Conformal Inference for Frequency Estimation with Sketched Data

Matteo Sesia

Department of Data Sciences and Operations University of Southern California, Marshall School of Business

Università Cattolica del Sacro Cuore — May 18, 2023

Big data

Large data set of discrete objects Z_i :

$$Z_1,\ldots,Z_n\in\mathscr{Z}$$

For example,

- word tokens in natural language processing [Goyal et al., 2012]
- DNA sequences in genetics [Zhang et al., 2014]
- user features in machine learning, . . .

However, storing the entire data set may be unfeasible, due to:

- memory limitations
- privacy concerns

Instead, only a (sketch) of the data can be stored.

Frequency estimation from sketched data

Consider the problem of recovering the true frequency of an object $z \in \mathscr{Z}$ within the data set $Z_1, \ldots, Z_n \in \mathscr{Z}$:

$$f_n(z) = \sum_{i=1}^n \mathbb{1}[Z_i = z],$$

using only the information contained in a (lossy) sketch S:

$$\mathcal{S} = \mathcal{S}(Z_1, \ldots, Z_n) \in \mathbb{N}^L$$

with $L \ll n$.

In general, exact recovery may be impossible. Further, a sensible estimate should depend on how the data are sketched.

The count-min sketch

The count-min sketch (CMS) [Cormode and Muthukrishnan, 2005] is an efficient data structure meant to facilitate the estimation of discrete object frequencies.

The CMS utilizes $d \ge 1$ distinct hash functions,

$$h_j: \mathscr{Z} \to [w] = \{1,\ldots,w\},$$

with width w > 1, for all $j \in [d] = \{1, \dots, d\}$.

The data are compressed into a sketch matrix $C \in \mathbb{N}^{d \times w}$:

$$C_{j,k} = \sum_{i=1}^{n} \mathbb{1}[h_j(Z_i) = k], \quad j \in [d], k \in [w].$$

Therefore, the size of the sketch is $L = d \cdot w \ll n$.

Frequency estimation with the CMS

A classical estimate of $f_n(z)$ for any object $z \in \mathcal{Z}$ is:

$$\hat{f}_{\mathrm{up}}^{\mathrm{CMS}}(z) = \min_{j \in [d]} \left\{ C_{j,h_j(z)} \right\}.$$

This gives a deterministic upper bound for $f_n(z)$ [Cormode and Muthukrishnan, 2005]:

$$\hat{f}_{\mathrm{up}}^{\mathrm{CMS}}(z) \geq f_n(z) = \sum_{i=1}^n \mathbb{1}\left[Z_i = z\right].$$

The problem is that this estimate is not necessarily accurate: it is possible that $\hat{f}_{\rm up}^{\rm CMS}(z) > f_n(z)$ due random hash collisions.

Probabilistic lower bounds for the CMS

A pairwise independent family \mathcal{H} of hash functions is defined as follows. For any $z_1 \neq z_2$ and $h_1, h_2 \sim \mathcal{H}$,

$$\mathbb{P}_{\mathcal{H}}[h_1(z_1) = h_2(z_2)] = \frac{1}{w^2}.$$

Probabilistic lower bounds for the CMS

A pairwise independent family \mathcal{H} of hash functions is defined as follows. For any $z_1 \neq z_2$ and $h_1, h_2 \sim \mathcal{H}$,

$$\mathbb{P}_{\mathcal{H}}[h_1(z_1) = h_2(z_2)] = \frac{1}{w^2}.$$

Theorem ([Cormode and Muthukrishnan, 2005])

Suppose the hash functions are chosen at random from a pairwise independent family H.

For any $\delta, \epsilon \in (0,1)$, choosing $d = \lceil -\log \delta \rceil$ and $w = \lceil e/\epsilon \rceil$, for any fixed $z \in \mathcal{Z}$,

$$\mathbb{P}_{\mathcal{H}}[f_n(z) \geq \hat{f}_{\mathrm{up}}^{\mathrm{CMS}}(z) - \epsilon n] \geq 1 - \delta.$$

E.g., if $\delta = 0.05$ and d = 3, a 95% lower bound for $f_n(z)$ is:

$$\hat{f}_{\mathrm{up}}^{\mathrm{CMS}}(z) - n \cdot \lceil e/w \rceil$$
.

Note: the randomness comes from the hash functions!

Limitations of probabilistic lower bounds for the CMS

- Often too conservative to be useful [Ting, 2018].
- Not very flexible: δ cannot be chosen by the practitioner because it is fixed by d (since $d = \lceil -\log \delta \rceil$), and ϵ is uniquely determined by the hash width (since $w = \lceil e/\epsilon \rceil$).

Limitations of probabilistic lower bounds for the CMS

- Often too conservative to be useful [Ting, 2018].
- Not very flexible: δ cannot be chosen by the practitioner because it is fixed by d (since $d = \lceil -\log \delta \rceil$), and ϵ is uniquely determined by the hash width (since $w = \lceil e/\epsilon \rceil$).

One source of this difficulty is that we have not made any assumptions on the data.

The goal of this work is to develop a more powerful data-driven method to construct flexible "confidence intervals" for $f_n(z)$.

Related work

More recent works have developed uncertainty estimation methods leveraging the randomness in the data.

Bayesian non-parametric approaches:

- [Cai et al., 2018], Dirichlet process on the data distribution.
- Follow-up works: [Dolera et al., 2021], [Favaro and S., 2022]

Frequentist approaches

• [Ting, 2018], resampling (bootstrap) method

Some limitations:

- Model based (or involving some heuristics)
- Specific to the CMS (a linear sketch)

Non-linear sketches

The CMS with *conservative updates* (CMS-CU) mitigates the impact of hash collisions but is not linear.

For each data point Z_i and each $j \in [d]$, update only $C_{j^*(i),k}$:

$$C_{j^*(i),k}^{\text{CU}} \leftarrow C_{j^*(i),k}^{\text{CU}} + \mathbb{1}\left[h_{j^*(i)}(Z_i) = k\right], \quad j^*(i) = \arg\min_{j \in [d]} C_{j,h_j(Z_i)}.$$

Non-linear sketches

The CMS with *conservative updates* (CMS-CU) mitigates the impact of hash collisions but is not linear.

For each data point Z_i and each $j \in [d]$, update only $C_{j^*(i),k}$:

$$C_{j^*(i),k}^{\text{CU}} \leftarrow C_{j^*(i),k}^{\text{CU}} + \mathbb{1}\left[h_{j^*(i)}(Z_i) = k\right], \quad j^*(i) = \arg\min_{j \in [d]} C_{j,h_j(Z_i)}.$$

Then, return as usual:

$$\hat{f}_{\mathrm{up}}^{\mathrm{CMS-CU}}(z) = \min_{j \in [d]} \left\{ C_{j,h_j(z)}^{\mathrm{CU}} \right\}.$$

Non-linear sketches

The CMS with *conservative updates* (CMS-CU) mitigates the impact of hash collisions but is not linear.

For each data point Z_i and each $j \in [d]$, update only $C_{j^*(i),k}$:

$$C_{j^*(i),k}^{\text{CU}} \leftarrow C_{j^*(i),k}^{\text{CU}} + \mathbb{1}\left[h_{j^*(i)}(Z_i) = k\right], \quad j^*(i) = \arg\min_{j \in [d]} C_{j,h_j(Z_i)}.$$

Then, return as usual:

$$\hat{f}_{\mathrm{up}}^{\mathrm{CMS-CU}}(z) = \min_{j \in [d]} \left\{ C_{j,h_j(z)}^{\mathrm{CU}} \right\}.$$

This guarantees:

- $\hat{f}_{\mathrm{up}}^{\mathrm{CMS-CU}}(z) \geq f_{n}(z)$
- $\hat{f}_{\mathrm{up}}^{\mathrm{CMS-CU}}(z) \leq \hat{f}_{\mathrm{up}}^{\mathrm{CMS}}(z)$

Desiderata

We would like to construct "confidence intervals" for $f_n(z)$ that:

- 1. do not require knowing the distribution of the data
- 2. are not limited to the specific linear structure of the CMS
- 3. are provably valid in finite samples
- 4. avoid being too conservative by adapting to the observed data

Desiderata

We would like to construct "confidence intervals" for $f_n(z)$ that:

- 1. do not require knowing the distribution of the data
- 2. are not limited to the specific linear structure of the CMS
- 3. are provably valid in finite samples
- 4. avoid being too conservative by adapting to the observed data

Key assumption:

$$Z_1, Z_2, \ldots, Z_n \sim P_Z$$

Outline

- 1. Review of conformal prediction
- 2. Method: conformalized sketching
- 3. Numerical experiments
- 4. Discussion

Exchangeable random variables

We say that Z_1, Z_2, \ldots, Z_n are exchangeable if and only if, for any permutation σ of $\{1, \ldots, n\}$,

$$p(Z_1, Z_2, \ldots, Z_n) = p(Z_{\sigma(1)}, Z_{\sigma(2)}, \ldots, Z_{\sigma(n)}).$$

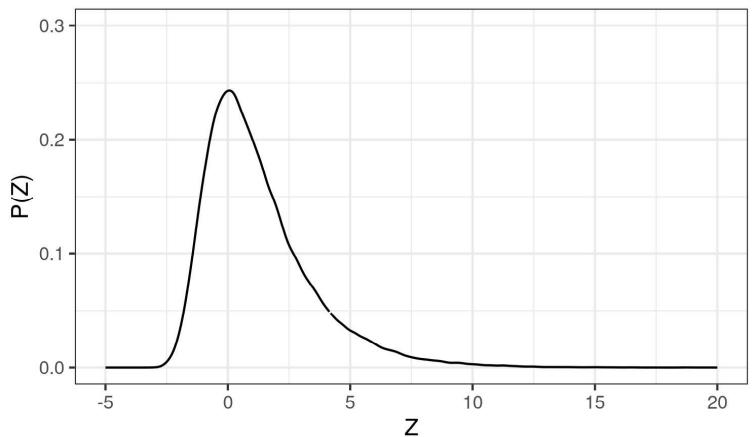
For example, Z_1, Z_2, \ldots, Z_n are exchangeable if they are i.i.d.

Suppose we have

$$Z_i \stackrel{\mathsf{exch.}}{\sim} P_Z, \qquad Z \in \mathbb{R}$$

and we want to use the first n data points to construct a one-sided prediction interval $\hat{C}_{\alpha} = (-\infty, \hat{U}_{1-\alpha}]$ such that

$$\mathbb{P}\left[Z_{n+1}\leq \hat{U}_{1-\alpha}\right]\geq 1-\alpha.$$

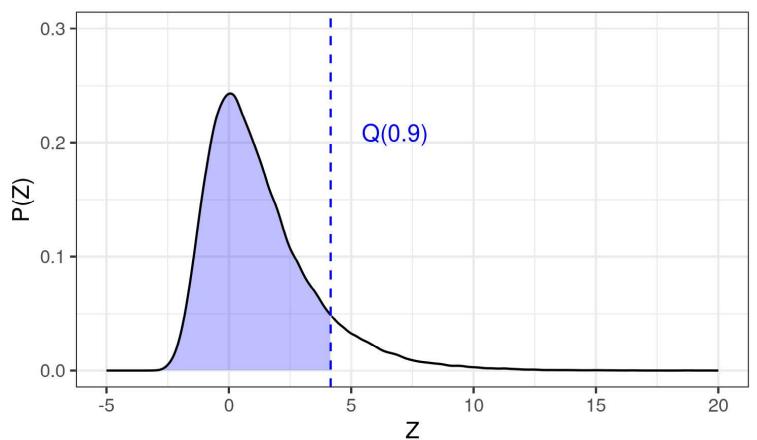


Suppose we have

$$Z_i \stackrel{\mathsf{exch.}}{\sim} P_Z, \qquad Z \in \mathbb{R}$$

and we want to use the first n data points to construct a one-sided prediction interval $\hat{\mathcal{C}}_{\alpha} = (-\infty, \hat{U}_{1-\alpha}]$ such that

$$\mathbb{P}\left[Z_{n+1}\leq \hat{U}_{1-\alpha}\right]\geq 1-\alpha.$$

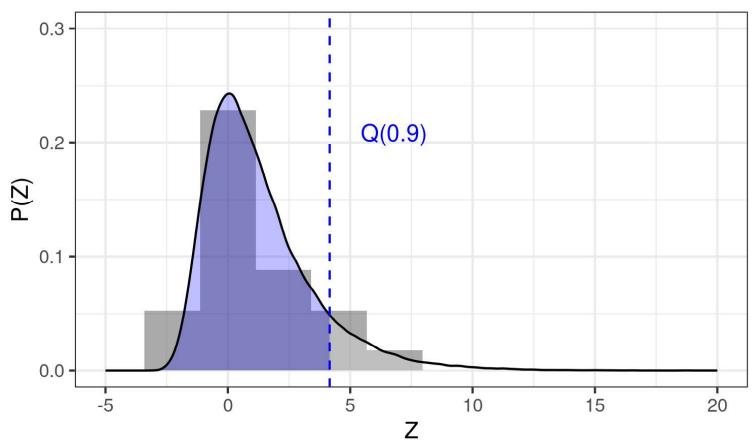


Suppose we have

$$Z_i \stackrel{\mathsf{exch.}}{\sim} P_Z, \qquad Z \in \mathbb{R}$$

and we want to use the first n data points to construct a one-sided prediction interval $\hat{\mathcal{C}}_{\alpha} = (-\infty, \hat{U}_{1-\alpha}]$ such that

$$\mathbb{P}\left[Z_{n+1}\leq \hat{U}_{1-\alpha}\right]\geq 1-\alpha.$$

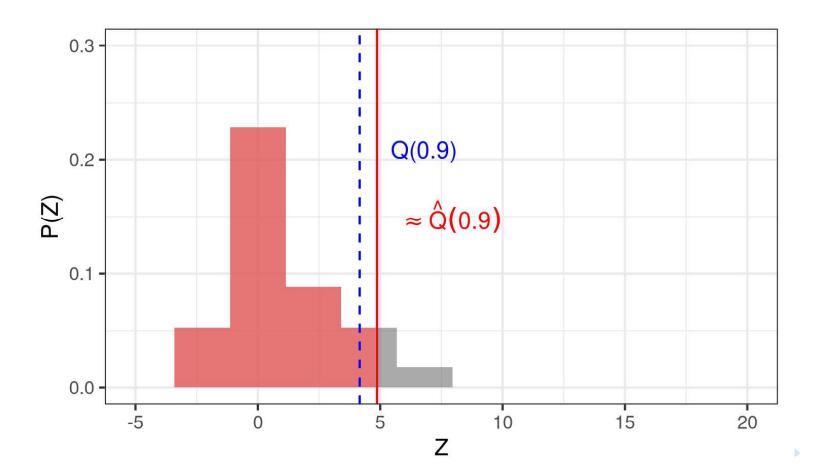


Suppose we have

$$Z_i \stackrel{\mathsf{exch.}}{\sim} P_Z, \qquad Z \in \mathbb{R}$$

and we want to use the first n data points to construct a one-sided prediction interval $\hat{\mathcal{C}}_{\alpha} = (-\infty, \hat{U}_{1-\alpha}]$ such that

$$\mathbb{P}\left[Z_{n+1}\leq \hat{U}_{1-\alpha}\right]\geq 1-\alpha.$$



Finite-sample inflation of empirical quantiles

Empirical CDF and quantile function:

$$\hat{F}_n(z) = \frac{1}{n} \sum_{i=1}^n \mathbb{1} [Z_i \leq z], \qquad \hat{Q}_n(\alpha) = Z_{(\lceil \alpha n \rceil)}$$

Lemma (E.g., [Vovk et al., 2005, Romano et al., 2019])

Suppose Z_1, \ldots, Z_{n+1} are exchangeable random variables.

For any
$$\alpha \in \{0,1\}$$
, define $\alpha_n = \left(1 + \frac{1}{n}\right) \alpha$. Then,

$$\mathbb{P}\left[Z_{n+1}\leq \hat{Q}_n(\alpha_n)\right]\leq \alpha.$$

Moreover, if $\{Z_1, \ldots, Z_{n+1}\}$ are a.s. distinct,

$$\mathbb{P}\left[Z_n \leq \hat{Q}_n(\alpha_n)\right] \leq \alpha + \frac{1}{n+1}.$$

One-sided conformal prediction without covariates

Suppose Z_1, \ldots, Z_{n+1} are exchangeable random variables. For any $\alpha \in \{0, 1\}$, define \hat{C}_{α} as

$$\hat{C}_{\alpha} = (-\infty, \hat{Q}_{n}(\alpha_{n})].$$

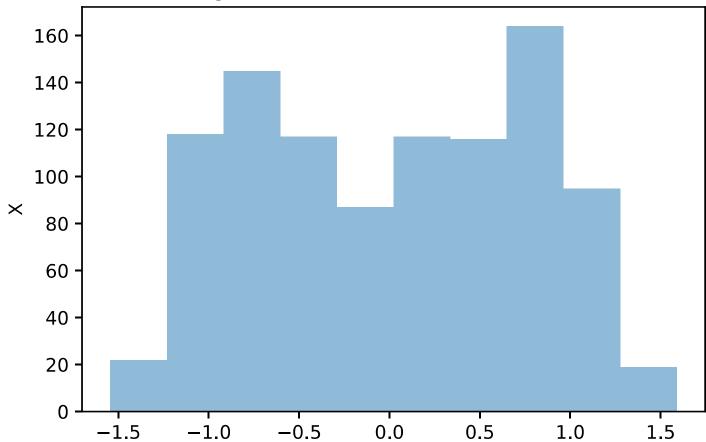
Then,

$$\alpha \leq \mathbb{P}\left[Z_{n+1} \in \hat{C}_{\alpha}\right] \leq \alpha + \frac{1}{n}.$$

Suppose we have

$$(X_i, Y_i)_{i=1}^{n+1} \stackrel{\mathsf{exch.}}{\sim} P_{X,Y}, \qquad X \in \mathbb{R}^p, Y \in \mathbb{R}$$

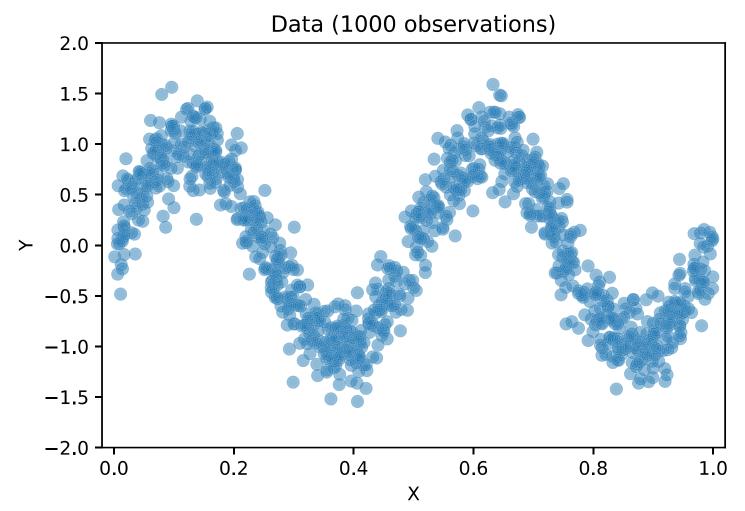
We would like to predict Y_{n+1} given $(X_i, Y_i)_{i=1}^n$



Suppose we have

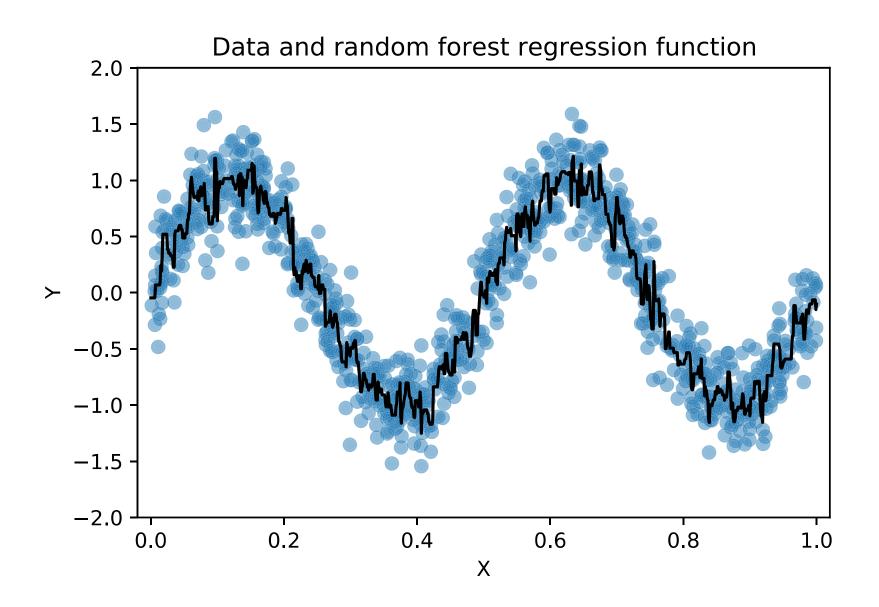
$$(X_i, Y_i)_{i=1}^{n+1} \overset{\mathsf{exch.}}{\sim} P_{X,Y}, \qquad X \in \mathbb{R}^p, Y \in \mathbb{R}$$

We would like to predict Y_{n+1} given $(X_i, Y_i)_{i=1}^n$ and X_{n+1}



Machine-learning prediction

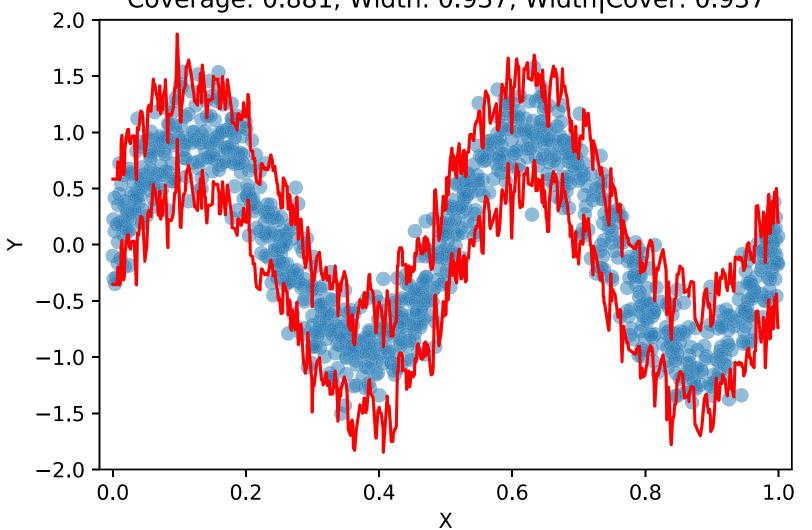
Lots of machine-learning algorithms. But how confident are we?



Machine-learning prediction

Lots of machine-learning algorithms. But how confident are we?

Test data and split-conformal prediction bands (alpha: 0.10) Coverage: 0.881, Width: 0.937, Width|Cover: 0.937



Conformal prediction

Key ideas:

- 1. Use ML to project project the problem into 1 dimension.
- 2. Apply the empirical quantile lemmas presented earlier.
- 3. Some kind of data hold-out is needed to ensure exchangeability with the test data.

This is a general recipe, many different variations are possible.

```
1: Input: Data \{(X_i, Y_i)\}_{i=1}^n, test point X_{n+1}, \alpha \in (0, 1)
```

2: black-box model \mathcal{B} , level $\alpha \in (0,1)$

- 1: **Input**: Data $\{(X_i, Y_i)\}_{i=1}^n$, test point X_{n+1} , $\alpha \in (0, 1)$
- 2: black-box model \mathcal{B} , level $\alpha \in (0,1)$
- 3: Split the data: $\mathcal{I}_1 = \{1, \dots, n/2\}, \mathcal{I}_2 = \{n/2 + 1, \dots, n\}$

1: **Input**: Data $\{(X_i, Y_i)\}_{i=1}^n$, test point X_{n+1} , $\alpha \in (0, 1)$ 2: black-box model \mathcal{B} , level $\alpha \in (0, 1)$ 3: Split the data: $\mathcal{I}_1 = \{1, \dots, n/2\}, \mathcal{I}_2 = \{n/2 + 1, \dots, n\}$ 4: Train \mathcal{B} on $\mathcal{I}_1 : \mathcal{B}(\{(X_i, Y_i)\}_{i \in \mathcal{I}_1}) \to \hat{f}$

1: **Input**: Data $\{(X_i, Y_i)\}_{i=1}^n$, test point X_{n+1} , $\alpha \in (0, 1)$ 2: black-box model \mathcal{B} , level $\alpha \in (0, 1)$ 3: Split the data: $\mathcal{I}_1 = \{1, \dots, n/2\}, \mathcal{I}_2 = \{n/2 + 1, \dots, n\}$ 4: Train \mathcal{B} on $\mathcal{I}_1 : \mathcal{B}(\{(X_i, Y_i)\}_{i \in \mathcal{I}_1}) \to \hat{f}$ 5: Evaluate residuals on $\mathcal{I}_2 : Z_i = |Y_i - \hat{f}(X_i)|$, for all $i \in \mathcal{I}_2$

1: **Input**: Data $\{(X_i, Y_i)\}_{i=1}^n$, test point X_{n+1} , $\alpha \in (0, 1)$ 2: black-box model \mathcal{B} , level $\alpha \in (0, 1)$ 3: Split the data: $\mathcal{I}_1 = \{1, \dots, n/2\}, \mathcal{I}_2 = \{n/2 + 1, \dots, n\}$ 4: Train \mathcal{B} on $\mathcal{I}_1 : \mathcal{B}(\{(X_i, Y_i)\}_{i \in \mathcal{I}_1}) \to \hat{f}$ 5: Evaluate residuals on $\mathcal{I}_2 : Z_i = |Y_i - \hat{f}(X_i)|$, for all $i \in \mathcal{I}_2$ 6: Compute $\hat{Q}_n(Z_{\mathcal{I}_2}, \beta_n) = Z_{(\lceil n\beta_n \rceil)}$, where $\beta_n = (1 - \alpha)(1 + 1/n)$

- 1: **Input**: Data $\{(X_i, Y_i)\}_{i=1}^n$, test point X_{n+1} , $\alpha \in (0, 1)$ 2: black-box model \mathcal{B} , level $\alpha \in (0, 1)$ 3: Split the data: $\mathcal{I}_1 = \{1, \dots, n/2\}, \mathcal{I}_2 = \{n/2 + 1, \dots, n\}$ 4: Train \mathcal{B} on $\mathcal{I}_1 : \mathcal{B}(\{(X_i, Y_i)\}_{i \in \mathcal{I}_1}) \to \hat{f}$ 5: Evaluate residuals on $\mathcal{I}_2 : Z_i = |Y_i - \hat{f}(X_i)|$, for all $i \in \mathcal{I}_2$ 6: Compute $\hat{Q}_n(Z_{\mathcal{I}_2}, \beta_n) = Z_{(\lceil n\beta_n \rceil)}$, where $\beta_n = (1 - \alpha)(1 + 1/n)$
- 7: **Output**:

$$\hat{C}_{\alpha}(X_{n+1}) = [\hat{f}(X_{n+1}) - \hat{Q}_n(Z_{\mathcal{I}_2}, \beta_n), \hat{f}(X_{n+1}) + \hat{Q}_n(Z_{\mathcal{I}_2}, \beta_n)]$$

- 1: **Input**: Data $\{(X_i, Y_i)\}_{i=1}^n$, test point X_{n+1} , $\alpha \in (0, 1)$
- 2: black-box model \mathcal{B} , level $\alpha \in (0,1)$
- 3: Split the data: $\mathcal{I}_1 = \{1, \dots, n/2\}, \mathcal{I}_2 = \{n/2 + 1, \dots, n\}$
- 4: Train \mathcal{B} on $\mathcal{I}_1:\mathcal{B}\left(\{(X_i,Y_i)\}_{i\in\mathcal{I}_1}\right)\to\hat{f}$
- 5: Evaluate residuals on \mathcal{I}_2 : $Z_i = |Y_i \hat{f}(X_i)|$, for all $i \in \mathcal{I}_2$
- 6: Compute $\hat{Q}_n(Z_{\mathcal{I}_2}, \beta_n) = Z_{(\lceil n\beta_n \rceil)}$, where $\beta_n = (1-\alpha)(1+1/n)$
- 7: Output:

$$\hat{C}_{\alpha}(X_{n+1}) = [\hat{f}(X_{n+1}) - \hat{Q}_n(Z_{\mathcal{I}_2}, \beta_n), \hat{f}(X_{n+1}) + \hat{Q}_n(Z_{\mathcal{I}_2}, \beta_n)]$$

Why does this work?

$$Y_{n+1} \in \hat{\mathcal{C}}_{\alpha}(X_{n+1}) \quad \Longleftrightarrow \quad Z_{n+1} \leq \hat{Q}_n(Z_{\mathcal{I}_2}, \beta_n).$$

Outline

- 1. Review of conformal prediction
- 2. Method: conformalized sketching
- 3. Numerical experiments
- 4. Discussion

Problem setup

Key assumption:

$$Z_1,\ldots,Z_n,Z_{n+1}\stackrel{\text{exch.}}{\sim} P_Z$$

Sketch
$$Z_1, \ldots, Z_n \rightarrow \phi_n = \phi(Z_1, \ldots, Z_n)$$
.

Then, estimate $f_n(\mathbb{Z}_{n+1})$ using ϕ_n , where

$$f_n(z) = \sum_{i=1}^n \mathbb{1}[Z_i = z], \quad \forall z \in \mathscr{Z}.$$

Problem setup

Key assumption:

$$Z_1,\ldots,Z_n,Z_{n+1}\stackrel{\text{exch.}}{\sim} P_Z$$

Sketch
$$Z_1, \ldots, Z_n \to \phi_n = \phi(Z_1, \ldots, Z_n)$$
.

Then, estimate $f_n(\mathbb{Z}_{n+1})$ using ϕ_n , where

$$f_n(z) = \sum_{i=1}^n \mathbb{1}[Z_i = z], \quad \forall z \in \mathscr{Z}.$$

Construct a (tight) prediction interval

$$[\hat{L}_{n,\alpha}(Z_{n+1};\phi_n),\hat{U}_{n,\alpha}(Z_{n+1};\phi_n)]$$

with guaranteed marginal coverage:

$$\mathbb{P}\left[\hat{L}_{n,\alpha}(Z_{n+1};\phi_n)\leq f_n(Z_{n+1})\leq \hat{U}_{n,\alpha}(Z_{n+1};\phi_n)\right]\geq 1-\alpha.$$

for any fixed $\alpha \in (0,1)$,

Step 1: warm-up

During an initial warm-up phase, the frequencies of the n_0 distinct objects among the first $m \ll n$ observations from the data stream, Z_1, \ldots, Z_{n_0} , are stored exactly into f_m ,

$$f_m^{\text{wu}}(z) = \sum_{i=0}^m \mathbb{1}[Z_i = z].$$
 (1)

Storage requirement: $\mathcal{O}(n_0) \leq \mathcal{O}(m) \ll \mathcal{O}(n)$.

Step 2: sketching

The remaining m-m data points are streamed and sketched, storing also the true frequencies for all instances of objects already seen during the warm-up phase.

Sketch:

$$\phi(Z_{m+1},\ldots,Z_n)$$

•

The following counters are also computed and stored:

$$f_{n-m}^{\mathrm{sv}}(z) = \begin{cases} \sum_{i=m+1}^{n} \mathbb{1}\left[Z_i = z\right], & \text{if } f_m^{\mathrm{wu}}(z) > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Again, the memory cost is $\ll O(n)$.

Step 3: conformalization

For all $i \in \{1, \dots, m\} \cup \{n+1\}$, define

$$Y_i = \sum_{i'=m+1}^{n} \mathbb{1}[Z_{i'} = Z_i],$$

the true frequency of Z_i among Z_{m+1}, \ldots, Z_n .

Note that Y_i is observable for $i \in \{1, ..., m\}$, in which case

$$Y_i = f_{n-m}^{\text{sv}}(Z_i).$$

For a new query Z_{n+1} , the target of inference is

$$f_n(Z_{n+1}) = Y_{n+1} + f_m^{wu}(Z_{n+1}),$$

but the second term is known. So, we just need to predict Y_{n+1} .

Step 3: conformalization (continued)

Next, we need to define meaningful features X.

For each $i \in \{1, \ldots, m\} \cup \{n+1\}$, define

$$X_i = (Z_i, \phi(Z_{m+1}, \ldots, Z_n)).$$

Step 3: conformalization (continued)

Next, we need to define meaningful features X.

For each
$$i \in \{1, \ldots, m\} \cup \{n+1\}$$
, define

$$X_i = (Z_i, \phi(Z_{m+1}, \ldots, Z_n)).$$

Proposition (S. and Favaro, 2022)

If the data Z_1, \ldots, Z_{n+1} are exchangeable, the pairs of random variables $(X_1, Y_1), \ldots, (X_m, Y_m), (X_{n+1}, Y_{n+1})$ are exchangeable.

Therefore, we can apply conformal prediction to estimate Y_{n+1} .

Conformity scores

Take a *nested* sequence of intervals indexed by $t \in \mathcal{T} \subseteq \mathbb{R}$,

$$[\hat{L}_{m,\alpha}(x;t),\hat{U}_{m,\alpha}(x;t)].$$

Suppose $\exists t_{\infty} \in \mathcal{T}$ s.t. $\hat{L}_{m,\alpha}(x;t_{\infty}) \leq Y \leq \hat{U}_{m,\alpha}(x;t_{\infty})$ a.s. $\forall x$.

Conformity scores

Take a *nested* sequence of intervals indexed by $t \in \mathcal{T} \subseteq \mathbb{R}$,

$$[\hat{L}_{m,\alpha}(x;t), \hat{U}_{m,\alpha}(x;t)].$$

Suppose $\exists t_{\infty} \in \mathcal{T}$ s.t. $\hat{L}_{m,\alpha}(x;t_{\infty}) \leq Y \leq \hat{U}_{m,\alpha}(x;t_{\infty})$ a.s. $\forall x$.

For each $i \in \{1, ..., m\}$, compute $E(X_i, Y_i)$, where

$$E(x,y) = \inf \big\{ t \in \mathcal{T} : Y \in [\hat{L}_{m,\alpha}(x;t), \hat{U}_{m,\alpha}(x;t)] \big\}.$$

Conformity scores

Take a *nested* sequence of intervals indexed by $t \in \mathcal{T} \subseteq \mathbb{R}$,

$$[\hat{L}_{m,\alpha}(x;t), \hat{U}_{m,\alpha}(x;t)].$$

Suppose $\exists t_{\infty} \in \mathcal{T}$ s.t. $\hat{L}_{m,\alpha}(x;t_{\infty}) \leq Y \leq \hat{U}_{m,\alpha}(x;t_{\infty})$ a.s. $\forall x$.

For each $i \in \{1, ..., m\}$, compute $E(X_i, Y_i)$, where

$$E(x,y) = \inf \left\{ t \in \mathcal{T} : Y \in [\hat{L}_{m,\alpha}(x;t), \hat{U}_{m,\alpha}(x;t)] \right\}.$$

The conformal prediction interval given X_{n+1} is then:

$$\hat{C}_{1-\alpha}(X_{n+1}) = [\hat{L}_{m,\alpha}(X_{n+1}; \hat{Q}_{m,1-\alpha}), \hat{U}_{m,\alpha}(X_{n+1}; \hat{Q}_{m,1-\alpha})],$$

where $\hat{Q}_{m,1-\alpha}$ is the (inflated) empirical quantile of $E(X_i, Y_i)$.

Note that
$$Y_{n+1} \notin \hat{\mathcal{C}}_{1-\alpha}(X_{n+1}) \Longleftrightarrow E(X_{n+1},Y_{n+1}) > \hat{Q}_{m,1-\alpha}$$
.

Fixed one-sided conformity scores

In our sketching problem with CMS (or CMS-CU), we already have a deterministic upper bound, $\hat{f}_{n-m,\mathrm{up}}(Z_{n+1})$.

To construct a monotone sequence of lower bounds $\hat{L}_{m,\alpha}(\cdot;t)$, a simple option is to shift the upper bound by a constant:

$$\hat{L}_{m,\alpha}^{\text{fixed}}((z,\phi);t) = \max\{0,\hat{f}_{n-m,\text{up}}(Z_{n+1})-t\}.$$

This gives the following conformity scores:

$$E_i = \inf \left\{ t \in \mathcal{T} : Y_i \in [\hat{f}_{n-m,\mathrm{up}}(Z_i) - t, \hat{f}_{n-m,\mathrm{up}}(Z_i)] \right\}$$

= $\hat{f}_{n-m,\mathrm{up}}(Z_i) - Y_i$.

Adaptive one-sided conformity scores

Fit an ML model to estimate the conditional distribution of

$$\hat{f}_{n-m,\mathrm{up}}(Z_i) - Y_i \mid \hat{f}_{n-m,\mathrm{up}}(Z_i),$$

using a subset of $m^{\text{train}} < m$ supervised data points (X_i, Y_i) .

E.g., multiple quantile neural network [Taylor, 2000] or a quantile random forest [Meinshausen, 2006].

Let \hat{q}_t be the estimated α_t -th lower conditional quantile, for all $t \in \{1, ..., T\}$ and some fixed sequence $0 = \alpha_1 < ... < \alpha_T = 1$.

Without loss of generality, let $\hat{q}_0 = 0$ and $\hat{q}_T = m$.

Then, for $t \in \{0, 1, \dots, m\}$, define

$$\hat{L}_{m,\alpha}^{\text{adaptive}}((z,\phi);t) = \max\left\{0, \hat{f}_{n-m,\text{up}}(X_{n+1}) - \hat{q}_t\left(\hat{f}_{n-m,\text{up}}(X_{n+1})\right)\right\}.$$

This approach can lead to a lower bound whose distance from the upper bound depends on X_{n+1} .

Outline

- 1. Review of conformal prediction
- 2. Method: conformalized sketching
- 3. Numerical experiments
- 4. Discussion

Performance with Zipf data

Observations: n = 100,000 i.i.d. from Zipf(a), with a > 1.

$$\mathbb{P}\left[Z_i=z\right]=\frac{z^{-a}}{\zeta(a)}, \text{ for all } z\in\{1,2\ldots,\}.$$

Sketch: CMS-CU.

Hash functions: d = 3 with width w = 1000.

Warm-up observations: m = 5,000.

Performance with Zipf data

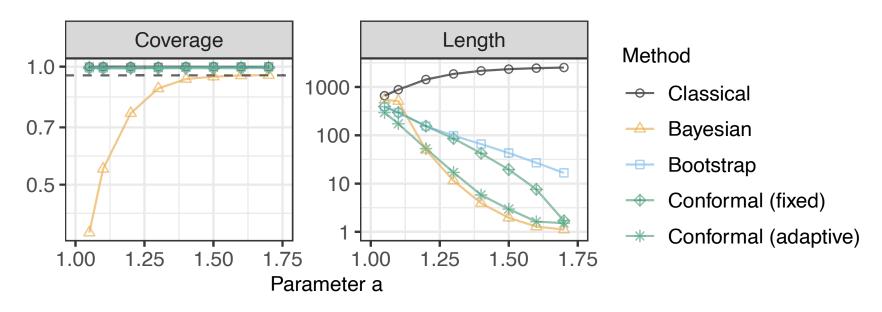
Observations: n = 100,000 i.i.d. from Zipf(a), with a > 1.

$$\mathbb{P}[Z_i = z] = \frac{z^{-a}}{\zeta(a)}, \text{ for all } z \in \{1, 2, ..., \}.$$

Sketch: CMS-CU.

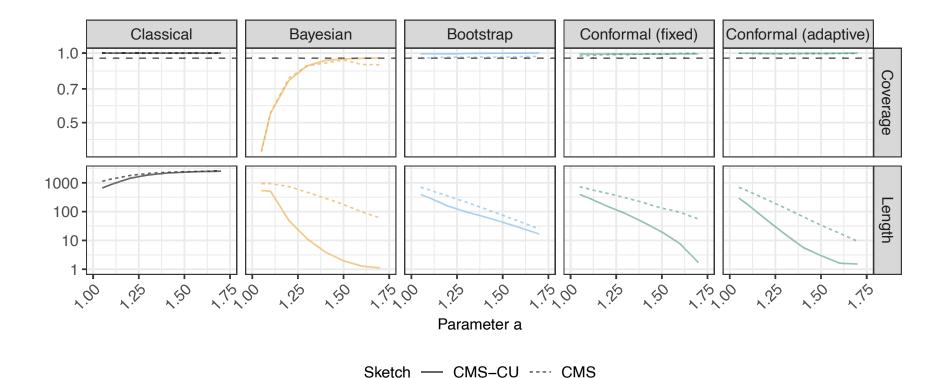
Hash functions: d = 3 with width w = 1000.

Warm-up observations: m = 5,000.



Performance of 95% confidence intervals with simulated Zipf data sketched with CMS-CU. The results are shown as a function of the Zipf tail parameter a.

Comparison of different sketches

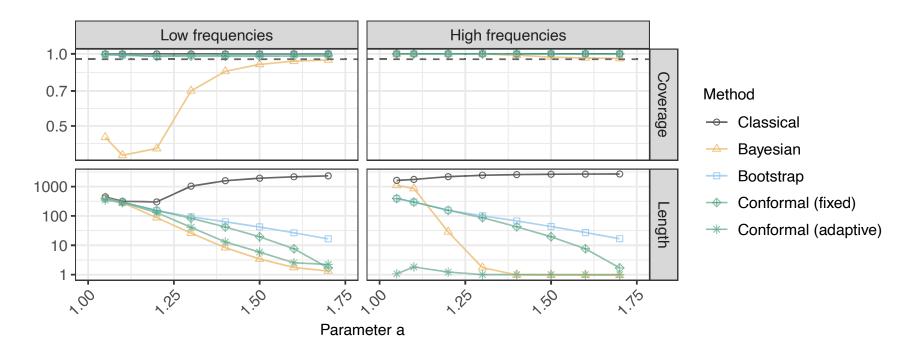


Performance of 95% confidence intervals for random queries, based on synthetic data from a Zipf distribution. The data are sketched with either the vanilla CMS or the CMS-CU. The results are shown as a function of the Zipf tail parameter *a*.

Performance for queries with different frequency

Not all queries are the same.

Queries of rarer objects are more difficult.

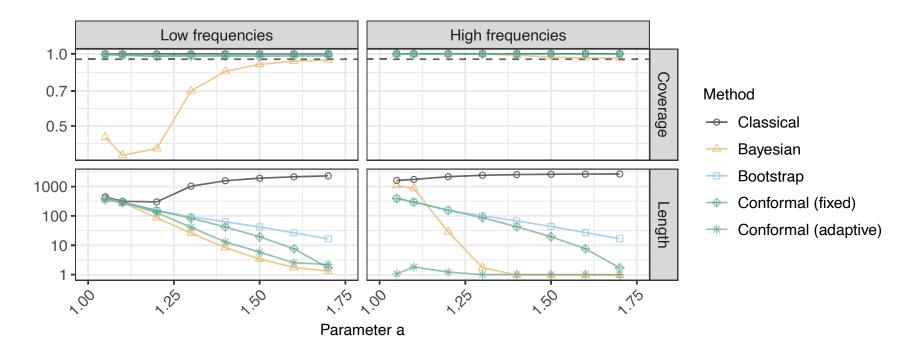


Performance of 95% confidence intervals stratified by the true query frequency. Left: frequency below median; right: above median.

Performance for queries with different frequency

Not all queries are the same.

Queries of rarer objects are more difficult.



Performance of 95% confidence intervals stratified by the true query frequency. Left: frequency below median; right: above median.

It is possible to guarantee frequency-range conditional coverage:

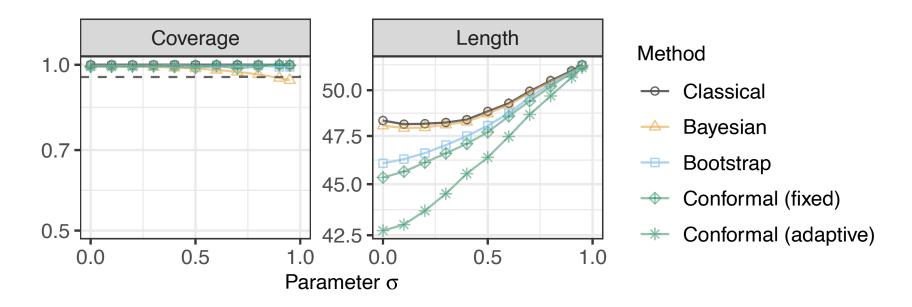
$$\mathbb{P}\left[f_n(Z_{n+1})\in \hat{C}_{n,\alpha}(Z_{n+1})\mid f_n(Z_{n+1})\in B\right]\geq 1-\alpha, \ \forall B\in \mathcal{B}.$$

Performance with Pitman-Yor Process data

Observations: n = 100,000 i.i.d. from PYP(5000, σ) [Pitman and Yor, 1997], with $\sigma \in [0,1)$. Note that $\sigma = 0$ corresponds to a Dirichlet process, matching the assumption of the Bayesian benchmark.

Performance with Pitman-Yor Process data

Observations: n = 100,000 i.i.d. from PYP(5000, σ) [Pitman and Yor, 1997], with $\sigma \in [0,1)$. Note that $\sigma = 0$ corresponds to a Dirichlet process, matching the assumption of the Bayesian benchmark.



Empirical coverage and length of 95% confidence intervals for random queries on synthetic data from the predictive distribution of a Pitman-Yor process. The data are sketched with the CMS-CU. The results are shown as a function of the Pitman-Yor process parameter σ .

Analysis of 2-grams in English literature

Data: 18 open-domain pieces of classic English literature downloaded from the Gutenberg Corpus [Project Gutenberg, sent].

The goal is to count the frequencies of all 2-grams—consecutive pairs of English words.

After some pre-processing, the number of 2-grams is \approx 1,700,000. The total number of all *possible* 2-grams is \approx 650,000,000.

Analysis of 2-grams in English literature

Data: 18 open-domain pieces of classic English literature downloaded from the Gutenberg Corpus [Project Gutenberg, sent].

The goal is to count the frequencies of all 2-grams—consecutive pairs of English words.

After some pre-processing, the number of 2-grams is \approx 1,700,000. The total number of all *possible* 2-grams is \approx 650,000,000.

Sketch 1,000,000 2-grams, query 10,000 2-grams. The data are processed in a random order \rightarrow exchangeability.

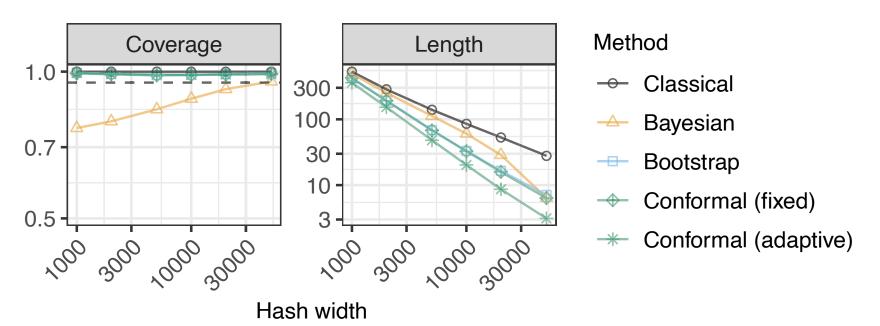
Analysis of 2-grams in English literature

Data: 18 open-domain pieces of classic English literature downloaded from the Gutenberg Corpus [Project Gutenberg, sent].

The goal is to count the frequencies of all 2-grams—consecutive pairs of English words.

After some pre-processing, the number of 2-grams is \approx 1,700,000. The total number of all *possible* 2-grams is \approx 650,000,000.

Sketch 1,000,000 2-grams, query 10,000 2-grams. The data are processed in a random order \rightarrow exchangeability.



Outline

- 1. Review of conformal prediction
- 2. Method: conformalized sketching
- 3. Numerical experiments
- 4. Discussion

Extensions (see papers)

Construction of conformal confidence intervals with:

Frequency-range conditional coverage.

$$\mathbb{P}\left[f_n(Z_{n+1})\in \hat{C}_{n,\alpha}(Z_{n+1})\mid f_n(Z_{n+1})\in B\right]\geq 1-\alpha, \ \forall B\in \mathcal{B}.$$

Extensions (see papers)

Construction of conformal confidence intervals with:

Frequency-range conditional coverage.

$$\mathbb{P}\left[f_n(Z_{n+1})\in \hat{C}_{n,\alpha}(Z_{n+1})\mid f_n(Z_{n+1})\in B\right]\geq 1-\alpha, \ \forall B\in \mathcal{B}.$$

Coverage for unique queries.

$$Z_1, \ldots, Z_n, Z_{n+1}, \ldots, Z_{n+M} \overset{\text{exch.}}{\sim} P_Z,$$
 $Z^* \sim \text{Uniform} \left[\text{UNIQUE}(Z_{n+1}, \ldots, Z_{n+M}) \right].$

$$\mathbb{P} \left[f_n(Z^*) \in \hat{C}_{n,\alpha}(Z^*) \right] \geq 1 - \alpha.$$

Extensions (see papers)

Construction of conformal confidence intervals with:

Frequency-range conditional coverage.

$$\mathbb{P}\left[f_n(Z_{n+1})\in \hat{C}_{n,\alpha}(Z_{n+1})\mid f_n(Z_{n+1})\in B\right]\geq 1-\alpha, \ \forall B\in \mathcal{B}.$$

Coverage for unique queries.

$$Z_1, \ldots, Z_n, Z_{n+1}, \ldots, Z_{n+M} \stackrel{\text{exch.}}{\sim} P_Z,$$
 $Z^* \sim \text{Uniform} \left[\text{UNIQUE}(Z_{n+1}, \ldots, Z_{n+M}) \right].$

$$\mathbb{P} \left[f_n(Z^*) \in \hat{C}_{n,\alpha}(Z^*) \right] \geq 1 - \alpha.$$

Robustness to distribution shift among the queries.

$$Z_1, \ldots, Z_n \stackrel{\mathsf{exch.}}{\sim} P_Z,$$

$$Z_{n+1} \sim P_Z'.$$

Conclusion

Conformalized sketching provides distribution-free inferences

- for any sketching algorithm
- for any (exchangeable) data set
- with valid marginal coverage (possibly also stronger coverage)

The key idea of data splitting is quite general and powerful: apply the statistical analysis (e.g., sketching) to some of the data, and use the rest of the data to track the performance.