés et al. (2015) US and European firms  R&D capital stock Pooled OLS, FE Positive effect, the effect is 
larger in high-tech industries 

Estimates from pooled OLS are 
systematically larger. 
Consistent with earlier findings 
where within estimators yield 
smaller estimates.  
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Table A4: Innovation and productivity studies based CDM model (2010 or before) 

Study Sample Method Output measure Innov measure Estimated impact of innovation 

Benavente (2006) Manf. firms, Chile CDM model: ALS 
 

Log VA per emp 
Log innovative product  
sales per employee (IPSE) 0.18* 

Crépon, Duguet, & Mairesse 
(1998) Innovative firms, France CDM model: ALS Log VA per emp Log IPSE 0.065*** 

Griffith, Huergo, Harrison, 
& Mairesse (2006) 

CIS3: Manf. firms in France 
(FR), Germany (DE), Spain 
(ES), UK 

CDM model: sequential with 
IV Log sales per emp 

Product and Process innov. 
dummies 

FR: 0.07** process;   0.06*** product 
DE: 0.02  process;  -0.05 product 
ES: -0.04  process;  0.18*** product 
UK: 0.03process;  0.06*** product 

Janz, Loof, & Peters 
(2003) 

CIS3:  R&D-intensive 
manf. firms: Germany 
Sweden 

CDM model: sequential with 
IV Log sales per emp 

Log IPSE, Process innov. 
dummy 

DE: 0.27*** product;  -0.14** process  
SE: 0.29*** product;  -0.03 process 

Jefferson, Bai, et al (2006) R&D-active large firms, 
SMEs, China 

CDM model: sequential with 
IV Log sales per emp Log IPSE  0.035*** 

Loof & Heshmati (2006) 
CIS3:Manf, service, utility 
firms: Sweden 

CDM variation: FIML on 
selection submodel; 3SLS; 
sensitivity analysis 

Log VA per emp Log IPSE, Process innov. 
dummy 

Product:  0.12***  manf.; 0.09** service  

Process: -0.07*** manf.; -0.07 service 

Loof, Heshmati, Asplund, & 
Naas (2001) 

CIS2: Manf. Firms in 
Finland, Norway, 
Sweden 

CDM variation: sequential 
with 3SLS Log sales per emp 

Log IPSE, Process innov. 
dummy 

FI: 0.090 product;  -0.029 process 
NO: 0.257*** product; 0.008 process  
SE: 0.148*** product;  -0.148*** proc 

Mairesse & Robin (2010) 

CIS3 and CIS4:  

Manf. and serv. firms in 
France 

CDM model: FIML for 
selection eqs; bivariate 
probit; IV 

Log VA per emp 
Product and process innov. 
dummies 

Manf. 1998-2000:  
0.41*** process;    0.05 product  

Manf. 2002-2004:  
0.45*** process;    -0.08 product 

Service:   0.27 process;            0.27 product 

Mairesse, Mohnen, & 
Kremp (2005) 

 
CIS3: Manf. firms in France CDM & variations Log VA per emp 

Logit transform of IPSE, 
process dummy, other 
dummies  

High-tech:  0.23* 
0.07*** radical;  0.06*** process  

Low-tech:  0.05 *** 
-0.08* radical;        0.10 *** process 

  



 
46 

 

Table A4: Innovation and productivity studies based on CDM model (2010 or before) - continued 

Study Sample Method Output measure Innov measure Estimated impact of innovation 

Masso & Vahter 
(2008) 

CIS3 and CIS4: Manf. 
firms in Estonia 

CDM variation: 
sequential with 
bivariate probit for 
innov 

Log VA per emp Product and process dummies  

Product: 1998-2000:   0.21*** 
       2002-2004:   0.00  
Process: 1998-2000:  -0.06 
       2002-2004:   0.15*** 

Masso & Vahter 
(2008) 

CIS3 and CIS4: Manf. 
firms in Estonia 

CDM variation: 
sequential with 
bivariate probit for 
innov 

Log sales per emp 
 
Product and process dummies  

Product: 1998-2000:   0.17** 
      2002-2004:   0.03 
Process: 1998-2000:  -0.03 
       2002-2004:   0.18*** 

Polder et al. 
(2009) 

CIS 3.5 – 4.5: Manf. and 
serv. firms in Netherlands Augmented CDM Log VA per emp 

3 innovation dummies (process 
product organizational) in 
isolation and combined 

Product and process innovation insignificant - in isolation 
or jointly.  
Organizational innovation on its own has large postive 
effect: 1.65 *** in manufacturing 
Organizational and process innovation combined has the 
largest effect in services: 17.11*** 

Raffo, Lhuillery & 
Miotti (2008) 

CIS3 manf. firms in 
Argentina (AR), Brazil 
(BR, Mexico (MX), France 
(FR), Spain (ES), 
Switzerland (CH) 

CDM model: sequential 
with IV Log sales per emp 

Product and organizational 
innov. dummies 

Product innovation:  
AR: -0.22; BR: 0.22***; MX: 0.31***; FR: 0.08**; ES: 
0.16***; CH: 0.10* 

Organizational innovation:  
Insignificant, except BR:0.054*** 

 
Siedschlag, Zhang, 
and Cahill (2010) 

 
CIS3, CIS4: 
Irish firms 

 
CDM variation: sequential 
with IV 

 

Log sales per emp 

Product, process, and 
organizational dummies, IPSE 
- all separately 

 
IPSE: 0.11*** ; Product: 0.45*** ; Process: 0.33*** 
Organizational: 0.61***  

 
van Leeuwen & 
Klomp (2006) 

 
CIS2: Innovative firm in 
Nether- lands 

 
CDM variation: 3SLS Log sales per emp 

Process dummy; innov sales 
share 

 
Product innovation: 0.13*** 
Process innovation: -1.3*** 

Adapted from Hall (2011: Appendix). Notes: CDM = Crépon, Duguet, Mairesse model described in text. IPSE = innovative product sales per employee. ALS = 
asymptotic least squares on multi-equation model. 3SLS = three stage least squares. GMM = Generalised method of moment; FIML = full information maximum 
likelihood on multivariate normal model. OLS = ordinary least squares. IV = instrumental variable estimation. *, **, *** indicate significance at 10%, 5% and 1%. 

  



 
47 

 

Table A5: Innovation and productivity studies based on CDM model (post-2010) 

Study Sample/country Method Output measure Innovation  measure Productivity effects of innovation 
(elasticity/semi-elasticity) 

Aboal and Garda 
(2016) 

Manf. and services firms in 
Uruguay. Two waves of 
services and manf. surveys 

CDM with Heckman 
selection in stage 1; 
bivariate probit second 
stage; sequential 

Log sales per 
employee 

Product and process 
(technological) innovation 
dummy; Organisational and 
marketing (non-
technological) innovation 
dummy 

Predicted innovation expenditures 
Positive and large effect in full sample (0.489) and 
among small firms (0.756) 

Predicted technological and non-technological innovation 
Productivity differentials larger than 1. 
Productivity differentials are larger with non-
technological innovation  

 

Aboal and Tascir 
(2018) 

Manf. and services firms in 
Uruguay. Two waves of 
services and manf. surveys 

CDM with Heckman 
selection in stage 1; 
bivariate probit second 
stage; sequential 

Log sales per 
employee 

ICT investor dummy; 
Organisational and 
marketing innovator 
dummy 

Predicted ICT probability  
Positive effect in services only (0.159) 

Predicted technological and non-technological innovation 
Productivity differentials large (> 1) with predicted non-
tech innovation in services. 
Productivity differentials are negative (< - 1) with 
predicted non-tech innovation in manufacturing 
 

Aboal et al. (2019) Farm survey data in 
Uruguay, one wave 

CDM variation: 
Sequential estimation 
of two models, OLS  

Log of sales per 
hectare 

Ratio of farm’s innovation 
activities to total number of 
activities in the survey 

Predicted innovation activity ratio 
Positive and larger effect (>  2);  
Effect similarity in Oilseed & grain and beef & cattle 
farms  

Acosta et al. (2015) Food and beverages firms in 
Spain 

CDM variation: 
sequential with 
trivariate probit for 
innovation 

Log sales per emp 
Product, process and org. 
innovation dummies  

Product innovation: positive 
Process innovation: insignificant 
Organizational innovation: positive and larger 
Combined:   positive and larger 

Alvarez et al. (2015) 
Manf. and services firms in 
Chile, two waves of Chilean 
innovation survey 

CDM with Tobit in 
stage 1; IV probit 
second stage; 
sequential 

Log sales per emp 
Product or process innovation 
dummy  

Product innovation: negative effect in manufacturing, positive 
effect in services 
Process innovation: Positive effect in manufacturing, negative 
effect in services 

Bartelsman et al. 
(2017) 

Micro moments database 
(MMD) aggregated data 

CDM variation: 
sequential with 
tivariate probit for 
innovation 

Log VA per emp 

 
Dummies of ICT use for: 
Resource Planning (ERP); 
Customer Resource 
Management (CRM);  and 
Supply Chain Management 
(SCM) 

Positive productivity effects  
The effect is larger as more ICT uses are combined.  
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Table A5: Innovation and productivity studies based on CDM model (post-2010) – continued  

Study Sample/country Method Output measure Innovation  measure Productivity effects of innovation 
(elasticity/semi-elasticity) 

Baum et al. (2017) 
CIS Panel of Swedish 
manufacturing firms 2008-
2012 

CDM variation: Generalized 
Structural Equation Model 
(GSEM) estimation of 
tivariate probit for 
innovation with FIML.   

Log VA per emp 
Logit of innovative product 
sales per employee (Log 
IPSE) 

Productivity effects are positive but differ by level of technology 
and knowledge intensity. 
Lager effects 0.10 to 0.13 in high-tech manufacturing and 
knowledge intensive services 
Smaller effects (0.02 to 0.05) in the rest. 

Castellaci (2011) CIS3, CIS4, CIS5 panel of 
Norwegian firms 

CDM augmented with 
competition; sequential 
estimation; bivariate probit 
for innov; IV in stage 3  

Log sales per emp Log IPSE Positive effect ranging from 0.242 to 0.552 
Smaller effects among firms in more concentrated industries  

Crespi and Zuniga 
(2912) 

Innovation surveys in 6 
Latin American countries, 
four waves 

CDM variation: sequential 
estimation; bivariate Tobit 
for innovation; IV in stage 3 

Log sales per emp 
Process or product innovation 
dummy 
Log IPSE 

Predicted innovation dummy and IPSE  
Positive effect 
Effect is larger when innovation dummy is used 
Effects are larger in Colombia and Panama compared to Argentina, 
Chile and Uruguay 

Damijan et al. (2011) 
CIS and accounting data for 
a panel of Slovenian firms 
from 1996-2002 

CDM variation: ALS 
estimation 
Plus propensity score 
matching 

Log VA per emp. Innovation dummy (any of 
process or product innovation) 

Positive and large (0.93) effect on labour productivity in ALS 
estimation 
Insignificant effect on TFP in growth accounting and matching 
estimations. 

Demmel et al. (2017) 

World Bank Enterprise 
survey data for Argentina, 
Mexico, Colombia and 
Peru; two waves 

CDM: sequential 
Multivariate probit;  
Joint estimation of 
innovation and output 
equations  

Log sales per emp Process or product innovation 
dummy; or both 

Product innovation  
Positive in Argentina and Mexico; insignificant in Colombia and 
Peru 
Process innovation  
Insignificant in all samples 

Hall & Sena (2017) 
 
ONS and CIS firm-level 
data 1998-2006 

 
CDM augmented with 
intellectual property 
protection measures; 
trivariate probit; 
simultaneous estimation 

Log sales  

Dummies for process and 
product innovation interacted 
with formal and informal IP 
measures 

Process innovation: Full sample 
Process innovation itself: insignificant 
Interaction with formal IP: insignificant 
Interaction with informal IP: insignificant 
Interaction with both: Positive significant 
Product innovation: Full sample 
Product innovation itself: insignificant 
Interaction with formal IP: Positive significant 
Interaction with informal IP: insignificant 
Interaction with both: Positive significant 
All above are either insignificant or negative in manufacturing. 
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Table A5: Innovation and productivity studies based on CDM model (post-2010) – continued  

Study Sample/country Method Output measure Innovation  measure Productivity effects of innovation 
(elasticity/semi-elasticity) 

Hall et al. (2013) Unicredit survey of Italian 
firms, waves 7 to 10 

CDM variation: 
sequential estimation 
with quadrivariate 
probit for innovation, 
IV 

Log sales per emp. 

Product, process and org. 
innovation dummies; R&D 
and ICT intensity per 
employee 

Predicted process or product innovation  
Insignificant. 

R&D and ICT intensity 
Positive; but ICT effect < R&D effect. 

R&D and ICT:  
Neither complements nor substitutes. 

Halpern & 
Muraközy (2012) 

CIS of Hungarian firms; 
two waves; matched with 
alance sheet  data 

CDM variation: 
Heckman selection in 
stage 1 and 2; 
predicted innovation 

Log sales per emp. 

 
Innovation (any of process or 
product) dummy;  Innovation 
engagement dummy 

Predicted process or product innovation dummy  
Insignificant effect with one innovation dummy  
Positive effect (0.1 – 0.5) with both dummies  
Effect is smaller in high-tech industries. 

Hashi & Stojčić 
(2013) 

CIS4 data for 16 European 
countries  

CDM variation: Joint 
estimation of Tobit for 
innovation with ML; 3SLS 
estimation of output model 

Log sales per emp. Log IPSE  
Positive effect in both Western European and CEEC 
samples. 
Effect is larger in WE sample. 

Moris (2018) 
Panel of World Bank 
Enterprise Survey data, 
firms from 43 countries 

CDM model: sequential 
with IV Log sales per emp. Innovation dummy 

Positive effect in both cross-section and panel estimations 
The effect in cross-section is larger 

Peters et al. (2017a) 

 
Manheim Innovation Panel 

data high-tech 
manufacturing firms in 

Germany 

 
CDM variation: dynamic 

model with stochastic 
productivity 

Log sales per emp. 
Process and product 

innovation dummies; the 
latter combined 

Process or product innovation:  
Positive (0.039 and 0.037), but smaller than most 
estimates in the field. 

Process*product innovation:  
Insignificant 

Peters et al. (2017b) 

Manheim Innovation Panel 
data high- and low-tech 
manufacturing firms in 

Germany 

CDM variation: dynamic 
model with stochastic 

productivity 
Log sales per emp. 

Process and product 
innovation dummies; the 

latter combined 

High-tech:  
Positive (0.029 for product and 0.036 for process 
innovation). 

Low-tech:  
Process innovation significant (0.035); product 
innovation insignificant. 
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Table A5: Innovation and productivity studies based on CDM model (post-2010) – continued  

Study Sample/country Method Output measure Innovation  measure Productivity effects of innovation 
(elasticity/semi-elasticity) 

Peters et al. (2018) 
CIS of services firms in 
Germany, Ireland and UK, 
one wave 

CDM augmented with 
non-technological 
innovation, Probit est. 
of  innovation output, 
stochastic productivity 

Log sales per emp. 

Technological (process and 
product) innovation Non-
technological 
(organizational and 
marketing) innovation 

Technological innovation:  
Product and process innovation: positive and significant 
in Germany and UK, only process is significant in 
Ireland). 

Non-technological innovation:  
Same patterns as above; but effects are larger 

 

Ramírez et al. 
(2019) 

Colombian surveys of 
manufacturing firms 

CDM augmented with 
human capital; 
sequential; OLS 
followed with bivariate 
probit, IV  

Log sales per emp. 

 
Predicted prob. of process or 
product innovation;  Predicted 
R&D investment 

Predicted process or product innov: Positive. 
Predicted R&D investment: Positive but smaller. 
Effect of predicted innov. is larger in large firms. 
Effect of predicted R&D is smaller in large firms 

Raymond et al. 
(2015) 

CIS data for Dutch and 
French firms, three waves  

CDM variation: Joint 
estimation of innovation 
with FIML 

Log sales per emp. Product innovation dummy 
Log IPSE  

Predicted innovation measures: positive effect, 
statistically not different in both countries  
Observed innovation measures:  

Product innov effect is larger in Netherlands 
IPSE effect is larger in France 

 

Moris (2018) 
Panel of World Bank 
Enterprise Survey data, 
firms from 43 countries 

CDM model: sequential 
with IV Log sales per emp. Innovation dummy 

Positive effect in both cross-section and panel estimations 
The effect in cross-section is larger 
 

Tello  (2015) 
 

Small sample of 
manufacturing firms in Peru 

 
CDM model: sequential 

Probit or Heckman selection 
for innovation; Predicted 
innovation in productivity 

equation 

Log sales per emp. 
Technological, non-
technological innovation  
dummies; Log IPSE  

Only log IPSE is significant. The effect is positive or 
negative, depending on Heckman selection specification 
Techn. and non-tech. innovation insignificant 

Notes: CDM = Crepon, Duguet, Mairesse model described in text; CIS = Community Innovation Survey; ICT = Information and communication technologies; IPSE = innovative 
product sales per employee; TFP = total factor productivity. Estimators: ALS = asymptotic least squares on multi-equation model; FIML = full information maximum likelihood 
estimation of multivariate normal models; OLS = ordinary least squares; IV = instrumental variable estimation; 2/3SLS = two/three stage least squares. 
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