Conformal Inference for Frequency Estimation
with Sketched Data

Matteo Sesia

Department of Data Sciences and Operations
University of Southern California, Marshall School of Business

Universita Cattolica del Sacro Cuore — May 18, 2023



Big data

Large data set of discrete objects Z;:
Z]_j c ooy Zn E g

For example,
* word tokens in natural language processing [Goyal et al., 2012]
® DNA sequences in genetics [Zhang et al., 2014]

® user features in machine learning, ...

However, storing the entire data set may be unfeasible, due to:
® memory limitations

® privacy concerns

Instead, only a (sketch) of the data can be stored.



Frequency estimation from sketched data

Consider the problem of recovering the true frequency of an object
z € & within the data set /1,...,7Z, € Z:

fo(z) =) 1[Z;=2],
=1

using only the information contained in a (lossy) sketch S:
S=8(24,...,7Z,) € Nh,

with L < n.

In general, exact recovery may be impossible. Further, a sensible
estimate should depend on how the data are sketched.



The count-min sketch

The count-min sketch (CMS) [Cormode and Muthukrishnan, 2005]
Is an efficient data structure meant to facilitate the estimation of
discrete object frequencies.

The CMS utilizes d > 1 distinct hash functions,
hi + & — [w]={1,...,w},

with width w > 1, for all j € [d] = {1,...,d}.

The data are compressed into a sketch matrix C € N9*v;

G =D _LIh(Z) =K, jeld] ke[w]

Therefore, the size of the sketchis L =d - w < n.



Frequency estimation with the CMS

A classical estimate of f,(z) for any object z € & is:

FCMS _
f (Z) — m[lcr)] {Cj,hj(z)} .

This gives a deterministic upper bound for f,(z)
[Cormode and Muthukrishnan, 2005]:

i (2) 2 fo(2) = zn: L[Zi = 2].
=1

The problem is that this estimate is not necessarily accurate: it is
possible that fu%MS(z) > f,(z) due random hash collisions.



Probabilistic lower bounds for the CMS

A pairwise independent family H of hash functions is defined as
follows. For any z; # z» and hy, hy ~ H,

Pulhi(z) = ha(22)] = -



Probabilistic lower bounds for the CMS

A pairwise independent family H of hash functions is defined as
follows. For any z; # z» and hy, hy ~ H,

Pulhi(z) = ha(22)] = -

Theorem ([{Cormode and Muthukrishnan, 2005

Suppose the hash functions are chosen at random from a pairwise
independent family H.

For any 6,¢ € (0,1), choosing d = [—logd| and w = [e/e], for
any fixed z € &,

Py[fa(z) > FSM5(2) —en] > 1 — 4.

E.g.,if 6 =0.05 and d = 3, a 95% lower bound for f,(z) is:
fap(2) = n - [e/w].

Note: the randomness comes from the hash functions!



Limitations of probabilistic lower bounds for the CMS

® Often too conservative to be useful [Ting, 2018].

® Not very flexible: 0 cannot be chosen by the practitioner
because it is fixed by d (since d = [—logd|), and € is
uniquely determined by the hash width (since w = [e/¢]).



Limitations of probabilistic lower bounds for the CMS

® Often too conservative to be useful [Ting, 2018].

® Not very flexible: 0 cannot be chosen by the practitioner
because it is fixed by d (since d = [—logd|), and € is
uniquely determined by the hash width (since w = [e/¢]).

One source of this difficulty is that we have not made any
assumptions on the data.

The goal of this work is to develop a more powerful data-driven
method to construct flexible “confidence intervals” for f,(z).



Related work

More recent works have developed uncertainty estimation methods
leveraging the randomness in the data.

Bayesian non-parametric approaches:
® [Cai et al., 2018], Dirichlet process on the data distribution.
® Follow-up works: [Dolera et al., 2021], [Favaro and S., 2022]

Frequentist approaches

® [Ting, 2018], resampling (bootstrap) method

Some limitations:
® Model based (or involving some heuristics)
® Specific to the CMS (a linear sketch)



Non-linear sketches

The CMS with conservative updates (CMS-CU) mitigates the
impact of hash collisions but is not linear.

For each data point Z; and each j € [d], update only Cj«(j «:

Gt = G+ 1 [hpy(2) = K], (i) = arg min Gz,
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Non-linear sketches

The CMS with conservative updates (CMS-CU) mitigates the
impact of hash collisions but is not linear.

For each data point Z; and each j € [d], update only Cj«(j «:

CU CU o r .
Gk < Gy T Lhp(Z0) = k], J7(7) = LA Clohi(Z)):
Then, return as usual:

rCMS—-CU o CU
fuP (Z) o JI’Q[IC?] {Cij?hj(z)} '

This guarantees:
° 155 (2) = fo(2)

o FOMS-CU(z) < FVS(2)



Desiderata

We would like to construct “confidence intervals” for f,(z) that:
1. do not require knowing the distribution of the data
2. are not limited to the specific linear structure of the CMS
3. are provably valid in finite samples
4

. avoid being too conservative by adapting to the observed data



Desiderata

We would like to construct “confidence intervals” for f,(z) that:
1. do not require knowing the distribution of the data
2. are not limited to the specific linear structure of the CMS
3. are provably valid in finite samples
4

. avoid being too conservative by adapting to the observed data

Key assumption:

Zl7Z27"°7ZnNPZ
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Exchangeable random variables

We say that £y, 45, ..., Z, are exchangeable if and only if,
for any permutation o of {1,..., n},

p(217 227 IR Zn) — P(Zo-(l), ZO‘(2)7 U Za(n))'

For example, /1, Z5, ..., Z, are exchangeable if they are i.i.d.



Conformal prediction without covariates

Suppose we have
Z xch P, ZeR

and we want to use the first n data points to construct a one-sided
prediction interval C, = (—o0, Uj_,] such that

P [Zn—|—1 < 01—04} >1-—a.
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Conformal prediction without covariates

Suppose we have
Z xch P, ZeR

and we want to use the first n data points to construct a one-sided
prediction interval C, = (—o0, Uj_,] such that

P [Zn—|—1 < 01—@} >1-—a.
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Finite-sample inflation of empirical quantiles

Empirical CDF and quantile function:

3 1 ¢ A
Fa(z) = - 1[Z: <], Qn(@) = Z(1an)
=1

Vovk et al., 2005, Romano et al., 2019

Suppose /i, ...,Z,1 1 are exchangeable random variables.
For any o € {0, 1}, define a, = (14 %) . Then,

P|Zy11 < Qulen)| < o

Moreover, if {Z1,...,Zy11} are a.s. distinct,

P |Zs < Qulow)| <o+ ——



One-sided conformal prediction without covariates

Suppose /1, ..., 211 are exchangeable random variables.
For any o € {0, 1}, define C, as

Co = (—o0, Qnlan)].

Then,

A 1
n



Conformal prediction with covariates

Suppose we have
(X, YL Py y,  XERP,Y R
We would like to predict Y,y1 given (X, Y;)i_
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Conformal prediction with covariates

Suppose we have

(X, YL Py, XERPYER
We would like to predict Y,i1 given (X;, Y;)"_; and X411

Data (1000 observations)

2.0

_2.0 1 1 1 1 I I
0.0 0.2 0.4 0.6 0.8 1.0



Machine-learning prediction

Lots of machine-learning algorithms. But how confident are we?

Data and random forest regression function
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Machine-learning prediction
Lots of machine-learning algorithms. But how confident are we?

Test data and split-conformal prediction bands (alpha: 0.10)
Coverage: 0.881, Width: 0.937, Width|Cover: 0.937
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Conformal prediction

Key ideas:
1. Use ML to project project the problem into 1 dimension.
2. Apply the empirical quantile lemmas presented earlier.

3. Some kind of data hold-out is needed to ensure
exchangeability with the test data.

This is a general recipe, many different variations are possible.



Split-conformal prediction [Vovk et al., 2005]

1: Input: Data {(Xj, Y;)}"_;, test point X411, o € (0,1)
2: black-box model B, level o € (0,1)
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Split-conformal prediction [Vovk et al., 2005]

1: Input: Data {(Xj, Y;)}"_;, test point X411, o € (0,1)

2: black-box model B, level o € (0,1)

3: Split the data: Z; ={1,...,n/2},Zo ={n/2+1,..., n}

4: Train B on Zy : B({(Xi, Yi)}iez,) = f

5: Evaluate residuals on 7, : Z; = |Y; — f(Xj)|, for all i € I

6: Compute Qn(ZIzaﬁn) = Z(fnﬁﬂ)’ where (5, = (1 — Oz)(]. + 1/n)
7: Qutput:

éa(Xn-l-l) — [i:\(Xn-l-l) o QH(ZIW ﬁn)7 f(XI‘H-l) T @n(2127 Bn)]

Why does this work?

Yn—|—1 S éoz(Xn—l—l) <~ Zn—l—l S @n(ZIgyﬁn)-
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Problem setup

Key assumption:

Z1s o Zn Zon O Py
Sketch Zi,..., Zn — ¢n = &(Z1, ..., Zn).

Then, estimate f,(Z,11) using ¢,, where

fa(z)=> 1[Zi=2], VzeZ.
=1



Problem setup

Key assumption:
217 SRR Zn7 Zn+1 e>’('gh. PZ
Sketch /1,...,Z, — ¢ = qb(Zl, Ce e Zn).

Then, estimate f,(Z,11) using ¢,, where
fa(z)=> 1[Zi=2], VzeZ.
i=1

Construct a (tight) prediction interval

[[n,a(Zn—H; §bn)7 Un,a(Zn+1; Cbn)]

with guaranteed marginal coverage:

P {[n,a(Zn—kl; an) < fn(Zn—|—1) < On,a(Zn—H; an)} >1-—a.

for any fixed o € (0,1),



Step 1: warm-up

During an initial warm-up phase, the frequencies of the ng distinct
objects among the first m < n observations from the data stream,
Z1,...,2Zp,, are stored exactly into fn,

fm(2) = ) 1[Z; = z]. (1)
1=0

Storage requirement: O(ng) < O(m) < O(n).



Step 2: sketching

The remaining m — m data points are streamed and sketched,
storing also the true frequencies for all instances of objects already
seen during the warm-up phase.

Sketch:
AN Zms1, - Zn)

The following counters are also computed and stored:

fSV . Z?:m—|—1 1 [Zl — Z] 9 if f’;?qvu(z) > 07
nem(Z) = |
0, otherwise.

Again, the memory cost is < O(n).



Step 3: conformalization

Forall i€ {1,...,m} U{n+ 1}, define

n

Yi= ) 1[Zy=2Z],

i'=m+1
the true frequency of Z; among Zn11,...,2Z,.
Note that Y; is observable for i € {1,..., m}, in which case
Yi =12 (Zi)

For a new query Z,.1, the target of inference is

fn(Zn+1) — Yn+1 - fn‘yu(Zn‘F]—)?

but the second term is known. So, we just need to predict Y.



Step 3: conformalization (continued)

Next, we need to define meaningful features X.
For each i € {1,..., m} U{n+ 1}, define

Xi = (Zi, &(Zimsrs - - -+ Zn) .



Step 3: conformalization (continued)

Next, we need to define meaningful features X.
For each i € {1,..., m} U{n+ 1}, define

Xi = (Zi, (Zms, - - Zn)).

Proposition (S. and Favaro, 2022)

If the data £, ...,Z,11 are exchangeable, the pairs of random
variables (X1, Y1), - .-, (Xm, Ym), (Xnt1, Ynr1) are exchangeable.

Therefore, we can apply conformal prediction to estimate Y,.11.



Conformity scores

Take a nested sequence of intervals indexed by t € T C R,
(Lo (X; 1), Una(x; t)].

Suppose dty, € T s.t. [m,a(x; to) <Y < Um,a(x; tso) a.s. Vx.
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Conformity scores

Take a nested sequence of intervals indexed by t € T C R,
(Lo (x; t), Uma(x; t)].

Suppose dty, € T s.t. [m,a(x; to) <Y < Um,a(x; tso) a.s. Vx.

For each i € {1,..., m}, compute E(X;, Y;), where

E(x,y)=inf{teT:Y¢ (Lo (X; 1), Un.a(x; t)] }.

The conformal prediction interval given X1 is then:
C/\.1—04()<n—|—1) — [[m,a(Xn—H; C:?m,l—oz)a Om,a(Xn+1; @m,l—oz)]a
where Qm.1_q is the (inflated) empirical quantile of E(X;, Y;).

Note that Y1 ¢ Ci_o(Xnp1) <= E(Xnt1, Yor1) > Qmi-a.



Fixed one-sided conformity scores

In our sketching problem with CMS (or CMS-CU), we already have
a deterministic upper bound, fr_m up(Znt1)-

To construct a monotone sequence of lower bounds L, o(-; t), a
simple option is to shift the upper bound by a constant:

zl:in}f?xd((za ¢)1 t) — maX{Ov fn—m,up(Zn—kl) - t}'
This gives the following conformity scores:

E,‘ — inf {t cT: \/, S [Fn—m,up(Zi) — t, ﬁ;—m,up(Zi)]}
— ﬁv—m,up(Zi) — YI



Adaptive one-sided conformity scores

Fit an ML model to estimate the conditional distribution of

ﬁv—m,up(Zi) — Y/ | i:\n—m,up(zi)a

using a subset of m"#™ < m supervised data points (X;, Y;).

E.g., multiple quantile neural network [Taylor, 2000] or a quantile
random forest [Meinshausen, 2006].

Let §; be the estimated a;-th lower conditional quantile, for all
t € {1,..., T} and some fixed sequence 0 = a1 < ... < a7 =1.

Without loss of generality, let go = 0 and g1 = m.
Then, for t € {0,1,..., m}, define

Ladaptlve((zj }); t) = max {0 f_ mup(Xnt1) — ( n— mup(Xn—I-l))}

This approach can lead to a lower bound whose distance from the
upper bound depends on X1 1.
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Performance with Zipf data
Observations: n = 100,000 i.i.d. from Zipf(a), with a > 1.

Z—a

¢(a)

P[Z; = z] = , forall ze {1,2...,}.

Sketch: CMS-CU.
Hash functions: d = 3 with width w = 1000.

Warm-up observations: m = 5, 000.



Performance with Zipf data
Observations: n = 100,000 i.i.d. from Zipf(a), with a > 1.

Z—a

¢(a)

P[Z; = z] = , forallze {1,2...,}.

Sketch: CMS-CU.
Hash functions: d = 3 with width w = 1000.

Warm-up observations: m = 5, 000.

Coverage Length
1.01 ee—e—e—a—o——0—2 Method
1000 W—e —e— Classical
0.7 1 100 A A\, Bayesian
' Bootstrap
0.51 10 - _
— Conformal (fixed)
11 : —— # Conformal (adaptive)

100 125 150 175 1.00 125 150 1.75
Parameter a

Performance of 95% confidence intervals with simulated Zipf data
sketched with CMS-CU. The results are shown as a function of the Zipf
tail parameter a.



Comparison of different sketches

Classical Bayesian Bootstrap Conformal (fixed) Conformal (adaptive)

1.0' ________________________________________ = e = = =] = === = = =]
0
0.7 1 Q
o
Q
0.5+ Q

10004 ="
o
100 3
101 5
1 -

Q o) Q D O o) Q D O <5 Q O O ) Q O O ) Q \2)
Parameter a

Sketch — CMS-CU ---- CMS
Performance of 95% confidence intervals for random queries, based on
synthetic data from a Zipf distribution. The data are sketched with either

the vanilla CMS or the CMS-CU. The results are shown as a function of
the Zipf tail parameter a.



Performance for queries with different frequency

Not all queries are the same.
Queries of rarer objects are more difficult.

Low frequencies High frequencies
101 _F—t——fr————9—0 _ || ¢ O —8o—0_—9o__—0 _
S
0.7 A 5 Method
0.54 % —-e— Classical
Bayesian
© © © Bootst
10004 o—o——© ootstrap
N, — >~ Conformal (fixed)
100 1 g
Q Conformal (adaptive)
101 =
1 i T T T T T T T T
N o ] O O So) ) \a)

Parameter a

Performance of 95% confidence intervals stratified by the true query
frequency. Left: frequency below median; right: above median.



Performance for queries with different frequency

Not all queries are the same.
Queries of rarer objects are more difficult.

Low frequencies High frequencies
101 8t —9—0 _ || 00O —o—0_—9o_—90 |
S
0.7 A 5 Method
0.54 % —-e— Classical
Bayesian
© © © Bootst
1000- o—— ootstrap
— >~ Conformal (fixed)
100 1 3
Q « Conformal (adaptive)
101 =
1 i T T T T T T T T
N o ] O O So) ) \a)
N NG N \/~\ N NG N \{\

Parameter a

Performance of 95% confidence intervals stratified by the true query
frequency. Left: frequency below median; right: above median.

It is possible to guarantee frequency-range conditional coverage:

P [f,,(z,,H) € CralZns1) | fa(Znsn) € B} >1—a, VB EB.



Performance with Pitman-Yor Process data

Observations: n = 100,000 i.i.d. from PYP(5000, o)
[Pitman and Yor, 1997], with o € [0,1). Note that 0 =0

corresponds to a Dirichlet process, matching the assumption of the
Bayesian benchmark.



Performance with Pitman-Yor Process data

Observations: n = 100,000 i.i.d. from PYP(5000, o)

[Pitman and Yor, 1997], with o € [0,1). Note that 0 =0
corresponds to a Dirichlet process, matching the assumption of the
Bayesian benchmark.

Coverage Length
P B D). Method
_____________ 50.0 - —e— Classical
. 47 5 =7 /" Bayesian
' = Bootstrap
45.04°
50 ' — Conformal (fixed)
0.5, : 1 42543 : , Conformal (adaptive)
0.0 0.5 1.0 0.0 0.5 1.0

Parameter o

Empirical coverage and length of 95% confidence intervals for random
queries on synthetic data from the predictive distribution of a Pitman-Yor
process. The data are sketched with the CMS-CU. The results are shown
as a function of the Pitman-Yor process parameter o.



Analysis of 2-grams in English literature

Data: 18 open-domain pieces of classic English literature
downloaded from the Gutenberg Corpus [Project Gutenberg, sent].

The goal is to count the frequencies of all 2-grams—consecutive
pairs of English words.

After some pre-proccessing, the number of 2-grams is =~ 1,700,000.
The total number of all possible 2-grams is ~ 650,000,000.
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Analysis of 2-grams in English literature

Data: 18 open-domain pieces of classic English literature
downloaded from the Gutenberg Corpus [Project Gutenberg, sent].

The goal is to count the frequencies of all 2-grams—consecutive
pairs of English words.

After some pre-proccessing, the number of 2-grams is =~ 1,700,000.
The total number of all possible 2-grams is ~ 650,000,000.

Sketch 1,000,000 2-grams, query 10,000 2-grams.
The data are processed in a random order — exchangeability.

Coverage Length Method
1.0 =gr=a——0—"9 300 4* —e— Classical
100 - Bayesian
0.7 1 30 -
Bootstrap
107 — Conformal (fixed)
05 - T T T T 3 - T T T T C f I d
g onformal (adaptive
S S S S (adaptive)
N O D N O D

Hash width
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Extensions (see papers)

Construction of conformal confidence intervals with:

® Frequency-range conditional coverage.
P | fo(Zn1) € CoalZoia) | fo(Zns1) € B] > 1-a, ¥BEB
® Coverage for unique queries.

exch.
Zla”'aZnaZn—l—la"'azn—l-/\/l ~ P27

Z" ~ Uniform [UNIQUE(Zp+41, -, Znam)] -
P [fn(Z*) c C‘,,,a(z*)} >1-a.

® Robustness to distribution shift among the queries.

exch.
li,.... 2L, ~ Pz,
/
Zn.'.]_NPZ.



Conclusion

Conformalized sketching provides distribution-free inferences
® for any sketching algorithm
® for any (exchangeable) data set

* with valid marginal coverage (possibly also stronger coverage)

The key idea of data splitting is quite general and powerful: apply
the statistical analysis (e.g., sketching) to some of the data, and
use the rest of the data to track the performance.



