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Definitions

A Graph and a Probability Distribution

Bayesian networks (BNs) are defined by:

� a network structure, a directed acyclic graph G = (V, A), in which
each node vi ∈ V corresponds to a random variable Xi;

� a global probability distribution X with parameters Θ, which can
be factorised into smaller local probability distributions according to
the arcs aij ∈ A present in the graph.

The main role of the network structure is to express the conditional
independence relationships among the variables in the model through
graphical separation, thus specifying the factorisation of the global
distribution:

P(X) =

N∏
i=1

P(Xi | ΠXi ; ΘXi) where ΠXi = {parents of Xi}
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Where to Look: Book References

(Best perused as ebooks, the Koller & Friedman is ≈ 21/2 inches thick.)

Marco Scutari University of Oxford



Definitions

How to Use: Software References

DISCLAIMER: I am the author of the bnlearn R package
and I will use it for the most part in this course.

install.packages("bnlearn")

For displaying graphs, I will use the Rgraphviz from
BioConductor:

source("http://bioconductor.org/biocLite.R")

biocLite(c("graph", "Rgraphviz"))

For exact inference on discrete Bayesian networks:

source("http://bioconductor.org/biocLite.R")

biocLite(c("graph", "Rgraphviz", "RBGL"))

install.packages("gRain")

Other packages from CRAN:

install.packages(c("pcalg", "catnet", "abn"))
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Graphs

The first component of a BN is a graph. A
graph G is a mathematical object with:

� a set of nodes V = {v1, . . . , vN};
� a set of arcs A which are identified by

pairs for nodes in V, e.g. aij = (vi, vj).

Given V, a graph is uniquely identified by A.
The arcs in A can be:

� undirected if (vi, vj) is an unordered pair
and the arc vi − vj has no direction;

� directed if (vi, vj) 6= (vj , vi) is an ordered
pair and the arc has a specific direction
vi → vj .

The assumption is that there is at most one
arc between a pair of nodes.
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Directed Acyclic Graphs

BNs use a specific kind of graph called a directed acyclic graph, that:

� contains only directed arcs;

� does not contain any loop (e.g. an arc vi → vi from a node to
itself);

� does not contain any cycle (e.g. a sequence of arcs
vi → vj → . . .→ vk → vi that starts and ends in the same node).
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How the DAG Maps to the Probability Distribution

C
A B

D
E

F

DAG
Graphical
separation

Probabilistic
independence

Formally, the DAG is an independence map of the probability
distribution of X, with graphical separation (⊥⊥G) implying probabilistic
independence (⊥⊥P ).
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Maps

Let M be the dependence structure of the probability distribution P of
X, that is, the set of conditional independence relationships linking any
triplet A, B, C of subsets of X. A graph G is a dependency map (or
D-map) of M if there is a one-to-one correspondence between the
random variables in X and the nodes V of G such that for all disjoint
subsets A, B, C of X we have

A ⊥⊥P B | C =⇒ A ⊥⊥G B | C.

Similarly, G is an independency map (or I-map) of M if

A ⊥⊥P B | C⇐= A ⊥⊥G B | C.

G is said to be a perfect map of M if it is both a D-map and an I-map,
that is

A ⊥⊥P B | C⇐⇒ A ⊥⊥G B | C,

and in this case G is said to be faithful or isomorphic to M .
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Graphical Separation in DAGs (Fundamental Connections)

separation (undirected graphs)

d-separation (directed acyclic graphs)
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C
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Graphical Separation in DAGs (General Case)

Now, in the general case we can extend the patterns from the
fundamental connections and apply them to every possible path between
A and B for a given C; this is how d-separation is defined.

If A, B and C are three disjoint subsets of nodes in a directed
acyclic graph G, then C is said to d-separate A from B,
denoted A ⊥⊥G B | C, if along every path between a node in
A and a node in B there is a node v satisfying one of the
following two conditions:

1. v has converging edges (i.e. there are two edges pointing
to v from the adjacent nodes in the path) and none of v
or its descendants (i.e. the nodes that can be reached
from v) are in C.

2. v is in C and does not have converging edges.

This definition clearly does not provide a computationally feasible
approach to assess d-separation; but there are other ways.
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A Simple Algorithm to Check D-Separation (I)

C
A B
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Say we want to check whether A and E are d-separated by B. First, we
can drop all the nodes that are not ancestors (i.e. parents, parents’
parents, etc.) of A, E and B since each node only depends on its
parents.
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A Simple Algorithm to Check D-Separation (II)

C
A B

E

C
A B

E

Transform the subgraph into its moral graph by

1. connecting all nodes that have one parent in common; and

2. removing all arc directions to obtain an undirected graph.

This transformation has the double effect of making the dependence
between parents explicit by “marrying” them and of allowing us to use
the classic definition of graphical separation.
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A Simple Algorithm to Check D-Separation (III)

C
A B

E

Finally, we can just perform e.g. a depth-first or breadth-first search and
see if we can find an open path between A and B, that is, a path that is
not blocked by C.
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The Local Markov Property (I)

If we use d-separation as our definition of graphical separation, assuming
that the DAG is an I-map leads to the general formulation of the
decomposition of the global distribution P(X):

P(X) =

N∏
i=1

P(Xi | ΠXi) (1)

into the local distributions for the Xi given their parents ΠXi . If Xi has
two or more parents it depends on their joint distribution, because each
pair of parents forms a convergent connection centred on Xi and we
cannot establish their independence. This decomposition is preferable to
that obtained from the chain rule,

P(X) =

N∏
i=1

P(Xi | Xi+1, . . . , XN ) (2)

because the conditioning sets are typically smaller.
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The Local Markov Property (II)

Another result along the same lines is called the local Markov property,
which can be combined with the chain rule above to get the
decomposition into local distributions.

Each node Xi is conditionally independent of its
non-descendants (e.g., nodes Xj for which there is no path
from Xi to Xj) given its parents.

Compared to the previous decomposition, it highlights the fact that
parents are not completely independent from their children in the BN; a
trivial application of Bayes’ theorem to invert the direction of the
conditioning shows how information on a child can change the
distribution of the parent.
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Completely D-Separating: Markov Blankets

Parents Children

Children's other parents
(Spouses)

Markov blanket of A

A

FI

H E

D

C

B

G

We can easily use the DAG to solve
the feature selection problem. The
set of nodes that graphically
isolates a target node from the rest
of the DAG is called its Markov
blanket and includes:

� its parents;

� its children;

� other nodes sharing a child.

Since ⊥⊥G implies ⊥⊥P , we can
restrict ourselves to the Markov
blanket to perform any kind of
inference on the target node, and
disregard the rest.
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Different DAGs, Same Distribution: Topological Ordering

A DAG uniquely identifies a factorisation of P(X); the converse is not
necessarily true. Consider again the DAG on the left:

P(X) = P(A) P(B) P(C | A,B) P(D | C) P(E | C) P(F | D).

We can rearrange the dependencies using Bayes theorem to obtain:

P(X) = P(A | B,C) P(B | C) P(C | D) P(D | F ) P(E | C) P(F ),

which gives the DAG on the right, with a different topological ordering.
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Different DAGs, Same Distribution: Equivalence Classes

On a smaller scale, even keeping the same underlying undirected graph
we can reverse a number of arcs without changing the dependence
structure of X. Since the triplets A→ B → C and A← B → C are
probabilistically equivalent, we can reverse the directions of their arcs as
we like as long as we do not create any new v-structure (A→ B ← C,
with no arc between A and C).

This means that we can group DAGs into equivalence classes that are
uniquely identified by the underlying undirected graph and the
v-structures. The directions of other arcs can be either:

� uniquely identifiable because one of the directions would introduce
cycles or new v-structures in the graph (compelled arcs);

� completely undetermined.

The result is a completed partially directed graph (CPDAG).
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What Are V-Structures, and What Are Not

It is important to note that even though A→ B ← C is a convergent
connection, it is not a v-structure if A and C are connected by A→ C.
As a result, we are no longer able to identify which nodes are the
parents in the connection. For example:

P(A) P(C | A) P(B | A,C)︸ ︷︷ ︸
A→B←C,A→C

= P(A)
P(C,A)

P(A)

P(B,A,C)

P(A,C)
=

= P(A) P(B,C | A) = P(A) P(C | B,A) P(B | A)︸ ︷︷ ︸
B→C←A,A→B

. (3)

Therefore, the fact that the two parents in a convergent connection are
not connected by an arc is crucial in the identification of the correct
CPDAG.
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Completed Partially Directed Acyclic Graphs (CPDAGs)
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An Example: Train Use Survey

Consider a simple, hypothetical survey whose aim is to investigate the usage
patterns of different means of transport, with a focus on cars and trains.

� Age (A): young for individuals below 30 years old, adult for individuals
between 30 and 60 years old, and old for people older than 60.

� Sex (S): male or female.

� Education (E): up to high school or university degree.

� Occupation (O): employee or self-employed.

� Residence (R): the size of the city the individual lives in, recorded as
either small or big.

� Travel (T): the means of transport favoured by the individual, recorded
either as car, train or other.

The nature of the variables recorded in the survey suggests how they may be
related with each other.
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The Train Use Survey as a BN (v1)

A

E

O R

S

T

That is a prognostic view of the survey as a BN:

1. the blocks in the experimental design on top
(e.g. stuff from the registry office);

2. the variables of interest in the middle (e.g.
socio-economic indicators);

3. the object of the survey at the bottom (e.g.
means of transport).

Variables that can be thought as “causes” are on
above variables that can be considered their “ef-
fect”, and confounders are on above everything
else.
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The Train Use Survey as a BN (v2)

A

E

O

R

S

T That is a diagnostic view of the survey as a BN: it
encodes the same dependence relationships as the
prognostic view but is laid out to have “effects”
on top and “causes” at the bottom.

Depending on the phenomenon and the goals of
the survey, one may have a graph that makes more
sense than the other; but they are equivalent for
any subsequent inference. For discrete BNs, one
representation may have fewer parameters than
the other.
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bnlearn: Creating Graphs (I)

� Setting individual arcs.

survey.dag = empty.graph(nodes = c("A", "S", "E", "O", "R", "T"))

survey.dag = set.arc(survey.dag, from = "A", to = "E")

survey.dag = set.arc(survey.dag, from = "S", to = "E")

survey.dag = set.arc(survey.dag, from = "E", to = "O")

survey.dag = set.arc(survey.dag, from = "E", to = "R")

survey.dag = set.arc(survey.dag, from = "O", to = "T")

survey.dag = set.arc(survey.dag, from = "R", to = "T")

� Setting the whole arc set at once.

arc.set = matrix(c("A", "E",

"S", "E",

"E", "O",

"E", "R",

"O", "T",

"R", "T"),

byrow = TRUE, ncol = 2,

dimnames = list(NULL, c("from", "to")))

arcs(survey.dag) = arc.set
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bnlearn: Creating Graphs (II)

� Using the adjacency matrix representation of the arc set.

amat(survey.dag) =

matrix(c(0L, 0L, 1L, 0L, 0L, 0L,

0L, 0L, 1L, 0L, 0L, 0L,

0L, 0L, 0L, 1L, 1L, 0L,

0L, 0L, 0L, 0L, 0L, 1L,

0L, 0L, 0L, 0L, 0L, 1L,

0L, 0L, 0L, 0L, 0L, 0L),

byrow = TRUE, nrow = 6, ncol = 6,

dimnames = list(nodes(survey.dag), nodes(survey.dag)))

� Using the formula representation for the Bayesian network.

survey.dag = model2network("[A][S][E|A:S][O|E][R|E][T|O:R]")

Acyclicity is enforced by all there functions by default, e.g.

set.arc(survey.dag, from = "T", to = "E")

## Error in arc.operations(x = x, from = from, to = to, op = "set",

check.cycles = check.cycles, : the resulting graph contains cycles.
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bnlearn: BN graph objects

survey.dag

##

## Random/Generated Bayesian network

##

## model:

## [A][S][E|A:S][O|E][R|E][T|O:R]

## nodes: 6

## arcs: 6

## undirected arcs: 0

## directed arcs: 6

## average markov blanket size: 2.67

## average neighbourhood size: 2.00

## average branching factor: 1.00

##

## generation algorithm: Empty

This is what the graph structure of BN looks like when printed: note
the model formula, which is the same as that you would pass to
model2network(). Additional information will be printed as well if the
graph is learned from data.

Marco Scutari University of Oxford



Definitions

bnlearn: Manipulating Graphs

� Adding, removing and reversing arcs.

survey.dag = set.arc(survey.dag, from = "A", to = "O")

survey.dag = drop.arc(survey.dag, from = "E", to = "O")

survey.dag = reverse.arc(survey.dag, from = "R", to = "E")

� Finding the skeleton (the underlying undirected graph).

skeleton(survey.dag)

� Finding the moral graph.

moral(survey.dag)

� Extracting a subgraph.

subgraph(survey.dag)

Plus many others...
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bnlearn: Investigating Graphs (I)

� Sets of nodes close to a target node (here E).

mb(survey.dag, "E")

## [1] "A" "O" "R" "S"

nbr(survey.dag, "E")

## [1] "A" "O" "R" "S"

parents(survey.dag, "E")

## [1] "A" "S"

children(survey.dag, "E")

## [1] "O" "R"

� Roots (no parents) and leaves (no children).

root.nodes(survey.dag)

## [1] "A" "S"

leaf.nodes(survey.dag)

## [1] "T"
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bnlearn: Investigating Graphs (II)

� Directed and undirected arcs.

directed.arcs(survey.dag)

## from to

## [1,] "A" "E"

## [2,] "S" "E"

## [3,] "E" "O"

## [4,] "E" "R"

## [5,] "O" "T"

## [6,] "R" "T"

undirected.arcs(survey.dag)

## from to

� Different graph representations.

arcs(survey.dag)

amat(survey.dag)

� Looking for paths.

path(survey.dag, from = "A", to = "T")

## [1] TRUE
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bnlearn: D-Separation and Markov Blankets

The dsep() and mb() functions can be used to show how d-separation
and Markov blankets interact in practice. Firstly, node that a node is
never part of its own Markov blanket.

mbE = mb(survey.dag, "E")

"E" %in% mbE

## [1] FALSE

Secondly, note that the Markov blanket is minimal and that it makes all
other nodes independent of the target node.

for (node in mbE)

print(dsep(survey.dag, "E", node, setdiff(mbE, c("E", node))))

## [1] FALSE

## [1] FALSE

## [1] FALSE

## [1] FALSE

for (node in setdiff(nodes(survey.dag), c("E", mbE)))

print(dsep(survey.dag, "E", node, mbE))

## [1] TRUE

Marco Scutari University of Oxford



Definitions

bnlearn: Moral Graphs and CPDAGs

There are functions to compute them:

moral(survey.dag) cpdag(survey.dag)

And if we go back to the survey example, we find that all arcs are compelled
and that the CPDAG is identical to the original DAG.

all.equal(cpdag(survey.dag), survey.dag)

## [1] TRUE

compelled.arcs(survey.dag)

## from to

## [1,] "A" "E"

## [2,] "E" "O"

## [3,] "E" "R"

## [4,] "O" "T"

## [5,] "R" "T"

## [6,] "S" "E"

And we can observe that:

all.equal(compelled.arcs(survey.dag), directed.arcs(cpdag(survey.dag)))

## [1] TRUE
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bnlearn: Plotting Graphs

bnlearn uses the functionality implemented in the Rgraphviz package
to plot graphs, through the graphviz.plot function.

hlight = list(nodes = c("E", "O"),

arcs = c("E", "O"),

col = "grey",

textCol = "grey")

pp = graphviz.plot(survey.dag,

highlight = hlight)

A

E

O R

S

T

edgeRenderInfo(pp) =

list(col = c("S~E" = "black",

"E~R" = "black"),

lwd = c("S~E" = 3, "E~R" = 3))

nodeRenderInfo(pp) =

list(col =

c("S" = "black", "E" = "black",

"R" = "black"),

textCol =

c("S" = "black", "E" = "black",

"R" = "black"),

fill = c("E" = "grey"))

renderGraph(pp)

A

E

O R

S

T
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Different Layouts Available in Rgraphviz

layout = "dot"

A S

E

O R

T

layout = "fdp"

A

S

E

O

R

T

layout = "circo"

A

S

E

OR

T

NOTE: unlike igraph we cannot rearrange the layout of the nodes,
which makes plotting graphs with the same node positions but different
arcs very difficult.
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Another Example, from the C&H Book (I)

DAG

X1

X10

X2 X3

X4

X5

X6

X7

X8X9

Skeleton

X1

X10

X2 X3

X4

X5

X6

X7

X8X9

CPDAG

X1

X10

X2 X3

X4

X5

X6

X7

X8X9

An Equivalent DAG

X1

X10

X2 X3

X4

X5

X6

X7

X8X9
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Another Example, from the C&H Book (II)

X1

X10

X2 X3

X4

X5

X6

X7

X8X9

X1

X10

X2 X3

X4

X5

X6

X7

X8X9
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Another Example, from the C&H Book (III)

We can verify again that the Markov blanket contains the children, the
parents and the spouses of the node it is centred on; and that it does
not contain that node.

M = paste("[X1][X3][X5][X6|X8][X2|X1][X7|X5][X4|X1:X2]",

"[X8|X3:X7][X9|X2:X7][X10|X1:X9]", sep = "")

dag = model2network(M)

mb(dag, node = "X9")

## [1] "X1" "X10" "X2" "X7"

par.X9 = parents(dag, node = "X9")

ch.X9 = children(dag, node = "X9")

sp.X9 = sapply(ch.X9, parents, x = dag)

sp.X9 = sp.X9[sp.X9 != "X9"]

unique(c(par.X9, ch.X9, sp.X9))

## [1] "X2" "X7" "X10" "X1"
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Another Example, from the C&H Book (IV)

We can also check that Markov blankets are symmetric: if A is in the
Markov blanket of B, then B is in the Markov blanket of A.

sapply(nodes(dag), function(node) node %in% mb(dag, node = "X9"))

## X1 X10 X2 X3 X4 X5 X6 X7 X8 X9

## TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

sapply(nodes(dag), function(node) "X9" %in% mb(dag, node = node))

## X1 X10 X2 X3 X4 X5 X6 X7 X8 X9

## TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

This is a consequence of the fact that if A is a parent of B, then B is a
child of A; and if A is a spouse of B, then B is a spouse of A.
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What About the Probability Distributions?

The second component of a BN is the probability distribution P(X).
The choice should such that the BN:

� can be learned efficiently from data;

� is flexible (distributional assumptions should not be too strict);

� is easy to query to perform inference.

The three most common choices in the literature (by far), are:

� discrete BNs (DBNs), in which X and the Xi | ΠXi are
multinomial;

� Gaussian BNs (GBNs), in which X is multivariate normal and the
Xi | ΠXi are univariate normal;

� conditional linear Gaussian BNs (CLGBNs), in which X is a
mixture of multivariate normals and the Xi | ΠXi are either
multinomial, univariate normal or mixtures of normals.

It has been proved in the literature that exact inference is possible in
these three cases, hence their popularity.
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Discrete BNs

visit to Asia? smoking?

tuberculosis? lung cancer? bronchitis?

either tuberculosis
or lung cancer?

positive X-ray?
dyspnoea?

A classic example of DBN is
the ASIA network from
Lauritzen & Spiegelhalter
(1988), which includes a
collection of binary variables.
It describes a simple
diagnostic problem for
tuberculosis and lung cancer.

Total parameters of X :
28 − 1 = 255
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Conditional Probability Tables (CPTs)

visit to Asia?

tuberculosis?

smoking?

lung cancer?

smoking?

bronchitis?

tuberculosis? lung cancer?

either tuberculosis
or lung cancer?

either tuberculosis
or lung cancer?

positive X-ray?

bronchitis?either tuberculosis
or lung cancer?

dyspnoea?

visit to Asia? smoking?

The local distributions
Xi | ΠXi take the form
of conditional
probability tables for
each node given all the
configurations of the
values of its parents.

Overall parameters of
the Xi | ΠXi : 18
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bnlearn: Creating a Discrete BN (ASIA)

asia.dag = model2network("[A][S][T|A][L|S][B|S][D|B:E][E|T:L][X|E]")

lv = c("yes", "no")

A.prob = array(c(0.01, 0.99), dim = 2, dimnames = list(A = lv))

S.prob = array(c(0.01, 0.99), dim = 2, dimnames = list(A = lv))

T.prob = array(c(0.05, 0.95, 0.01, 0.99), dim = c(2, 2),

dimnames = list(T = lv, A = lv))

L.prob = array(c(0.1, 0.9, 0.01, 0.99), dim = c(2, 2),

dimnames = list(L = lv, S = lv))

B.prob = array(c(0.6, 0.4, 0.3, 0.7), dim = c(2, 2),

dimnames = list(B = lv, S = lv))

D.prob = array(c(0.9, 0.1, 0.7, 0.3, 0.8, 0.2, 0.1, 0.9), dim = c(2, 2, 2),

dimnames = list(D = lv, B = lv, E = lv))

E.prob = array(c(1, 0, 1, 0, 1, 0, 0, 1), dim = c(2, 2, 2),

dimnames = list(E = lv, T = lv, L = lv))

X.prob = array(c(0.98, 0.02, 0.05, 0.95), dim = c(2, 2),

dimnames = list(X = lv, E = lv))

cpt = list(A = A.prob, S = S.prob, T = T.prob, L = L.prob, B = B.prob,

D = D.prob, E = E.prob, X = X.prob)

bn = custom.fit(asia.dag, cpt)
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bnlearn: Conditional Probability Tables (I)

bn$D

##

## Parameters of node D (multinomial distribution)

##

## Conditional probability table:

##

## , , E = yes

##

## B

## D yes no

## yes 0.9 0.7

## no 0.1 0.3

##

## , , E = no

##

## B

## D yes no

## yes 0.8 0.1

## no 0.2 0.9
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Definitions

bnlearn: Creating a Discrete BN (Survey)

A.lv = c("young", "adult", "old")

S.lv = c("M", "F")

E.lv = c("high", "uni")

O.lv = c("emp", "self")

R.lv = c("small", "big")

T.lv = c("car", "train", "other")

A.prob = array(c(0.30, 0.50, 0.20), dim = 3, dimnames = list(A = A.lv))

S.prob = array(c(0.60, 0.40), dim = 2, dimnames = list(S = S.lv))

O.prob = array(c(0.96, 0.04, 0.92, 0.08), dim = c(2, 2),

dimnames = list(O = O.lv, E = E.lv))

R.prob = array(c(0.25, 0.75, 0.20, 0.80), dim = c(2, 2),

dimnames = list(R = R.lv, E = E.lv))

E.prob = array(c(0.75, 0.25, 0.72, 0.28, 0.88, 0.12, 0.64,

0.36, 0.70, 0.30, 0.90, 0.10), dim = c(2, 3, 2),

dimnames = list(E = E.lv, A = A.lv, S = S.lv))

T.prob = array(c(0.48, 0.42, 0.10, 0.56, 0.36, 0.08, 0.58,

0.24, 0.18, 0.70, 0.21, 0.09), dim = c(3, 2, 2),

dimnames = list(T = T.lv, O = O.lv, R = R.lv))

cpt = list(A = A.prob, S = S.prob, E = E.prob, O = O.prob,

R = R.prob, T = T.prob)

bn = custom.fit(survey.dag, cpt)

Marco Scutari University of Oxford



Definitions

bnlearn: Conditional Probability Tables (II)

bn$T

##

## Parameters of node T (multinomial distribution)

##

## Conditional probability table:

##

## , , R = small

##

## O

## T emp self

## car 0.48 0.56

## train 0.42 0.36

## other 0.10 0.08

##

## , , R = big

##

## O

## T emp self

## car 0.58 0.70

## train 0.24 0.21

## other 0.18 0.09
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Definitions

Gaussian BNs

mechanics analysis

vectors statistics

algebra

A classic example of GBN is
the MARKS networks from
Mardia, Kent & Bibby
(1979), which describes the
relationships between the
marks on 5 math-related
topics.

Assuming X ∼ N(µ,Σ), we can compute Ω = Σ−1. Then Ωij = 0
implies Xi ⊥⊥P Xj | X \ {X,Xj}. The absence of an arc Xi → Xj in
the DAG implies Xi ⊥⊥G Xj | X \ {X,Xj}, which in turn implies
Xi ⊥⊥P Xj | X \ {X,Xj}.

Total parameters of X : 5 + 15 = 20
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Definitions

Partial Correlations and Linear Regressions

The local distributions Xi | ΠXi take the form of linear regression
models with the ΠXi acting as regressors and with independent error
terms.

ALG = 50.60 + εALG ∼ N(0, 112.8)

ANL = −3.57 + 0.99ALG + εANL ∼ N(0, 110.25)

MECH = −12.36 + 0.54ALG + 0.46VECT + εMECH ∼ N(0, 195.2)

STAT = −11.19 + 0.76ALG + 0.31ANL + εSTAT ∼ N(0, 158.8)

VECT = 12.41 + 0.75ALG + εVECT ∼ N(0, 109.8)

(That is because Ωij ∝ βj for Xi, so βj > 0 if and only if Ωij > 0. Also
Ωij ∝ ρij , the partial correlation between Xi and Xj , so we are
implicitly assuming all probabilistic dependencies are linear.)

Overall parameters of the Xi | ΠXi : 11 + 5 = 16
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Definitions

bnlearn: Creating a Gaussian BN

marks.dag =

model2network("[ALG][ANL|ALG][MECH|ALG:VECT][STAT|ALG:ANL][VECT|ALG]")

ALG.dist = list(coef = c("(Intercept)" = 50.60), sd = 10.62)

ANL.dist = list(coef = c("(Intercept)" = -3.57, ALG = 0.99), sd = 10.5)

MECH.dist =

list(coef = c("(Intercept)" = -12.36, ALG = 0.54, VECT = 0.46), sd = 13.97)

STAT.dist =

list(coef = c("(Intercept)" = -11.19, ALG = 0.76, ANL = 0.31), sd = 12.61)

VECT.dist = list(coef = c("(Intercept)" = 12.41, ALG = 0.75), sd = 10.48)

ldist = list(ALG = ALG.dist, ANL = ANL.dist, MECH = MECH.dist,

STAT = STAT.dist, VECT = VECT.dist)

bn = custom.fit(marks.dag, ldist)

Note that we specify the regression coefficients and the standard
deviation of the residuals in keeping with the parameterisation used by R.

Marco Scutari University of Oxford



Definitions

bnlearn: Local Linear Regressions

bn[c("MECH", "STAT")]

## $MECH

##

## Parameters of node MECH (Gaussian distribution)

##

## Conditional density: MECH | ALG + VECT

## Coefficients:

## (Intercept) ALG VECT

## -12.36 0.54 0.46

## Standard deviation of the residuals: 14

##

## $STAT

##

## Parameters of node STAT (Gaussian distribution)

##

## Conditional density: STAT | ALG + ANL

## Coefficients:

## (Intercept) ALG ANL

## -11.19 0.76 0.31

## Standard deviation of the residuals: 12.6
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Definitions

Conditional Linear Gaussian BNs

CLGBNs contain both discrete and continuous nodes, and combine
DBNs and GBNs as follows to obtain a mixture-of-Gaussians network:

� continuous nodes cannot be parents of discrete nodes;

� the local distribution of each discrete node is a CPT;

� the local distribution of each continuous node is a set of linear
regression models, one for each configurations of the discrete
parents, with the continuous parents acting as regressors.

sexdrug

weight loss
(week 1)

weight loss
(week 2)

One of the classic examples is
the RATS’ WEIGHTS network
from Edwards (1995), which
describes weight loss in a drug
trial performed on rats.
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Definitions

Mixtures of Linear Regressions

The resulting local distribution for the first weight loss for drugs D1, D2

and D3 is:

W1,D1 = 7 + εD1 ∼ N(0, 2.5)

W1,D2 = 7.50 + εD2 ∼ N(0, 2)

W1,D3 = 14.75 + εD3 ∼ N(0, 11)

with just the intercepts since the node has no continuous parents. The
local distribution for the second loss is:

W2,D1 = 1.02 + 0.89βW1 + εD1 ∼ N(0, 3.2)

W2,D2 = −1.68 + 1.35βW1 + εD2 ∼ N(0, 4)

W2,D3 = −1.83 + 0.82βW1 + εD3 ∼ N(0, 1.9)

Overall, they look like random effect models with random intercepts and
random slopes.
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Definitions

bnlearn: Creating a Conditional Linear Gaussian BN

rats.dag = model2network("[SEX][DRUG|SEX][WL1|DRUG][WL2|WL1:DRUG]")

SEX.lv = c("M", "F")

DRUG.lv = c("D1", "D2", "D3")

SEX.prob = array(c(0.5, 0.5), dim = 2, dimnames = list(SEX = SEX.lv))

DRUG.prob = array(c(0.3333, 0.3333, 0.3333, 0.3333, 0.3333, 0.3333),

dim = c(3, 2), dimnames = list(DRUG = DRUG.lv, SEX = SEX.lv))

WL1.coef = matrix(c(7, 7.50, 14.75), nrow = 1, ncol = 3,

dimnames = list("(Intercept)", NULL))

WL1.dist = list(coef = WL1.coef, sd = c(1.58, 0.447, 3.31))

WL2.coef = matrix(c(1.02, 0.89, -1.68, 1.35, -1.83, 0.82), nrow = 2, ncol = 3,

dimnames = list(c("(Intercept)", "WL1")))

WL2.dist = list(coef = WL2.coef, sd = c(1.78, 2, 1.37))

ldist = list(SEX = SEX.prob, DRUG = DRUG.prob, WL1 = WL1.dist, WL2 = WL2.dist)

bn = custom.fit(rats.dag, ldist)

The regression coefficients are stored in a matrix with one conditional
regression in each column, so that each column corresponds to one
configuration of the discrete parents and each row to one of the continuous
parents.
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Definitions

bnlearn: Mixtures of Linear Regressions

bn$WL2

##

## Parameters of node WL2 (conditional Gaussian distribution)

##

## Conditional density: WL2 | DRUG + WL1

## Coefficients:

## 0 1 2

## (Intercept) 1.02 -1.68 -1.83

## WL1 0.89 1.35 0.82

## Standard deviation of the residuals:

## 0 1 2

## 1.78 2.00 1.37

## Discrete parents' configurations:

## DRUG

## 0 D1

## 1 D2

## 2 D3
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Definitions

Limitations of These Probability Distributions

� No real-world, multivariate data set follows a multivariate Gaussian
distribution; even if the marginal distributions are normal, not all
dependence relationships are linear.

� Computing partial correlations is problematic in most large data sets (and in
a lot of small ones, too) because of singularities.

� Parametric assumptions for mixed data have strong limitations, as they
impose constraints on which arcs may be present in the graph (e.g. a
continuous node cannot be the parent of a discrete node).

� Discretisation is a common solution to the above problems, but it may
discard useful information and it is tricky to get right (i.e. choosing a set of
intervals such that the dependence relationships involving the original
variable are preserved). On the other hand, dependencies are no longer
required to be linear.

� Ordinal variables are treated as categorical, again losing information.
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Definitions

Equivalence and Singularity

Assuming the DAG is an I-map means that serial and divergent
connections result in equivalent factorisations of the variables involved.
It is easy to show that

P(Xi) P(Xj | Xi) P(Xk | Xj)︸ ︷︷ ︸
serial connection

= P(Xj , Xi) P(Xk | Xj) =

= P(Xi | Xj) P(Xj) P(Xk | Xj)︸ ︷︷ ︸
divergent connection

.

Then Xi → Xj → Xk and Xi ← Xj → Xk are equivalent. This is true,
however, only if the global distribution is positive everywhere because it
may not be possible to reverse the direction of the conditioning:

P(Xi | Xj) 6=
P(Xi, Xj)

P(Xj)
if P(Xj) = 0.
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Definitions

Summary

� Bayesian networks are a combination of a DAG and a global
distribution, both defined on the same variables.

� Bayesian networks provide a systematic decomposition of the global
distribution into lower-dimensional local distributions, in a
divide-and-conquer way.

� Bayesian network provide a principled solution to the problem of
feature selection using Markov blankets.

� Three distributional assumptions are common: discrete, Gaussian, and
conditional linear Gaussian.
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Fundamentals of Inference
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Fundamentals of Inference

Events, Evidence and Queries

Probabilistic reasoning on BNs works in the framework of Bayesian
statistics and focuses on the computation of posterior probabilities or
densities.
For example, suppose we have learned a BN B with DAG G and
parameters Θ. We want to use B to investigate the effects of a new
piece of evidence E using the knowledge encoded in B, that is, to
investigate the posterior distribution

P(X | E,B) = P(X | E, G,Θ).

Questions that can be asked are called queries and are typically an event
of interest. The two most common queries are conditional probability
(CPQ) and maximum a posteriori (MAP) queries, also known as most
probable explanation (MPE) queries.
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Fundamentals of Inference

Types of Evidence

� Hard evidence: an instantiation of one or more variables in the BN. In
other words,

E = {Xi1 = e1, Xi2 = e2, . . . , Xik = ek} ,

which ranges from the value of a single variable Xi to a complete
specification for X (such a new partial or complete observation).

� Soft evidence: a new distribution for one or more variables in the
network. Since both the network structure and the distributional
assumptions are treated as fixed, soft evidence is usually specified as a
new set of parameters,

E =
{
Xi1 ∼ (ΘXi1

), Xi2 ∼ (ΘXi2
), . . . , Xik ∼ (ΘXik

)
}
.

This new distribution may be, for instance, the null distribution in a
hypothesis testing problem.
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Fundamentals of Inference

The Effects of Conditioning on Hard Evidence

young 30%

adult 50%

old 20%

A

high 75%

uni 25%

E

emp 95%

self 5%

O

small 24%

big 76%

R

M60%

F 40%

S

car 56%

train 28%

other 16%

T

young 35%

adult 57%

old 9%

A

high 0%

uni 100%

E

emp 92%

self 8%

O

small 20%

big 80%

R

M56%

F 44%

S

car 57%

train 27%

other 16%

T

The original survey BN (left), and the posterior BN with hard evidence on
Education (right).
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Fundamentals of Inference

The Effects of Conditioning on Soft Evidence

young 30%

adult 50%

old 20%

A

high 75%

uni 25%

E

emp 95%

self 5%

O

small 24%

big 76%

R

M60%

F 40%

S

car 56%

train 28%

other 16%

T

young 30%

adult 50%

old 20%

A

high 75%

uni 25%

E

emp        65%

self 35%

O

small 24%

big 76%

R

M60%

F 40%

S

car 56%

train 28%

other 16%

T

The original survey BN (left), and the posterior BN with soft evidence on
Employment (right).
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Fundamentals of Inference

Conditional Probability Queries

Conditional probability queries are concerned with

CPQ(Q | E,B) = P(Q | E, G,Θ) = P(Xj1 , . . . , Xjl | E, G,Θ),

for some query variables Q given some hard evidence E on other
variables, that is, the marginal posterior probability distribution of Q,

P(Q | E, G,Θ) =

∫
P(X | E, G,Θ) d(X \Q).

This class of queries has many useful applications due to their versatility.

For instance, we can assess the odds of an unfavourable outcome Q can
for different sets of hard evidence E1, E2, . . . , Em of one or more
related variables.
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Fundamentals of Inference

Conditional Probability Queries in Pictures

young 35%

adult 57%

old 9%

A

high 0%
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self 8%
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train 27%

other 16%

T

THIS IS THE
EVIDENCE WE
CONDITION ON

THIS IS THE QUERY
NODE WE ARE
INTERESTED IN
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Fundamentals of Inference

Maximum a Posteriori Queries

Maximum a posteriori queries are concerned with finding the
configuration q∗ of Q that has the highest posterior probability (for
discrete BNs) or the maximum posterior density (for GBNs and
CLGBNs),

MAP(Q | E,B) = q∗ = argmax
q

P(Q = q | E, G,Θ). (4)

Two main applications:

� imputing missing data, where the variables in Q are not observed
and are imputed from those in E;

� comparing q∗ with the observed values for the variables in Q.

NOTE: q∗ is not the collection of the values with the highest posterior
in each posterior marginal distribution, those distributions are not
independent!
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Fundamentals of Inference

Maximum a Posteriori Queries in Pictures
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Fundamentals of Inference

How do We Update? Belief Propagation

The act of propagating the effects of evidence is called belief updating or
belief propagation: our belief on X as encoded by the BN B is updated
in the face of new evidence E. This task is computationally feasible
because we rely on local computations (only using local distributions):

P(Q | E, G,Θ) =

∫
P(X | E, G,Θ) d(X \Q)

=

∫ [ p∏
i=1

P(Xi | E,ΠXi ,ΘXi)

]
d(X \Q)

=
∏

i:Xi∈Q

∫
P(Xi | E,ΠXi ,ΘXi) dXi.

The correspondence between d-separation and conditional independence
can also be used to further reduce the dimension of the problem (e.g. to
the Markov blanket).
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Fundamentals of Inference

Exact and Approximate Inference

Algorithms for belief updating can be classified either as

� Exact: algorithms that combine repeated applications of Bayes
theorem with local computations to obtain the exact value of
P(Q | E, G,Θ). The two best known are

� variable elimination; and
� belief updates based on junction trees.

� Approximate: algorithms that use Monte Carlo simulations to
sample from the global distribution and thus estimate
P(Q | E, G,Θ). In computer science, these random samples are
often called particles, and the algorithms that make use of them are
known as particle filters. The two best known are

� logic sampling; and
� likelihood weighting.

Approximate algorithms tend to scale better to larger number of
variables since they are usually embarrassingly parallel; exact algorithms
tend to be more sequential and iterative in nature.
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Fundamentals of Inference

The Junction Tree Clustering Algorithm

1. Moralise: create the moral graph of the BN B.

2. Triangulate: break every cycle spanning 4 or more nodes into
sub-cycles of exactly 3 nodes by adding arcs to the moral graph, thus
obtaining a triangulated graph.

3. Cliques: identify the cliques C1, . . . , Ck of the triangulated graph,
i.e., maximal subsets of nodes in which each element is adjacent to all
the others.

4. Junction Tree: create a tree in which each clique is a node, and
adjacent cliques are linked by arcs. The tree must satisfy the running
intersection property: if a node belongs to two cliques Ci and Cj , it
must be also included in all the cliques in the (unique) path that
connects Ci and Cj .

5. Parameters: use the parameters of the local distributions of B to
compute the parameter sets of the compound nodes of the junction
tree.
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Fundamentals of Inference

bnlearn: Moral Graphs

survey.dag1 = model2network("[A][S][E|A:S][O|E][R|E][T|O:R]")

survey.dag2 = model2network("[A|E][S|A:E][E|O:R][O|R:T][R|T][T]")

par(mfrow = c(1, 2))

graphviz.plot(moral(survey.dag1))

graphviz.plot(moral(survey.dag2))

A

E

O

R

S

T

A

E

O

R

S

T
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Fundamentals of Inference

Moral Graphs, Diagnostic Models, Prognostic Models

So we can now see why probabilistic inference give the same results for
diagnostic and prognostic models: they express the same set of
dependencies, and therefore have the same moral graph, which means
exact inference by means of junction trees will return the same results
for conditional probability and maximum a posteriori queries. They are
probabilistically indistinguishable.

This does not mean that causal inference will be the same, since in that
case the direction of the arcs is crucial. The “target” (disease) node is
modelled as a child of the other nodes in of the other nodes in
prognostic models (risk factors lead to a disease), and as a parent in
diagnostic models (the disease causes the symptoms).
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Fundamentals of Inference

Finding the Cliques

A

E

O

R

S

T

The moral graph is already
triangulated, and we can
see three cliques:

C1 = {A,E, S}
C2 = {E,O,R}
C3 = {O,R, T}

with separators:

S12 = {E}
S23 = {O,R}

which we can use to build
the junction tree.
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Fundamentals of Inference

Building the Junction Tree

A

E

S
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R
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T
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R
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Fundamentals of Inference

Estimating the Parameters

In this example on the survey BN, the parameters for the cliques are:

ΘC1 = P(A,E, S) = P(A) P(S) P(E | A,S)

ΘC2 = P(E,O,R) = P(O | E) P(R | E) P(E)

ΘC3 = P(O,R, T ) = P(T | O,R) P(O),P(R)

and those for the separators are:

ΘS12 = P(E)

ΘS23 = P(O,R)

All can be readily computed from the local distributions in the BN.
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Fundamentals of Inference

Belief Propagation and Message Passing

O

R

T

O

R
E

E

O

R

A

E

S

Say we set Education to “high school”; we can change it directly in S12, but
then we need to propagate the changes to C1 and C2; and from C2 to S23 and
to C3. This procedure is called belief propagation by message passing.
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Fundamentals of Inference

gRain: Exact Inference with Junction Trees

Junction trees and belief propagation as implemented in the gRain
package. Suppose we would like to investigate the distribution of Sex
and Travel given the evidence that Education is “high school”.

First, we convert the BN from bnlearn to its equivalent in gRain with
as.grain() and we construct the junction tree with compile().

library(gRain)

junction = compile(as.grain(bn))

Then we set the evidence on the node, fixing it to “high school” with
probability 1 with setEvidence().

jedu = setEvidence(junction, nodes = "E", states = "high")

And after that, we can perform our conditional probability query with
querygrain(), which also takes care of the belief propagation.

SxT.cpt = querygrain(jedu, nodes = c("S", "T"),

type = "joint")
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Fundamentals of Inference

Joint and Marginal Conditional Probabilities

The result of our query is the joint distribution of Sex and Travel given
that Education is “high school”.

SxT.cpt

## T

## S car train other

## M 0.343 0.174 0.0962

## F 0.217 0.110 0.0609

Similarly, we can use querygrain() compute the marginal distributions
of Sex and Travel conditional on Education.

querygrain(jedu, nodes = c("S", "T"), type = "marginal")

## $S

## S

## M F

## 0.613 0.387

##

## $T

## T

## car train other

## 0.559 0.283 0.157
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Fundamentals of Inference

D-Separation and Conditional Independence

Interestingly, we can also compute the conditional distribution of Travel
given Sex (still conditioning on Education being “high school”), which
turns out to be:

querygrain(jedu, nodes = c("S", "T"), type = "conditional")

## S

## T M F

## car 0.613 0.387

## train 0.613 0.387

## other 0.613 0.387

This makes sense in the light of d-separation, which implies conditional
independence.

dsep(bn, x = "S", y = "T", z = "E")

## [1] TRUE
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Fundamentals of Inference

The Logic Sampling Algorithm

1. Order the variables in X according to the topological partial ordering
implied by G, say X(1) ≺ X(2) ≺ . . . ≺ X(N).

2. Set nE = 0 and nE,q = 0.

3. For a suitably large number of samples x = (x1, . . . , xN ):

3.1 generate x(i), i = 1, . . . , N from X(i) | ΠX(i)
taking advantage of the fact

that, thanks to the topological ordering, by the time we are considering
Xi we have already generated the values of all its parents ΠX(i)

;

3.2 if x includes E, set nE = nE + 1;

3.3 if x includes both Q = q and E, set nE,q = nE,q + 1.

4. Estimate P(Q | E, G,Θ) with nE,q/nE.
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Fundamentals of Inference

bnlearn: Stepping Through Logic Sampling (I)

First, we sample the particles from the BN with rbn(), which takes a
bn.fit object and the number of random samples to generate as
arguments.

particles = rbn(bn, 10^6)

head(particles, n = 5)

## A E O R S T

## 1 old high emp big M train

## 2 old high emp big M car

## 3 adult high emp big F car

## 4 old high emp big M other

## 5 young high emp big M car

The particles are have the correct types and format as derived from the
BN, and they are stored in a data frame that has the same structure as
that of the data that were used to learn the BN (if any).
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Fundamentals of Inference

bnlearn: Stepping Through Logic Sampling (II)

Then we count how many of those samples that match the evidence E
to estimate P(E).

partE = particles[(particles[, "E"] == "high"), ]

nE = nrow(partE)

We also count how many of those samples that match the evidence E
and the query Q = q to estimate P(Q = q,E).

partEq =

partE[(partE[, "S"] == "M") & (partE[, "T"] == "car"), ]

nEq = nrow(partEq)

Finally, we estimate

P(Q = q | E) =
P(Q = q,E)

P(E)
.

nEq/nE

## [1] 0.343
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Fundamentals of Inference

bnlearn: The cpquery() Function

These steps are implemented in cpquery(), with the obvious
arguments:

� event is Q;

� evidence is E;

� method is "ls" for logic sampling (the default);

� n is the number of particles.

cpquery(bn, event = (S == "M") & (T == "car"),

evidence = (E == "high"), method = "ls", n = 10^6)

## [1] 0.343

Both event end evidence are expressions that are evaluated on the
particles much like subset() would, so they must evaluate to a vector
of TRUE and FALSE values (hence & and not &&).
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bnlearn: More Advanced Queries with cpquery()

Specifying the arguments requires some care, but the result is an
extremely flexible framework to compute the probability of arbitrary
combinations of events.

As an example of a more complex query, we can compute

P(S = M, T = car | {A = young, E = uni} ∪ {A = adult}),

the probability of a man travelling by car given that his Age is young

and his Education is uni or that he is an adult, regardless of his
Education. That would be:

cpquery(bn, event = (S == "M") & (T == "car"),

evidence = ((A == "young") & (E == "uni")) | (A == "adult"))

## [1] 0.338
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bnlearn: Stepping Through Logic Sampling (III)

nparticles = seq(from = 5 * 10^3, to = 10^5, by = 5 * 10^3)

prob = matrix(0, nrow = length(nparticles), ncol = 20)

for (i in seq_along(nparticles))

for (j in 1:20)

prob[i, j] = cpquery(bn, event = (S == "M") & (T == "car"),

evidence = (E == "high"), method = "ls", n = 10^6)
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The Likelihood Weighting Algorithm

An improvement over logic sampling, designed to solve this problem, is
a form of importance sampling called likelihood weighting. Unlike logic
sampling, all the particles generated by likelihood weighting include the
evidence E by design.

1. Order the variables in X according to the topological ordering
implied by G, say X(1) ≺ X(2) ≺ . . . ≺ X(N).

2. Set wE = 0 and wE,q = 0.

3. For a suitably large number of samples x = (x1, . . . , xN ):

3.1 generate x(i), i = 1, . . . , N from X(i) | ΠX(i)
using the values

e1, . . . , ek specified by the hard evidence E for Xi1 , . . . , Xik .
3.2 compute the weight wx =

∏
P(Xi∗ = e∗ | ΠXi∗ )

3.3 set wE = wE + wx;
3.4 if x includes Q = q , set wE,q = wE,q + wx.

4. Estimate P(Q | E, G,Θ) with wE,q/wE.
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bnlearn: Stepping Through Likelihood Weighting (I)

We do not want to sample from the original BN, but from the BN in
which all the nodes Xi1 , . . . , Xik in E are fixed. This network is called
the mutilated network.

mutbn = mutilated(bn, list(E = "high"))

coef(mutbn$E)

## high uni

## 1 0

Simply sampling from mutbn is not a valid approach. If we do so, the
probability we obtain is P(Q,E | G,Θ), not P(Q | E, G,Θ)!

Firstly, we sample particles from the original BN one more time.

particles = rbn(mutbn, 10^6)

partQ = particles[(particles[, "S"] == "M") &

(particles[, "T"] == "car"), ]
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bnlearn: Stepping Through Likelihood Weighting (II)

A simple empirical checks tells us that the naive estimate we could draw
from mutbn is wrong, since it does not match the exact value we got
earlier.

nrow(partQ) / nrow(particles)

## [1] 0.336

The weights adjust for the fact that we are sampling from the mutilated
BN instead of original BN. The weights are just the likelihood
components for the particles associated with the nodes we are
conditioning on (E in this case).

w = logLik(bn, particles, nodes = "E", by.sample = TRUE)

wEq = sum(exp(w[(particles[, "S"] == "M") &

(particles[, "T"] == "car")]))

wE = sum(exp(w))

wEq/wE

## [1] 0.343
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bnlearn: Stepping Through Likelihood Weighting (III)

More conveniently, we can perform likelihood weighting with cpquery

by setting method = "lw" and specifying the evidence as a named list
with one element for each node we are conditioning on.

cpquery(bn, event = (S == "M") & (T == "car"),

evidence = list(E = "high"), method = "lw", n = 5 * 10^4)

## [1] 0.343

The estimate we obtain is still very precise with small numbers of
particles, as was the case for logic sampling, but the variability of the
estimated probabilities is actually larger. There is no guarantee that
likelihood weighting will always have lower variance than logic sampling.
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bnlearn: Stepping Through Likelihood Weighting (IV)

nparticles = seq(from = 5 * 10^3, to = 10^5, by = 5 * 10^3)

prob = matrix(0, nrow = length(nparticles), ncol = 20)

for (i in seq_along(nparticles))

for (j in 1:20)

prob[i, j] = cpquery(bn, event = (S == "M") & (T == "car"),

evidence = list(E = "high"), method = "lw",

n = nparticles[i])
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Then Why Use Likelihood Weighting?

Logic sampling will be computationally inefficient and very inaccurate if
P(E) is small because most particles will be discarded without
contributing to the estimation of P(Q | E).

extreme.dag = model2network("[A][B|A]")

A.prob = array(c(0.999999, 0.000001), dim = 2,

dimnames = list(A = c("a1", "a2")))

B.prob = array(c(0.5, 0.5, 0.75, 0.25), dim = c(2, 2),

dimnames = list(B = c("b1", "b2"), A = c("a1", "a2")))

extreme.bn = custom.fit(extreme.dag, list(A = A.prob, B = B.prob))

cpquery(extreme.bn, event = (B == "b2"), evidence = (A == "a2"),

method = "ls", n = 10^6)

## [1] 0

This simply does not happen with likelihood weighting.

cpquery(extreme.bn, event = (B == "b2"), evidence = list(A = "a2"),

method = "lw", n = 5 * 10^3)

## [1] 0.243

Marco Scutari University of Oxford



Fundamentals of Inference

A Comparison for Different Numbers of Particles
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bnlearn: Extensions of Likelihood Weighting

The event is still a general expression, which means it is possible to
describe complex events. However, likelihood weighting relies on the fact
that the evidence is fixed to a single value to compute the weights.
In bnlearn this assumption is relaxed: the event can take more than
one value for each variable. All combinations of values are given the
same probability so as not to alter the weights:

P(Q | E =
⋃
i

Ei) =
∑
i

P(Q | Ei) P(Ei) =
1

|E|
∑
i

P(Q | Ei)

cpquery(bn, event = (S == "M") & (T == "car"),

evidence = list(A = c("young", "adult")), method = "lw", n = 10^6)

## [1] 0.337

cpquery(bn, event = (S == "M") & (T == "car"),

evidence = list(A = "young"), method = "lw", n = 10^6) * 0.5 +

cpquery(bn, event = (S == "M") & (T == "car"),

evidence = list(A = "adult"), method = "lw", n = 10^6) * 0.5

## [1] 0.337
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bnlearn: Sampling and Conditioning

Last but not least, we can also use cpdist() to generate particles
conditional on some evidence E. Likelihood weighting works best, and
attaches the weights to the particles (for use in later analyses).

cpdist(bn, nodes = c("S", "T"), evidence = list(A = "adult"),

method = "lw", n = 5)

## S T

## 1 M other

## 2 M car

## 3 M car

## 4 F car

## 5 F train

Logic sampling works less well because, being a form of rejection
sampling, often returns far fewer observations than requested.

cpdist(bn, nodes = c("S", "T"), evidence = (A == "young"),

method = "ls", n = 5)

## S T

## 1 M car

## 2 F car
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Bayesian Network Classifiers

BNs can also be used as classifiers, to predict which of several classes
each observation belongs to. Assuming class labels are observed (so we
can train the BN classifier in what is called supervised learning).

The focus in this case is predictive accuracy for new observations
instead of representing faithfully the dependence structure of X. There
is no implication that an “interpretable” BN will provide good predictive
accuracy; on the contrary we introduce bias in the form of an artificially
simple DAG to improve the predictive performance of the BN (a la
bias-variance trade-off).

Here we will see the two most common BN classifiers:

� the Naive Bayes classifier; and

� the Tree-Augmented Naive Bayes (TAN) classifier.
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Naive Bayes Classifier

Let XC be the training variable and X \XC be the explanatory
variables which will be used for prediction. Then we can use Bayes
theorem to write the posterior probabilities P(XC = ci | X \XC) as

P(XC | X \XC) =
P(XC ,X \XC)

P(X \XC)
=

P(X \XC | XC) P(XC)

P(X \XC)
.

If we assume that explanatory variables are independent then

P(X \XC | XC) =
∏

Xi∈X\XC

P(Xi | Xc)

and the P(XC) works as prior probabilities.

The DAG corresponding to that dependence structure has arcs
XC → Xi, so that all Xi depend on XC but are independent from each
other.
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Predicting from a Naive Bayes Classifier

The class labels of new observations is predicted as that that maximises

P(XC | X \XC) ∝ P(XC)
∏

Xi∈X\XC

P(Xi | Xc),

that is, by maximum a posteriori probability.

The simplicity of this model has several advantages:

� There are comparatively few parameters to estimate.

� It is easy to include variables following different distributions as
explanatory variables, and model them as mixtures.

� The DAG underlying the BN is not estimated from the data, so it is
not affected by noise and often outperforms more complex models.

Several R implementations: bnlearn, e1071, etc.
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bnlearn: Naive Bayes Classifier

We can create the star-shaped structure of the BN with naive.bayes(),
specifying the data and the training variable with the class labels.

survey = read.table("../data/survey.txt", header = TRUE)

nbcl = naive.bayes(survey, training = "T")

graphviz.plot(nbcl, layout = "fdp")
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bnlearn: Training the Classifier

Training the classifier means learning its parameters from the data
(since the structure is fixed), which we can do with bn.fit().

nbcl.trained = bn.fit(nbcl, survey)

This gives us the conditional probabilities tables for the explanatory
variables and the class probabilities.

coef(nbcl.trained$T)

## car other train

## 0.58 0.17 0.25

coef(nbcl.trained$O)

## T

## O car other train

## emp 0.9586 0.9647 0.9840

## self 0.0414 0.0353 0.0160
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bnlearn: Evaluating the Classifier with Cross-Validation

We then check the predictive accuracy of the classifier using
cross-validation to obtain an estimate of the predictive classification
error. The golden standard is 10 runs of 10-fold cross-validation, using
bn.cv() with method = "k-fold".

cv.nb = bn.cv(nbcl, data = survey, runs = 10, method = "k-fold", folds = 10)

cv.nb

##

## k-fold cross-validation for Bayesian networks

##

## target network structure:

## [Naive Bayes Classifier]

## number of folds: 10

## loss function: Classification Error

## training node: T

## number of runs: 10

## average loss over the runs: 0.421

## standard deviation of the loss: 0.00267

Clearly, the classifier is not very good since it gets predictions right only
≈ 60% of the time.
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bnlearn: A Comparison with the Original Network

The original network does not do any worse (or any better)...

cv.orig = bn.cv(survey.dag, data = survey, runs = 10, method = "k-fold",

folds = 10, loss = "pred", loss.args = list(target = "T"))

cv.orig

##

## k-fold cross-validation for Bayesian networks

##

## target network structure:

## [A][S][E|A:S][O|E][R|E][T|O:R]

## number of folds: 10

## loss function: Classification Error

## training node: T

## number of runs: 10

## average loss over the runs: 0.421

## standard deviation of the loss: 0.0017

Here we need to specify a few extra arguments do match what we did
for the naive Bayes classifier: the loss function and the target

variable to predict.
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Tree-Augmented Naive Bayes Classifier (TAN)

Assuming that explanatory variables are independent is a very strong
assumption. One way to relax it while keeping the DAG simple is to
assume that each explanatory variable depends from one other
explanatory variable:

P(XC | X \XC) ∝ P(XC)
∏

Xi∈X\XC

P(Xi | Xj 6=i, Xc),

This determines a tree dependence structure among the explanatory
variables, which is estimated from the data using Chow-Liu minimum
weight spanning trees and picking the arcs Xj → Xi that have the
highest

P(Xi | Xj 6=i, Xc)

P(Xi | Xc)
.
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bnlearn: Tree-Augmented Naive Bayes Classifier

The tree.bayes() function learns the structure of the BN from the data.
The root node for the tree is picked at random, unless specified with the root

argument.

tancl = tree.bayes(survey, training = "T")

graphviz.plot(tancl)
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bnlearn: Training the Classifier

Training the classifier is as before...

tancl.trained = bn.fit(tancl, survey)

... and we can see that each explanatory variable has one parent besides
the training variable.

coef(tancl.trained$O)

## , , E = high

##

## T

## O car other train

## emp 0.9815 0.9825 0.9783

## self 0.0185 0.0175 0.0217

##

## , , E = uni

##

## T

## O car other train

## emp 0.8919 0.9286 1.0000

## self 0.1081 0.0714 0.0000
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bnlearn: Evaluating the Classifier with Cross-Validation

The predictive accuracy of the TAN is similar to that of naive Bayes and
the original network.

cv.tan = bn.cv("tree.bayes", data = survey, runs = 10, method = "k-fold",

folds = 10, algorithm.args = list(training = "T"))

cv.tan

##

## k-fold cross-validation for Bayesian networks

##

## target learning algorithm: TAN Bayes Classifier

## number of folds: 10

## loss function: Classification Error

## training node: T

## number of runs: 10

## average loss over the runs: 0.422

## standard deviation of the loss: 0.0042

The slightly higher variability is expected, since the DAG is estimated
from the data instead of being completely fixed.
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bnlearn: Graphical Comparison

plot(cv.orig, cv.nb, cv.tan, xlab = c("SURVEY", "NAIVE BAYES", "TAN"))
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A plot of the average classification errors for the various BNs suggests
that naive Bayes performs the same as the original DAG, and TAN is
worse. However, the magnitude of the differences is so small as not to
be practically significant.
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Summary

� There are two kinds of questions: conditional probability queries and
maximum a posteriori queries. The latter can be answered from the
former.

� There are two kinds of way of answering such questions: exact and
approximate inference. One uses Bayes theorem and is more accurate,
the other Monte Carlo sampling and is more scalable.

� Now we know why diagnostic and prognostic models are
interchangeable for inference: they have the same moral graph.

� BNs can also be used for classification, by using maximum a posteriori
queries for prediction. The DAG is simpler in order to improve
predictive accuracy by introducing bias in a bias-variance trade-off.
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Advanced Inference

Bayesian Networks are not Necessarily Causal

In the previous lecture, we have defined BNs in terms of conditional
independence relationships and probabilistic properties, without any
implication that arcs should represent cause-and-effect relationships.

The existence of equivalence classes of networks that are
indistinguishable from a probabilistic point of view provides a simple
proof that arc directions are not indicative of causal effects. The fact
that are prognostic and diagnostic formulations of the same BN are
identical in terms of inference is another strong hint.

Therefore, while it is appealing to interpret the direction of arcs in causal
terms, please do not do it lightly, especially with observational data.
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Probabilistic and Causal Bayesian Networks

However, from an intuitive point of view it can be argued that a “good”
BN should represent the causal structure of the data it is describing.
Such BN are usually fairly sparse, and their interpretation is at the same
time clear and meaningful, as explained by Judea Pearl in his book on
causality:

It seems that if conditional independence judgments are
byproducts of stored causal relationships, then tapping and
representing those relationships directly would be a more
natural and more reliable way of expressing what we know or
believe about the world. This is indeed the philosophy behind
causal BNs.

This is the reason why building a BN from expert knowledge in practice
codifies known and expected causal relationships for a given
phenomenon.
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What Additional Assumptions Do We Need For Causality?

We need three additional assumptions:

� Each variable Xi is conditionally independent of its non-effects,
both direct and indirect, given its direct causes (the causal Markov
assumption, much like the original but causal);

� There must exist a DAG which is faithful to the probability
distribution P of X, so that the only dependencies in P are those
arising from d-separation in the DAG.

� There must be no latent variables (unobserved variables influencing
the variables in the network) acting as confounding factors. Such
variables may induce spurious correlations between the observed
variables, thus introducing bias in the causal network.
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What Additional Assumptions Do We Need For Causality?

The third assumption descends from the first two:

� the presence of unobserved variables violates the faithfulness
assumption, because the network structure does not include them;

� and possibly the causal Markov property, because an arc may be
wrongly added between two observed variables due to the influence
of the latent one.

These assumptions are difficult to verify in real-world settings, as the set
of the potential confounding factors is not usually known. At best, we
can address this issue, along with selection bias, by implementing a
carefully planned experimental design in which we use blocking to screen
out confounding.
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Causality and Equivalence Classes

Even when dealing with interventional data collected from a scientific
experiment (where we can control at least some variables and observe
the resulting changes), there are usually multiple equivalent BNs that
represent reasonable causal models. Many arcs may not have a definite
direction, resulting in substantially different DAG. When the sample size
is small there may also be several non-equivalent BN fitting the data
equally well.

Therefore, in general we are not able to identify a single, “best”, causal
BN but rather a small set of likely causal BN that fit our knowledge of
the data.
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The MARKS Example, Revisited

An example of the bias introduced by the presence of a latent variable
was illustrated by Edwards (“Introduction to Graphical Modelling”)
using the marks data. This data set was originally investigated by
Mardia (“Multivariate Analysis”) and subsequently in Whittaker
(“Graphical Models in Applied Multivariate Statistics”).

marks contains the exam scores between 0 and 100 for 88 students
across 5 different topics, namely: mechanics (MECH), vectors (VECT),
algebra (ALG), analysis (ANL) and statistics (STAT).

library(bnlearn)

head(marks)

## MECH VECT ALG ANL STAT

## 1 77 82 67 67 81

## 2 63 78 80 70 81

## 3 75 73 71 66 81

## 4 55 72 63 70 68

## 5 63 63 65 70 63

## 6 53 61 72 64 73
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Add Latent Grouping...

Edwards noted that the students apparently belonged to two groups
(which we will call A and B) with substantially different academic
profiles. He then assigned each student to one of those two groups
using the EM algorithm to impute group membership as a latent
variable (say, LAT). The EM algorithm assigned the first 52 students
(with the exception of number 45) to group A, and the rest to group B.

latent = factor(c(rep("A", 44), "B", rep("A", 7), rep("B", 36)))

modelstring(hc(marks[latent == "A", ]))

## [1] "[MECH][ALG|MECH][VECT|ALG][ANL|ALG][STAT|ALG:ANL]"

modelstring(hc(marks[latent == "B", ]))

## [1] "[MECH][ALG][ANL][STAT][VECT|MECH]"

modelstring(hc(marks))

## [1] "[MECH][VECT|MECH][ALG|MECH:VECT][ANL|ALG][STAT|ALG:ANL]"
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... And the Models Look Nothing Alike
Group A

MECH

VECT

ALG

ANL STAT

Group B

MECH

VECT

ALG

ANL STAT

BN without Latent Grouping

MECH

VECT

ALG

ANL STAT

BN with Latent Grouping

MECH

VECT

ALG

ANL

STAT

LAT

The BNs learned from
group A and group B are
completely different.

Furthermore, they are
both different from the
BN learned from the
whole data set.

And finally, learning the
BN including LAT gives
a completely different
DAG again.
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Distributional Assumptions also Matter

We can choose to discretise the marks data and include LAT when learning the
structure of the discrete BN. Again, we obtain a BN whose DAG is completely
different from the rest.

dmarks = discretize(marks, breaks = 2, method = "interval")

modelstring(hc(data.frame(dmarks, LAT = latent)))

## [1] "[MECH][ANL][LAT|MECH:ANL][VECT|LAT][ALG|LAT][STAT|LAT]"

This BN seems to provide a simple interpretation of the relationships between
the topics: the grades in mechanics and analysis can be used to infer which
group a student belongs to, and that in turn influences the grades in the
remaining topics.

However, if we choose not to discretise:

modelstring(hc(data.frame(marks, LAT = latent)))

## [1] "[LAT][ANL|LAT][ALG|ANL:LAT][VECT|ALG:LAT][STAT|ALG:ANL][MECH|VECT:ALG]"
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With Discretisation, Without Discretisation

par(mfrow = c(1, 2))

graphviz.plot(hc(cbind(dmarks, LAT = latent)))

graphviz.plot(hc(cbind(marks, LAT = latent)))
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We can clearly see that any causal relationship we would have inferred from a
DAG learned without taking LAT into account would be potentially spurious.
And even after including LAT the situation is not necessarily clear.
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Where Things Go Wrong (I)

Suppose that we have a simple GBN of the form B← A→ C:

complete.bn = custom.fit(model2network("[A][B|A][C|A]"),

list(A = list(coef = c("(Intercept)" = 0), sd = 1),

B = list(coef = c("(Intercept)" = 0, A = 3), sd = 0.5),

C = list(coef = c("(Intercept)" = 0, A = 2), sd = 0.5))

)

In this model we have that B is not adjacent to C but B 6⊥⊥G C since
they are both children of A:

dsep(complete.bn, "B", "C")

## [1] FALSE

However, B and C are d-separated by A, and this implies B ⊥⊥P C | A.

dsep(complete.bn, "B", "C", "A")

## [1] TRUE
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Where Things Go Wrong (II)

If we generate 100 observations from the complete data we can learn
the correct DAG from the data.

complete.data = rbn(complete.bn, 100)

modelstring(hc(complete.data))

## [1] "[A][B|A][C|A]"

Now, assume we do not observe A; that is, A is a latent variable. As a
result, B and C are adjacent in the DAG we learn from the incomplete
data.

modelstring(hc(complete.data[, c("B", "C")]))

## [1] "[B][C|B]"

If we do not include A in the model, there is no way to d-separate B and
C! As a result they end up being linked in this second DAG, as that is
the closest we can get to the set of conditional independencies expressed
by the true DAG.
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Sometimes Things Do Not Go Wrong (I)

However, consider now a GBN of the form A→ B→ C:

complete.bn = custom.fit(model2network("[A][B|A][C|B]"),

list(A = list(coef = c("(Intercept)" = 0), sd = 1),

B = list(coef = c("(Intercept)" = 0, A = 3), sd = 0.5),

C = list(coef = c("(Intercept)" = 0, B = 2), sd = 0.5))

)

Now, B depends on A and C depends on B, so by transitivity A 6⊥⊥G C
unless we use B to d-separate them.

dsep(complete.bn, "B", "A")

## [1] FALSE

dsep(complete.bn, "C", "A")

## [1] FALSE

dsep(complete.bn, "C", "A", "B")

## [1] TRUE
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Sometimes Things Do Not Go Wrong (II)

Again, if we generate 100 observations from the complete data we can
learn the correct DAG from the data.

complete.data = rbn(complete.bn, 100)

modelstring(hc(complete.data))

## [1] "[A][B|A][C|B]"

The DAG we learn from the incomplete data (omitting B) is still
consistent with the true DAG as there is still a path leading from A to C.

modelstring(hc(complete.data[, c("A", "C")]))

## [1] "[A][C|A]"

The fact that we do not observe the intermediate node B in the causal
chain of nodes means that it is now impossible to d-separate A and C

and that A appear to be a direct cause of C. The DAG simple glosses
over the unobserved B.
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Sometimes Things Do Not Go Wrong (III)

Another situation in which latent variables can have a smaller impact
when learning the DAG from the data is for v-structures.

complete.bn = custom.fit(model2network("[A][B][C|B:A]"),

list(A = list(coef = c("(Intercept)" = 0), sd = 1),

B = list(coef = c("(Intercept)" = 0), sd = 0.5),

C = list(coef = c("(Intercept)" = 0, A = 3, B = 2), sd = 0.5))

)

complete.data = rbn(complete.bn, 100)

modelstring(hc(complete.data[, c("A", "C")]))

## [1] "[A][C|A]"

modelstring(hc(complete.data[, c("A", "B")]))

## [1] "[A][B]"

In this case:

� if one of the parents is a latent variable, we still learn the arc from
the other parent correctly;

� if the common child is the latent variable, the parents are not
linked by a (spurious) arc.
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In Conclusion

� The robustness of causal networks rests on the assumptions that there
are no latent variables.

� Learning a DAG from data in the presence of latent variables is likely
to result in a DAG that is causally wrong, especially when the DAG
includes more than 2-3 nodes or encodes a large set of
(in)dependence statements.

� Some patterns of latent variables are more problematic than others: a
latent variable that is a common cause for two or more observed
nodes represents a confounders and as such always leads to wrong
causal networks. Other patterns may be less problematic.

� Latent variables and wrong parametric assumptions interact in
determining how wrong the learned DAG is, and it is impossible in
practice to determine which is causing a missing/spurious arc.
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Causal Inference

Once we have a causal BN we are happy with, we can again focus on
using it to answer relevant questions. In the context of causal networks,
we call this causal inference. Compared to the posterior inference we
have seen in the previous lecture:

� in probabilistic inference we compute posterior probabilities for
events of interest for the observed network;

� in causal inference we compute the effects of interventions for
events of interest on a modified network that reflects the
interventions.

So in probabilistic inference we are working in an observational setting
(look but do not touch), in causal inference we are working in an
experimental setting (tweak and see what happens). As a result, causal
and probabilistic inference answer different questions; and they will give
different probabilities for the same event given the same evidence in
general.
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The Train Use Survey Revisited

Say that in the original train survey example we collect the data by
handing out forms to people chosen at random from the general
population; this gives us an observational data set which we can use to
learn the BN (from the next lecture).

A

E

O R

S

T

Say that we are interested in the
effect that the residence (R) has
on occupation (O), in particular
how occupation changes for people
living in big cities. The conditional
distribution that describes this is:

P(O | R = big | G,Θ).
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The Train Use Survey Revisited (Posterior)

We can compute the posterior distribution of O given R = "big".

prop.table(table(cpdist(survey.bn, "O", evidence = (R == "big"))))

##

## emp self

## 0.954 0.046

This gives us the conditional distribution of the occupation in the part
of the general population that lives in a big city. If we compare this with
the marginal distribution of O

prop.table(table(cpdist(survey.bn, "O", evidence = TRUE)))

##

## emp self

## 0.9476 0.0524

we see a ≈ 0.07% increase in employees, so the difference from the
overall general population is not very big from a practical perspective.
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The Train Use Survey Revisited (Causal, I)

Now, we can wonder: if we allow everybody to live and work in a big city (say,
by starting a public housing program) how will that affect the occupation
status? Note that if we do this we alter the characteristics of the population so
the BN will be a valid tool to investigate this. The effects of the intervention
(the public housing program) will change

coef(survey.bn$R)

## E

## R high uni

## small 0.25 0.20

## big 0.75 0.80

to

mut.bn = mutilated(survey.bn, evidence = list(R = "big"))

coef(mut.bn$R)

## small big

## 0 1

because we give everybody a house in a big city, regardless of their education E.
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The Train Use Survey Revisited (Causal, II)

A

E

O R

S

T

We can then compute the effect of this policy on
the occupation by calling cpquery again but on
the mutilated network that incorporates the
intervention.

prop.table(table(cpdist(mut.bn, "O",

evidence = TRUE)))

##

## emp self

## 0.9492 0.0508

The difference from the general population before
the intervention is minimal: this suggests that
providing public housing is not a sound policy if
the goal is to alter the composition of the
workforce.

This approach is called the do-calculus: it rests on the idea that we take
complete control of the nodes that are subject to intervention and therefore we
remove all their parents from the DAG.
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The Train Use Survey Revisited (Causal, III)

It is important to note that interventions need not to be hard
interventions (e.g. like hard evidence) but can also be soft interventions
(e.g. like soft evidence). For instance, we can consider an alternative
housing policy that makes the population spread out to small cities with
probability 0.5.

mut.bn$R = array(c(0.50, 0.50), dim = 2,

dimnames = list(R = c("small", "big")))

prop.table(table(cpdist(mut.bn, "O",

evidence = TRUE)))

##

## emp self

## 0.9486 0.0514

Again, not much effect on O. Which should not be a surprise since O is
d-separated from R in the mutilated network.

dsep(mut.bn, "O", "R")

## [1] TRUE
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Causal Inference and Experimental Design

There are three key benefit in this approach to causal inference:

� We can simulate the effect of interventions without the need to carry out
a real-world experiment, which is expensive and/or impossible in many
cases.

� We can use d-separation to identify which variables produce a change in a
target variable if we intervene on them.

� We can re-purpose posterior inference to quantify the effects of (possibly
complex) causal interventions.

In situation in which designed experiments are possible, causal inference
provides a more intuitive representations of classic experimental design:

� We take control of experimental and blocking factors, which then have no
parents in the DAG.

� Randomisation is equivalent to a soft causal intervention.

� Since randomised variables have no parents, causality necessarily flows
from them to the target variables
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Missing Data

Latent variables are just on kind of missing data:

� A latent variable is a variable which we know nothing about, either
its position in the BN or its distribution.

� An unobserved variable is a variable we do not observe, but which
we know the position and the distribution of.

� A partially observed variable is a variable for which we observe
some but not all the samples (the rest are denoted as NA).

The main problems that arise with missing data are:

� How do we learn the structure of BN from the data?

� Given a DAG, how do we estimate the parameters of the local
distributions?

The answers to both questions are the Expectation-Maximisation (EM)
and Data Augmentation (DA) algorithms.
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Classes of Missing Data

There are three classes of missing data:

� Missing completely at random (MCAR): there is no relationship
between the missingness of the data and any values, observed or
missing. Those missing data points are a random subset of the
data.

� Missing at Random (MAR): there is a systematic relationship
between the propensity of missing values and the observed data,
but not the missing data.

� Missing Not at Random (MNAR): there is a relationship between
the propensity of a value to be missing and its values.

MNAR is non-ignorable because the missing data mechanism itself has
to be modelled (why the data are missing and what the likely values
are). MCAR and MAR are both considered ignorable because we don’t
have to include any information about the missing data itself when we
deal with the missing data.
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Representing the Missingness Mechanism

In the context of BNs, each variable has a local distribution
Xi ∼ P(Xi | ΠXi) if the data are complete. If Xi has missing data, in
the MCAR case

Xi ∼

{
P(Xi | ΠXi) for observed data X

(O)
i

P(Xi | ΠXi) for missing data X
(M)
i .

The same happens in the MAR case, since the missingness depends on
ΠXi . On the other hand, in the MNAR case

Xi ∼

{
P(X

(O)
i | ΠXi ,M) for observed data X

(O)
i

P(X
(M)
i | ΠXi ,M) for missing data X

(M)
i

where M is the missingness mechanism. M is non-ignorable because we
cannot estimate the local distribution of Xi properly without knowing
the missing values in the first place.
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Examples with the Train Use Survey (I)

Since the survey data are collected through a questionnaire, there will
be a positive non-response rate for various questions and for the whole
questionnaire.

� A MCAR situation may arise when questionnaires are lost in the
post – the missingness does not depend on the characteristics of
the individual.

� A MAR situation may arise if women refuse to answer some
questions in the questionnaire in rates significant higher than men –
that is fine since S is observed.

� A MNAR situation may arise if all people in a specific big city do
not answer or people of certain social groups do not answer all or
part of the questionnaire – we need to introduce M to identify the
non-responders.
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Examples with the Train Use Survey (II)

A

E

O R
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M
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A
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S

T
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The MARKS Example, Revisited

MECH

VECT

ALG

ANL

STAT

LAT M

The latent variable in the MARKS
example is MCAR, since all the
data are missing the missingness
mechanism is simply
P(M | LAT) = 1.

Which shows that MCAR
missingness is not necessarily any
less problematic than MAR or
MNAR, especially for causal
inference!
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The Expectation-Maximisation (EM) Algorithm

For a generic statistical quantity θ:

1. Choose an initial value θ̂0 for θ.

2. While |θ̂j−1 − θ̂j | < ε, increasing j:

2.1 θ̂j = θ̂j−1
2.2 Expectation step: compute the probability distribution over the

missing values,

P(X
(M)
i | X(O)

i , θ̂j) =
P(X

(O)
i | X(M)

i , θ̂j) P(X
(M)
i | θ̂j)∫

X
(M)
i

P(X
(O)
i | X(M)

i , θ̂j) P(X
(M)
i | θ̂j)

2.3 Maximisation step: Compute the new estimate θ̂j given

P(X
(M)
i | X(O)

i , θ̂j).

3. Estimate θ with the last θ̂j .
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Properties of the EM Algorithm

� There are both Bayesian and frequentist implementations of EM; the
former estimates by maximum posterior and the latter by maximum
likelihood.

� EM is guaranteed to converge but
� it may converge to a local maximum and

� the convergence can be arbitrarily slow.

� For BNs, convergence is guaranteed only if all steps are carried out
with exact inference; the additional variability introduced by
approximate inference can derail convergence.
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An Example: EM Algorithm, Fixed Structure (I)

Consider a simple BN with two nodes A and B linked by a single arc
A→ B, and the following incomplete data

case 1 2 3 4 5 6 7 8 9 10

A 0 0 0 NA NA NA 1 1 1 1
B 0 1 1 1 0 0 0 0 1 NA

The parameters of the local distribution of A are

πA,0 = P(A = 0) πA,1 = P(A = 1)

and those of the local distribution of B are

πB,0|A,0 = P(B = 0 | A = 0) πB,1|A,0 = P(B = 1 | A = 0)

πB,0|A,1 = P(B = 0 | A = 1) πB,1|A,1 = P(B = 1 | A = 1).
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An Example: EM Algorithm, Fixed Structure (II)

1st Maximisation Step: we initialise the parameters of A and B using
the complete observations.

πA,0 = 0.5 πA,1 = 0.5

πB,0|A,0 = 0.333 πB,1|A,0 = 0.667

πB,0|A,1 = 0.667 πB,1|A,1 = 0.333

Note that this produces biased estimates if data are MNAR!
1st Expectation Step: we estimate the distributions of the missing data,
that is, the (posterior) probabilities of their possible values (with
cpquery() or cpdist() in bnlearn).

case B πA,0|B πA,1|B

4 1 0.667 0.333
5 0 0.333 0.667
6 0 0.333 0.667

case A πB,0|A πB,1|A

10 1 0.667 0.333
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An Example: EM Algorithm, Fixed Structure (III)

2nd Maximisation Step: we can then update the parameter estimates for
A and B by summing up the observation indicators and the probabilities
of the completions (say, πxMi

):

π =
1

n

∑
xi

1lO + 1lMπxMi

The updated parameter estimates are:

πA,0 = 0.433 πA,1 = 0.567

πB,0|A,0 = 0.385 πB,1|A,0 = 0.615

πB,0|A,1 = 0.706 πB,1|A,1 = 0.294.
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An Example: EM Algorithm, Fixed Structure (IV)

2nd Expectation Step: using these updated parameter values, we can
recompute the distributions of the missing values.

case B πA,0|B πA,1|B

4 1 0.615 0.385
5 0 0.294 0.706
6 0 0.294 0.706

case A πB,0|A πB,1|A

10 1 0.706 0.294

And so on, so forth . . .

As the number of iterations increases, the parameter updates gradually
become smaller and smaller until (after ≈ 4 iterations in this simple
example) we can decide EM has converged and stop. We can set a
threshold, for instance, by computing the Kullback-Leibler distance
between the local distributions at two consecutive iterations.
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The EM Algorithm, Unknown Graph Structure

Learning the (CP)DAG of a BN in the presence of missing data (in
addition to the parameters) is a problem that is challenging from both a
statistical and a computational point of view. Friedman extended the
EM algorithm to work for this task, and called the resulting algorithm
Structural EM:

1. Start with a BN B0 with an empty DAG G0 (with no arcs).

2. As long as Bi is different from Bi−1:

2.1 Expectation step: impute the missing data with their posterior
expectations or their maximum likelihood estimates using the
current BN.

2.2 Maximisation step: learn an updated BN from the completed data.
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The MARKS Example, Revisited (I)

ldmarks = data.frame(dmarks, LAT = factor(rep(NA, nrow(dmarks)),

levels = c("A", "B")))

# initialise an empty BN that includes LAT.

imputed = ldmarks

imputed$LAT = sample(factor(c("A", "B")), nrow(dmarks), replace = TRUE)

bn = bn.fit(empty.graph(names(ldmarks)), imputed)

bn$LAT = array(c(0.5, 0.5), dim = 2, dimnames = list(c("A", "B")))

# three iterations of structural EM.

for (i in 1:3) {

# expectation step.

imputed = impute(bn, ldmarks, method = "bayes-lw")

# maximisation step (forcing LAT to be connected to the other nodes).

dag = hc(imputed, whitelist = data.frame(from = "LAT", to = names(dmarks)))

bn = bn.fit(dag, imputed, method = "bayes")

}#FOR

modelstring(bn)

## [1] "[LAT][MECH|LAT][VECT|LAT][ALG|LAT][STAT|LAT][ANL|ALG:LAT]"
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The MARKS Example, Revisited (II)

From Structural EM we get putative class assignments for the students,

table(imputed$LAT)

##

## A B

## 70 18

and parameters for the CPTs conditional on class.

coef(bn$ANL)

## , , LAT = A

##

## ALG

## ANL [14.9,47.5] (47.5,80.1]

## [8.94,39.5] 0.597 0.105

## (39.5,70.1] 0.403 0.895

##

## , , LAT = B

##

## ALG

## ANL [14.9,47.5] (47.5,80.1]

## [8.94,39.5] 0.646 0.500

## (39.5,70.1] 0.354 0.500
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Imputing Missing Data

Imputing missing values in an incomplete data set implies:

� replacing them with their posterior expectations or maximum a
posteriori estimates in a Bayesian setting;

� replacing them with their maximum likelihood estimates, possibly
using their parents, in a frequentist setting.

In both cases:

� we need a fully specified BN to do it;

� it is preferable to learn the BN in a Bayesian/frequentist way to
perform imputation in a Bayesian/frequentist way;

� all the information needed to make inference on each node is
included in its Markov blanket, so we do not need the rest of the
BN to impute missing values for that node.
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The Data Augmentation (DA) Algorithm

Data augmentation is similar in spirit to EM, but it is a stochastic
MCMC algorithm that uses sampling instead of expectation.

1. Choose an initial value θ̂0 for θ.

2. Until convergence, increasing j:

2.1 Imputation step: Sample θj from P(θj−1 | X(O)
i ), and then sample

X
(M)
i from P(X

(M)
i | θj−1, X(O)

i ).
2.2 Posterior step: Update the posterior

P(θj | X(O)
i ) =

∫
X

(M)
i

P(θj | X(O)
i , X

(M)
i ).

P(θj | X(O)
i ) =

∫
X

(M)
i

is posterior distribution of the parameters given

the observed data averaged over the missing data.
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Predicting New Observations

One of the tasks statistical models are commonly used for is prediction:
we have new samples that are only partially observed (or for which we
assume we know the values they take for some variables), and we would
like to have principled estimates of their values for the variables we do
not observe. Much like missing data imputation:

� we need a fully specified BN to do it;

� it is preferable to learn the BN in a Bayesian/frequentist way to
perform imputation in a Bayesian/frequentist way;

� all the information needed to make inference on each node is
included in its Markov blanket, so we do not need the rest of the
BN to impute missing values for that node.

The crucial difference is that we use the partially observed data to learn
the BN, whereas the new data which we would like to predict are
independent of the BN we use for prediction.
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bnlearn: predict() New Observations

bnlearn implements a predict() method for fitted BNs.

pred.maxlik = predict(marks.bn, node = "ALG", new.students, method = "parents")

It takes the following arguments:

� the fitted BN;

� the node to predict values for;

� the observed data for the new observations;

� the prediction method, either parents for frequentist predictions or
bayes-lw for Bayesian predictions.

The frequentist prediction above predicts the most likely mark in ALG

given its parents for 30 new students; that is, the prediction uses only
the local distribution of ALG.
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bnlearn: Frequentist and Bayesian Predictions

However, this does not work very well because ALG has no parents: every
prediction is just the mean mark for ALG.

cor(new.students$ALG, pred.maxlik)

## [1] NA

Bayesian posterior predictions perform better because they use all the nodes
that are provided in new students: the mean difference between observed and
predicted ALG marks is ≈ 4 marks.

pred.bayes = predict(marks.bn, "ALG", new.students, method = "bayes-lw")

mean(abs(new.students$ALG - pred.bayes))

## [1] 4.12

Predicting using just the nodes in the Markov blanket of ALG provides
predictions identical (up to simulation noise) to those above, as expected.

pred.mb = predict(marks.bn, "ALG", new.students, method = "bayes-lw",

from = mb(marks.bn, "ALG"))

mean(abs(pred.bayes - pred.mb))

## [1] 0.372
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Predictive Accuracy Decreases with Graph Distance

Computing predictions from nodes outside of the Markov blanket is certainly
possible; Bayesian posterior predictions can predict any node from any other
node(s). However, predictions become less and less accurate the farther the
nodes we predict from are from the target node.

modelstring(marks.dag)

## [1] "[ALG][ANL|ALG][VECT|ALG][MECH|ALG:VECT][STAT|ALG:ANL]"

pred.mb = predict(marks.bn, "STAT", new.students, method = "bayes-lw",

from = mb(marks.bn, "STAT"))

mean(abs(new.students$STAT - pred.mb))

## [1] 11.4

Predictive accuracy for STAT is not good when using the nodes in the Markov
blanket (ALG and ANL); it get worse with nodes outside of the Markov blanket.

pred.far = predict(marks.bn, "STAT", new.students, method = "bayes-lw",

from = c("VECT", "MECH"))

mean(abs(new.students$STAT - pred.far))

## [1] 13.3

Marco Scutari University of Oxford



Advanced Inference

Predicting from Multiple Models: Ensembles

A tried-and-tested way to improve predictive accuracy is to predict from
an ensemble of multiple models instead of just a single model.
Intuitively, enough models will provide accurate predictions for each new
observations to make the consensus prediction accurate. Consider three
models each with classification accuracy 0.70 will classify correctly if at
least two are correct, which happens with probability

0.73 + 3× (0.72 ∗ 0.3) ≈ 0.784.

Assuming that models are independent of each other, the more models
the better: with five models the probability above increases to ≈ 0.837.

The problem is, how to produce models that are independent from each
other? And how do we combine predictions?
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bnlearn: Ensembles and Cross-Validation (I)

As long as we use BNs (or any kind of model, really) learned from data,
those models will never be independent. A common way to obtain an
ensemble of models that are at least moderately different is to learn
them on multiple resampled data sets to introduce perturbations in the
estimation process.

In a way, this naturally happens when we evaluate predictive accuracy
with cross-validation. For instance, if we take the first 40 students in
MARKS to be the new.students and we learn a BN from the rest, we
reach a mean difference between observed and predicted STAT marks of
≈ 16.

new.students = marks[1:40, ]

old.students = marks[-(1:40), ]

single = bn.fit(hc(old.students), old.students)

pred.single = predict(single, "STAT", new.students, method = "bayes-lw")

mean(abs(new.students$STAT - pred.single))

## [1] 16.1
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bnlearn: Ensembles and Cross-Validation (II)

If we perform cross-validation with bn.cv(), we can:
1. extract the BNs that were fitted withdrawing each fold;

kfold = bn.cv(old.students, "hc", k = 10)

ensemble = lapply(kfold, `[[`, "fitted")

2. predict each new student from each model;

pred.ensemble = sapply(ensemble, predict, node = "STAT",

data = new.students, method = "bayes-lw")

3. average the predictions;

pred.ensemble = rowMeans(pred.ensemble)

4. compute the predictive accuracy.

mean(abs(new.students$STAT - pred.ensemble))

## [1] 10.6

The result is much more precise, with a mean difference of ≈ 10.5; and
that even though BNs from cross-validation are fairly similar and even
though we use just 10 BNs.
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Bootstrap Aggregation: Bagging

A second approach to resample data in order to produce a set of diverse
models is bootstrap aggregation or bagging.

1. For b = 1, 2, . . . , B:

1.1 sample a new data set D∗b from the original data D using
nonparametric bootstrap;

1.2 learn the the BN Gb = (V, Ab) from D∗b ;

1.3 predict the values T̃b of the target variable T in the new
observations using Gb.

2. Compute the consensus prediction T̃ from the T̃b.

The literature provides many options for computing the consensus
predictions, mainly involving introducing weights for the Gb and more
advanced schemes than mean or majority vote to aggregate the T̃b.
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bnlearn: Ensembles and Bagging

A simple implementation of the first step in bnlearn is a follows.

bagging.iteration = function(old, new, target) {

# step 1.1: resampling.

Db = old[sample(nrow(old), replace = TRUE), ]

# step 1.2: learn the BN.

Gb = bn.fit(hc(Db), Db)

# step 1.3: predict.

predict(Gb, node = target, data = new, method = "bayes-lw")

}#BAGGING.ITERATION

Then we can compute the average predictions as we did before for
bn.cv().

# step 2: average the predictions.

Tb = replicate(100, bagging.iteration(old = old.students,

new = new.students, target = "STAT"))

mean(abs(new.students$STAT - rowMeans(Tb)))

## [1] 15.9
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Summary

� BNs are defined as probabilistic models, but it is possible to use them
as causal models with great care. Additional assumptions are required
and latent variables are a constant source of difficult-to-debug
problems.

� Inference is different for causal BNs: it focuses on simulating
interventions and measuring their effects as opposed to compute
conditional probabilities of events for the original BN.

� A related problem in learning BNs and performing inference is dealing
with missing data by applying algorithms such as EM to these tasks.

� BNs provide a nice way to represent and reason about different
patterns of missingness.

� BNs can also be used to impute missing values or predict values for
new observations in a variety of ways; as usual using an ensemble of
multiple, diverse BNs provides better accuracy than using a single BN.
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Learning a Bayesian Networks

Model selection and estimation are collectively known as learning, and
are usually performed as a two-step process:

1. structure learning, learning the graph structure from the data.

2. parameter learning, learning the local distributions implied by the
graph structure learned in the previous step.

This workflow is implicitly Bayesian; given a data set D and if we
denote the parameters of the global distribution as X with Θ, we have

P(M | D)︸ ︷︷ ︸
learning

= P(G | D)︸ ︷︷ ︸
structure learning

· P(Θ | G,D)︸ ︷︷ ︸
parameter learning

and structure learning is done in practise as

P(G | D) ∝ P(G) P(D | G) = P(G)

∫
P(D | G,Θ) P(Θ | G)dΘ.
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Local Distributions: Divide and Conquer

Most tasks related to both learning and inference are NP-hard (they
cannot be solved in polynomial time in the number of variables). They
are still feasible thanks to the decomposition of X into local
distributions; under some assumptions we can use local computations
and we never need to manipulate more than one at a time.
In Bayesian networks, for example, structure learning boils down to

P(D | G) =

∫ N∏
i=1

[P(Xi | ΠXi ,ΘXi) P(ΘXi | ΠXi)] dΘ

=

N∏
i=1

[∫
P(Xi | ΠXi ,ΘXi) P(ΘXi | ΠXi)dΘXi

]
and parameter learning boils down to

P(Θ | G,D) =

N∏
i=1

P(ΘXi | ΠXi ,D).
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Prior Elicitation versus Data

For both parameter and structure learning, we can rely either on

� eliciting information from experts, drawing on the available prior
knowledge on the variables in X;

� using available data and extract the information the contain.

In structure learning, elicitation involves favouring or penalising the
inclusion of specific (patterns of) arcs in the DAG; in parameter
learning, it means partially or completely specify the parameters of local
distribution, or to constrain them in various ways.
There are pros and cons to either approach:

� it maybe difficult to find experts, or it may be difficult to find data,
depending on the phenomenon;

� the data may be noisy or not fit distributional assumptions;
� it is usually difficult for experts to suggest values for the

parameters;
� data may be affected by sampling bias, experts may be affected by

personal biases.
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Assumptions for Structure Learning from Data

� There must be a one-to-one correspondence between the nodes in the
DAG and the random variables in X; there must not be multiple
nodes which are deterministic functions of a single variable.

� All the relationships between the variables in X must be conditional
independencies, because they are by definition the only kind of
relationships that can be expressed by a BN.

� Every combination of the possible values of the variables in X must
represent a valid, observable (even if really unlikely) event. This
assumption implies a strictly positive global distribution, which is
needed to have uniquely determined Markov blankets and, therefore, a
uniquely identifiable model.

� Observations are treated as independent realisations of the set of
nodes. If some form of temporal or spatial dependence is present, it
must be specifically accounted for in the definition of the network, as
in dynamic Bayesian networks.
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Classes of Structure Learning Algorithms from Data

Despite the (sometimes confusing) variety of theoretical backgrounds
and terminology they can all be traced to only three approaches:

� Constraint-based algorithms: they use statistical tests to learn
conditional independence relationships (called “constraints” in this
setting) from the data and assume that the DAG is a perfect map
to determine the correct network structure.

� Score-based algorithms: each candidate DAG is assigned a score
reflecting its goodness of fit, which is then taken as an objective
function to maximise.

� Hybrid algorithms: conditional independence tests are used to learn
at least part of the conditional independence relationships from the
data, thus restricting the search space for a subsequent score-based
search. The latter determines which edges are actually present in
the graph and their direction.
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Constraint-Based Structure Learning Algorithms

C
A B

D
E

F

CPDAG
Graphical

separation

Conditional

independence tests

The mapping between edges and conditional independence relationships
lies at the core of BNs; therefore, one way to learn the structure of a
BN is to check which such relationships hold using a suitable conditional
independence test. Such an approach results in a set of conditional
independence constraints that identify a single equivalence class.
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Assuming a Perfect Map

BNs are defined as I-maps so

A ⊥⊥G B | C =⇒ A ⊥⊥P B | C.

However, constraint-based algorithms treat them as perfect maps since
they do

A ⊥⊥P B | C⇐⇒ A ⊥⊥G B | C.

This is a much stronger assumption, which has pros and cons:

� the assumption that the DAG is a perfect map for X is impossible
to verify;

� but it is a sufficient assumption to uniquely identify Markov
blankets, and thus we no longer need to assume P(X) is strictly
positive everywhere;

� not all P(X) have a faithful DAG.
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The Inductive Causation Algorithm

1. For each pair of variables A and B in X search for set SAB ⊂ X such
that A and B are independent given SAB and A,B /∈ SAB . If there is no
such a set, place an undirected arc between A and B.

2. For each pair of non-adjacent variables A and B with a common
neighbour C, check whether C ∈ SAB . If this is not true, set the
direction of the arcs A− C and C −B to A→ C and C ← B.

3. Set the direction of arcs which are still undirected by applying recursively
the following two rules:

3.1 if A is adjacent to B and there is a strictly directed path from A to
B then set the direction of A−B to A→ B;

3.2 if A and B are not adjacent but A→ C and C −B, then change
the latter to C → B.

4. Return the resulting (partially) directed acyclic graph.
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Other Constraint-based algorithms

� Peter & Clark (PC): a true-to-form implementation of the Inductive
Causation algorithm, specifying only the order of the conditional
independence tests. Starts from a saturated network and performs tests
gradually increasing the number of conditioning nodes.

� Grow-Shrink (GS) and Incremental Association (IAMB) variants: these
algorithms learn the Markov blanket of each node to reduce the number of
tests required by the Inductive Causation algorithm. Markov blankets are
learned using different forward and step-wise approaches; the initial network
is assumed to be empty (i.e. not to have any edge).

� Max-Min Parents & Children (MMPC): uses a minimax approach to avoid
conditional independence tests known a priori to accept the null hypothesis
of independence.

� Hiton-PC (HITON-PC): currently the most scalable choice, it uses a first
pass based on marginal tests followed by a backward selection.
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Conditional Independence Tests: Discrete Variables

Conditional independence tests used to learn DBN are functions of the
observed frequencies {nijk, i = 1, . . . , R, j = 1, . . . , C, k = 1, . . . , L} for the
random variables X and Y and all the configurations of the conditioning
variables Z. Classic choices are:

� mutual information/log-likelihood ratio

MI(X,Y | Z) =

R∑
i=1

C∑
j=1

L∑
k=1

nijk
n

log
nijkn++k

ni+kn+jk
;

� and Pearson’s X2 with a χ2 distribution

X2(X,Y | Z) =

R∑
i=1

C∑
j=1

L∑
k=1

(nijk −mijk)
2

mijk
, where mijk =

ni+kn+jk
n++k

.

Both have an asymptotic χ2
(R−1)(C−1)(L) null distribution.
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Conditional Independence Tests: Gaussian Variables

Conditional independence tests used to learn GBNs are functions of the partial
correlations ρXY |Z that are used as proxies for the cells of Ω = Σ−1. Classic
choices are:

� the exact t test for Pearson’s correlation coefficient, defined as

t(X,Y | Z) = ρXY |Z

√
n− |Z| − 2

1− ρ2XY |Z

and distributed as a Student’s t with n− |Z| − 2 degrees of freedom;

� Fisher’s Z test, a transformation of ρXY |Z with an asymptotic normal
distribution and defined as

Z(X,Y | Z) = log

(
1 + ρXY |Z

1− ρXY |Z

) √
n− |Z| − 3

2

where n is the number of observations and |Z| is the number of nodes
belonging to Z.
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Conditional Independence Tests: Conditional Gaussian (I)

It is more complicated to specify tests for CLGBNs, because not all
triplets (X,Y,Z) can be directly represented as a single local
distribution. Going case by case:

� if X, Y and Z are all categorical, we can use any test for DBNs;

� if X, Y and Z are all Gaussian, we can use any test for GBNs;

� if X is categorical and Y is Gaussian (or vice versa), the simple
test to use is the mutual information

∝ log
P(Y | X,Z)

P(Y | Z)

in which both the numerator and the nominator are linear
regressions;

� the same is true if X and Y are Gaussian, regardless of Z the
simple test is again the mutual information.
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Conditional Independence Tests: Conditional Gaussian (II)

� if X and Y are categorical, and Z = {Zc1 , . . . , Zcl , Zd1 , . . . , Zdm}
contains both categorical and Gaussian variables, with several
applications of Bayes theorem and the chain rule we get

P(X | Zd1:dm , Zc1:cl)

P(X | Y,Zd1:dm , Zc1:cl)
=

=

∏l−1
i=1 P(Zci | Zci+1:cl , X, Zd1:dm) P(X,Zd1:dm)∏l−1

i=1 P(Zci | Zci+1:cl , Zd1:dm) P(Zd1:dm)
×∏l−1

i=1 P(Zci | Zci+1:cl , X, Y, Zd1:dm) P(X,Y, Zd1:dm)∏l−1
i=1 P(Zci | Zci+1:cl , Y, Zd1:dm) P(Y,Zd1:dm)

which is an unrolled chain of log-likelihood ratios that can be treated as
a mutual information test.
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Conditional Independence Tests: Permutations

Asymptotic tests require a sample size large enough for the null distribution to
converge to its asymptotic behaviour. We can use permutation tests instead:

1. Compute the test statistic t̂ on the original (X,Y,Z).

2. For b = 1, . . . , B:

2.1 permute Y while keeping X and Z fixed, to obtain a new sample
(X,Y ∗b ,Z) from the null distribution in which X ⊥⊥P Y ∗b | Z.

2.2 Compute the test statistic t̂b on (X,Y ∗b ,Z).

3. The p-value of the test as

1

B

B∑
b=1

1l{t̂ > tb}

for one-tailed tests and

1

B

B∑
b=1

1l{|t̂| > |tb|}

for two-tailed tests.
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Conditional Independence Tests: Shrinkage

An alternative is to regularise the test statistic by shrinking it towards a regular
target distribution. For instance, in the case of a covariance matrix we estimate
Σ̃ as a linear combination of the maximum likelihood estimator Σ̂ and a target
distribution with a diagonal covariance matrix T :

Σ̃ = λT + (1− λ)Σ̂, λ ∈ [0, 1].

λ can be estimated in closed form as

λ∗ =

∑k
i=1

∑k
j=1 VAR(σ̂ij)− COV(σ̂ij , tij)∑k
i=1

∑k
j=1(tij − σ̂ij)2

.

The modified Σ̃ can then be used to compute the (partial) correlations used in
the conditional independence tests.

A similar approach can be used for categorical data and mutual information.
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The ASIA Example, Revisited

The asia data set is a small synthetic data set from Lauritzen and
Spiegelhalter that tries to implement a diagnostic model for lung diseases
(tuberculosis, lung cancer or bronchitis) after a visit to Asia.

� D: dyspnoea.

� T: tuberculosis.

� L: lung cancer.

� B: bronchitis.

� A: visit to Asia.

� S: smoking.

� X: chest X-ray.

� E: tuberculosis versus lung
cancer/bronchitis.

head(asia)

## A S T L B E X D

## 1 no yes no no yes no no yes

## 2 no yes no no no no no no

## 3 no no yes no no yes yes yes

## 4 no no no no yes no no yes

## 5 no no no no no no no yes

## 6 no yes no no no no no yes
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bnlearn: Functions for Constraint-Based Learning
bnlearn implements several constraint-based algorithms, each with its own
function: gs(), iamb(), mmpc(), si.hiton.pc(), etc.

cpdag = si.hiton.pc(asia, undirected = FALSE)

cpdag

##

## Bayesian network learned via Constraint-based methods

##

## model:

## [partially directed graph]

## nodes: 8

## arcs: 5

## undirected arcs: 1

## directed arcs: 4

## average markov blanket size: 1.75

## average neighbourhood size: 1.25

## average branching factor: 0.50

##

## learning algorithm: Semi-Interleaved HITON-PC

## conditional independence test: Mutual Information (disc.)

## alpha threshold: 0.05

## tests used in the learning procedure: 55

## optimized: TRUE
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bnlearn: Parameters and Tuning Arguments

The arguments for the tuning parameters of constraint-based learning
algorithms have the same names in the respective functions:

� the first argument is the data.

� cluster: a cluster object from the parallel package to perform
steps in parallel for different nodes.

� test: the label of the test statistic.

� alpha: the type-I error threshold for the individual conditional
independence tests (i.e. without any multiplicity adjustment).

� B: number of permutations to use in permutation tests.

� optimized: use (or not) backtracking to roughly halve the number
of tests by using the symmetry of Markov blankets and neighbours.

� skeleton: whether to learn just the skeleton instead of the
CPDAG.

� debug: whether to print out the steps performed by the algorithm.
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Using Backtracking Is Not Such A Good Idea...
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... Because Parallel Computing is Safer and Faster

Lung Adenocarcinoma
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bnlearn: With and Without Backtracking

par(mfrow = c(1, 3))

true.dag = model2network("[A][S][T|A][L|S][B|S][D|B:E][E|T:L][X|E]")

graphviz.plot(cpdag(true.dag))

graphviz.plot(cpdag, highlight = list(arcs = arcs(cpdag(true.dag))), )

cpdag2 = si.hiton.pc(asia, undirected = FALSE, optimized = FALSE)

graphviz.plot(cpdag2, highlight = list(arcs = arcs(cpdag(true.dag))))
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E
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X
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E

XD A S

TL B

E

X

D

The reason why si.hiton.pc() cannot learn the CPDAG is that there
are many nodes with 0s and 1s in the CPTs, which breaks the
convergence of the mutual information to the χ2 distribution.
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bnlearn: Permutation Tests Do A Little Better

cpdag2 = si.hiton.pc(asia, test = "mc-mi", undirected = FALSE,

optimized = FALSE)

graphviz.plot(cpdag2, highlight = list(arcs = arcs(cpdag(true.dag))))

A S

T L B

E

X

D
There is only one arc missing; all the reference DBNs are impossible to
learn perfectly at any reasonable sample size, so this is a pretty good
result.
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bnlearn: The Debugging Output (I)

debugging.output = capture.output(

si.hiton.pc(asia, test = "mc-mi", undirected = FALSE, optimized = FALSE,

debug = TRUE)

)

head(debugging.output, n = 17)

## [1] "----------------------------------------------------------------"

## [2] "* forward phase for node A ."

## [3] " * checking nodes for association."

## [4] " > starting with neighbourhood ' '."

## [5] " * nodes that are still candidates for inclusion."

## [6] " > T has p-value 0.0046 ."

## [7] " * nodes that will be disregarded from now on."

## [8] " > S has p-value 0.131 ."

## [9] " > L has p-value 0.368 ."

## [10] " > B has p-value 0.0616 ."

## [11] " > E has p-value 0.0758 ."

## [12] " > X has p-value 0.182 ."

## [13] " > D has p-value 0.0858 ."

## [14] " @ T accepted as a parent/children candidate ( p-value: 0.0046 )."

## [15] " > current candidates are ' T '."

## [16] "----------------------------------------------------------------"

## [17] "* forward phase for node S ."
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bnlearn: The Debugging Output (II)

The debugging output is useful to understand the steps the algorithms
perform and to investigate where things go wrong.

head(grep("^\\*", debugging.output, value = TRUE), n = 15)

## [1] "* forward phase for node A ."

## [2] "* forward phase for node S ."

## [3] "* backward phase for candidate node B ."

## [4] "* backward phase for candidate node E ."

## [5] "* backward phase for candidate node X ."

## [6] "* backward phase for candidate node D ."

## [7] "* forward phase for node T ."

## [8] "* backward phase for candidate node X ."

## [9] "* backward phase for candidate node D ."

## [10] "* backward phase for candidate node A ."

## [11] "* forward phase for node L ."

## [12] "* backward phase for candidate node B ."

## [13] "* backward phase for candidate node E ."

## [14] "* backward phase for candidate node X ."

## [15] "* backward phase for candidate node D ."
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bnlearn: The Debugging Output (III)

head(grep("^\\*|\\s*@", debugging.output, value = TRUE), n = 20)

## [1] "* forward phase for node A ."

## [2] " @ T accepted as a parent/children candidate ( p-value: 0.0046 )."

## [3] "* forward phase for node S ."

## [4] " @ L accepted as a parent/children candidate ( p-value: 0 )."

## [5] "* backward phase for candidate node B ."

## [6] " @ B accepted as a parent/children candidate ( p-value: 0 )."

## [7] "* backward phase for candidate node E ."

## [8] "* backward phase for candidate node X ."

## [9] "* backward phase for candidate node D ."

## [10] "* forward phase for node T ."

## [11] " @ E accepted as a parent/children candidate ( p-value: 0 )."

## [12] "* backward phase for candidate node X ."

## [13] "* backward phase for candidate node D ."

## [14] "* backward phase for candidate node A ."

## [15] " @ A accepted as a parent/children candidate ( p-value: 0.0056 )."

## [16] "* forward phase for node L ."

## [17] " @ S accepted as a parent/children candidate ( p-value: 0 )."

## [18] "* backward phase for candidate node B ."

## [19] "* backward phase for candidate node E ."

## [20] " @ E accepted as a parent/children candidate ( p-value: 0 )."
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bnlearn: Learning Markov Blankets and Neighbourhoods

In bnlearn we can manually reproduce all the steps performed by
constraint-based algorithms, either for debugging purposes or for
developing new algorithms.

� We can learn the neighbours of a particular node with any
algorithm that learns parents and children (HITON and MMPC).

learn.nbr(asia, node = "L", method = "si.hiton.pc", test = "mc-mi")

## [1] "S" "E"

� We can learn the Markov blanket of a particular node with any
algorithm designed to do that (GS and the IAMB variants).

learn.nbr(asia, node = "L", method = "si.hiton.pc", test = "mc-mi")

## [1] "S" "E"
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bnlearn: Conditional Independence Tests

Another very useful function is ci.test(), which performs a single
marginal or conditional independence test using the same backends as
constraint-based algorithms.

ci.test(x = "S", y = "E", z = "L", data = asia, test = "mc-mi")

##

## Mutual Information (disc., MC)

##

## data: S ~ E | L

## mc-mi = 4e-06, Monte Carlo samples = 5000, p-value = 0.9

## alternative hypothesis: true value is greater than 0

Arguments are much the same as before: test specifies the test label, B
the number of permutations. The test is for x ⊥⊥P y | z where z can be
either absent (for marginal tests) or a vector of labels (to condition on
one or more variables).
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Pros & Cons of Constraint-based Algorithms

� They depend heavily on the quality of the conditional independence
tests they use; all proofs of correctness assume tests are always right.
� Asymptotic tests may make algorithms underperform.
� Permutation tests on the other hand are often too slow, but can be made

better with sequential permutations and semi-parametric permutations.
� Shrinkage tests work better than asymptotic test, but not by much.

� They are consistent, but converge is slower than score-based and
hybrid algorithms.

� At any single time they evaluate a small subset of variables, which
makes them very memory efficient.

� They do not require multiple testing adjustment, they are
self-adjusting (nobody knows why exactly, though).

� They are embarrassingly parallel, so they scale extremely well.
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Score-based Structure Learning Algorithms

The dimensionality of the space of graph structures makes an exhaustive
search unfeasible in practice, regardless of the goodness-of-fit measure
(called network score) used in the process. However, we can use
heuristics in combination with decomposable scores, i.e.

Score(G) =

N∑
i=1

Score(Xi | ΠXi)

such as

BIC(G) =

N∑
i=1

log P(Xi | ΠXi)−
|ΘXi |

2
log n

BDe(G),BGe(G) =

N∑
i=1

log

[∫
P(Xi | ΠXi ,ΘXi) P(ΘXi | ΠXi)dΘXi

]
if each comparison involves structures differing in only one local
distribution at a time.
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The Hill-Climbing Algorithm

1. Choose an initial network structure G, usually (but not necessarily)
empty.

2. Compute the score of G, denoted as ScoreG = Score(G).

3. Set maxscore = ScoreG .

4. Repeat the following steps as long as maxscore increases:
4.1 for every possible arc addition, deletion or reversal not resulting in a

cyclic network:

4.1.1 compute the score of the modified network G∗,
ScoreG∗ = Score(G∗):

4.1.2 if ScoreG∗ > ScoreG , set G = G∗ and ScoreG = ScoreG∗ .

4.2 update maxscore with the new value of ScoreG.

5. Return the directed acyclic graph G.
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DBNs: The Bayesian Dirichlet Marginal Likelihood

If the data D contain no missing values and assuming:

� a Dirichlet conjugate prior (Xi | ΠXi
∼ Multinomial(ΘXi

| ΠXi
) and

ΘXi | ΠXi ∼ Dirichlet(αijk),
∑
jk αijk = αi the imaginary sample size);

� positivity (all conditional probabilities πijk > 0);

� parameter independence (πijk for different parent configurations are
independent) and modularity (πijk in different nodes are independent);

Heckerman et al. derived a closed form expression for P(D | G):

BD(G,D;α) =

N∏
i=1

BD(Xi,ΠXi
;αi) =

=

N∏
i=1

qi∏
j=1

[
Γ(αij)

Γ(αij + nij)

ri∏
k=1

Γ(αijk + nijk)

Γ(αijk)

]

where ri is the number of states of Xi; qi is the number of configurations of
ΠXi ; nij =

∑
k nijk; and αij =

∑
k αijk.
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DBNs: Bayesian Dirichlet Equivalent Uniform (BDeu)

The most common implementation of BD assumes αijk = α/(riqi), αi = α
and is known as the Bayesian Dirichlet equivalent uniform (BDeu) marginal
likelihood. The uniform prior over the parameters was justified by the lack of
prior knowledge and widely assumed to be non-informative.

However, there is ample evidence that this is a problematic choice:

� The prior is actually not uninformative.

� MAP DAGs selected using BDeu are highly sensitive to the choice of α
and can have markedly different number of arcs even for reasonable α.

� In the limits α→ 0 and α→∞ it is possible to obtain both very simple
and very complex DAGs, and model comparison may be inconsistent for
small D and small α.

� The sparseness of the MAP network is determined by a complex
interaction between α and D.

� There are formal proofs of all this.
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Better Than BDeu: Bayesian Dirichlet Sparse (BDs)

If the positivity assumption is violated or the sample size n is small, there may
be configurations of some ΠXi that are not observed in D.

BDeu(Xi,ΠXi
;α) =

=
∏

j:nij=0

[
���������Γ(riα

∗)

Γ(riα∗)

ri∏
k=1

Γ(α∗)

Γ(α∗)

] ∏
j:nij>0

[
Γ(riα

∗)

Γ(riα∗ + nij)

ri∏
k=1

Γ(α∗ + nijk)

Γ(α∗)

]
.

So the effective imaginary sample size decreases as the number of unobserved
parents configurations increases, and the MAP estimates of πijk gradually
converge to the ML and favour overfitting.

To address these two undesirable features of BDeu we replace α∗ with

α̃ =

{
α/(riq̃i) if nij > 0

0 otherwise
, q̃i = {number of ΠXi such that nij > 0}

and we plug it in BD instead of α∗ = α/(riqi) to obtain BDs.
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BDeu and BDs Compared

Cells that correspond to (Xi,ΠXi) combinations that are not observed
in the data are in red, observed combinations are in green.
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GBNs: The Bayesian Gaussian Equivalent Score

The Bayesian Gaussian equivalent (BGe) score is defined as the
P(D | G) associated with a normal-Wishart prior (µ,W ) with
µ ∼ N(ν, αµW ) and W ∼Wishart(T, αw):

BGe(Xi,ΠXi) =(
αµ

N + αµ

)l/2 Γl((N + αw − n+ l)/2)

πlN/2Γl((αw − n+ l)/2)

|TXi,ΠXi
|(αw−n+l)/2

|RXi,ΠXi
|(N+αw−n+l)/2

where

Γl

(x
2

)
= πl(l−1)/4

l∏
j=1

Γ

(
x+ 1− j

2

)
,

R = T + SN +
Nαw
N + αw

(ν − x̄)(ν − x̄)T .

(l is defined to be |Xi ∪ΠXi | = |ΠXi |+ 1.)
Marco Scutari University of Oxford



Fundamentals of Structure Learning

Penalised Likelihoods: AIC and BIC

Penalised likelihoods also make very popular scores for DBNs, GBNs and
CLGBNs. AIC tends to overfit a lot, while BIC tends to underfit a bit but it
often used an approximation to P(D | G). For DBNs, the log-likelihood and
the number of parameters associated with a local distribution are:

LL(Xi,ΠXi
) =

n∏
m=1

P(Xi = xm | ΠXi
= πm), |ΘXi

| = R× |ΠXi
|;

for GBNs:

LL(Xi,ΠXi
) =

n∏
m=1

N(xm;µXi
+ πmβXi

, σ2
Xi

), |ΘXi
| = |ΠXi

|+ 1;

for CLGBNS (∆Xi
are the discrete parents, ΓXi

the continuous parents):

LL(Xi,ΠXi
) =

n∏
m=1

N(xm;µXi,δm + γmβXi,δm , σ
2
Xi,δm),

|ΘXi
| = |∆Xi

| × (|ΓXi
|+ 1).
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bnlearn: Hill Climbing with BIC (MARKS)

hc() implements hill-climbing with random restarts, and can use
different scores much like functions implementing constraint-based
algorithms can use different tests.

dag.marks = hc(marks, score = "bic-g")

Note that hill-climbing always returns a DAG, not a CPDAG; so the
correct way of comparing it with another graph is to take the CPDAG
for both.

true.dag =

model2network("[ALG][ANL|ALG][MECH|ALG:VECT][STAT|ALG:ANL][VECT|ALG]")

unlist(compare(dag.marks, true.dag))

## tp fp fn

## 3 3 3

unlist(compare(cpdag(dag.marks), cpdag(true.dag)))

## tp fp fn

## 6 0 0

Marco Scutari University of Oxford



Fundamentals of Structure Learning

The Hill-Climbing Algorithm (MARKS)

Initial BIC score: −1807.528

MECH

VECT

ALG

ANL
STAT

Current BIC score: −1778.804

MECH

VECT

ALG

ANL
STAT

Current BIC score: −1755.383

MECH

VECT

ALG

ANL
STAT

Current BIC score: −1737.176

MECH

VECT

ALG

ANL
STAT

Current BIC score: −1723.325

MECH

VECT

ALG

ANL
STAT

Current BIC score: −1720.901

MECH

VECT

ALG

ANL
STAT

Current BIC score: −1720.150

MECH

VECT

ALG

ANL
STAT

Final BIC score: −1720.150

MECH

VECT

ALG

ANL
STAT
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bnlearn: Comparing Networks

� compare() takes two graphs (DAGs, CPDAGs, UGs) and returns a
list containing tp (true positives), fp (false positives) and fn (false
negatives); directed and undirected arcs are considered different.

unlist(compare(dag.marks, true.dag))

## tp fp fn

## 3 3 3

� hamming() computes the Hamming distance between the skeletons of
the graphs (zero means a perfect match).

hamming(dag.marks, true.dag)

## [1] 0

� shd() computes the Structural Hamming distance between two
CPDAGs, which is similar to the Hamming distance but with a
penalty of 1/2 for directed-undirected arc differences.

shd(dag.marks, true.dag)

## [1] 0
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bnlearn: Hill Climbing with Random Restarts (ASIA)

In addition to scores and their tuning parameters (here iss for the imaginary
sample size of BDeu), hc() has arguments restart for the number of random
restarts and perturb for the number of perturbed arcs in the new starting
DAG.

asia.restart = hc(asia, score = "bde", iss = 1, restart = 10, perturb = 5)

debugging.output =

capture.output(hc(asia, score = "bde", iss = 1, restart = 10,

perturb = 5, debug = TRUE))

head(grep("^\\* (best|doing)", debugging.output, value = TRUE), n = 10)

## [1] "* best operation was: adding B -> D ."

## [2] "* best operation was: adding L -> E ."

## [3] "* best operation was: adding E -> X ."

## [4] "* best operation was: adding S -> B ."

## [5] "* best operation was: adding T -> E ."

## [6] "* best operation was: adding E -> D ."

## [7] "* best operation was: adding S -> L ."

## [8] "* doing a random restart, 9 of 10 left."

## [9] "* best operation was: adding E -> X ."

## [10] "* best operation was: adding E -> D ."
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Why Do We Want Random Restarts?

Random restarts reduce the probability of getting stuck in a local
maximum by jumping away from it. The DAG we jump to is created by
perturbing the DAG that was identified as a local maximum, that is,
changing a number of its arcs to created a new DAG.

head(grep("^\\* (current score|doing)", debugging.output, value = TRUE), 14)

## [1] "* current score: -15225 "

## [2] "* current score: -14043 "

## [3] "* current score: -12955 "

## [4] "* current score: -12026 "

## [5] "* current score: -11579 "

## [6] "* current score: -11348 "

## [7] "* current score: -11217 "

## [8] "* current score: -11096 "

## [9] "* doing a random restart, 9 of 10 left."

## [10] "* current score: -11237 "

## [11] "* current score: -11106 "

## [12] "* current score: -11101 "

## [13] "* current score: -11096 "

## [14] "* doing a random restart, 8 of 10 left."
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bnlearn: Hill-Climbing With Preseeded Networks

Another way of avoid getting stuck in local maxima is to start the search
from a different network. The default is to start from the empty DAG.

capture.output(hc(asia, score = "bde", iss = 1, debug = TRUE))[c(2, 6:7)]

## [1] "* starting from the following network:"

## [2] " model:"

## [3] " [A][S][T][L][B][E][X][D] "

However, we can specify an alternative starting DAG with the start

argument. Here we generate one at random with random.graph().

capture.output(hc(asia, score = "bde", iss = 1,

start = random.graph(names(asia)), debug = TRUE))[c(2, 6:7)]

## [1] "* starting from the following network:"

## [2] " model:"

## [3] " [A][S][T|A][E|A][D|S][L|T][B|S:L][X|S:B] "

The principle is the same as, say, starting k-means from different sets of
centroids and keeping the clustering that fits the data best.
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Other Score-based Algorithms

� Greedy Equivalent Search: hill-climbing over equivalence classes
rather than graph structures; the search space is much smaller.

� Tabu Search: a modified hill-climbing that keeps a list of the last k
structures visited (the tabu list), and returns only if they are all worse
than the current one.

� Genetic Algorithms: they perturb (mutation) and combine (crossover)
features through several generations of structures, and keep the ones
leading to better scores. Inspired by Darwinian evolution.

� Simulated Annealing: again similar to hill-climbing, but not looking at
the maximum score improvement at each step. Very difficult to use in
practice because of its tuning parameters.
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bnlearn: TABU Search

In addition to hc(), bnlearn implements tabu() with arguments tabu

(the length of the tabu list) and max.tabu (the maximum number of
iterations tabu() can perform without improving the best network
score.

debugging.output =

capture.output(tabu(asia, score = "bde", iss = 1, tabu = 10,

max.tabu = 5, debug = TRUE))

head(grep("^\\* (best operation|network)", debugging.output, value = TRUE), 10)

## [1] "* best operation was: adding B -> D ."

## [2] "* best operation was: adding L -> E ."

## [3] "* best operation was: adding E -> X ."

## [4] "* best operation was: adding S -> B ."

## [5] "* best operation was: adding T -> E ."

## [6] "* best operation was: adding E -> D ."

## [7] "* best operation was: adding S -> L ."

## [8] "* network score did not increase (for 1 times), looking for a minimal decrease :"

## [9] "* best operation was: reversing S -> L ."

## [10] "* network score did not increase (for 2 times), looking for a minimal decrease :"
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Pros & Cons of Score-based Algorithms

� Convergence to the global maximum (i.e. the best structure) is not
guaranteed for finite samples, the search may get stuck in a local
maximum.

� They are more stable than constraint-based algorithms.

� They require a definition of both the global and the local
distributions, and a matching decomposable, network score. This
means, for instance, that nobody can use them with ordinal variables
because it is difficult to specify the global distribution. On the other
hand, there are trend tests to use for conditional independence.

� Most scores have tuning parameters, whereas conditional
independence tests (mostly) do not; and algorithms have tuning
parameters as well. This usually means a grid of values to be tested
under cross-validation to select the optimal learning strategy.
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Hybrid Structure Learning Algorithms

Hybrid algorithms combine constraint-based and score-based algorithms
to complement the respective strengths and weaknesses; they are
considered the state of the art in current literature.

They work by alternating the following two steps:

� learn some conditional independence constraints to restrict the
number of candidate networks;

� find the network that maximises some score function and that
satisfies those constraints and define a new set of constraints to
improve on.

These steps can be repeated several times (until convergence), but one
or two times is usually enough.
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The Sparse Candidate Algorithm and MMHC

1. Choose a network structure G, usually (but not necessarily) empty.

2. Repeat the following steps until convergence:

2.1 restrict: select a set Ci of candidate parents for each node Xi ∈ X,
which must include the parents of Xi in G;

2.2 maximise: find the network structure G∗ that maximises Score(G∗)
among the networks in which the parents of each node Xi are
included in the corresponding set Ci;

2.3 set G = G∗.

3. Return the directed acyclic graph G.

If we iterate only once, using MMPC for the restrict phase and
hill-climbing for the maximise phase we obtain the Max-Min
Hill-Climbing (MMHC) algorithm as a particular case.
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bnlearn: rsmax2()

rsmax2() implements a single step of the Sparse Candidate algorithm:
it runs the restrict and maximise phases only once.

asia.rsmax2 =

rsmax2(asia, test = "x2", score = "bic",

restrict = "si.hiton.pc", restrict.args = list(alpha = 0.01),

maximize = "tabu", maximize.args = list(tabu = 10))

Its main arguments are:

� test: the conditional independence test to use in the restrict
phase;

� score: score function to use in the maximise phase;

� restrict: constraint-based algorithm to use in the restrict phase;

� restrict.args: its optional arguments;

� maximize: score-based algorithm to use in the maximise phase;

� maximize.args: its optional arguments.
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bnlearn: mmhc()

The following two commands are equivalent:

rsmax2(asia, restrict = "mmpc", maximize = "hc")

mmhc(asia)

And from the debugging output we can see that is the case:

debugging.output = capture.output(print(mmhc(asia, debug = TRUE)))

grep("restrict|maximize|method:", debugging.output, value = TRUE)

## [1] "* restrict phase, using the Max-Min Parent Children algorithm."

## [2] "* maximize phase, using the Hill-Climbing algorithm."

## [3] " constraint-based method: Max-Min Parent Children "

## [4] " score-based method: Hill-Climbing "

debugging.output =

capture.output(print(rsmax2(asia, restrict = "mmpc", maximize = "hc",

debug = TRUE)))

grep("restrict|maximize|method:", debugging.output, value = TRUE)

## [1] "* restrict phase, using the Max-Min Parent Children algorithm."

## [2] "* maximize phase, using the Hill-Climbing algorithm."

## [3] " constraint-based method: Max-Min Parent Children "

## [4] " score-based method: Hill-Climbing "
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Pros & Cons of Hybrid Algorithms

� You can mix and match conditional independence tests and network
scores with structure learning algorithms, since the latter do not
depend on the nature of the data. We can range from frequentist to
Bayesian to information-theoretic and anything in between (within
reason).

� Constraint-based algorithms are usually faster, score-based algorithms
are more stable. Hybrid algorithms are at least as good as score-based
algorithms, and often a bit faster.

� Tuning parameters can be difficult to tune for some configurations of
algorithms, tests and scores.
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A Final Comparison

In this particular case, hill-climbing with random restarts wins the day.

true.dag = model2network("[A][S][T|A][L|S][B|S][D|B:E][E|T:L][X|E]")

unlist(compare(cpdag(asia.rsmax2), cpdag(true.dag)))

## tp fp fn

## 4 4 1

shd(asia.rsmax2, true.dag)

## [1] 4

unlist(compare(cpdag(asia.restart), cpdag(true.dag)))

## tp fp fn

## 7 1 0

shd(asia.restart, true.dag)

## [1] 1

unlist(compare(cpdag(cpdag2), cpdag(true.dag)))

## tp fp fn

## 5 3 1

shd(cpdag2, true.dag)

## [1] 3
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Summary

� Learning the structure of a BN is the first and most crucial step in
learning a BN, whether from data or from expert knowledge.

� There are three classes of algorithms to learn the structure of a BN
from data: constraint-based, score-based and hybrid.

� The algorithms in these three classes are defined without requiring
any specific type of data, which means that it is possible to mix and
match tests and scores with algorithms.

� Different classes of algorithms have different strengths and
weaknesses; score-based algorithms are in more common use in
practice.

� Scores, tests and algorithms all have tuning parameters and it is
usually not clear how their choice impacts the learned networks and
how much.

� There is no “best” algorithm: different algorithms will be “best” with
different data sets and for different tasks.
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The DAGs and the Distributions

BN literature focuses mostly on (the parameters of) local probability
distributions. However:

� Comparing models learned with different algorithms is difficult,
because they maximise different scores, use different estimators for
the parameters, work under different sets of hypotheses, etc.

� Unless the true global probability distribution is known it is difficult
to assess the uncertainty of the estimated models.

� The few available measures of structural difference are completely
descriptive in nature (e.g. the Structural Hamming distance), and
are difficult to interpret.

� When learning causal graphical models often we are looking for
particular patterns of arcs in the DAG.
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Looking for a Solution

Focusing on the DAGs G sidesteps some of these problems and is useful in
structure learning as well, since

P(G | D) ∝ P(G) P(D | G).

So:

0. We need to know more about the properties of priors P(G) and posteriors
P(G | D) over the space of DAGs, preferably as a function of their arc
sets, say P(G(E)) and P(G(E) | D) with E = {(vi, vj), i 6= j}.

And then:

1. It would be good to have measures of spread for G, to assess the noisiness
of P(G(E) | D) and the informativeness of P(G(E)).

2. It would be interesting to study the convergence speed of structure
learning algorithms given their tuning parameters using those measures.
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A Simpler Case: Undirected Graphs

Each edge eij in an undirected graph G = (V, E) has only two possible
states and therefore can be modelled as a Bernoulli random variable:

eij ∼ Eij =

{
1 if ei ∈ E
0 otherwise

.

The natural extension of this approach is to model any set of edges as a
multivariate Bernoulli random variable B ∼ Berk(p). B is uniquely
identified by the parameter set

p = {pI : I ⊆ {1, . . . , k}, i 6= ∅} , k =
|V|(|V| − 1)

2

which represents the dependence structure among the marginal
distributions Bi ∼ Ber(pi), i = 1, . . . , k of the edges. p can be
estimated using a large number of bootstrap samples or MCMC samples
from P(G(E) | D).
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DAGs as Multivariate Trinomials

Each arc aij in G = (V, A) has three possible states, and therefore it
can be modelled as a Trinomial random variable Aij :

aij ∼ Aij =


−1 if aij =←−aij = {vi ← vj}
0 if aij 6∈ A, denoted with åij

1 if aij = −→aij = {vi → vj}
.

As before, the natural extension to model any set of arcs is to use a
multivariate Trinomial random variable T ∼ Trik(p). However:

� the acyclicity constraint of Bayesian networks makes deriving exact
results very difficult because it cannot be written in closed form;

� the score equivalence of most structure learning strategies makes
inference on Trik(p) tricky.
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Second Order Properties of Berk(p) and Trik(p)

All the elements of the covariance matrix Σ of an edge set E are bounded,

pi ∈ [0, 1]⇒ σii = pi − p2i ∈
[
0,

1

4

]
⇒ σij ∈

[
0,

1

4

]
,

and similar bounds exist for the eigenvalues λ1, . . . , λk,

0 6 λi 6
k

4
and 0 6

k∑
i=1

λi 6
k

4
.

These bounds define a closed convex set in Rk,

L =

{
∆k−1(c) : c ∈

[
0,
k

4

]}
where ∆k−1(c) is the non-standard k − 1 simplex

∆k−1(c) =

{
(λ1, . . . , λk) ∈ Rk :

k∑
i=1

λi = c, λi > 0

}
.

Similar results hold for arc sets, with σii ∈ [0, 1] and λi ∈ [0, k].
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Minimum and Maximum Entropy

These results provide the foundation for characterising three cases
corresponding to different configurations of the probability mass in
P(G(E)) and P(G(E) | D):

� minimum entropy: the probability mass is concentrated on a single
DAG. This is the best possible configuration for P(G(E) | D),
because only one arc set A has a non-zero posterior probability.

� intermediate entropy: several DAGs have non-zero probability. This
is the case for informative priors P(G(E)) and for the posteriors
P(G(E) | D) resulting from real-world data sets.

� maximum entropy: all DAGs have the same probability. This is the
worst possible configuration for P(G(E) | D): it corresponds to a
non-informative prior. In other words, the data D do not provide
any information useful in identifying a high-posterior G.

Marco Scutari University of Oxford



Advanced Structure Learning, Parameter Learning

Properties of the Multivariate Bernoulli

In the minimum entropy case, only one configuration of edges E has
non-zero probability, which means that

pij =

{
1 if eij ∈ E
0 otherwise

and Σ = O

where O is the zero matrix.

The uniform distribution over G arising from the maximum entropy case
has been studied extensively in random graph theory; its two most
relevant properties are that all edges eij are independent and have
pij = 1

2 . As a result, Σ = 1
4Ik; all edges display their maximum possible

variability, which along with the fact that they are independent makes
this distribution non-informative for E as well as G(E).
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Properties of the Multivariate Trinomial

The minimum entropy is the same; in the maximum entropy case:

P(−→aij) = P(←−aij) ≈
1

4
+

1

4(N − 1)
→ 1

4
,

P(åij) ≈
1

2
− 1

2(N − 1)
→ 1

2
as N →∞

and

E(Aij) = P(−→aij)− P(←−aij) = 0,

VAR(Aij) = 2 P(−→aij) ≈
1

2
+

1

2(N − 1)
→ 1

2
,

|COV(Aij , Akl)| = 2 [P(−→aij ,−→akl)− P(−→aij ,←−akl)]

/ 4

[
3

4
− 1

4(N − 1)

]2 [1

4
+

1

4(N − 1)

]2

→ 9

64
.

with COV(Aij , Ajl)→ 9/64 and COV(Aij , Akl) = 0.
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A Geometric Representation of Entropy in L

maximum entropy

minimum
entropy

The space of the eigenvalues L for two edges in an undirected graph.
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Univariate Measures of Variability

� The generalised variance, VARG(Σ) = det(Σ) =
∏k
i=1 λi ∈

[
0, 1

4k

]
.

� The total variance (or total variability),

VART (Σ) = tr (Σ) =

k∑
i=1

λi ∈
[
0,
k

4

]
.

� The squared Frobenius matrix norm,

VARF (Σ) = |||Σ− k

4
Ik|||2F =

k∑
i=1

(
λi −

k

4

)2

∈
[
k(k − 1)2

16
,
k3

16

]
.

All of these measures can be rescaled to vary in [0, 1] and to associate
high values to networks whose structure displays a high entropy. The
equivalent measures of variability for DAGs work in the same way.
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Structure Variability: Level Curves

maximum entropy
minimum
entropy

Level curves in L for VART (Σ).

maximum entropy
minimum
entropy

Level curves in L for VARF (Σ).
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Pros & Cons About This Approach

� First and second order properties of P(G(E)) and P(G(E) | D) can be
often derived in closed form, and have a geometric interpretation.

� We now have descriptive measures of variability over the space of
DAGs; we know that structure learning algorithms are consistent, so
we can check how quickly the variability decreases as n→∞.

� Is there a way of identifying paths using covariance matrix
decompositions?

� The covariance matrix COV(Aij , Akl) is very big; so may want to
regularise it by shrinking. This affects P(aij) as well, and it is possible
to use it for regularisation purposes. Applications to Bayesian model
averaging and to identify significant arcs?
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The ALARM Network

ACO2

ANES

APL

BP

CCHL

COCVP

DISC

ECO2

ERCAERLO

FIO2

HIST HR

HRBP HREKHRSA

HYP

INT KINK

LVF

LVV

MINV

MVS

PAP

PCWP

PMB

PRSS

PVS

SAO2

SHNT

STKV

TPR

VALV

VLNG

VMCH

VTUB

ALARM is a network designed to provide an alarm message system for
intensive care unit patient monitoring. It has 37 nodes and 46 edges (of 666
possible edges), and its distribution has 509 parameters.
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bnlearn: An Aside, Generating Observations from a BN

ALARM is one of several golden standard networks, which we can
download from bnlearn.com to use in bnlearn. The fitted BN provides
the true DAG of the network, which we can save as an R objects with
bn.net().

load("alarm.rda")

true.dag = bn.net(bn)

And we can use it to generate random samples from the BN for use in
simulations and inference.

sim = rbn(bn, 100)

shd(hc(sim), true.dag)

## [1] 51

So, with these two functions we can now investigate whether structure
learning algorithms are consistent.
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So, Are Structure Learning Algorithms Consistent?

sample.size = outer(c(1, 2, 5), c(10, 10^2, 10^3, 10^4))

shd.values = numeric(length(sample.size))

for (i in seq_along(sample.size)) {
sim = rbn(bn, sample.size[i])

shd.values[i] = shd(hc(sim), true.dag)

}#FOR
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bnlearn: Graph Priors in Structure Learning

The posterior scores BDe and BGe accept prior as an additional,
optional argument specifying the prior P(G(E)). The default is the
uniform prior. So

unif = hc(alarm, score = "bde", iss = 1)

is equivalent to

unif = hc(alarm, score = "bde", iss = 1, prior = "uniform")

and the uniform graph prior has no tuning arguments.

shd(unif, dag)

## [1] 38

That is the reason why it was originally chosen as a “default” prior: it
does not require prior information on the data and it is computationally
very simple.
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The Uniform Graph Prior, Revisited

Assuming a uniform prior is problematic because:

� Score-based structure learning algorithms typically generate new
candidate DAGs by a single arc addition, deletion or reversal, e.g.

P(G ∪ {Xj → Xi} | D)

P(G | D)
=
���������P(G ∪ {Xj → Xi})

P(G)

P(D | G ∪ {Xj → Xi})
P(D | G)

.

U always simplifies, and that implies −→pij =←−pij = p̊ij = 1/3 favouring
the inclusion of new arcs as −→pij +←−pij = 2/3 for each possible arc aij .

� Two arcs are correlated if they are incident on a common node
(COV(Aij , Ajl)→ 9/64) , so false positives and false negatives can
potentially propagate through P(G) and lead to further errors in
learning G.

� DAGs that are completely unsupported by the data have most of
the probability mass for large enough N .
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The Marginal Uniform (MU) Graph Prior

We showed that

−→pij =←−pij ≈
1

4
+

1

4(N − 1)
→ 1

4
and p̊ij ≈

1

2
− 1

2(N − 1)
→ 1

2
,

so each possible arc is present in G with marginal probability ≈ 1/2 and,
when present, it appears in each direction with probability 1/2. We can
use that as a starting point, and assume an independent prior for each
arc with the same marginal probabilities (hence the name MU).

� MU does not favour arc inclusion as −→pij +←−pij = 1/2.

� MU does not favour the propagation of errors in structure learning
because arcs are independent from each other.

� MU computationally trivial to use: the ratio of the prior
probabilities is 1/2 for arc addition, 2 for arc deletion and 1 for arc
reversal, for all arcs.
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bnlearn: A Comparison of Uniform Priors

shd =

data.frame(sample.size = outer(c(1, 2, 5), c(10, 10^2, 10^3, 10^4)),

U = numeric(length(sample.size)), MU = numeric(length(sample.size)))

for (i in seq_along(sample.size)) {
sim = rbn(bn, sample.size[i])

dagU = hc(sim, score = "bde", iss = 1, prior = "uniform")

dagMU = hc(sim, score = "bde", iss = 1, prior = "marginal")

shd[i, c("U", "MU")] = c(shd(dagU, true.dag), shd(dagMU, true.dag))

}#FOR
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bnlearn: More Simulations (SHD)
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bnlearn: More Simulations (Arcs)
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bnlearn: More Simulations (Prediction)
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The Castelo & Siebes Marginal Prior

In the marginal uniform prior the probabilities are fixed ; in the general
case the Castelo & Siebes marginal prior makes it possible to specify
different −→pij , ←−pij , p̊ij for each arc. We can do this in a number of
functions in bnlearn by setting prior = "cs" and beta as follows:

beta = data.frame(from = c("LVF", "CCHL"), to = c("LVV", "MVS"),

prob = c(0.9, 0.1), stringsAsFactors = FALSE)

beta

## from to prob

## 1 LVF LVV 0.9

## 2 CCHL MVS 0.1

dag.cs = hc(alarm, score = "bde", iss = 1, prior = "cs", beta = beta)

dag.cs$learning$args$beta

## from to aid fwd bkwd

## 1 MVS CCHL 445 0.45 0.10

## 2 LVF LVV 482 0.90 0.05

Setting values for any number of arcs requires a substantial amount of
prior knowledge, and it is easy to get them wrong!
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The Variable Selection Prior

We can also borrow the classic variable selection prior from linear
regression models, that is,

P(k parents, N − k non-parents) =
βk

(1− β)N−k
, β ∈ (0, 1);

whether or not a new parent is added to a node is controlled by the
corresponding odds

P(k + 1 parents, N − k − 1 non-parents)

P(k parents, N − k non-parents)
=

β

1− β
.

We can use it by setting prior = vsp" and beta to β.

hc(alarm, score = "bde", iss = 1, prior = "vsp", beta = 0.1)
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Limiting the Number of Parents

A more drastic measure along the same lines is to put a hard limit on
the number of parents of each node, which is implies the prior:

P(adding (k + 1)th parent) =

{
1/2 if k + 1 6 maxp

0 otherwise

that sets P(G) = 0 for any G that has at least one node with more than
maxp parents, while all other graphs have the same P(G).

By convention we call sparse a DAG that has O(V) = O(A), so we
usually want to set maxp ∈ [1, 4] (1 forces DAGs to be trees):

hc(alarm, score = "bde", iss = 1, maxp = 3)

hc(alarm, score = "bic", maxp = 3)

Customarily, this has been used in the literature with all kinds of scores,
so the maxp argument is available for use with any score in bnlearn.
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bnlearn: It Can Make Things Worse If You Set It Too Low

shd =

data.frame(sample.size = outer(c(1, 2, 5), c(10, 10^2, 10^3, 10^4)),

NO = numeric(length(sample.size)), MAXP = numeric(length(sample.size)))

for (i in seq_along(sample.size)) {
sim = rbn(bn, sample.size[i])

dagNO = hc(sim, score = "bic")

dagMAXP = hc(sim, score = "bic", maxp = 2)

shd[i, c("NO", "MAXP")] = c(shd(dagNO, true.dag), shd(dagMAXP, true.dag))

}#FOR
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Whitelisting and Blacklisting

A more granular application of this kind of hard prior constraints leads
to the use of whitelists and blacklists:

� Arcs blacklisted in one direction only (i.e. A→ B is blacklisted but
B → A is not) are never present in that particular direction, but
may be present in the other direction.

� Arcs blacklisted in both directions (i.e. both A→ B and B → A
are blacklisted) are never present in the graph, even as an
undirected arc in a CPDAG.

� Arcs whitelisted in one direction only (i.e. A→ B is whitelisted but
B → A is not) have the respective reverse arcs blacklisted, and are
always present in the graph.

� Arcs whitelisted in both directions (i.e. both A→ B and B → A
are whitelisted) are present in the graph, but their direction is set
by the learning algorithm.

Any arc whitelisted and blacklisted at the same time is assumed to be
whitelisted, and is thus removed from the blacklist.
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bnlearn: Whitelists and Blacklists (I)

All structure learning algorithms in bnlearn have a whitelist and a
blacklist arguments, that are interpreted as appropriate in terms of
directed and undirected arcs at various stages of the algorithms.

In score-based algorithms, individual arcs are whitelisted and blacklisted.

head(arcs(hc(alarm)), n = 4)

## from to

## [1,] "PCWP" "LVV"

## [2,] "HRBP" "HR"

## [3,] "MINV" "VALV"

## [4,] "HR" "HREK"

bl = data.frame(from = c("HRBP", "MINV"), to = c("HR", "VALV"))

head(arcs(hc(alarm, blacklist = bl)), n = 4)

## from to

## [1,] "PCWP" "LVV"

## [2,] "HREK" "HRSA"

## [3,] "HR" "HRBP"

## [4,] "HREK" "HR"
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bnlearn: Whitelists and Blacklists (II)

In constraint-based algorithms, arcs must be blacklisted in both directions to
prevent them from being included in Markov blankets and neighbour sets;
whitelists work normally.

head(arcs(si.hiton.pc(alarm)), n = 3)

## from to

## [1,] "CVP" "LVV"

## [2,] "PCWP" "LVV"

## [3,] "HIST" "LVF"

bl = data.frame(from = c("PCWP"), to = c("LVV"))

head(arcs(si.hiton.pc(alarm, blacklist = bl)), n = 3)

## from to

## [1,] "CVP" "LVV"

## [2,] "PCWP" "LVV"

## [3,] "HIST" "LVF"

bl = data.frame(from = c("PCWP", "LVV"), to = c("LVV", "PCWP"))

head(arcs(si.hiton.pc(alarm, blacklist = bl)), n = 3)

## from to

## [1,] "CVP" "LVV"

## [2,] "PCWP" "LVF"

## [3,] "HIST" "LVF"
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Parameter Learning: Likelihood, Bayesian and Shrinkage

Once the structure of the model is known, the problem of estimating
the parameters of the global distribution can be solved by estimating the
parameters of the local distributions, one at a time.

Common choices are:

� Maximum likelihood estimators: just the usual empirical estimators.
Often described as either maximum entropy or minimum divergence
estimators in information-theoretic literature.

� Bayesian posterior estimators: posterior estimators, based on
conjugate priors to keep computations fast, simple and in closed
form.

� Shrinkage estimators: regularised estimators based either on
James-Stein or Bayesian shrinkage results.
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Maximum Likelihood and Maximum Entropy Estimators

The classic estimators for (conditional) probabilities and (partial)
correlations / regression coefficients are a bad choice for almost all
real-world problems. They are still around because:

� they are used in benchmark simulations;

� computer scientists do not care much about parameter estimation.

However:

� maximum likelihood estimates are unstable in most multivariate
problems, both discrete and continuous;

� for the multivariate Gaussian distribution, James & Stein proved in
the 1950s that the maximum likelihood estimator for the mean is
not admissible in 3+ dimensions;

� partial correlations are often ill-behaved because of that, even with
Moore-Penrose pseudo-inverses;

� maximum likelihood estimates are non-smooth and create problems
when using the graphical model for inference.
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Maximum a Posteriori Bayesian Estimators

Bayesian posterior estimates are the sensible choice for parameter
estimation according to Koller’s & Friedman’s tome on graphical
models. Choices for the priors are limited (for computational reasons) to
conjugate distributions, namely:

� the Dirichlet for discrete models, i.e.

Dir(αk|ΠXi
=π)

data−→ Dir(αk|ΠXi
=π + nk|ΠXi

=π)

meaning that p̂k|ΠXi
=π = αk|ΠXi

=π/
∑

π αk|ΠXi
=π.

� the Inverse Wishart for Gaussian models, i.e.

IW (Ψ,m)
data−→ IW (Ψ + nΣ,m+ n).

In both cases (when a non-informative prior is used) the only free
parameter is the equivalent or imaginary sample size, which gives the
relative weight of the prior compared to the observed sample.
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Bayesian LASSO and Ridge Regression

Gaussian graphical models, being closely related with linear regression,
have also used ridge regression (L2 regularisation) and LASSO (L1

regularisation) in their Bayesian capacity.

LASSO corresponds to a Laplace prior on the regression coefficients,

βk | σ2 ∼ Laplace(0, σ2).

Ridge Regression corresponds to a Gaussian prior,

βk | σ2 ∼ N(0, σ2).

In both cases tuning the σ2 parameter is crucial, as it takes the role of
the λ regularisation parameter found in the original frequentist
definitions of these methods. Also, excessive regularisation might lead
to zero coefficients that would make a node independent of its parents.
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Shrinkage, James-Stein Estimation

Shrinkage estimation is based on results from James & Stein on the
estimation of the mean of a multivariate Gaussian distribution, and
takes the form

θ̃ = λt+ (1− λ)θ̂ λ ∈ [0, 1]

where the optimal λ (with respect to squared loss) can be estimated in
closed form as

λ∗ = min

(∑
k VAR(θ̂k)− COV(θ̂k, tk) + Bias(θ̂k) E(θ̂k − tk)∑

k(θ̂k − tk)2
, 1

)

The James-Stein estimator θ̃ dominates the maximum likelihood
estimator θ̂ and converges to the latter as the sample size grows. It can
be interpreted as an empirical Bayes estimator.
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Shrinkage, James-Stein Estimation

For discrete data, conditional probabilities pk|π = pk|ΠXi
=π end up being

estimated as

p̃k|π = λ∗tk|π + (1− λ∗)p̂k|π, λ∗ = min

(
1−

∑
k p̂

2
k|π

(n− 1)
∑

k(tk|π − p̂k|π)2
, 1

)
,

where t is the uniform (discrete) distribution.

For continuous data, correlations end up being estimated from the
shrunk covariance matrix Σ̃

σ̃ii = σ̂ii, σ̃ij = (1− λ∗)σ̂ij , λ∗ = min

(∑
i 6=j VAR(σ̂ij)∑

i 6=j σ̂
2
ij

, 1

)

where t is diag(Σ̂). Σ̃ is guaranteed to have full rank, so it can be safely
inverted to get partial correlations.
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bnlearn: Parameter Learning, DBNs

Parameter learning is implemented in bn.fit() and defaults to method

= "mle"; for discrete data we can also use Bayesian posterior
estimation with method = "bayes" with an imaginary sample size iss.

fitted = bn.fit(hc(asia), asia, method = "mle")

coef(fitted$X)

## E

## X no yes

## no 0.95659 0.00541

## yes 0.04341 0.99459

fitted = bn.fit(hc(asia), asia, method = "bayes", iss = 20)

coef(fitted$X)

## E

## X no yes

## no 0.9556 0.0184

## yes 0.0444 0.9816
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bnlearn: Parameter Learning, GBNs

bnlearn implements only method = "mle" directly for GBNs, but we
can use penalized() to replace parameter estimates with ridge,
LASSO, or elastic net estimates.

library(penalized)

fitted = bn.fit(hc(marks), marks)

coef(fitted$ALG)

## (Intercept) MECH VECT

## 25.362 0.183 0.358

fitted$ALG = penalized(response = marks[, "ALG"],

penalized = marks[, parents(fitted, "ALG")],

lambda2 = 100, model = "linear", trace = FALSE)

coef(fitted$ALG)

## (Intercept) MECH VECT

## 25.481 0.184 0.355

We can also fit the parameters directly using penalized() and a DAG,
and collect them in a BN with custom.fit().
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Model Averaging: Frequentist, Bayesian and Hybrid

The results of both structure learning and parameter learning should be
validated before using a BN for inference. Since parameters are learned
conditional on the results of structure learning, validating the (CP)DAG
learned from the data would be the first step.

� frequentist: generating network structures using bootstrap and
model averaging (aka bagging).

� Bayesian: generating network structures from the posterior
P(G | D) using exhaustive enumeration or Markov Chain Mote
Carlo approximations.

� hybrid: generating network structures again using bootstrap, but
weighting them with their posterior probabilities when performing
model averaging.
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A Frequentist Approach: Friedman’s Confidence

Friedman et al. proposed an approach to model validation based on
bootstrap resampling and model averaging:

1. For b = 1, 2, . . . , B:

1.1 sample a new data set D∗b from the original data D using either
parametric or nonparametric bootstrap;

1.2 learn the structure of the BN Gb = (V, Ab) from D∗b .

2. Estimate the strength or confidence that each possible arc ai is
present in the true DAG G0 = (V, A0) as

p̂i = P̂(ai) =
1

B

B∑
b=1

1l{ei∈Ab},

where 1l{ei∈Ab} is equal to 1 if ei ∈ Eb and 0 otherwise.
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A Frequentist Approach: Friedman’s Confidence
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bnlearn: Arc Strength

This approach is implemented in boot.strength(), which takes a data
set D, a structure learning algorithm and its algorithm.args, and
performs bootstrap resampling R times.

str = boot.strength(alarm, algorithm = "hc",

algorithm.args = list(score = "bde", iss = 1), R = 100)

head(str[str$strength > 0.50, ])

## from to strength direction

## 24 CVP LVV 1 0.160

## 53 PCWP LVF 1 0.165

## 60 PCWP LVV 1 0.510

## 89 HIST LVF 1 0.755

## 112 TPR BP 1 1.000

## 118 TPR SAO2 1 0.000

The return value has two strength measures, strength and direction,
representing

P(−→pij +←−pij) and P(−→pij | −→pij +←−pij).
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A (Full) Bayesian Approach

Performing a full posterior Bayesian analysis on DAGs, that is, working
with

p̂i = E(ei|D) =
∑
G

1l{ei∈EG} P(G | D),

is considered unfeasible for DAGs with more than ≈ 10 nodes because:

� an exhaustive enumeration takes too long, and it’s even worse for
BNs because of the acyclicity constraint;

� generating DAGs from the posterior distribution is feasible but
convergence of the MCMC to the stationary distribution is far from
certain (mixing is often too slow).
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A Hybrid Approach: the “Bayesian confidence”

Friedman’s confidence and Bayesian posterior analysis may be combined as
follows:

1. For b = 1, 2, . . . , B:

1.1 sample a new data set D∗b from the original data D using either
parametric or nonparametric bootstrap;

1.2 learn the structure of the graphical model Gb = (V, Eb) from D∗b .

2. Estimate the strength confidence for each possible edge ei as

p̂i = E(ei|D) ≈ 1

B

B∑
b=1

1l{ei∈Eb} P(Gb | D).

The result is a form of approximate Bayesian estimation, whose behaviour
depends on how much of the posterior probability mass is concentrated in the
subset of DAGs Gb.
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bnlearn: Arc Strength and Weights (I)

This approach requires two separate steps:

1. we can estimate the Gb with bn.boot(), without computing any
statistic on them (the I() function does literally nothing);

2. and then we can iterate with sapply() over the DAGs to compute
the P(Gb | D).

Gb = bn.boot(alarm, algorithm = "hc", statistic = I,

algorithm.args = list(score = "bde", iss = 1), R = 100)

w = sapply(Gb, score, data = alarm, type = "bde", iss = 1)

library(Rmpfr)

w = mpfr(w, precBits = 160)

w = asNumeric(exp(w) / sum(exp(w)))

wstr = custom.strength(Gb, weights = w, nodes = names(alarm))

Note that score() returns log BDe(Gb) but we need exp(log BDe(Gb));
the log BDe(Gb) are so small that it impossible to exponentiate them
without using an arbitrary precision library.

Marco Scutari University of Oxford



Advanced Structure Learning, Parameter Learning

bnlearn: Arc Strength and Weights (II)
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Unfortunately, for any middle-sized
and large BN (say, 10 or more
nodes) the P(Gb | D) will be so
small that once normalised only 1-3
weights will be significantly
different from zero.

The reason is that the space of the
possible DAGs is extremely large
and P(G(E) | D) will be extremely
flat, so P(Gb | D)→ 0, with a few
networks having values e.g. 10−200

compared to e.g. 10−205 for the
rest.
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Identifying Significant Arcs

� The confidence values p̂ = {p̂i} do not sum to one and are dependent
on one another in a nontrivial way; the value of the confidence
threshold (i.e. the minimum confidence for an arc to be accepted as
an arc of G0 regardless of direction) is an unknown function of both
the data and the structure learning algorithm.

� The ideal/asymptotic configuration p̃ of confidence values would be

p̃i =

{
1 if ei ∈ E0

0 otherwise
,

i.e. all the networks Gb have exactly the same structure.

� Therefore, identifying the configuration p̃ “closest” to p̂ provides a
principled way of identifying significant arcs and the confidence
threshold.
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The Confidence Threshold

Consider the order statistics p̃(·) and p̂(·) and the cumulative
distribution functions (CDFs) of their elements:

Fp̂(·)(x) =
1

k

k∑
i=1

1l{p̂(i)<x}

and

Fp̃(·)(x; t) =


0 if x ∈ (−∞, 0)

t if x ∈ [0, 1)

1 if x ∈ [1,+∞)

.

t corresponds to the fraction of elements of p̃(·) equal to zero and is a
measure of the fraction of non-significant arcs, and provides a threshold
for separating the elements of p̃(·):

e(i) ∈ E0 ⇐⇒ p̂(i) > F−1
p̃(·)

(t).
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The CDFs Fp̂(·)(x) and Fp̃(·)(x; t)
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One possible estimate of t is the value t̂ that minimises some distance
between Fp̂(·)(x) and Fp̃(·)(x; t); an intuitive choice is using the L1 norm
of their difference (i.e. the shaded area in the picture on the right).
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An L1 Estimator for the Confidence Threshold

Since Fp̂(·) is piece-wise constant and Fp̃(·) is constant in [0, 1], the L1

norm of their difference simplifies to

L1

(
t; p̂(·)

)
=

∫ ∣∣∣Fp̂(·)(x)− Fp̃(·)(x; t)
∣∣∣ dx

=
∑

xi∈{{0}∪p̂(·)∪{1}}

∣∣∣Fp̂(·)(xi)− t
∣∣∣ (xi+1 − xi).

This form has two important properties:

� can be computed in linear time from p̂(·);

� its minimisation is straightforward using linear programming.

Furthermore, the L1 norm does not place as much weight on large
deviations as other norms (L2, L∞), making it robust against a wide
variety of configurations of p̂(·).
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A Simple Example
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
3

0.
4

0.
5

0.0 0.2 0.4 0.6 0.8 1.0

●

●

●

●

●

●

●

●

Consider a graph with 4 nodes and confidence values

p̂(·) = {0.0460, 0.2242, 0.3921, 0.7689, 0.8935, 0.9439}

Then t̂ = mint L1

(
t; p̂(·)

)
= 0.4999816 and F−1p̃(·)

(0.4999816) = 0.3921; only

three arcs are considered significant.

Marco Scutari University of Oxford



Advanced Structure Learning, Parameter Learning

bnlearn: Model Averaging with averaged.network()

averaged.network(wstr)

##

## Random/Generated Bayesian network

##

## model:

## [partially directed graph]

## nodes: 37

## arcs: 55

## undirected arcs: 3

## directed arcs: 52

## average markov blanket size: 3.57

## average neighbourhood size: 2.97

## average branching factor: 1.35

##

## generation algorithm: Model Averaging

## significance threshold: 0.514

head(wstr[wstr$strength > 0.514 & wstr$direction >= 0.50, ], n = 3)

## from to strength direction

## 60 PCWP LVV 1 0.5

## 112 TPR BP 1 1.0

## 126 TPR APL 1 1.0
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bnlearn: Plotting the ECDF

plot(wstr)
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The effect of the uneven posterior probability is apparent from the fact that
the arc weights are essentially either zero or one.
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bnlearn: Plotting the ECDF

plot(str)
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With the frequentist approach the weights are more spread out, and the
threshold is different as a result.
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bnlearn: Custom Thresholds

averaged.network() accepts custom values for the threshold, so we
can investigate its on the resulting (CP)DAG.

unlist(compare(averaged.network(wstr), true.dag))

## tp fp fn

## 23 23 32

unlist(compare(averaged.network(str), true.dag))

## tp fp fn

## 22 24 31

unlist(compare(averaged.network(str, threshold = 0.4), true.dag))

## tp fp fn

## 22 24 33

unlist(compare(averaged.network(str, threshold = 0.8), true.dag))

## tp fp fn

## 22 24 30

There is not guarantee that the L1 norm with produce the best DAG,
say, that with the lowest SHD, but simulations and real-world data
analyses suggest it performs well enough for practical purposes.
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Summary

� Scoring the DAGs we evaluate in structure learning algorithms is
crucial, but so are our assumptions on their prior probability.

� We can incorporate prior knowledge in structure learning in many
ways with hard constraints (arcs being present or absent, maximum
number of arcs) and/or informative priors (probability of parents and
arcs). If the prior knowledge we have is not wrong, this augments the
information present in the data and improves the quality of the BN.

� Even if we have no prior knowledge, we can do better than assuming
a uniform prior.

� Estimating the parameters of a BN given the DAG is comparatively
easy; smooth estimates are preferable over maximum likelihood
estimates as usual.

� We can use resampling to remove noisy arcs with model averaging,
typically along the lines of bagging. Averaged models tend to be more
robust and better at prediction.
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Case Study: Human Physiology

Causal Protein-Signalling
Networks Derived from
Multiparameter Single Cell Data.
Karen Sachs, et al., Science, 308,
523 (2005).

That is a landmark application of BNs because
it highlights the use of interventional data; and
because results are validated. The data consist
in the 5400 simultaneous measurements of 11
phosphorylated proteins and phospholypids;
1800 are subjected to spiking and knock-outs
to control expression.

The goal of the analysis is to learn what
relationships link these 11 proteins, that is, the
signalling pathways they are part of. Akt

Erk

Jnk

Mek

P38

PIP2

PIP3

PKA

PKC

Plcg

Raf
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Exploring the Data

sachs = read.table("sachs.data.txt", header = TRUE)

head(sachs, n = 5)

## Raf Mek Plcg PIP2 PIP3 Erk Akt PKA PKC P38 Jnk

## 1 26.4 13.2 8.82 18.30 58.80 6.61 17.0 414 17.00 44.9 40.0

## 2 35.9 16.5 12.30 16.80 8.13 18.60 32.5 352 3.37 16.5 61.5

## 3 59.4 44.1 14.60 10.20 13.00 14.90 32.5 403 11.40 31.9 19.5

## 4 73.0 82.8 23.10 13.50 1.29 5.83 11.8 528 13.70 28.6 23.1

## 5 33.7 19.8 5.19 9.73 24.80 21.10 46.1 305 4.66 25.7 81.3

The variables represent concentrations of the proteins and the
phospholypids, and take positive values. For some variables, and
observations, the cells were stimulated to produce artificially high or low
levels of particular proteins:

� 1800 data subject only to general stimolatory cues, so that the protein
signalling paths are active;

� 600 data with with specific stimolatory/inhibitory cues for each of the
following 4 proteins: Mek, PIP2, Akt, PKA;

� 1200 data with specific cues for PKA.
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A First Try

dag.hiton = si.hiton.pc(sachs, test = "cor", undirected = FALSE)

directed.arcs(dag.hiton)

## from to

## [1,] "P38" "PKC"

## [2,] "Jnk" "PKC"

undirected.arcs(dag.hiton)

## from to

## [1,] "Raf" "Mek"

## [2,] "Mek" "Raf"

## [3,] "Plcg" "PIP3"

## [4,] "PIP2" "PIP3"

## [5,] "PIP3" "Plcg"

## [6,] "PIP3" "PIP2"

## [7,] "Erk" "Akt"

## [8,] "Erk" "PKA"

## [9,] "Akt" "Erk"

## [10,] "Akt" "PKA"

## [11,] "PKA" "Erk"

## [12,] "PKA" "Akt"
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Compare with the Validated Model

sachs.modelstring =

paste("[PKC][PKA|PKC][Raf|PKC:PKA][Mek|PKC:PKA:Raf][Erk|Mek:PKA]",

"[Akt|Erk:PKA][P38|PKC:PKA][Jnk|PKC:PKA][Plcg][PIP3|Plcg]",

"[PIP2|Plcg:PIP3]")

dag.sachs = model2network(sachs.modelstring)

unlist(compare(dag.sachs, dag.hiton))

## tp fp fn

## 0 8 17

graphviz.plot(dag.hiton)

Raf

Mek

Plcg PIP2

PIP3

Erk

Akt

PKA

PKC

P38 Jnk
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Are Variables Normally Distributed?

expression levels

de
ns

ity

0 200 400 600 800

PIP2

0 200 400 600 800

PIP3
0 100 200 300 400

Mek

0 50 100 150

P38

Variables are skewed and bounded below by zero, which makes them very
different from a normal distribution. So, using a GBN may not be a good idea...
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Are Dependencies Linear?
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There is a PKC→ PKA arc in the validated network, and PKC is the only
parent of PKA. However, we cannot see any linear relationship...
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What to Do Now?

Since GBNs are not appropriate, we must now consider alternatives:

� We explore monotone transformations like the log1 0 (tried, no
improvements).

� We specify an appropriate conditional distribution for each variable
using prior knowledge on the signalling pathways (which may or may
not be available). However, the aim of the analysis was to use BNs as
an automated probabilistic method to verify such information, not to
build a BN with prior information and use it as an expert system.

� Discretise the data and to model them with a DBN, which can
accommodate skewness and nonlinear relationships at the cost of
potentially losing the ordering information. Since the variables in the
BN represent concentration levels, Sachs et al. used three levels
corresponding to low, average and high concentrations.
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Hartemink’s Information-Preserving Discretisation

Input: a data set X = Xi, i = 1, . . . , N where all Xi are continuous variables.
Output: a data set with N discrete variables, each with k2 levels.

1. Discretise each variable independently using quantile discretisation and a
large number k1 of intervals, e.g., k1 = 50 or even k1 = 100.

2. Repeat the following steps until each variable has k2 � k1 intervals,
iterating over each variable Xi, i = 1, . . . , N in turn:

2.1 compute

MXi
=
∑
j 6=i

MI(Xi, Xj);

2.2 for each pair l of adjacent intervals of Xi, collapse them in a single
interval, and with the resulting variable X∗i (l) compute

MX∗
i (l)

=
∑
j 6=i

MI(X∗i (l), Xj);

2.3 set Xi = argmaxXi(l) MX∗
i (l)

.
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bnlearn: Discretising Data

An implementation of Hartemink’s algorithm is provided in
discretize(), which takes k2 (breaks), k1 (ibreaks) and the initial
discretisation algorithm (idisc).

dsachs = discretize(sachs, method = "hartemink",

breaks = 3, ibreaks = 60, idisc = "quantile")

head(dsachs)

## Raf Mek Plcg PIP2 PIP3 Erk

## 1 (1.61,39.5] (1,21.1] (1,12] (1.11,34.9] (50.9,764] (1,15.3]

## 2 (1.61,39.5] (1,21.1] (12,23.1] (1.11,34.9] (1,18.9] (15.3,29.4]

## 3 (39.5,62.6] (27.4,389] (12,23.1] (1.11,34.9] (1,18.9] (1,15.3]

## 4 (62.6,552] (27.4,389] (23.1,167] (1.11,34.9] (1,18.9] (1,15.3]

## 5 (1.61,39.5] (1,21.1] (1,12] (1.11,34.9] (18.9,50.9] (15.3,29.4]

## 6 (1.61,39.5] (1,21.1] (12,23.1] (1.11,34.9] (1,18.9] (1,15.3]

## Akt PKA PKC P38 Jnk

## 1 (1.7,23.5] (1.95,547] (9.73,20.2] (33.4,170] (35.9,343]

## 2 (23.5,46.1] (1.95,547] (1,9.73] (1.53,19.9] (35.9,343]

## 3 (23.5,46.1] (1.95,547] (9.73,20.2] (19.9,33.4] (18.4,35.9]

## 4 (1.7,23.5] (1.95,547] (9.73,20.2] (19.9,33.4] (18.4,35.9]

## 5 (23.5,46.1] (1.95,547] (1,9.73] (19.9,33.4] (35.9,343]

## 6 (23.5,46.1] (547,777] (9.73,20.2] (33.4,170] (35.9,343]
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Structure Learning and Model Averaging

However, HITON is still not working...

dag.hiton = si.hiton.pc(dsachs, test = "x2", undirected = FALSE)

unlist(compare(dag.hiton, dag.sachs))

## tp fp fn

## 0 17 10

... so we switch to a score-based algorithm ...

dag.hc = hc(dsachs, score = "bde", iss = 10, undirected = FALSE)

unlist(compare(dag.hc, dag.sachs))

## tp fp fn

## 6 11 4

... and frequentist model averaging to remove spurious arcs.

boot = boot.strength(dsachs, R = 500, algorithm = "hc",

algorithm.args = list(score = "bde", iss = 10))

head(boot[(boot$strength > 0.85) & (boot$direction >= 0.5), ], n = 3)

## from to strength direction

## 1 Raf Mek 1.000 0.512

## 23 Plcg PIP2 0.998 0.510

## 24 Plcg PIP3 1.000 0.527
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Learning Multiple DAGs from the Data

Searching from different starting points increases our coverage of the
space of the possible DAGs; the frequency with which an arc appears is
a measure of the strength of the dependence.
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Model Averaging from Multiple Searches

While there is no function in bnlearn that does exactly this, we can
combine random.graph() and sapply() to generate the random
starting points and call hc() on each of them.

nodes = names(dsachs)

start = random.graph(nodes = nodes, method = "ic-dag",

num = 500, every = 50)

netlist = lapply(start,

function(net) {
hc(dsachs, score = "bde", iss = 10, start = net)

}
)

Then we can take the resulting list and pass it to custom.strength()

to compute arc strengths.

start = custom.strength(netlist, nodes = nodes)
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Compare Both Approaches with the Validated Network

avg.start = averaged.network(start)

graphviz.plot(avg.start)

Raf

Mek

Plcg

PIP2

PIP3 Erk

Akt

PKA

PKC

P38

Jnk

unlist(compare(avg.start, dag.sachs))

## tp fp fn

## 3 14 7

avg.boot = averaged.network(boot)

graphviz.plot(avg.boot)

Raf

Mek

Plcg

PIP2

PIP3

Erk

Akt

PKA

PKC

P38

Jnk

unlist(compare(avg.boot, dag.sachs))

## tp fp fn

## 6 11 4
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Model Averaging for the Bootstrapped DAGs
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Arcs with significant strength can be identified using a threshold estimated
from the data by minimising the distance from the observed ECDF and the
ideal, asymptotic one (the blue area in the right panel).
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Taking the Interventions into Account

Both networks look nothing like the validated network, and in fact fall in
the same equivalence class.

all.equal(cpdag(avg.boot), cpdag(avg.start))

## [1] TRUE

The only piece of information we have not taken into account yet are
the stimulations and the inhibitions, that is, the interventions on the
variables.

isachs = read.table("sachs.interventional.txt",

header = TRUE, colClasses = "factor")

With the discretised data, for each variable:

� an inhibition is an ideal intervention that sets the value to “low”;

� a stimulations is an ideal intervention that sets the value to “high”.
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A Naive Approach with Whitelists

A naive approach to consider the intervention variable INT would be to
include it as a node in the DAG and whitelist outgoing arcs to all other
variables to have different conditional probabilities depending on
whether each observation is subject to an intervention.

wh = matrix(c(rep("INT", 11), names(isachs)[1:11]), ncol = 2)

dag.wh = tabu(isachs, whitelist = wh, score = "bde",

iss = 10, tabu = 50)

unlist(compare(subgraph(dag.wh, names(isachs)[1:11]), dag.sachs))

## tp fp fn

## 8 9 5

This works better than before, but we still do not get the validated
network. Note that in this case we compare DAGs directly and not
CPDAGs because the interventions break score equivalence by blocking
the effect encoded by incoming arcs for some combinations of nodes and
observations.
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A Naive Approach with Whitelists

graphviz.plot(dag.wh, highlight = list(nodes = "INT",

arcs = outgoing.arcs(dag.wh, "INT"), col = "darkgrey", fill = "darkgrey"))
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Mixed Observational and Interventional Data

A more granular way of doing the same thing is to use the mixed observational
and interventional data posterior score from Cooper & Yoo, which creates an
implicit intervention binary node for each variable.

INT = sapply(1:11, function(x) which(isachs$INT == x) )

nodes = names(isachs)[1:11]

names(INT) = nodes

Then we perform model averaging of the resulting causal DAGs, with better
results.

netlist = lapply(start, function(net) {
tabu(isachs[, 1:11], score = "mbde", exp = INT, iss = 1,

start = net, tabu = 50)

})
intscore = custom.strength(netlist, nodes = nodes, cpdag = FALSE)

dag.mbde = averaged.network(intscore)

unlist(compare(dag.sachs, dag.mbde))

## tp fp fn

## 17 8 0
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The Final DAG

graphviz.plot(dag.mbde, highlight = list(arcs = arcs(dag.sachs)))
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Using The Protein Network to Plan Experiments

This idea goes by the name of hypothesis generation: using a statistical
model to decide which follow-up experiments to perform. BNs are
especially easy to use for this because they automate the computation
of arbitrary events.
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Fitting the Parameters and Performing Queries

First, we need to learn the parameters of the BN given the DAG.

isachs = isachs[, 1:11]

for (i in names(isachs))

levels(isachs[, i]) = c("LOW", "AVG", "HIGH")

fitted = bn.fit(dag.sachs, isachs, method = "bayes")

Then we can proceed to perform queries using gRain, on the original BN

library(gRain)

jtree = compile(as.grain(fitted))

and on a mutilated BN in which we set Erk to LOW with an ideal
intervention.

jlow = compile(as.grain(mutilated(fitted, evidence = list(Erk = "LOW"))))

In other words, we simulate a lab experiment in which we inhibit Erk
(called a knock-out experiment). Much cheaper than actually doing it
for real!
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Interventions and Mutilated Graphs
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Variables That are Downstream are Untouched

The marginal distribution of Akt changes depending on whether we take
the evidence (intervention) into account or not.

querygrain(jtree, nodes = "Akt")$Akt

## Akt

## LOW AVG HIGH

## 0.6089 0.3104 0.0807

querygrain(jlow, nodes = "Akt")$Akt

## Akt

## LOW AVG HIGH

## 0.6671 0.3310 0.0019

The slight inhibition of Akt induced by the inhibition of Erk agrees with
both the direction of the arc linking the two nodes and the additional
experiments performed by Sachs et al. In causal terms, the fact that
changes in Erk affect Akt supports the existence of a causal link from
the former to the latter.
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Causal Inference, Posterior Inference

If there is no causal link from the variable subject to intervention (Erk) to
another variable (say PKA), the distribution of that variable will not be
impacted by the intervention.

querygrain(jtree, nodes = "PKA")$PKA

## PKA

## LOW AVG HIGH

## 0.194 0.696 0.110

querygrain(jlow, nodes = "PKA")$PKA

## PKA

## LOW AVG HIGH

## 0.194 0.696 0.110

This is unlike posterior inference, because we do not remove Erk’s parents in
that case.

jlow = setEvidence(jtree, nodes = "Erk", states = "LOW")

querygrain(jlow, nodes = "PKA")$PKA

## PKA

## LOW AVG HIGH

## 0.4891 0.4512 0.0597
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Case Study: Plant Genetics

DNA data (e.g. SNP markers) is routinely used in statistical genetics to
understand the genetic basis of human diseases, and to breed traits of
commercial interest in plants and animals. Multiparent (MAGIC) populations
are ideal for the latter. Here we consider a wheat population: 721 varieties,
16K genetic markers, 7 traits. (I ran the same analysis on a rice population,
1087 varieties, 4K markers, 10 traits, with similar results.)

Phenotypic traits for plants typically include flowering time, height, yield, a
number of disease scores. The goal of the analysis is to find key genetic
markers controlling the traits; to identify any causal relationships between
them; and to keep a good predictive accuracy.

Multiple Quantitative Trait Analysis Using Bayesian
Networks
Marco Scutari, et al., Genetics, 198, 129–137 (2014);
DOI: 10.1534/genetics.114.165704
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Bayesian Networks in Genetics

If we have a set of traits and markers for each variety, all we need are
the Markov blankets of the traits; most markers are discarded in the
process. Using common sense, we can make some assumptions:

� traits can depend on markers, but not vice versa;

� dependencies between traits should follow the order of the respective
measurements (e.g. longitudinal traits, traits measured before and
after harvest, etc.);

� dependencies in multiple kinds of genetic data (e.g. SNP + gene
expression or SNPs + methylation) should follow the central dogma
of molecular biology.

Assumptions on the direction of the dependencies allow to reduce
Markov blankets learning to learning the parents and the children of
each trait, which is a much simpler task.
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Parametric Assumptions

In the spirit of classic additive genetics models, we use a Gaussian BN.
Then the local distribution of each trait Ti is a linear regression model

Ti = µTi
+ ΠTi

βTi
+ εTi

= µTi
+ TjβTj

+ . . .+ TkβTk︸ ︷︷ ︸
traits

+GlβGl
+ . . .+GmβGm︸ ︷︷ ︸

markers

+εTi

and the local distribution of each marker Gi is likewise

Gi = µGi
+ ΠGi

βGi
+ εGi

=

= µGi
+GlβGl

+ . . .+GmβGm︸ ︷︷ ︸
markers

+εGi

in which the regressors (ΠTi or ΠGi) are treated as fixed effects. ΠTi

can be interpreted as causal effects for the traits, ΠGi as markers being
in linkage disequilibrium with each other.
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Learning the Bayesian Network (I)

1. Feature Selection.

1.1 Independently learn the parents and the children of each trait with the
SI-HITON-PC algorithm; children can only be other traits, parents are
mostly markers, spouses can be either. Both are selected using the exact
Student’s t test for partial correlations.

1.2 Drop all the markers that are not parents of any trait.

Parents and children of T1 Parents and children of T2 Parents and children of T3 Parents and children of T4

Redundant markers that are not in the
Markov blanket of any trait
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The Semi-Interleaved HITON-PC Algorithm

Input: each trait Ti in turn, other traits (Tj) and all markers (Gl), a
significance threshold α.
Output: the set CPC parents and children of Ti in the BN.

1. Perform a marginal independence test between Ti and each Tj (Ti ⊥⊥ Tj)
and Gl (Ti ⊥⊥ Gl) in turn.

2. Discard all Tj and Gl whose p-values are greater than α.

3. Set CPC = {∅}.

4. For each the Tj and Gl in order of increasing p-value:

4.1 Perform a conditional independence test between Ti and Tj/Gl
conditional on all possible subsets Z of the current CPC
(Ti ⊥⊥ Tj | Z ⊆ CPC or Ti ⊥⊥ Gl | Z ⊆ CPC).

4.2 If the p-value is smaller than α for all subsets then CPC = CPC ∪ {Tj}
or CPC = CPC ∪ {Gl}.

NOTE: the algorithm is defined for a generic independence test, you can plug
in any test that is appropriate for the data.
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Learning the Bayesian Network (II)

2. Structure Learning. Learn the structure of the network from the nodes
selected in the previous step, setting the directions of the arcs according to
the assumptions above. The optimal structure can be identified with a
suitable goodness-of-fit criterion such as BIC. This follows the spirit of other
hybrid approaches (combining constraint-based and score-based learning)
that have shown to be well-performing in the literature.

Empty network Learned network
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Learning the Bayesian Network (III)

3. Parameter Learning. Learn the parameters: each local distribution is a linear
regression and the global distribution is a hierarchical linear model. Typically
least squares works well because SI-HITON-PC selects sets of weakly
correlated parents; ridge regression can be used otherwise.

Learned network Local distributions
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Learning The Structure

fit.the.model = function(data, traits, genes, alpha) {
qtls = vector(length(traits), mode = "list")

names(qtls) = traits

# find the parents of each trait among the genes.

for (q in seq_along(qtls)) {
# BLUP away the family structure.

m = lmer(as.formula(paste(traits[q], "~ (1|FUNNEL:PLANT)")), data = data)

data[!is.na(data[, traits[q]]), traits[q]] = data[, traits[q]] -

ranef(m)[[1]][paste(data$FUNNEL, data$PLANT, sep = ":"), 1]

# find out the parents.

qtls[[q]] = learn.nbr(data[, c(traits, genes)], node = traits[q],

method = "si.hiton.pc", test = "cor", alpha = alpha)

}#FOR
# yield has no children, and genes cannot depend on traits.

nodes = unique(c(traits, unlist(qtls)))

blacklist = tiers2blacklist(list(nodes[nodes %in% genes],

c("FT", "HT"),

traits[!(traits %in% c("YLD", "FT", "HT"))], "YLD"))

# build the overall network.

hc(data[, nodes], blacklist = blacklist)

}#FIT.THE.MODEL
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Model Averaging and Assessing Predictive Accuracy

We perform all the above in 10 runs of 10-fold cross-validation to

� assess predictive accuracy with e.g. predictive correlation;

� obtain a set of DAGs to produce an averaged, de-noised consensus DAG
with model averaging.
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Performing Cross-Validation (Single Fold)
predicted = parLapply(kcv, cl = cluster, function(test) {

# create matrices to store the predicted values.

pred = matrix(0, nrow = length(test), ncol = length(traits))

post = matrix(0, nrow = length(test), ncol = length(traits))

colnames(pred) = colnames(post) = traits

# split training and test.

dtraining = data[-test, ]

dtest = data[test, ]

# fit the model on the training data.

model = fit.the.model(dtraining, traits, genes, alpha = alpha)

fitted = bn.fit(model, dtraining[, nodes(model)])

# subset the test data.

dtest = dtest[, nodes(model)]

# predict each trait in turn, given all the parents.

for (t in traits)

pred[, t] = predict(fitted, node = t, data = dtest[, nodes(model)])

# predict each trait in turn, given all the genes.

for (t in traits)

post[, t] = predict(fitted, node = t,

data = dtest[, names(dtest) %in% genes, drop = FALSE],

method = "bayes-lw", n = 1000)

return(list(model = fitted, pred = pred, post = post))

})
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Averaging the Models from Cross-Validation
average.the.model = function(batch, data) {

# gather all the arc lists.

arclist = list()

for (i in seq_along(batch)) {
# extract the models.

run = batch[[i]]$models

for (j in seq_along(run))

arclist[[length(arclist) + 1]] = arcs(run[[j]])

}#FOR
# compute the arc strengths.

nodes = unique(unlist(arclist))

str = custom.strength(arclist, nodes = nodes)

# estimate the threshold and average the networks.

averaged = averaged.network(str)

# subset the network to remove isolated nodes.

relnodes = nodes(averaged)[sapply(nodes, degree, object = averaged) > 0]

averaged2 = subgraph(averaged, relnodes)

str2 = str[(str$from %in% relnodes) & (str$to %in% relnodes), ]

# save the fitted averaged network.

fitted = bn.fit(averaged2, data[, nodes(averaged2)])

return(list(model = averaged2, strength = str2, fitted = fitted))

}#AVERAGE.THE.MODEL
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The Averaged Bayesian Network (44 nodes, 66 arcs)
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Predicting Traits for New Individuals

We can predict the traits:

1. from the averaged
consensus network;

2. from each of the 10× 10
networks we learn during
cross-validation, and
average the predictions for
each new individual and
trait.
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AVERAGED NETWORK(α = 0.05, ρG)
AVERAGED PREDICTIONS(α = 0.05, ρG)

Option 2. almost always provides better accuracy than option 1.;
10× 10 networks capture more information, and we have to learn them
anyway. So: averaged network for interpretation, ensemble of networks
for predictions.
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Causal Relationships Between Traits

One of the key properties of BNs is their ability to
capture the direction of the causal relationships in
the absence of latent confounders (the experimental
design behind the data collection should take care
of a number of them). Markers are causal for traits,
but we do not know how traits influence each other,
and we want to learn that from the data.

It works out because each trait will have at least
one incoming arc from the markers, say Gl → Tj ,
and then (Gl →)Tj ← Tk and (Gl →)Tj → Tk are
not probabilistically equivalent. So the network can

� suggest the direction of novel relationships;

� confirm the direction of known relationships,
troubleshooting the experimental design and data
collection.
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Spotting Confounding Effects

HT

G2570

G832

G1896

G2953

YLD

FUS

G2835(WHEAT)

Traits can interact in complex ways that
may not be obvious when they are studied
individually, but that can be explained by
considering neighbouring variables in the
network.
An example: in the WHEAT data, the
difference in the mean YLD between the
bottom and top quartiles of the FUS disease
scores is +0.08.

So apparently FUS is associated with increased YLD! What we are
actually measuring is the confounding effect of HT (FUS ← HT →
YLD); conditional on each quartile of HT, FUS has a negative effect on
YLD ranging from -0.04 to -0.06. This is reassuring since it is known
that susceptibility to fusarium is positively related to HT, which in turn
affects YLD.
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Disentangling Pleiotropic Effects (I)

When a marker is shown to be associated to
multiple traits in a GWAS, we should separate
its direct and indirect effects on each of the
traits. (Especially if the traits themselves are
linked!)
Take for example G1533 in the RICE data set:
it is putative causal for YLD, HT and FT.

HT

FT

G4432

G1533

G4109

YLD

(RICE)

� The difference in mean between the two homozygotes is +4.5cm in HT, +2.28 weeks in FT
and +0.28 t/ha in YLD.

� Controlling for YLD and FT, the difference for HT halves (+2.1cm);

� Controlling for YLD and HT, the difference for FT is about the same (+2.3 weeks);

� Controlling for HT and FT the difference for YLD halves (+0.16 t/ha).

So, the model suggests the marker is causal for FT and that the effect on the
other traits is partly indirect. This agrees from the p-values from an
independent GWAS study (FT: 5.87e-28 < YLD: 4.18e-10, HT:1e-11).
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Disentangling Pleiotropic Effects (II)
control.ht = mutilated(bn.net(fitted), list("YLD" = 0, "FT" = 0))

control.ht = bn.fit(control.ht, indica[, nodes(control.ht)])

sim.aa = cpdist(control.ht, node = c("HT"), evidence = list(G1533 = 0),

method = "lw")

sim.AA = cpdist(control.ht, node = c("HT"), evidence = list(G1533 = 2),

method = "lw")

colMeans(sim.AA) - colMeans(sim.aa)

control.ft = mutilated(bn.net(fitted), list("YLD" = 0, "HT" = 0))

control.ft = bn.fit(control.ft, indica[, nodes(control.ft)])

sim.aa = cpdist(control.ft, node = c("FT"), evidence = list(G1533 = 0),

method = "lw")

sim.AA = cpdist(control.ft, node = c("FT"), evidence = list(G1533 = 2),

method = "lw")

colMeans(sim.AA) - colMeans(sim.aa)

control.yld = mutilated(bn.net(fitted), list("FT" = 0, "HT" = 0))

control.yld = bn.fit(control.yld, indica[, nodes(control.yld)])

sim.aa = cpdist(control.yld, node = c("YLD"), evidence = list(G1533 = 0),

method = "lw")

sim.AA = cpdist(control.yld, node = c("YLD"), evidence = list(G1533 = 2),

method = "lw")

colMeans(sim.AA) - colMeans(sim.aa)
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Case Study:

Learning a Bayesian Structure to Model Attitudes
Towards Business Creation at University

Ruiz-Ruano Garćıa et al., INTED, 5242–5249 (2014).

The main objective of this paper is to test a theoretical model of
business creation based on the attitudes perspective:

The intention to create a new business would depend on
attitudinal evaluation, if someone considers that creating a
new business is a positive thing, he or she will be more prone
to carry out the target behaviour. Additionally, intentions also
depend on normative beliefs. That is to say, intentions depend
on the perceived social pressure related with a particular
behaviour.

The data contains the answers to an electronic questionnaire from 1542
university professors from Andalusian universities (unfortunately with a
response rate of ≈ 10%).
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The Questionnaire

The questionnaire contained six sections:

1. demographic data;

2. questions directly related with entrepreneurship phenomena;

3. environment attitudes;

4. obstacles and facilitators;

5. an attitudinal scale;

6. comments and details.

To measure different aspect related with the entrepreneurial attitude we
used scales about perceived obstacles, perceived facilitators, self-efficacy,
locus of control, attitude towards business creation and normative
beliefs. Scores in all scales were individually recoded into three levels of
response (low, medium and high) using k-means.
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The Derived Scales

� perceived obstacles (OBS, out of 17): “Having to work too many hours”,
“Lack of experience”, “Ignorance of activity sector”, etc.

� perceived facilitators (FAC, out of 11): “Have perceived a need in the
market”, “The detection of a business opportunity” or “The availability of
personal assets to invest”, etc.

� self-efficacy (SE, 9 Likert items), the perceived difficulty to actually carry out
a specific behaviour: “Working under continuous stress, pressure and
conflict”, “To form alliances or partnerships with other companies”, etc.

� locus of control (LC, 3 Likert items): “If you want, you can easily be an
entrepreneur and starting your own business”, etc.

� attitude towards business creation (ACT, 6 Likert items): “To what extent do
you believe that these elements are related with the creation of a new
company?”, “To what extent do you like assume it?”, etc.

� normative beliefs (NORM, 4 Likert items): “Please, think in your family,
closest friends and social environment and indicate the degree to which they
are favourable to the idea that you create a company”, etc.
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A Prognostic Model

From the literature we assumed this prognostic BN for the data:

progn = model2network(

paste0("[creation|desirability:feasibility][desirability|LC:SE:ACT:NORM]",

"[feasibility|LC:SE:ACT:NORM:FAC:OBS][LC][FAC][OBS][SE][ACT][NORM]"))

graphviz.plot(progn, shape = "ellipse")

ACT

creation

desirability

FAC

feasibility

LC NORM OBSSE
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Running Out of Samples

The problems start when we try to learn the parameters of the BN from
the data:

summary(inted)

## creation desirability feasibility LC

## Yes: 480 Yes:882 Very.little.feasible:378 High :373

## No :1062 No :660 A.little.feasible :672 Low :544

## Feasible :444 Medium:625

## A.lot.feasible : 48

## FAC OBS SE ACT NORM

## Low :561 Low :312 Medium:412 Medium:724 High :318

## High :259 Medium:793 Low :774 Low :226 Medium:452

## Medium:722 High :437 High :356 High :592 Low :772

##

A cursory examination suggests that the sample size is too small.

nparams(progn, inted)

## [1] 2288

nrow(inted)

## [1] 1542

Marco Scutari University of Oxford



Hands-On Examples

Small n, Large p

If we learn the parameters with the classic maximum likelihood estimator,
≈ 40% of the CPT is missing values and another ≈ 40% is 0-1 distributions,
which clearly is not ideal.

fitted.progn = bn.fit(progn, inted)

ldist = coef(fitted.progn$feasibility)

length(which(is.na(ldist))) / length(ldist)

## [1] 0.396

length(which(ldist %in% c(0, 1))) / length(ldist)

## [1] 0.397

While we can paper over the problem by using posterior estimates...

fitted.progn = bn.fit(progn, inted, method = "bayes", iss = 1)

ldist = coef(fitted.progn$feasibility)

length(which(is.na(ldist))) / length(ldist)

## [1] 0

length(which(ldist %in% c(0, 1))) / length(ldist)

## [1] 0

... the BN would still lack statistical power.
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A Diagnostic Model

diagn = model2network(

paste("[creation][desirability|creation][feasibility|creation]",

"[LC|desirability:feasibility][FAC|feasibility][OBS|feasibility]",

"[SE|desirability:feasibility][ACT|desirability:feasibility]",

"[NORM|desirability:feasibility]", sep = ""))

nparams(diagn, inted)

## [1] 89

graphviz.plot(diagn, shape = "ellipse")
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Hands-On Examples

Developing the Model

The diagnostic BN has far fewer parameters, and we can estimate them
with reasonable accuracy from the data.

fitted.diagn = bn.fit(diagn, inted)

Do the data support the any further arcs we may have overlooked?

diagn2 = tabu(inted, whitelist = arcs(diagn))

graphviz.plot(diagn2, highlight = list(arcs = arcs(diagn), col = "grey"),

shape = "ellipse")
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Hands-On Examples

Job Creation, Goodness of Fit

The three models we are considering fit the data equally well; the
classification error for creation is about the same (≈ 0.274).

pred = predict(fitted.diagn, node = "creation", data = inted,

method = "bayes-lw")

ct = table(inted$creation, pred)

1 - sum(diag(ct)) / sum(ct)

## [1] 0.274

pred = predict(bn.fit(diagn2, inted), node = "creation", data = inted,

method = "bayes-lw")

ct = table(inted$creation, pred)

1 - sum(diag(ct)) / sum(ct)

## [1] 0.275

pred = predict(fitted.progn, node = "creation", data = inted,

method = "bayes-lw")

ct = table(inted$creation, pred)

1 - sum(diag(ct)) / sum(ct)

## [1] 0.273
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Hands-On Examples

Cross-Validation and Predictive Accuracy

Predictive accuracy is also similar; and note how we do not reuse diagn2 here
but we re-estimate it to avoid using the data twice.

xval.diagn = bn.cv(inted, diagn, loss = "pred-lw", runs = 10,

loss.args = list(target = "creation"),

fit = "bayes", fit.args = list(iss = 1))

mean(sapply(xval.diagn, attr, "mean"))

## [1] 0.274

xval.diagn2 = bn.cv(inted, "tabu", loss = "pred-lw", runs = 10,

loss.args = list(target = "creation"),

algorithm.args = list(whitelist = arcs(diagn)),

fit = "bayes", fit.args = list(iss = 1))

mean(sapply(xval.diagn2, attr, "mean"))

## [1] 0.276

xval.progn = bn.cv(inted, progn, loss = "pred-lw", runs = 10,

loss.args = list(target = "creation"),

fit = "bayes", fit.args = list(iss = 1))

mean(sapply(xval.progn, attr, "mean"))

## [1] 0.278
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Hands-On Examples

Scales and Predictive Accuracy

Interestingly, the summary variables desirability and feasibility (which
d-separate creation from the six scales) improve the predictive accuracy.

from = c("ACT", "LC", "NORM", "SE", "FAC", "OBS")

xval.diagn = bn.cv(inted, diagn, loss = "pred-lw", runs = 10,

loss.args = list(target = "creation", from = from),

fit = "bayes", fit.args = list(iss = 1))

mean(sapply(xval.diagn, attr, "mean"))

## [1] 0.307

xval.diagn2 = bn.cv(inted, "tabu", loss = "pred-lw", runs = 10,

loss.args = list(target = "creation", from = from),

algorithm.args = list(whitelist = arcs(diagn)),

fit = "bayes", fit.args = list(iss = 1))

mean(sapply(xval.diagn2, attr, "mean"))

## [1] 0.309

xval.progn = bn.cv(inted, progn, loss = "pred-lw", runs = 10,

loss.args = list(target = "creation", from = from),

fit = "bayes", fit.args = list(iss = 1))

mean(sapply(xval.progn, attr, "mean"))

## [1] 0.31
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Hands-On Examples

Learning and Interpretability

The BN proposed by tabu() as an extension of the diagnostic BN
produces, at least, an interesting statistical model from the theoretical
point of view. There are two new arcs associating two nodes and this
shed light to previously unexplored hypotheses.

� The arc desirability→ feasibility makes sense because you
will perceive more desirable to create a new business if it is
considerate feasible.

� The arc FAC→ OBS also makes sense because if you perceive few
obstacles, you would perceive more facilitators to do a new venture.

This second arc is particularly interesting form a practical point of view
in the context of entrepreneurship promotion. For example, it would be
advisable to introduce laws or public-private incentives in order to
reduce the subjective perception of difficulties in potential entrepreneurs.
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Queries

Indeed increasing feasibility dramatically improves the attitude towards
business creation.

fitted.diagn2 = bn.fit(diagn2, inted)

cpquery(fitted.diagn2, (creation == "Yes"),

evidence = list(feasibility = "A.lot.feasible"), method = "lw")

## [1] 0.798

cpquery(fitted.diagn2, (creation == "Yes"),

evidence = list(feasibility = "Very.little.feasible"), method = "lw")

## [1] 0.137

The same is true for decreasing OBS, but not as much; the reason is that OBS is
farther away from creation so the effect of the conditioning is smaller.

cpquery(fitted.diagn2, (creation == "Yes"), evidence = list(OBS = "High"),

method = "lw")

## [1] 0.351

cpquery(fitted.diagn2, (creation == "Yes"), evidence = list(OBS = "Low"),

method = "lw")

## [1] 0.276
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The DAG from Structure Learning is not Interpretable

On the other hand, we can learn a DAG directly from the data, but the
result has no clear interpretation because the arcs do not map well to
what we know from the literature.

graphviz.plot(tabu(inted), shape = "ellipse")
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That’s It, Thanks!
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